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Exploring the power of converse events

Guillaume Aucher and Andreas Herzig
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Abstract

Dynamic epistemic logic as viewed by Baltag, Moss and Solecki (BMS)
and propositional dynamic logic (PDL) offer different semantics of events.
On the one hand, BMS adds dynamics to epistemic logic by introducing
so-called event models as syntactic objects into the language. On the other
hand, PDL has instead transition relations between possible worlds. This
last approach allows to easily introduce converse events. In this paper we
add epistemics to this, and call the resulting logic epistemic dynamic logic
(EDL). We show that BMS can be translated into EDL thanks to this use of
the converse operator: it enables us to translate the structure of the event
model directly within a particular axiomatization of EDL, without having
to refer to a particular epistemic event model in the language (as done in
BMS). It follows that EDL is more expressive and general than BMS and
we characterize semantically and syntactically in EDL this embedding of
BMS.

1 Introduction

Aim: reason about perception of events. Accounting for various modes of
perception of events is the aim of a family of formal systems called dynamic
epistemic logics. These logics add dynamics to Hintikka’s epistemic logic via
transformations of its models.

The focus of dynamic epistemic logics is typically on epistemic events. The
simplest case of epistemic event is public announcement à la Plaza [15]. An-
other example is group announcement à la Gerbrandy [9]. Note that updates
of dynamic epistemic logics differ from Katsuno-Mendelzon-like updates as
studied in the AI literature [12] since these updates always involve a factual
change in the situation at stake.

In [6, 5], Baltag, Moss and Solecki proposed a dynamic epistemic logic that
was very influential. We refer to it in this paper by the term BMS. It has been
shown that their account subsumes all other dynamic epistemic logics. The
semantics of BMS is based on two kinds of models: a static model Ms (called
state model by Baltag, s in Ms for static) and a (finite) event model A (called
epistemic action model by Baltag). Ms models the actual world and the agents’
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beliefs about it, and is nothing but a good old epistemic model à la Hintikka.
A models the actual event taking place and the agents’ beliefs about it. An
agent’s beliefs can be uncertain (event a occurred, but agent cannot distinguish
occurrence of a from occurrence of a′) and even unsound (a occurred, but agent
wrongly perceived some a′). Ms andA are then combined by a restricted prod-
uct construction which defines the situation after the actual event took place,
viz. the resulting actual world, and the agents’ beliefs about it.

In this paper, our first aim is to enrich the (dynamic) epistemic language
with a modal operator expressing what was true before an event occurred. Our
second aim is to propose a unified language which does not refer in its syn-
tax to an event model as in the BMS formalism. Indeed, as its name says, this
model is a semantic object. So it seems to us inappropriate to introduce it di-
rectly into the syntax of the language (although the way it is actually done in
the BMS formalism is formally correct).

Semantics of events: products vs. accessibility relations. Expressing within
the BMS formalism what was true before an event a occurred, i.e. giving seman-
tics to the converse event a− is not simple partly because the formal definition
of what is true after an event a occurs is already rather involved.

On the other hand, in PDL [10], the effects of events are interpreted as tran-
sition relations on possible worlds, and not as restricted products of models
as in BMS. Converse events a− can then easily be interpreted by inverting the
accessibility relation associated to a. The resulting logic is called the tense ex-
tension of PDL. To this we then add an epistemic accessibility relation. We call
(tensed) Epistemic Dynamic Logic EDL the combination of epistemic logic and
PDL with converse.1

A semantics in terms of transition relations is more flexible than the BMS
product semantics: we have more options concerning the interaction between
events and beliefs. In Section 2, we will propose an account that captures this
relationship more explicitly than the BMS product semantics does by means
of constraints on the respective accessibility relations: a no-forgetting and a
no-learning constraint, and a constraint of epistemic determinism.

Translating BMS into EDL. To demonstrate the power of our approach we
will provide a translation from BMS to EDL. To do so, we will express the
structure of an event model A by a nonlogical theory Γ(A) of EDL, and prove
that any formula φ is valid in BMS if and only if it is a logical consequence
of Γ(A) in EDL. We will also show that Γ(A) actually characterizes the EDL-
models which are generated in the ‘BMS style’ by an event model A.

So, unlike BMS, we avoid referring to a semantical structure (i.e. the BMS
event model A) in the very definition of the language. Encoding the structure
of a BMS event model A by a nonlogical theory Γ(A) of EDL is done thanks

1 EDL is related to Segerberg’s Doxastic Dynamic Logic DDL [19, 20]. But research on DDL
focusses mainly on its relation with AGM theory of belief revision, and studies particular events of
the form +φ (expansion by φ), ∗φ (revision by φ), and −φ (contraction by φ).
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to converse events. For example [a]Bj(⟨a−⟩⊤ ∨ ⟨b−⟩⊤) expresses that agent j
perceives the occurrence of a as that of either a or b.

Organization of the paper. This paper is organized as follows. In section 2
we introduce a language of belief, events and converse events. Then we pro-
vide a semantics for that language, and define our logic EDL. In section 3 we
give BMS’s restricted product semantics for the fragment of the language with-
out converse, and define its logic, also called BMS. In section 4 we provide two
embeddings of BMS into EDL: a ‘semantic’ one and a ‘syntactic’ one based on a
theory Γ(A) associated to each event modelA (we prove that the consequences
of Γ(A) in EDL match the BMS-validities). In section 5 we compare our formal-
ism with van Benthem and Pacuit’s logic ETL and other related work. Finally,
we conclude in section 6.

2 EDL: Epistemic Dynamic Logic with converse

2.1 The language LEDL of EDL

In this paper, Φ is a countable set of propositional symbols, G is a finite set of
agent symbols, and E is a finite set of event symbols. (Finiteness of E will be
crucial for our results, cf. Definition 2.5.)

Definition 2.1 (Language LEDL)
The language LEDL is defined as follows

LEDL : φ ::= ⊤ | p | ¬φ | φ ∧ φ | Bjφ | [a]φ | [a−]φ,

where p ranges over Φ, j over G and a over E.
The dual modal operators ⟨a⟩ and ⟨a−⟩ are defined as follows: ⟨a⟩φ abbre-

viates ¬[a]¬φ; ⟨a−⟩φ abbreviates ¬[a−]¬φ.
We define the language LBMS as the sub-language of LEDL without converse

operators a− and the language L as the sub-language of LEDL without dynamic
operators a− and a. 2

The formula [a]φ reads “φwill hold after every possible occurrence of event
a”. [a−]φ reads “φ held before a”. So [a]Bj [a

−]⊥ is an LEDL-formula that is not
in LBMS.

2.2 Semantics of EDL

When designing models of events and beliefs the central issue is to account for
the interplay between these two concepts. In our PDL-based semantics this is
done by means of constraints on the respective accessibility relations.

Definition 2.2 (EDL-model, no-forgetting, no-learning, epistemic determin-
ism)
An EDL-model is a tuple M = (W,R,R, V ) such that
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• W is a non-empty set of possible worlds;

• R : G→ 2W×W assigns an accessibility relation to each agent;

• R : E → 2W×W assigns an accessibility relation to each possible event;
and

• V : Φ → 2W is a valuation.

We write Rj and Ra instead of R(j) and R(a), and define Rj(w) = {v | wRjv}
and R−1

a (v) = {w | w ∈ R−1
a (v)} = {w | v ∈ Ra(w)}.

Moreover an EDL-model satisfies the constraints of no-forgetting, no-learning
and epistemic determinism:

nf If v′ ∈ (Ra ◦Rj)(w) then there is b ∈ E such that v′ ∈ (Rj ◦ Rb)(w).
nl If (Ra ◦Rj ◦ R−1

b )(w) ̸= ∅ then (Rj ◦ Rb)(w) ⊆ (Ra ◦Rj)(w).
ed If v1, v2 ∈ Ra(w) then Rj(v1) = Rj(v2).

2

The no-forgetting principle says that if after an event a agent j considers a
world v′ possible, then before this event a agent j already considered possible
that there was an event b leading to this world (see Figure 1, left). So everything
agent j considers possible after the performance of an event stems from what
she considered possible before the event. This principle is a generalization of
the perfect-recall principle [8].

To understand the no-learning principle, also known as no miracles [24],
assume that agent j perceives the occurrence of a as that of b1, b2. . . or bn.
Then, informally, the no-learning principle says that all such alternatives re-
sulting from occurrence of b1, b2,. . . , bn in j’s alternatives before a are indeed
alternatives after a. In a sense there is no miracles: everything the agent was
supposed to consider possible after the event is indeed considered possible af-
ter the event (if the latter actually takes place). Formally, assume that agent j
perceives b as a possible alternative of a, i.e. (Ra ◦ Rj ◦ R−1

b )(w) ̸= ∅. If at w
world v′ was a possible outcome of event b for j, then v′ is possible for j at
some v ∈ Ra(w) (see Figure 1, middle).

Finally, the epistemic determinism principle says that an agent’s epistemic
state after an event does not depend on the particular nondeterministic out-
come. Formally, suppose we have wRav1 and wRav2. Then ed forces that the
epistemic states at v1 and v2 are identical: Rj(v1) = Rj(v2) (see Figure 1, right).

These three constraints delimit the class of events E we consider. Our
events are such that the epistemic state of an agent after the occurrence of
an event depends only on the previous epistemic state of the agent and on
how the event is perceived by the agent, and not on which facts hold in the
world before or after the event. This feature of our events is formally captured
by Proposition 2.3 below: Rj(w) is the epistemic state of the agent before the
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Figure 1: no-forgetting, no-learning and epistemic determinism constraints

event and Aa,w = {b ∈ E | (Ra ◦ Rj ◦ R−1
b )(w) ̸= ∅} is intuitively the set of

events that agent j considers as possibly occurring while event a is in fact oc-
curring at world w. For example the event of an agent testing whether φ is the
case is not an event of the set of atomic events E. Indeed the epistemic state
of this agent after the test (the agent knowing whether φ is true) depends on
the actual state of the world (whether φ is true or not). In this example the
no-learning constraint is violated. Another example of an event which is not
dealt with by our formalism is that of tossing a coin and looking at it. In this
example, the epistemic state of the agent after the toss depends on the state of
the world after the event, i.e. whether the coin lands heads or tails up. Here the
epistemic determinism constraint is violated. On the other hand, both public
and private announcements are dealt with by our framework. More generally,
any kind of announcement (public, private. . . ) about any kind of information
(epistemic, stating that an event just occurred. . . ) is dealt with by our frame-
work. Our events are sometimes called ontic events, feedback-free events or
uninformative events [11, 7].

Proposition 2.3 Let M = (W,R,R, V ) be a tuple. M is an EDL-model, i.e. M
satisfies nf, nl, ed, iff for all j ∈ G, all w ∈M , all a ∈ E, all w′ ∈ Ra(w),

Rj(w
′) =

∪
{Rb(v) | b ∈ Aa,w, v ∈ Rj(w)} (∗)

where Aa,w = {b ∈ E | Ra ◦Rj ◦ R−1
b (w) ̸= ∅}.

PROOF.

• Assume M satisfies nf, nl and ed.

– Let v′ ∈ Rj(w
′). Then v′ ∈ (Ra ◦ Rj)(w). So by nf there is b ∈ E

and v ∈ Rj(w) such that v′ ∈ Rb(v). So (Ra ◦Rj ◦ R−1
b )(w) ̸= ∅ and

b ∈ Aa,w. So v′ ∈
∪
{Rb(v) | b ∈ Aa,w, v ∈ Rj(w)}.
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– Let v′ ∈
∪
{Rb(v) | b ∈ Aa,w, v ∈ Rj(w)}. Then there is b ∈ E

such that v′ ∈ (Rj ◦ Rb)(w) and (Ra ◦ Rj ◦ R−1
b )(w) ̸= ∅. So by nl,

v′ ∈ (Ra ◦ Rj)(w), i.e. there is w′′ ∈ Ra(w) such that v′ ∈ Rj(w
′′).

Then by ed, v′ ∈ Rj(w
′).

• Assume M satisfies (*).

nf Assume that v′ ∈ (Ra ◦ Rj)(w). Then there is w′ ∈ Ra(w) such that
v′ ∈ Rj(w

′). By (*) there is b ∈ Aa,w and v ∈ Rj(w) such that v′ ∈
Rb(v). So there is b ∈ E such that v′ ∈ Rj ◦ Rb(w).

nl Assume that (Ra ◦Rj ◦R−1
b )(w) ̸= ∅ and v′ ∈ (Rj ◦Rb)(w). Then there

is v ∈ Rj(w) and b ∈ Aa,w such that v′ ∈ Rb(v). So v′ ∈ Rj(w
′) for all

w′ ∈ Ra(w), i.e. v′ ∈ (Ra ◦Rj)(w).
ed is clearly fulfilled.

QED

Definition 2.4 (Truth conditions for LEDL)
The semantics of LEDL is defined inductively as follows. Let M be an EDL-
model and w ∈M .

M,w |= ⊤
M,w |= p iff w ∈ V (p)
M,w |= φ ∧ φ′ iff M,w |= φ and M,w |= φ′

M,w |= Bjφ iff for all v ∈ Rj(w),M, v |= φ
M,w |= [a]φ iff for all v ∈ Ra(w),M, v |= φ
M,w |= [a−]φ iff for all v ∈ R−1

a (w),M, v |= φ.

Truth of φ in a EDL-modelM is writtenM |= φ and is defined as: M,w |= φ
for every w ∈ M . Let Γ be a set of LEDL-formulas. Validity of φ in a class of
EDL-models M is written M |= φ and is defined as M |= φ for all M ∈ M.
The (global) consequence relation is defined by:

Γ |=EDL φ iff for every EDL-model M , if M |= ψ for every ψ ∈ Γ then M |= φ.

2

For example we have
{[b]φ, ⟨a⟩Bj⟨b−⟩⊤} |=EDL [a]Bjφ (∗)

and
|=EDL (Bj [b]φ ∧ ⟨a⟩Bj⟨b−⟩⊤) → [a]Bjφ (∗∗)

Note that in (∗), Bj [b]φ instead of [b]φ is not needed because we use the
global notion of logical consequence |=EDL. Now, consider φ = ⊥ in (∗∗):
Bj [b]⊥ means that perception of event b was unexpected by agent j, while
⟨a⟩Bj⟨b−⟩⊤ means that j actually perceives a as b. By our no-forgetting con-
straint it follows that [a]Bj⊥, i.e. unexpected events make agents go crazy. In
fact, one would like to avoid agents believing inconsistencies: in such situa-
tions some sort of belief revision should take place. We do not investigate this
further here.

6



2.3 Completeness

Definition 2.5 (Proof system of EDL)
The logic EDL is defined by the multi-modal logic K for all the modal operators
Bj , [a] and [a−], plus the axioms schemes Conv1, Conv2, NF, NL and ED below:

Conv1 ⊢EDL φ→ [a]⟨a−⟩φ
Conv2 ⊢EDL φ→ [a−]⟨a⟩φ
NF ⊢EDL Bj

∧
a∈E

[a]φ→
∧

a∈E

[a]Bjφ

NL ⊢EDL ⟨a⟩B̂j⟨b−⟩⊤ → ([a]Bjφ→ Bj [b]φ)
ED ⊢EDL ⟨a⟩Bjφ→ [a]Bjφ

2

Conv1 and Conv2 are the standard conversion axioms of tense logic and
converse PDL. NF, NL and ED respectively axiomatize no-forgetting, no-learning
and epistemic determinism.

We write Γ ⊢EDL φ when φ is provable from the set of formulas Γ in this
axiomatics.

One can then show that EDL is strongly complete:

Proposition 2.6 For every set of LEDL-formulas Γ and LEDL-formula φ,

Γ |=EDL φ iff Γ ⊢EDL φ.

PROOF. The proof follows from Sahlqvist’s theorem [18]: all our axioms NF,
NL, ED are of the required form, and match the respective constraints nf, nl, ed.
QED

3 BMS: Static models, Event models, and their prod-
ucts

We here present a star-free version of Baltag’s dynamic epistemic logic BMS
without the iteration operator ∗ and without common belief [4, 3]. We have the
same sets of propositional symbols Φ, agent symbols G and event symbols E.
We recall that as before, G and E are finite.

3.1 Semantics

Static models are standard epistemic models of the form Ms = (W,R, V ),
where W is a set of possible worlds, R : G → 2W×W assigns an accessibility
relation to each agent, and V : Φ → 2W is a valuation.
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Event models are of the form A = (E,R, Pre), where E is a finite set of pos-
sible events, R : G → 2E×E assigns an accessibility relation to each agent,
Pre : E → L is a precondition function associating epistemic formulas to pos-
sible events.

Intuitive interpretation. Informally, Pre(a) is the precondition that a world
must fulfill so that the event a can take place in this world. For example
Pre(a) = ⊤ means that event a can take place in any world. When we have
Rj(a) = {b} then the occurrence of a is perceived by agent j as the occurrence
of b; when Rj(a) = {b1, b2} then the occurrence of a is perceived by agent j
indistinguishably as the occurrence of b1 or b2; etc.

Product construction. Given a static model Ms = (W,R, V ) and an event
model A = (E,R, Pre), their product Ms ⊗ A is a static model describing the
situation after the event described by A occurred in Ms:

Ms ⊗A = (W ′, R′, V ′)

where the new set of possible worlds is W ′ = {(w, a) | Ms, w |= Pre(a)}, the
new valuation is V ′(p) = {(w, a) | w ∈ V (p)}, and the new static accessibility
relation is defined by

(w1, a1)R
′
j(w2, a2) iff w1Rjw2 and a1Rja2.

While the truth condition for the epistemic operator is just as in Hintikka’s
epistemic logic and in EDL, the product construction gives a semantics to the
[a] operator which is quite different from that of PDL and EDL. It highlights
that BMS is a dynamic extension of epistemic logic, while EDL is an epistemic
extension of PDL.

Ms, w |= [a]φ iff Ms, w |= Pre(a) implies Ms ⊗A, (w, a) |= φ

Finally, validity of φ in BMS (noted |=BMS φ) is defined as usual as truth in
every world of every BMS-model. Note that validity means validity w.r.t. a
fixed event model A.

3.2 Completeness

Suppose we are given an event model A. The axiomatics of BMS is made up
of the principles of the multi-modal logic K for the modal operators Bj and [a],
together with the following axioms [4, 3].

(A1) ⊢BMS [a]p ↔ (Pre(a) → p)

(A2) ⊢BMS [a]¬φ ↔ (Pre(a) → ¬[a]φ)

(A3) ⊢BMS [a]Bjφ ↔ (Pre(a) → Bj [b1]φ ∧ . . . ∧Bj [bn]φ)

where b1, . . . , bn is the list of all b such that aRjb.
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We write ⊢BMS φ when φ is provable from these principles. Note that this
axiomatization depends on a particular event model A. (We might have writ-
ten ⊢A

BMS φ.)

For example for every event model A where Pre(a) = ⊤, Pre(b) = p, and
Rj(a) = {b} we obtain ⊢BMS [a]Bjp. Indeed, ⊢BMS [a]Bjp ↔ (Pre(a) → Bj [b]p)
and ⊢BMS Bj [b]p because ⊢BMS [b]p.

4 From BMS to EDL

In this section we provide two embeddings of BMS into EDL: a ‘semantic’ one
(section 4.1) and a ‘syntactic’ one (section 4.2). This duality will allow us to state
a representation theorem in section 4.3 relating these two equivalent character-
izations of BMS in EDL.

For the syntactic embedding we will use a particular EDL-theory that en-
codes syntactically the structure of a given BMS event model A.

Definition 4.1 (Theory of an event model)
Let A = (E,R, Pre) be an event model. The theory of A, written Γ(A), is made
up of the following non-logical axioms:

(1) p→ [a]p and ¬p→ [a]¬p, for every a ∈ E and p ∈ Φ;

(2) ⟨a⟩⊤ ↔ Pre(a), for every a ∈ E;

(3) [a]Bj

(
(⟨a−1 ⟩⊤ ∨ . . . ∨ ⟨a−n ⟩⊤) ∧ ([b−1 ] ⊥ ∧ . . . ∧ [b−n ] ⊥)

)
,

where a1, . . . , an is the list of all ai such that ai ∈ Rj(a), and b1, . . . , bn is
the list of all bi such that bi /∈ Rj(a);

(4) B̂jPre(b) → [a]B̂j⟨b−⟩⊤, for every (a, b) such that b ∈ Rj(a).

2

Axioms 1 encode the fact that events do not change propositional facts of
the world where they occur (see the definition of V ′(p) in Section 3.1). Axioms
2 encode the fact that an event a can occur in a world iff this world satisfies
the precondition of event a (see the definition of W ′ in Section 3.1). Axioms 3
encode the Kripke structure of the event model. Axioms 4 encode the definition
of R′

j (see the definition of R′
j in Section 3.1).

Example 4.2 Consider that G = {i, j} and Φ = {p}. In Figure 2 we recall the
event models A1 and A2 corresponding respectively to the public announce-
ment of φ and the private announcement of φ to A, where φ ∈ L. Here,
Pre(a) = φ in both models and Pre(b) = ⊤.
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Public announcement of φ : Private announcement of φ to i:

a : φ

i,j

��
a : φ

i

��

j

��
b : ⊤

i,j

EE

Event model A1, E = {a} Event model A2, E = {a, b}

Figure 2: Event models for public announcement and private announcement

Applying Definition 4.1, we obtain that Γ(A1) contains p → [a]p and ¬p →
[a]¬p by item (1), ⟨a⟩⊤ ↔ φ by item (2), [a]Bi(⟨a−⟩⊤) , [a]Bj(⟨a−⟩⊤) , B̂iφ →
[a]B̂i⟨a−⟩⊤ by item (4), B̂jφ→ [a]B̂j⟨a−⟩⊤ by item (4).

Besides, Γ(A2) contains p → [a]p and ¬p → [a]¬p, p → [b]p and ¬p → [b]¬p
by item (1), ⟨a⟩⊤ ↔ φ , ⟨b⟩⊤ ↔ ⊤ by item (2), [a]Bi(⟨a−⟩⊤ ∧ [b−] ⊥) ,
[a]Bj(⟨b−⟩⊤ ∧ [a−] ⊥) , [b]Bi(⟨b−⟩⊤ ∧ [a−] ⊥) , [b]Bj(⟨b−⟩⊤ ∧ [a−] ⊥) by item
(3), B̂iφ → [a]B̂i⟨a−⟩⊤ , B̂i⊤ → [b]B̂i⟨b−⟩⊤ , B̂j⊤ → [a]B̂j⟨b−⟩⊤ , B̂j⊤ →
[b]B̂j⟨b−⟩⊤ by item (4). 2

4.1 A ‘semantic’ embedding

We first introduce the notion of forest generated in the BMS style by a static
model and an event model (which is just as in Yap’s construction [28]).

Definition 4.3 Let Ms be a static model and A an event model. We define
the tuple ForestEDL(M

s, A) = (W,R,R,V ) by W =
∪
n
Wn, V (p) =

∪
n
V n(p),

Ra =
∪
n
Rn

a , and Rj =
∪
n
Rn

j , where the tuples Mn = (Wn, Rn
j ,Rn

a , V
n) are

defined inductively as follows.2

• M0 =Ms

• Mn+1 =Mn ⊗EDL A = (Wn+1, Rn+1,Rn+1, V n+1) where

– Wn+1 =Wn ∪ {(w, a) | w ∈Wn and Ms, w |= Pre(a)};

– Rn+1
j = Rn

j ∪ {((w1, a1), (w2, a2)) | w1R
n
j w2 and a1Rja2};

– Rn+1
a = Rn

a ∪ {(w, (w, a)) | w ∈Wn};

2Note that we use ⊗EDL to distinguish our product construction here from the BMS product
that we write ⊗BMS from now on to avoid confusion.

10



– V n+1(p) = V n(p) ∪ {(w, a) | w ∈Wn and w ∈ V n(p)}.

ForestEDL(A) is defined as the class of all tuples ForestEDL(M
s, A) where Ms

is a static model. 2

ForestEDL(M
s, A) is obviously an EDL-model and it is generated by the

event model A. So it seems natural that the syntactic encoding Γ(A) of this
event model be true in ForestEDL(M

s, A).

Proposition 4.4 LetMs be a static model and letA be an event model. ThenForestEDL(M
s, A)

is an EDL-model and ForestEDL(M
s, A) |= Γ(A).

PROOF. The proof that ForestEDL(M
s, A) is an EDL-model is standard. So we

only prove the second part of the proposition. Conditions (1) and (2) of Defini-
tion 4.1 are clearly fulfilled. As for condition (3), let w ∈ W∞, then w′ is such
that wRaw

′ iff w′ = (w, a). Now (w, a)Rju iff u = (v, b) with wRjv and aRjb by
definition of ⊗EDL. So for all u such that (w, a)Rju, there are b and v such that
aRjb and vRbu. This proves that ForestEDL(M

s, A), w |=EDL [a]Bj(⟨a−1 ⟩⊤∨. . .∨
⟨a−n ⟩⊤) where a1, . . . , an is the list of all ai such that aRjai. Finally, concern-
ing condition (4), assume ForestEDL(M

s, A), w |=EDL B̂jPre(b) and wRa(w, a).
Then there is v such that wRjv and vRb(v, b). So by definition of ⊗EDL, because
aRjb, we have (w, a)Rj(v, b). Hence ForestEDL(M

s, A), (w, a) |=EDL B̂j⟨b−⟩⊤
and finally ForestEDL (Ms, A), w |=EDL [a]B̂j⟨b−⟩⊤. QED

By nature of the EDL setting, ForestEDL(M
s, A) explicitly represents the

iterations of the BMS update product byA ad infinitum, starting from the initial
static model Ms. Therefore the following proposition is also not surprising.

Proposition 4.5 Let Ms be a static model and let A be an event model. Then for all
φ ∈ LBMS,

Ms, w |=BMS φ iff ForestEDL(M
s, A), w |=EDL φ.

(We added subscripts to |= in order to help the reader to distinguish the two kinds of
models.)

PROOF. We first prove a lemma.

Lemma 4.6 Let k ≥ 0. Then (Ms⊗BMSA)
k, (w, a) is bisimilar toMk+1, (w, a)

(in notation: (Ms ⊗BMS A)
k, (w, a) - Mk+1, (w, a)), where (Ms ⊗BMS A)

k is
the result of the iteration process applied k times to the static model Ms ⊗BMS A
and the event model A.

PROOF. We prove it by induction on k.

k = 0: (Ms ⊗BMS A)
0 =Ms ⊗BMS A, and M1 =Ms ⊗EDL A. Then by def-

inition of ⊗EDL, we clearly have (Ms ⊗BMS A)
0, (w, a) - M1, (w, a).
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k + 1: (Ms⊗BMSA)
k+1 = (Ms⊗BMSA)

k⊗EDLA. Now (Ms⊗BMSA)
k, (w, a) -

Mk+1, (w, a) by induction hypothesis. So (Ms⊗BMSA)
k⊗EDLA, (w, a) -

Mk+1 ⊗EDL A, (w, a) because for any static models M and M ′, if
M,w - M ′, w′ then M ⊗EDL A,w - M ′ ⊗EDL A,w

′.
Then (Ms ⊗BMS A)

k+1, (w, a) - Mk+2, (w, a).

QED

For any formula φ we define the integer δ(φ) as the maximum number of nested
event operator occurrences as follows:

• δ(p) = 0

• δ(φ1 ∧ φ2) = max(δ(φ1), δ(φ2)))

• δ(¬φ) = δ(Bjφ) = δ(φ)

• δ([a]φ) = δ([a−]φ) = δ(φ) + 1

We set P(k): “For all φ ∈ LBMS such that δ(φ) = k, Ms, w |=BMS φ iff
Mk, w |=EDL φ”, where Ms is the static model and Mk is the iteration of the
product construction.

We prove P(k) for all k by induction on k.

k = 0: Then φ is epistemic so P(0) holds by definition of ⊗EDL.

k + 1: We prove it by induction on φ.

• φ = [a]φ′. We have the following cases:
Ms, w |=BMS [a]φ′

iff if Ms, w |=BMS Pre(a) then Ms ⊗BMS A, (w, a) |=BMS φ
′

iff if Ms, w |=BMS Pre(a) then (Ms ⊗BMS A)
k, (w, a) |= φ′ by Induc-

tion Hypothesis because δ(φ′) ≤ k,
iff if Ms, w |=BMS Pre(a) then Mk+1, (w, a) |=EDL φ

′ by Lemma 4.6
iff if Mk+1, w |=EDL Pre(a) then Mk+1, (w, a) |=EDL φ

′

iff Mk+1, w |=EDL [a]φ′ by definition of ⊗EDL

iff Mk+1, w |=EDL φ.

• φ = φ1 ∧ φ2 works by Induction Hypothesis.

• φ = Bjφ
′ works as well.

• φ = p is impossible because k + 1 ≥ 1.

Then we can easily prove that for all φ such that δ(φ) = k, Mk, w |=EDL φ
iff ForestEDL(M

s, A), w |=EDL φ. Then for all k, for all φ such that δ(φ) = k,
Ms, w |=BMS φ iffForestEDL(M

s, A), w |=EDL φ, i.e. for allφ ∈ LBMS,M
s, w |=BMS

φ iff ForestEDL(M
s, A), w |=EDL φ. QED

As a corollary of Proposition 4.5 we get the following ‘semantic’ embedding
of BMS into EDL.
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Theorem 4.7 Let A be an event model, and let φ ∈ LBMS. Then

|=BMS φ iff ForestEDL(A) |=EDL φ.

This theorem illustrates formally the intuition that the fragment of the class
of EDL-models that embeds the BMS semantics is the class of EDL-models
ForestEDL(A).

4.2 A ‘syntactic’ embedding

In this section we prove that Γ(A) correctly encodes the event model A from a
syntactic point of view, in the sense that for every formula φ ∈ LBMS,

⊢BMS φ iff Γ(A) ⊢EDL φ. (∗ ∗ ∗)

To do so, we first prove that the axiom of determinism stated in the following
proposition is a logical consequence of Γ(A) in EDL . This is comforting because
the axiom of determinism is indeed valid in BMS .

Proposition 4.8 Let A be an event model. For every φ ∈ LBMS we have Γ(A) |=EDL
⟨a⟩φ→ [a]φ.

PROOF. Let A = (E,R, Pre) be a given event model, and let M be an EDL-
model such that M |= ψ for every ψ ∈ Γ(A). Assume w0Rav0 and w0Rau0
with v0 ̸= u0. We are going to show that u0 and v0 are bisimilar.

Ze is defined to be an epistemic bisimulation between models M1 and M2

if Ze is a bisimulation between the restriction of these models to epistemic
accessibility relations. Let Ze := {(w,w) : w ∈ W} ∪ {(v0, u0)}. We are going
to show that Ze is an epistemic bisimulation. To do so, we need to prove

1. u0 ∈ V (p) iff v0 ∈ V (p) for all p ∈ Φ;

2. if v0Rjv
′ then u0Rjv

′;

3. if u0Rju
′ then v0Rju

′.

(1) is guaranteed by the first item of Definition 4.1. (2) and (3) are guaranteed
by epistemic determinism: ed makes that Rj(u0) = Rj(v0).

Now from Ze, we are going to build up a bisimulation. We proceed as fol-
lows.

Z0 = Ze;
Zn+1 = {(un+1, vn+1) | unRaun+1 and vnRavn+1 for some a ∈ E and unZnvn};

Z =
∪

n∈N Z
n.

We are going to show that Z is a bisimulation.

1. We first show that Z is an epistemic bisimulation: we prove by induction
on n that every Zn is an epistemic bisimulation.

We have already proved that Z0 is an epistemic bisimulation. Assume it
is true for Zn and un+1Z

n+1vn+1. Then there are un, vn such that unZnvn,
unRaun+1 and vnRavn+1.

13



(a) un ∈ V (p) iff vn ∈ V (p) because Zn is an epistemic bisimulation. So
un+1 ∈ V (p) iff vn+1 ∈ V (p) by Definition 4.1 (1).

(b) Assume u′n+1 ∈ Rj(un+1). Then by nf, there are u′n and b such that
u′n ∈ Rj(un) and u′n+1 ∈ Rb(u

′
n).

Then there is v′n ∈ W such that v′n ∈ Rj(vn) and v′nZ
nu′n by induc-

tion hypothesis. But M,u′n |= Pre(b) because M,u′n |= ⟨b⟩⊤ and
Definition 4.1 (2). Besides for all φ ∈ L, M, v′n |= φ iff M,u′n |= φ be-
cause Zn is an epistemic bisimulation by induction hypothesis. So
M, v′n |= Pre(b) because Pre(b) ∈ L.
Then there is v′n+1 such that v′n+1 ∈ Rb(v

′
n) by Definition 4.1 (2). So

v′n+1 ∈ (Rj ◦ Rb)(vn).

Besides M,un |= B̂jPre(b), so M,vn |= B̂jPre(b) by induction hy-
pothesis and because B̂jPre(b) ∈ L. So M, vn |= [a]B̂j⟨b−⟩⊤ by
Definition 4.1 (4).
ButM,vn |= ⟨a⟩⊤, soM, vn |= ⟨a⟩B̂j⟨b−⟩⊤. So (Ra◦Rj ◦R−1

b )(vn) ̸=
∅. So (Rj ◦ Rb)(vn) ⊆ (Ra ◦Rj)(vn) by nl. So there is v′′n+1 ∈ Ra(vn)
such that v′n+1 ∈ Rj(v

′′
n+1). Then by ed, v′n+1 ∈ Rj(vn+1).

Besides u′nZnv′n and u′n+1 ∈ Rb(u
′
n), v

′
n+1 ∈ Rb(v

′
n).

So by definition of Zn+1, u′n+1Z
n+1v′n+1.

So there is v′n+1 such that v′n+1 ∈ Rj(vn+1) and u′n+1Z
n+1v′n+1

(c) The case v′n+1 ∈ Rj(vn+1) is similar.

So for all n ∈ N, Zn is an epistemic bisimulation. Henceforth Z is also an
epistemic bisimulation.

2. Now we are going to show that Z is a full bisimulation. Assume uZv for
some u, v ∈W . Then uZnv for some n ∈ N.

(a) If u′ ∈ Ra(u) then M,u |= Pre(a) by Definition 4.1 (2). So M, v |=
Pre(a) because Z is an epistemic bisimulation and Pre(a) ∈ LC .
So there is v′ such that vRav

′. But then u′Zn+1v′ by construction of
Zn. So u′Zv′.

(b) Similarly we prove that if v′ ∈ Ra(v) then there is u′ such that u′ ∈
Ra(u) and u′Zv′.

QED

Now, we prove the two directions of (∗ ∗ ∗) by means of two propositions.

Proposition 4.9 Let A be an event model, and let ψ ∈ LBMS. If ̸|=BMS ψ then
Γ(A) ̸|=EDL ψ.
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PROOF. We have to prove that if there is a static model Ms and a w in Ms

such that Ms, w ̸|= ψ then Ms can be turned into an EDL-model M such that
M |= Γ(A) and M,w′ ̸|= ψ for some w′ of M . We naturally consider the EDL-
model M = ForestEDL(M

s, A) and w′ = w.
By Proposition 4.4 we have ForestEDL(M

s, A) |= Γ(A).
By Proposition 4.5 we have ForestEDL(M

s, A), w ̸|= ψ. QED

Proposition 4.10 Let A be an event model, and let ψ ∈ LBMS. If |=BMS ψ then
Γ(A) |=EDL ψ.

PROOF. We take advantage of the complete axiomatization of BMS-validities
given in [4, 3], and show that the BMS-axioms are EDL-valid, and that the
BMS-inference rules preserve EDL-validity. As the inference rules of BMS and
EDL are identical (i.e. modus ponens and necessitation) it is clear that the BMS-
inference rules preserve EDL-theoremhood. It is straightforward to show that
every instance of the BMS-axioms not involving dynamic operators is EDL-
valid. So what remains is to prove that the BMS schemas

R1 [a]p ↔ (Pre(a) → p)
R2 [a]¬φ ↔ (Pre(a) → ¬[a]φ)
R3 [a]Bjφ ↔ (Pre(a) → Bj [a1]φ ∧ . . . ∧Bj [an]φ)

where a1, . . . , an is the list of all ai such that aRjai, are logical consequences of
Γ(A) in EDL.

R1 Axiom R1 can be proved by the nonlogical axioms (1) p → [a]p and (2)
⟨a⟩⊤ ↔ Pre(a) of the theory Γ(A) in Definition 4.1.

R2 For the left-to-right direction of R2 we have
Γ(A) |=EDL ([a]¬φ ∧ Pre(a) ∧ [a]φ) → ⊥

because of the nonlogical axiom (2) ⟨a⟩⊤ ↔ Pre(a) of Definition 4.1.

For the right-to-left direction, on the one hand we have Γ(A) |=EDL ¬Pre(a) →
[a]⊥ again by the nonlogical axiom (2) of Definition 4.1, and on the other
hand Γ(A) |=EDL ¬[a]φ→ [a]¬φ by Proposition 4.8.

R3 For the left-to-right direction of R3, let M be an EDL-model such that
M |=EDL Γ(A) and suppose

M,w |=EDL [a]Bjφ ∧ Pre(a),
and suppose M,w |=EDL ¬Bj [b]φ for some b such that aRjb. So there
must exist worlds w′ and v′ such that wRjw

′, w′Rbv
′ and M,v′ |= ¬φ.

Therefore M,w′ |= Pre(b) by nonlogical axiom 4.1 (2), and M,w |=EDL

B̂jPre(b). As aRjb, our nonlogical axiom 4.1 (4) tells us that M,w |=EDL

B̂jPre(b) → [a]B̂j⟨b−⟩⊤, and hence M,w |=EDL [a]B̂j⟨b−⟩⊤. As by hy-
pothesisM,w |=EDL Pre(a), by nonlogical axiom 4.1 (2) (Ra◦Rj◦R−1

b )(w) ̸=
∅. By the constraint nl on EDL-models we have

(Rj ◦ Rb)(w) ⊆ (Ra ◦Rj)(w),
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i.e. v′ ∈ (Ra ◦ Rj)(w). As we have supposed that M,w |=EDL [a]Bjφ, we
must have M, v′ |=EDL φ, which is contradictory.

For the right-to-left direction of R3, we know that Γ(A) |=EDL ¬Pre(a) →
[a]⊥ again by the nonlogical axiom 4.1 (2), so it remains to prove that

Γ(A) |=EDL (Bj [a1]φ ∧ . . . ∧Bj [an]φ) → [a]Bjφ.(*)
where a1, . . . , an is the list of all ai such that aRjai. Suppose M,w |=EDL
Bj [a1]φ ∧ . . . ∧ Bj [an]φ, and suppose M,w |=EDL ¬[a]Bjφ. The latter im-
plies that there are worlds v and v′ such that wRavRjv

′ and M, v′ |=EDL
¬φ. By the constraint nf, there is b ∈ E such that v′ ∈ Rj ◦ Rb(w).

Now, by the nonlogical axiom 4.1 (3) we have
[a]Bj

(
(⟨a−1 ⟩⊤ ∨ . . . ∨ ⟨a−n ⟩⊤) ∧ ([b−1 ] ⊥ ∧ . . . ∧ [b−n ] ⊥)

)
,

where a1, . . . , an is the list of all ai such that ai ∈ Rj(a) and b1, . . . , bn is
the list of all b such that bi /∈ Rj(a). Hence M, v′ |=EDL (⟨a−1 ⟩⊤ ∨ . . . ∨
⟨a−n ⟩⊤)∧ ([b−1 ] ⊥ ∧ . . .∧ [b−n ] ⊥). So b ∈ Rj(a). Then M,w |=EDL Bj [b]φ by
(*). So M,v′ |=EDL ¬φ, which is contradictory.

QED

Putting these two results together we obtain the following ‘syntactic’ em-
bedding of BMS into EDL.

Theorem 4.11 Let A be an event model, and let φ ∈ LBMS. Then

⊢BMS φ iff Γ(A) ⊢EDL φ

PROOF. Follows easily from Propositions 4.9 and 4.10 by soundness and com-
pleteness of BMS and EDL. QED

This theorem also provides another syntactic characterization of the BMS
validities. This syntactic characterization is just made of Γ(A) together with
the axiomatization of EDL.

4.3 A representation theorem

Theorems 4.7 and 4.11 give us two characterizations of the BMS logic within
EDL. A semantic one: ForestEDL(A), and a syntactic one: Γ(A). From these two
results we get easily the following representation theorem.

Theorem 4.12 Let M be an EDL-model and A be an event model.

M |= Γ(A) iff M is bisimilar to some EDL-model of ForestEDL(A).

PROOF. The right to left direction follows from Proposition 4.4. The left to right
direction follows easily from Theorems 4.7 and 4.11. QED
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5 Comparison with ETL and other related work

Another approach studying information change over time is Epistemic Tempo-
ral Logic ETL [14] (or equivalently interpreted systems [8] as shown by Pacuit
[13]). In this section we are going to compare EDL with ETL from the stand-
point of [13, 24, 21] where converse events are introduced as well. We will also
study their relationships with the BMS framework and some of its extensions.

5.1 Basics of ETL

Let Σ be any set. Elements of Σ are called events, and elements of the set of
finite strings Σ∗ histories. For any two sets X and Y , XY is the set of sequences
consisting of an object in X followed by one in Y . Given h ∈ Σ∗, the length
of h (len(h)) is the number of events in h. Given h, h′ ∈ Σ∗, we write h ≼ h′

if h is a prefix of h′. Let λ be the empty string. For a set of histories H ⊆ Σ∗,
FinPre−λ(H) = {h | h is non-empty and there is h′ ∈ H such that h ≼ h′}.
Given an event a ∈ Σ, we write h ≺a h

′ if h′ = ha.

Definition 5.1 Let Σ be any set of events. A protocol is a set H ⊆ Σ∗ with
FinPre−λ(H) ⊆ H. An ETL- model is a tuple (Σ,H, R, V ) where Σ is a finite
set of events, H is a protocol, R : G → 2H×H assigns an accessibility relation
R(j) = Rj to each agent j ∈ G, and V : Φ → 2H is a valuation. 2

So note that in an ETL-model events are deterministic which is not necessarily
the case in an EDL-model. The language of ETL is the same as the language
LEDL of EDL. Truth conditions are defined as usual and we only recall those for
the temporal operators.

• h |= [a]φ iff h′ = ha ∈ H and h′ |= φ.

• h |= [a−]φ iff h = h′a for some h′ ∈ H and h′ |= φ.

ETL-models might satisfy additional constraints listed below.

Definition 5.2 Let T = (Σ,H, R, V ) be an ETL-model. T satisfies:

• Propositional Stability iff for all h ∈ H, a ∈ Σ, h |= p iff ha |= p;

• Perfect Recall iff for all h, h′′ ∈ H, a ∈ Σ such that ha ∈ H and h′′ ∈ Rj(ha)
there is h′ ∈ Rj(h) and a′ ∈ Σ such that h′′ = h′a′;3

• No Miracles iff for all h, h′ ∈ H, a, a′ ∈ Σ with ha, h′a′ ∈ H, if there are
h′′, h′′′ ∈ H with h′′a, h′′′a′ ∈ H such that h′′′a′ ∈ Rj(h

′′a) and h′ ∈ Rj(h),
then h′a′ ∈ Rj(ha);

3 Note that this definition of perfect recall taken from [23] is slightly different from the definition
of perfect recall in [24, 21].
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• Weak No Miracles iff for all h, h′ ∈ H, a, a′ ∈ Σ with ha, h′a′ ∈ H, if there
is h′′ ∈ H with h′′a′ ∈ H such that h′′a′ ∈ Rj(ha) and h′ ∈ Rj(h), then
h′a′ ∈ Rj(ha);4

• Bisimulation invariance iff for all epistemically bisimilar h, h′ ∈ H, if ha ∈
H then h′a ∈ H.

2

Now, given a static model Ms and an event model A, one can naturally
define an ETL-model generated in the BMS style, very similarly to the way we
defined an EDL-model generated in the BMS style in Definition 4.3.

Definition 5.3 Let Ms = (W,R, V ) be a static model and A = (E,R, Pre) be
an event model. We define the ETL-model ForestETL(M

s, A) = (Σ,H, R, V ) as
follows.

• Σ =W ∪ E;

• H ⊆WE∗ and wa1 . . . an ∈ H iff ((w, a1), . . .), an) ∈Wn;

• w′a′1 . . . a
′
n ∈ Rj(wa1 . . . an) iff ((w′, a′1), . . .), a

′
n) ∈ Rn

j (((w, a1), . . .), an));

• wa1 . . . an ∈ V (p) iff ((w, a1), . . .), an) ∈ V n(p).

2

The following representation theorem sets some connections between ETL
and BMS. It is the counterpart in ETL of our representation Theorem 4.12.

Theorem 5.4 [23] An ETL-model T is of the form ForestETL(M
s, A) for some static

model Ms and some event model A iff T satisfies propositional stability, perfect recall,
no miracles and bisimulation invariance.

However, the right to left direction of this theorem does not hold in general
if we use the standard BMS framework [4, 3] used in this paper (in particular if
we assume that T is infinite). Indeed to prove this theorem, the preconditions
of the event model A might involve infinite conjunctions and disjunctions of
epistemic formulae and not a single epistemic formula as in our paper and in
[4, 3]. We are going to need this assumption in the 2nd item of Definition 4.1.

5.2 ETL and EDL

To compare EDL and ETL we need a notion of ‘equivalence’ between EDL-
models and ETL-models. It is captured here formally by the notion of DT-
bisimulation defined as follows.

4 This notion of weak no miracles is only introduced in our paper.
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Definition 5.5 Let M = (W,R,R, V ) be an EDL-model and T = (Σ,H, R, V )
be an ETL-model. Let Z be a relation between W and H. We define the prop-
erty of Z being a DT-bisimulation in w ∈ W and h ∈ H, noted Z : M,w -DT
T, h, as follows:

• If wZh then for all p ∈ Φ, w ∈ V (p) iff h ∈ V (p).

• If wZh and w′ ∈ Rj(w) then there exists h′ ∈ Rj(h) such that w′Zh′.

• If wZh and h′ ∈ Rj(h) then there exists w′ ∈ Rj(w) such that w′Zh′.

• If wZh and w′ ∈ Ra(w) then there exists h′ ∈ H such that h ≺a h
′ and

w′Zh′.

• If wZh and h′ ∈ H is such that h ≺a h
′ then there exists w′ ∈ Ra(w) such

that w′Zh′.

We say that M,w and T, h are DT-bisimilar, noted M,w -DT T, h iff there is a
relation Z such that Z :M,w -DT T, h. 2

Naturally, two ‘equivalent’ models satisfy the same formulas:

Proposition 5.6 Let M be an EDL-model and T be an ETL-model, w ∈ M and
h ∈ T . If M,w -DT T, h then for all φ ∈ LEDL, M,w |= φ iff T, h |= φ.

We can now express formally that ForestEDL and ForestETL are ‘equivalent’
constructions.

Proposition 5.7 Let Ms be a static model and A be an event model.

ForestEDL(M
s, A) -DT ForestETL(M

s, A)

PROOF. Follows easily from the definition of ForestETL(M
s, A). QED

This ends our mathematical preliminaries for the comparison of EDL and
ETL. Now, natural questions to ask are: given an ETL-model, can we find an
‘equivalent’ EDL-model? And vice versa: given an EDL-model, can we find
an ‘equivalent’ ETL-model? The answers to both questions are negative: first
because an ETL-model does not necessarily satisfy the no-forgetting and no-
learning principles; second, because an EDL-model does not necessarily satisfy
the determinism principle, that is to say Ra and R−1

a are partial functions for all
events a. Nevertheless we have the following proposition.

Proposition 5.8 Any ETL-model satisfying perfect recall and weak no miracles is
DT-bisimilar to an EDL-model satisfying determinism, and vice versa.

PROOF. We just give the corresponding ETL- and EDL-models. The proof that
they satisfy perfect recall, weak no miracles and determinism is routine.

Let M = (W,R,R,V ) be an EDL-model satisfying determinism, and let
w ∈W . We define the corresponding ETL-model T = (Σ,H, R, V ) as follows.
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• Σ = E;

• H =
∪
n
Hn where

– H0 = {v | v ∈

( ∪
j∈G

Rj

)∗

(w)}

– Hn = {wa1 . . . an | a1, . . . , an ∈ Σ and (Ra1 ◦ . . . ◦ Ran)(w) ̸= ∅} for
n ≥ 1;

• wa1 . . . an ∈ Rj(wb1 . . . bm) iff n = m and vn ∈ Rj(um), where vn =
(Ra1 ◦ . . . ◦ Ran)(w) and um = (Rb1 ◦ . . . ◦ Rbm)(w);

• V (p) = {wa1 . . . an ∈ H | (Ra1 ◦ . . . ◦ Ran)(w) ∈ V (p)}, for all p ∈ Φ.

We write vn = (Ra1 ◦ . . . ◦Ran)(w) instead of {vn} = (Ra1 ◦ . . . ◦Ran)(w). This
makes sense because M satisfies determinism.

Let T = (Σ,H, R, V ) be an ETL-model. We define the corresponding EDL-
model M = (W,R′,R,V

′) as follows. W = H; R′ = R; h′ ∈ Ra(h) iff h ≺a h
′;

and V ′ = V . QED

In fact, note that perfect recall is the ETL-version of our no-forgetting prin-
ciple and weak no miracles is the ETL-version of our no learning principle.

Now we are going to compare the relationships that ETL and EDL entertain
with BMS. On the one hand, an EDL-model M validates the BMS logic if M |=
Γ(A) for some event model A. On the other hand, an ETL-model validates the
BMS logic if it satisfies propositional stability, perfect recall, no miracles and
bisimulation invariance (according to Theorem 5.4). The following proposition
relates these two conditions.

Proposition 5.9 Let M be an EDL-model and let A be an event model. If M |= Γ(A)
then M is DT-bisimilar to an ETL-model satisfying propositional stability, perfect
recall, no miracles and bisimulation invariance.

PROOF. Let M = (W,R,R, V ) be an EDL-model and w ∈ W . We define the
ETL-model T = (Σ,H, R′, V ′) as in the proof of Proposition 5.8. The definition
makes sense because ifM |= Γ(A) thenM satisfies determinism by Proposition
4.8. We now have to check that T satisfies propositional stability, perfect recall,
no miracles and bisimulation invariance.

Propositional stability holds because of the first item of Definition 4.1. Per-
fect recall holds by Proposition 5.8. We now check that no miracles and bisim-
ulation invariance hold.

No Miracles Let h, h′ ∈ H, a, b ∈ Σ with ha, h′b ∈ H. Assume there are
h′′, h′′′ ∈ H with h′′a, h′′′b ∈ H such that h′′′b ∈ Rj(h

′′a) and h′ ∈ Rj(h).
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Then h = wa1 . . . an, h
′ = wa′1 . . . a

′
n, h

′′ = wa′′1 . . . a
′′
m, h

′′′ = wa′′′1 . . . a′′′m.
Let u = Ra1 ◦ . . . ◦ Ran(w) ∈ W , u′ = Ra′

1
◦ . . . ◦ Ra′

n
(w) ∈ W , u′′ =

Ra′′
1
◦ . . . ◦ Ra′′

m
(w) ∈W and u′′′ = Ra′′′

1
◦ . . . ◦ Ra′′′

m
(w) ∈W .

Then we have (1) u′ ∈ Rj(u), and (2) u′′′ ∈ Ra ◦ Rj ◦ R−1
b (u′′). We have

to show that h′b ∈ Rj(ha), i.e. u′ ∈ Ra ◦Rj ◦R−1
b (u). By (2) we have that

Ra ◦ Rj ◦ R−1
b (u′′) ̸= ∅. Therefore M,u′′ |= [a]B̂j⟨b−⟩⊤. So b ∈ Rj(a) by

Definition 4.1 (3). Now, h′b ∈ H, so Rb(u
′) ̸= ∅. Therefore M,u′ |= Pre(b)

and M,u |= B̂jPre(b). So M,u |= [a]B̂j⟨b−⟩⊤ by Definition 4.1(4). But
ha ∈ H. So Ra(u) ̸= ∅. ThereforeM,u |= ⟨a⟩B̂j⟨b−⟩⊤, i.e. Ra◦Rj ◦R−1

b ̸=
∅.

So by the no-learning constraintRj ◦Rb(u) ⊆ Ra ◦Rj(u) (3). But h′b ∈ H.
So Rb(u

′) ̸= ∅. Therefore there is v ∈ Rb(u
′), so v ∈ Rj ◦ Rb(u). So

v ∈ Ra ◦Rj(u) by (3). Finally u′ ∈ Ra ◦Rj ◦ R−1
b (u).

Bisimulation invariance Let h, h′ ∈ H which are epistemically bisimilar such
that ha ∈ H. Then we have h = wa1 . . . an and h′ = wa′1 . . . a

′
n. Let

u = Ra1 ◦ . . . ◦ Ran(w) ∈ W and u′ = Ra′
1
◦ . . . ◦ Ra′

n
∈ W . Then

Ra(u) ̸= ∅, so M,u |= Pre(a). Therefore M,u′ |= Pre(a) because u and
u′ are epistemically bisimilar. So M,u′ |= ⟨a⟩⊤ by Definition 4.1 (3), i.e.
Ra(u

′) ̸= ∅. So h′a ∈ H.

QED

Note that the converse of Proposition 5.9 does not hold in general for the same
reason that the right to left direction of Theorem 5.4 does not hold in general if
we adopt the standard BMS framework.

5.3 Other related work

Still in the ETL paradigm the authors in [26] show how to translate a BMS for-
mula satisfied in a static model into an ETL formula satisfied in an interpreted
system. So their approach is less general than ours because it only deals with
the model checking problem. Starting from the BMS formalism, Yap [28] and
Sack [17, 16] introduce a ‘yesterday’ temporal modal operator to the BMS lan-
guage expressing what was true before the last event; Sack gets a complete
characterization. To prove completeness Sack [16] also introduces a separate
component expressing that an event just occurred but this is not a converse
modal operator like ours. However he does introduce a converse modal opera-
tor for public announcement logic but does not provide a completeness proof
for it [17].

Another approach embedding the BMS formalism to a formalism that also
deals with events and beliefs on the same formal level is proposed by van Ei-
jck et col. in [27, 25]. They map the BMS formalism to (epistemic) proposi-
tional dynamic logic (refining a similar result for automata propositional dy-
namic logic [22]). However they do not resort to converse events and translate
directly event models into a transformation on PDL programs.
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In a previous publication of ours [2], the constraint of no-forgetting and
condition (3) on Γ(A) of Definition 4.1 on EDL-models of Definition 2.2 were
replaced by the following ones

nf’ if v(Ra ◦Rj ◦ R−1
b )v′ then vRjv

′;

(3)’ ⊢BMS [a]Bjφ ↔ (Pre(a) → Bj [a1]φ ∧ . . . ∧Bj [an]φ)

where a1, . . . , an is the list of all b such that b ∈ Rj(a).

Neither do EDL models satisfy nf’, nor the other way round. Hence the version
of EDL in [2] cannot be compared with our present version. If we moreover
assume that event models are serial then we obtain the same results as here.
Here we do not need this last assumption and our condition (3) describes more
accurately than (3)’ the structure of event models. Our constraint nf is also a
better generalization of the principle of perfect-recall than nf’.

6 Conclusion

We have presented an epistemic dynamic logic EDL whose semantics differs
from the BMS semantics. We have shown that BMS can be embedded into
EDL. This result allows to conclude that EDL is an interesting alternative to
Baltag et al.’s logic, that allows to talk about agents’ perception of events just
in the same way as BMS does. However, EDL is more expressive than BMS
because it allows to talk about past events. Another of its advantages is that
EDL allows for incomplete beliefs about the event taking place and can still
draw inferences from this incomplete description of the event, while in BMS
the event model has to specify everything. So in a sense EDL seems more
versatile than BMS to describe events.

On the other hand, the power of event models (actually called action mod-
els in BMS) is not completely exploited in the BMS approach. Indeed, the
philosophy of the BMS approach is to represent events in the same way as sit-
uations are represented in epistemic logic by means of static models. But unlike
a static model, an event model does not have a genuine valuation to describe
possible events. An obvious extension of the BMS formalism would be to add
a valuation to event models in order to describe possible events more precisely.
Then we could define epistemic languages for event models completely iden-
tical to the various epistemic languages we already defined for static models,
except that the propositional letters of these languages would describe pos-
sible events instead of possible worlds. This would allow to express things
about events that are currently taking place, and not only to express things
before or after the occurrence of events as in EDL. This would also allow to up-
date/revise events by other events which is a phenomenon that often occurs in
everyday life.It is not possible to model such phenomena in EDL because the
accessibility relations for events are set once and for all. This idea is explored
in [1].
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