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Small scale intermittency in anisotropic turbulence

Wouter J.T. Bos, Lukas Liechtenstein, Kai Schneider
MSNMGP - CNRS & CMI - Université de Provence, Marseille, France

(Dated: September 17, 2007)

Isotropic, rotating and stratified turbulent flows are analyzed using a scale- and direction-
dependent flatness. The anisotropy of the spatial fluctuations of the energy distribution can hereby
be quantified for different length scales. This measure allows to distinguish between longitudinal and
transversal intermittency as well as between horizontal and vertical intermittency. The difference
between longitudinal and transversal intermittency is argued to be related to the incompressiblity
constraint. A large difference between horizontal and vertical intermittency for stratified turbulence
can be explained by an energy depletion of the horizontal plane in Fourier space.

PACS numbers: 47.27.-i, 47.27.Gs, 47.32.Ef

I. INTRODUCTION

Turbulence in geophysical flows, e.g. in the atmosphere
or in the ocean, is generally anisotropic due to the pres-
ence of shear, rotation and stratification. In these flows
the modeling and understanding of anomalous transport
of pollutants needs knowledge about small scale inter-
mittency. In the present work by intermittency we mean
small scale activity, localized in space. Intermittency
has been studied since its introduction by Taylor [1].
Townsend [2] was the first to introduce a measure for
small scale intermittency, the flatness. Subsequently, to
study the variation of intermittency with scale, Sandborn
introduced a quantitative measure, the scale-dependent
flatness [3], and showed that for intermittent flows the
flatness strongly increases with the wavenumber.

Batchelor and Townsend [4] explained intermittency
by the presence of coherent structures. As in turbulence
the coherent structures reflect the anisotropy (e.g. vor-
tex tubes aligned with the rotation axis in rotating tur-
bulence and horizontal vortex sheets in stably stratified
turbulence as shown in figure 1), the intermittency can be
expected to be anisotropic. This issue, the anisotropy of
small scale intermittency will be addressed in the present
work.

To study anisotropic turbulence specific tools are
needed. Progress has been made, notably by using di-
rectional energy spectra ([5–7] and references therein).
Directional spectra, while capturing the multiscale char-
acter, can not quantify the spatially intermittent nature
of the flows. Indeed the intermittency related to spa-
tially localized events is hidden in the phase of the Fourier
modes. It was argued by Brun and Pumir [8] that when
the largest turbulent scales are well resolved, i.e. the
domain-size is much larger than the correlation length,
intermittency is only observable in the dissipation range.
This disspation range intermittency was predicted by
Kraichnan [9]: in the highest wavenumber range, where
viscous dissipation smoothens the fluctuations, the distri-
bution of energy shows a very fast fall-off. In this range,
small variations of the cut-off scale, corresponding to the
different flow structures or regions, lead to tremendous
relative fluctuations of the turbulent intensity.

If, in addition to dissipation range intermittency, in-
ertial range intermittency is of interest, Fourier modes
are not the adequate basis functions. Wavelet coeffi-
cients are then more appropiate, because they conserve
information on the localization in physical space. An-
other method is the use of structure functions, in par-
ticular within the context of the SO3 decomposition [10].
However, structure functions can yield erroneous scalings
if the considered velocity field is too smooth or too ir-
regular [11, 12]. Indeed structure functions are closely
related to wavelets [12], who do not have this disad-
vantage but conserve the other advantages of structure
functions: they can simultaneously address the multi-
scale distribution of a quantity, its anisotropy and yield
information on its spatial distribution. In the present
work we therefore use wavelets and in particular a statis-
tical tool is introduced, the scale-dependent directional
flatness, inspired by the work of Meneveau [13] and of
Farge et al. [14], who used three-dimensional orthogonal
wavelets and two-dimensional angle-dependent continu-
ous wavelets, respectively. The scale-dependent direc-
tional flatness can be seen as an anisotropic extension of
the spectral flatness [8, 15, 16], applied to scale space
rather than to Fourier space.

In the next section we will describe the direct numer-
ical simulations that yield the velocity fields analyzed in
this work. Subsequently, in section 3 we will discuss the
link between wavelet space and Fourier space. In section
4 we analyze the velocity fields using two measures: the
directional energy and the scale-dependent directional
flatness. It is shown that a large part of the observed
anisotropy of the energy distribution is due to the in-
compressibility constraint. Finally, it is argued that the
anisotropic small scale intermittency can be explained by
the competition of various mechanisms: dissipation range
fluctuations, incompressibility and body forces.

II. DIRECT NUMERICAL SIMULATIONS

We consider velocity fields obtained by direct numeri-
cal simulation (DNS) of Navier-Stokes turbulence, using
a classical pseudo-spectral method. Anisotropy is created



TABLE I: Sets of parameters of the three DNS runs. T0 in-
dicates after how many turnover times the data is evaluated.

e L Rλ Ro or Fr time (T0)
Isotropic 0.014 0.37 34 6
Rotating 0.034 0.37 60 Ro = 0.025 3
Stratified 0.056 0.44 121 Fr = 0.028 11.5

by rotation and stratification, both oriented along the
vertical axis. The velocity fields considered here corre-
spond to decaying isotropic, rotating and stably stratified
incompressible turbulence within the Boussinesq approx-
imation using 5123 grid points. No external forcing is ap-
plied to the velocity fields, so that the Reynolds number is
moderate and the inertial range is not well pronounced.
However, forcing is known to affect the anisotropy in-
duced by the body forces. To avoid artefacts caused by
the forcing, the freely decaying case is considered. The
parameters are summarized in table I. Specific attention
has been paid to the large scale anisotropy of the flow:
the Froude and Rossby number are comparable. These
quantities are defined as Fr = U/LN and Ro = U/Lf ,
with N and f being the Brunt-Väisälä frequency and ro-
tation number, respectively. Here the integral turbulent
velocity U and the integral lengthscale L are defined as

U =
√

2e/3, L =
π

2U2

√

∫

E(k)

k
dk, (1)

with e =
∫

E(k)dk and E(k) the spherically averaged
energy spectrum. The Reynolds numbers, based on the
Taylor-microscale (Rλ =

√

20e2/(3νǫ), with ν the kine-
matic viscosity and ǫ the dissipation of kinetic energy),
are of the same order of magnitude. For details about
the method and the set-up of the simulations we refer to
[17]. In addition to these three cases a vector valued test
field was generated consisting of divergence-free Gaussian
white noise, with E(k) ∼ k2.

III. WAVELET SPACE AND ITS RELATION TO

FOURIER SPACE

The velocity field at a given time instant is projected
onto an orthogonal wavelet basis (see e.g. [18] for de-
tails). We use Coiflet-12 wavelets, which have 4 vanish-
ing moments and a filterlength of 12. The projection of
one component u(x) of a vector field u = (u, v, w), on
orthogonal wavelets ψ(x) can be represented by

u(x) =
∑

λ

ũλψλ(x) (2)

with the subscript λ = (j, i, d), where j represents the
scale, i the position and d the direction. The coefficients

FIG. 1: (Color online) Iso-enstrophy surfaces from direct nu-
merical simulation for rotating (top) and stratified (bottom)
turbulence with an iso-value equal to the mean enstrophy. In
the rotating case we observe elongated vertical structures, in
the stratified case flattened horizontal structures. The vertical
velocity is shown in the visualization by a color scale ranging
from blue (negative velocity) to red (positive velocity).

are stocked in a 5123 wavelet space. The orthonormal
character of the wavelets implies that for a datafield of
N3 = 23J values, j takes the values j = {0, 1, .., J−1}. In
the wavelet representation 7 spatial directions can be de-
fined in three space dimensions (in D dimensions, 2D −1
directions exist). For every particular combination of
scale j and direction d, i can take 23j different values,
which give an information on the localization in physi-
cal space. The parameters (j, i, d) are then equivalent
to coordinates in wavelet space. This wavelet space, in
the Mallat representation [19], is shown in figure 2 as
compared to Fourier space for both two and three di-
mensions. Hereby a direct link is shown between the
two approaches. The dashed part of wavelet space, cor-
responding to one of the 7 spatial directions (in three
dimensions), is associated to the dashed part of Fourier
space in the figures: it constitutes an orthogonal par-
tition of Fourier space. Each individual box in wavelet
space corresponds to a direction d and a scale j. Each
scale can be linked to a wavenumber kj by

kj = k02
j with k0 =

∫

k|ψ̂(k)|dk
∫

|ψ̂(k)|dk
(3)

where k0 is the centroid-wavenumber, a constant for each
type of wavelet (k0 ≈ 0.77 for Coiflet-12). It is hereby



possible to reconstruct an energy spectrum, by calcu-
lating the spectral energy density corresponding to a
wavenumber kj . The relation is

Ẽ(kj) = αj〈eλ〉(j) with eλ =
(

ũ2
λ + ṽ2

λ + w̃2
λ

)

/2 (4)

in which the averaging has been performed over the po-
sition i and the direction d and with αj = 4π22j/(7k0), a
scale-dependent factor relating the discrete wavelet rep-
resentation to spherical shells in Fourier space. This ap-
proach was initially proposed by Meneveau [13] and for
further details we refer to his pioneering work. The disad-
vantage of these wavelet based energy spectra, is the loss
of spectral resolution: the spectrum contains one point
for each scale j, that is, for each octave. This loss of
information is however compensated by an information
on the spatial variance of the energy spectrum, because
for every scale j (corresponding to 7 boxes), we have
23j × 7 values. The spatial variation can be expressed as
the standard deviation of the spectral distribution. This
standard deviation is defined by:

σẼ(kj) = αj

[

〈e2λ〉(j) − 〈eλ〉
2
(j)

]1/2

. (5)

In figure 3 both the spherically averaged Fourier en-
ergy spectrum E(k) and the wavelet spectrum Ẽ(kj) are
shown for isotropic turbulence. The wavelet spectrum
agrees well with the Fourier spectrum. The spatial vari-
ation of the spectral distribution is shown in figure 3 by
adding the points that indicate the spectrum plus one
standard deviation (Ẽ(kj) + σẼ(kj)). This variation is
closely related to the flatness as will be explained in the
following.

IV. ANALYSIS OF THE ANISOTROPY OF THE

VELOCITY FIELDS

A. Directional energy

Because of incompressibility, the energy distribution in
Fourier space of an isotropic vector-field can be expressed
as

Φij(k) =

(

δij −
kikj

k2

)

E(k)

4πk2
, (6)

which means that for a certain component (for example
Φ11(k)) one finds:

Φ11(k) =

(

1 −
k1k1

k2

)

E(k) = sin2φ
E(k)

4πk2
, (7)

with φ the angle between the wave vector and the kx-
axis. This results in an eight-shaped distibution in 2
dimensions, shown in figure 4. In 3 dimensions this eight
is rotated around the kx-axis for Φ11(k). This leads to
an anisotropy in the directional energy of the vector field
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FIG. 2: (Color online) Left: wavelet space in two and three di-
mensions. Right: wavelet space projected onto Fourier space.
Each box corresponds to a certain scale j and direction d and
each box contains 22j values of i in two dimensions and 23j in
three dimensions, giving information on localization in phys-
ical space. Hereby we can relate a scale j to a wavenumber
kj : kj = k02

j , where k0 is the centroid-wavenumber of the
wavelet.
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FIG. 3: (Color online) The (Fourier) energy spectrum for
isotropic turbulence. Also shown is the dual spectrum con-
structed from wavelet coefficients. The stars indicate the stan-
dard deviation of the spatial distribution of the spectral en-
ergy density.

components, even for isotropic fields. Rotation or strati-
fication can amplify or reduce this effect.

The general picture that emerges from studies using
directional spectra [6, 20] is that in stratified turbulence
the kinetic energy is concentrated in a cone around the
vertical axis of Fourier space. For rotating turbulence,
the inverse tendency, an accumulation of energy close to
the horizontal plane in Fourier space, is observed. In
physical space this energy distribution corresponds to
sheet-like structures in stratified turbulence and verti-
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FIG. 4: (Color online) The variance of individual components
of a divergence-free isotropic vector field is not isotropically
distributed. Isovalues of two components Φ11(k) and Φ22(k)
are plotted as well as their isotropic sum.

cal vortex tubes in rotating turbulence, as illustrated in
figure 1. The distribution of energy in wavelet space, i.e.
the wavelet coefficients in the different boxes, allows a di-
rect quantification of anisotropy. The directional energy,
e(d) is obtained by summing the energy over all boxes in
wavelet space in a particular direction (illustrated in Fig-
ure 2, on the left, for a horizontal direction). It can be
stressed here that the vertical direction in wavelet space
contains a particular discrete dyadic cone in Fourier space
around the kz-axis, similar to the cones in [6, 20]. We
can therefore anticipate that the energy in this direction
will be reduced in the rotating case and enhanced in the
stratified case.

In figure 5 the directional energy is shown for the three
different velocity components u, v and w as a percentage
with respect to the total energy of u. In the present work
we focus on the three principal directions x, y and z. The
four diagonal directions, which contain the remaining
part of the energy, are not shown. For the divergence-free
Gaussian noise, if one considers one velocity component,
the directional distribution is not isotropic. Longitudi-
nal energy (e.g. u in the x-direction) is smaller than the
transversal components (e.g. u in the y-direction). The
reason for this is the incompressibility constraint, as illus-
trated in figure 4: the Riesz projector reduces the energy
in the longitudinal direction in favour of the transver-
sal ones. The directional energy of isotropic turbulence
behaves very similar to the Gaussian field: the longitu-
dinal energy is smaller than the transversal energy. For
rotating turbulence we see a similar picture, even though
the directional energy is reduced in the z-direction. In-
deed the formation of columnar structures reduces the
spatial variation in this direction. The reduction of the

energy in the z-direction is however moderate and two-
dimensionalization is not achieved. The picture is dra-
matically different for stratified turbulence in which all
components are reduced in favour of the u and v energy
in the z-direction. This energy distribution clearly corre-
sponds to a vertically sheared horizontal flow. The flow
is close to the two-component limit.

B. Directional flatness

The standard deviation of the spatial distribution of
the scale-dependent energy involves the square root of
fourth-order moments of the wavelet coefficients. It can
be directly related to the flatness. For a component u
of the velocity field we introduce the directional scale-
dependent flatness:

Fu
(j,d) =

〈ũ4
λ〉(j,d)

〈ũ2
λ〉

2
(j,d)

(8)

in which averaging is performed only over the position
i. This can be related to the standard deviation of the
spectral distribution of u by:

Fu
(j,d) =

(

σẼu

(kj , d)

Ẽu(kj , d)

)2

+ 1 (9)

in which the spectrum Ẽu(kj , d) and its standard devi-
ation σẼu

(kj , d) are defined as in (4) and (5) by using
only one component of the velocity in one direction d of
wavelet space. The scale-dependent directional flatness is
thus a measure for the relative spatial fluctuation of the
directional spectral energy density. It should therefore
be an adequate measure for intermittency in the sense
of Kraichnan [9]: extreme relative intensity fluctuations
at the small scales should translate into large deviations
of Fu

(j,d) from its Gaussian value 3. Furthermore, the

physical space locality of the wavelets should allow to
investigate inertial range intermittency if the Reynolds
number is sufficiently high.

In figure 6 the directional flatness is plotted ver-
sus wavenumber for the different flow fields. For the
divergence-free Gaussian white noise, the flatness is as
expected equal to three. For all the other flows the in-
termediate scales are close to this value. For isotropic
turbulence the small scale flatness increases. This depar-
ture from Gaussianity characterizes an increased inter-
mittency in the small scales. The longitudinal flatness is
smaller than the transversal flatness.

An explanation for the increase of intermittency as
a function of scale can be given starting with the
theory of stochastic distortion of turbulence, proposed
by Nazarenko et al. [15] for the dynamo problem and
Dubrulle et al. [16] for Navier-Stokes turbulence. Ac-
cording to their model, small-scale wavepackets (in our
case wavelets), initially isotropically distributed, get de-
formed by small-wavenumber induced strain. This re-
sults in cactus-leaf shaped distributions with one small,
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FIG. 5: (Color online) Directional energy of the three velocity components u, v and w for (from left to right) divergence-free
Gaussian white noise, isotropic, rotating and stratified turbulence.

one large, and one neutral axis. The energy at the tops
of the cactus leaf, near the ends of the long axis are more
dissipated than the other ones. This process repeats it-
self in randomly oriented directions, so that after some
deformations, a highly irregular, fingered energy distri-
bution, is obtained in Fourier space. The intermittent
distribution of the small scales corresponds to the in-
creased flatness at high wavenumbers. If we consider now
one particular component of the velocity field, which has
the shape of an eight in two dimensions (Figure 4), the
transversal direction, containing the bigger part of the
two lobes of the eight, reaches higher wavenumbers than
the longitudinal direction, so that this fingering effect due
to stochastic straining is stronger in the transversal di-
rection: the transversal small scale flatness is larger than
the longitudinal flatness. Using the direct link between
Fourier-space and wavelet-space (figure 2), this mech-
anism could be applied to explain the present results,
shown in figure 6.

The rotating turbulence shows a behavior very similar
to the isotropic case: the longitudinal flatness is smaller
than the transversal flatness. For the stratified case, the
picture is different: the flatness in the z-direction be-
haves approximately as for the isotropic case. However,
the flatness in the x and y directions increases dramat-
ically with scale. We need an additional mechanism to
explain this. In stratified turbulence the energy tends to
concentrate around the vertical wavevector: the dyadic
cones around the horizontal plane kz = 0 in Fourier space
are almost completely depleted from energy [6, 20]. The
rare fluctuations of energy in these directions correspond
to an extreme intermittency: in stratified turbulence the
small scale intermittency is highly anisotropic. For the
u-component, it is also possible to partially explain the
results by the nonlocal strain mechanism, described in
the previous paragraph: the longitudinal directional flat-
ness (in the x-direction) is smaller than the transversal
one (in the y-direction), with x and y both perpendicular
to the direction of stratification.

The observations can thus be explained by two com-
peting mechanisms. First, the non-local strain that in-

duces an anisotropy in the intermittency because the
variance of the different components of a divergence free
vector-field is anisotropically distributed in Fourier space.
Second, the energy depletion of the horizontal plane in
Fourier space due to the influence of stratification. Rota-
tion is shown not to play a major role in the amplification
or damping of small-scale intermittency in Fourier space.

V. CONCLUSION

To resume, the present results reconfort the picture
[6, 20] that for stratified turbulence, energy accumulates
in a cone around the vertical axis in Fourier space and to-
wards a horizontal plane for rotating flow. The introduc-
tion of a new statistical diagnostic, the directional scale-
dependent flatness allows to obtain a more precise picture
of the spatial fluctuations of this spectral energy distri-
bution. The simulations allowed to focus on small scale
intermittency, which was shown to be highly anisotropic.
The transversal flatness is larger than the longitudinal
flatness which can be explained by a nonlocal straining
of the small scales by the large scales combined with the
energy distribution in Fourier space resulting from the in-
compressibility constraint. In stratified turbulence, this
effect is overshadowed by an energy depletion of the hor-
izontal plane in Fourier space.

The present results may have implications for the de-
velopment of models for anisotropic turbulence. A sound
physical model, e.g. an anisotropic extension of the ad-
vected delta-vee system [21] or the models proposed in
[22, 23], should address the anisotropy of the departure
from Gaussianity of the small scales. Future studies could
address the influence of Reynolds, Froude and Rossby
number on the anisotropy at small scales as well as in
the inertial range.
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