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SUMMARY

We propose in this paper a finite volume scheme to compute the solution of convection-diffusion
equation on unstructured and non—conforming grids. The diffusive fluxes are approximated using
the recently published SUSHI scheme in its cell centred version, that reaches a second order spatial
convergence rate for the Laplace equation on any unstructured 2D/3D grids. As in the MUSCL
method, the numerical convective fluxes are built with a prediction-limitation process which ensures
that the discrete maximum principle is satisfied for pure convection problems. The limitation does
not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any
space dimension.

KEY WORDS: Finite Volumes, MUSCL method, convection dominant regime, discrete maximum
principle, convergence analysis

1. Introduction

In this paper, we address the following convection—diffusion problem:

At + div(aw) — div(kVa) = f on Q x (0,T), (1a)
i(x,t) = up(x,t) on dQp x (0,7), (1b)
— kVau(x,t) - n=gn(x,t) on Ix x (0,T), (1c)
a(x,0) = () in Q, (1d)

where Q C R%, d = 1,2, 3, is an open connected and bounded domain supposed to be polygonal
(d = 2) or polyhedral (d = 3), v is a divergence-free velocity field, « is a non-negative constant
real number and f € L2(Q x (0,7)) is a given source term. The boundary 92 of Q is split into
0Qp and 9y (the so-called Dirichlet and Neumann boundaries), which form a partition of
01}, and satisfy (7) that the measure of 0Qp is positive and (i7) that v-n > 0 on 0Qx, where n
is the unit normal vector to 02 outward 2. If kK = 0, we suppose in addition that v-n <0 on
O0flp, that is, as usual for the transport equation, that 9Qp is the inflow part of the boundary
and 9y the outflow one. The functions #g, @p and gn denote the initial value, the Dirichlet
boundary value and the diffusion flux prescribed at the Neumann boundary, respectively.
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In this paper, we propose a cell-centred scheme for the solution of (1), able to cope with
almost arbitrary meshes.

The diffusion term is discretized by a cell centred scheme which was first presented in [10] and
tested in [1] for oil engineering simulation problems. Its convergence analysis was performed
in [9] in the framework of its more general version SUSHI (Scheme Using Stabilization and
Hybrid Interfaces) for the discretization of anisotropic and heterogeneous diffusion problems
on general non—conforming grids. This scheme is implemented here with a minor variant for the
approximation of Neumann boundary conditions, which completely eliminates the unknowns
at the faces of the mesh (including boundary faces), thus restricting the set of the unknowns
to the cell values only.

For the convection term, we use a finite volume approach, based, as in MUSCL-type schemes,
on a two-step algorithm: we first compute a tentative approximation of the unknown field at the
face by an affine reconstruction, then modify it (by a so-called limitation procedure) to ensure
the L>°-stability of the scheme. The development of this type of schemes has been the subject
of a huge amount of literature; we refer to [18, 12, 16] for seminal works for one-dimensional
problems, [3] for a review of the adaptation of these ideas in multi-dimensional spaces, and
[14, 5, 4] for recent works. In these approaches, the limitation procedure is presented as a
limitation of the slope defined by the cell and face values, on the basis of its comparison with
other slopes defined by the values taken by the unknown in the neighbourhood. Then, under
geometric assumptions for the mesh, this limitation may be shown to imply some conditions
(let us call them stability conditions) for the approximation at the face which ensure, for pure
convection problems, a local maximum principle [8, 7]. Our strategy here (see also [17] for an
ongoing related work) is based on the following remark: for a linear convection term, these
stability conditions may be exploited to define an admissible interval for the value at the face.
This suggests a crude limitation process, which does not use any slope computation and simply
consists in performing a (one-dimensional) projection of the tentative affine reconstructed face
value on this interval. In addition, stability conditions are purely algebraic (in the sense that
they do not require any geometric computation), and thus work with arbitrary meshes.

This paper is organized as follows. We first introduce some definitions and notations for the
mesh (Section 2). We then describe the scheme (Section 3), the discretization of the diffusion
and convection terms being detailed in Section 3.1 and Section 3.2 respectively. We conclude
by some numerical tests (Section 4).

2. The mesh

A finite volume discretization of Q) is defined by a triplet (M, &, P), where:

e M is a set of non-empty convex open disjoint subsets K of {2 (the control volumes),
such that Q = (g K.

o & is the set of edges (in 2D) or faces (in 3D), denoted by o. We denote by E(K) C € the
set of faces of K € M, by Eext and iy the set of boundary and interior faces, respectively.
Each o € &y is supposed to have exactly two neighbouring cells, say K, L € M, and
K N L = & which we also write o = K|L.



Figure 1. Notations for control volumes and diamond cells.

o P = (xx)kem is a set of points of Q such that, VK € M, xx € K.

We will need hereafter the following definitions. The normal vector to a face o of K outward
K is denoted by nk ,, and z, stands for the mass centre of the face o. For any K € M and
any cell L sharing a face K|L with K, we define the volume Dy g1 as the cone with basis
K|L and vertex zx. For K € M and o € £, we denote by | K| the measure of K and by |o]
the (d — 1)-measure of the face o (see Figure 1).

Finally, for the time discretization, we will use a constant time step, denoted by dt, and we
define t" = ndt, for 0 <n < N =T/6t.

3. The scheme

The discretization of (1) is performed by a first-order Euler scheme. It combines an explicit
discretization of the convection operator and an implicit discretization of the diffusion term.
Denoting by v = (u}%) ke m the discrete unknowns at time ¢, 1 < n < N , the scheme reads:

for0<n<N-1, VK € M,

I%]
ot

. IR 2
W =)+ Y Fieou —nlK] (Aaa = - ?
ceE(K) t

/ flx,t)de dt,
K

with, for K € M and o € £(K):

n+1

1 1 /[t
0 _ _ 2 )
Upe = _|K| /Kuo(zc)dw, Fr o 5 [ﬂ /Uv(zc,t) nk,o dy(z).



Note that, since v is divergence free, we get:

ce&(K)

The next two subsections are devoted to the description of the discrete diffusion operator
(Apu™t in (2)) and the discrete convection term, which consists in the choice of the value
of u” in (2).

3.1. Discretization of the diffusion operator

The idea for the discretization of the diffusion operator is related to that of the Galerkin
methods; dropping for readability reasons the exponent n + 1 referring to time, it consists in
exploiting an expression of the form:

1
(—AMmu)k = 7= [/ Vopmu - V1" —/ N 1K}7 (4)
K| Lq 20
where gn stands for the flux at the Neumann boundary, 1% is a characteristic function
associated to the cell K and V denotes an ad hoc discrete gradient operator, which we
define in this section.

We start by choosing, for any internal ¢ € &t and any face of the Neumann boundary
o € En, some real coefficients (8%) e such that the mass centre @, of o is expressed by:

To= Y Bk, D pE=1 (5)

KeM KeM

Note that it is always possible to restrict the number of nonzero coefficients 8% to three in
two space dimensions and to four in three space dimensions. In practice, we also try to avoid
large variations of their values. To this purpose, for an internal edge o = K|L, we give non-
zero values to the coefficients associated to K and L, and then choose among the neighbours
of K and L first those which lead to a set of positive coefficients (if any, which seems to be
almost always the case in practice), then, among the possible sets, the one which corresponds
to BX + BL closest to one. For external edges, it is generally not possible to avoid negative
coefficients.

We then introduce a second order interpolation operator of a discrete function at the
points (x,)scg. In usual finite element formulations, the Dirichlet boundary conditions are
incorporated in the definition of the discrete space; here, since the unknowns are piecewise
constant, the analogous effect is obtained by taking Dirichlet boundary conditions into account
in the definition of the interpolation operator. This latter thus acts on a set larger than the
cell values, which we call a discrete family, and which is defined as the union of cell values
and values at the mass centres of the Dirichlet edges: wa = ((wK)KeM, (’LUD7U)(765D). Then
the interpolate of the family wa is defined by the data of its values at every face of the mesh
(wa)UES :

Vo € Eing U EN, Wy = Z Ewk,
KeM (6)
Vo € (‘:D, We = WD,o-



We may then introduce, for any discrete family way, a first gradient Vwyy, defined by its
constant value (Vwag)k on each cell K:

= 1
VK € M, (V’LUM)K = — Z |U| (’LU[7 — ’LUK) NKo- (7)
|K| c€E(K)

The discrete gradient thus defined is consistent, thanks to the following geometrical identity:

VK € M, Z lo|nk,q (s — xk) = |K| I (8)
ce&(K)

Indeed, let ¥ be an affine function:  — a - = + b, with a,b € R? (so that Vi) = a). Let ¥
be the discrete family defined by 9 = Y(xk) for K € M and ¢p,, = ¢(x,) for any o € Ep,
and let Vi denote its discrete gradient defined by (7). Since 1 is affine, by definition of a
second order interpolation, we have 1/10 — Vg =Uv(x,) —Y(xrk) =a- (x, — xx). Therefore:
(v MK |K| Z |O'| —IBK)’I’LK’O.:G,

c€EK
thanks to (8), and the discrete gradient of the interpolate of an affine function is equal to its
exact gradient.

Unfortunately, this is not sufficient to ensure the convergence of the scheme. We also need
a weak convergence property (see [9]) and a stability property which is not satisfied by the
above gradient: indeed, as noted in [9] and illustrated in [6] in the case of Cartesian grids,
this discrete gradient may vanish for non zero functions. We are thus lead to introduce the
following stabilization term, defined for any discrete family waq by:

|
d(wl(aa)
where d(xx, o) stands for the distance of zx to 0. Note that (Rwa)k,» vanishes if way is the

interpolate of an affine function; the quantity (Rwam)k,. thus may be seen as a consistency
error on the half-diamond cell Dg .

VK € M, Yo € £(K), (Rum)k.o = we —wi — (VW) - (®s — k)],  (9)

We then define the discrete gradient of a family way as the piecewise constant function on
the half-diamond cells D , defined by:

(VwM)K,U = (va)K + (RwM)K,U NK,o, on DK,U~ (10)

We can now define the diffusion term (—Apxyu)g, for K € M. To the unknown u, we
associate the discrete family uaq = ((uK)KeM, (UDJ)UEgD), where up , stands for the mean
value over the face o of the Dirichlet condition @p. Then we define 1% as the discrete family
defined by (1%)x = 1, (1), = 0 for any cell L # K, and (1¥)p, = 0, Vo € &p. The
value of (—Au) g is then given by (4), with the definition (10) of the discrete gradient, thus,
specifying the domains of integration:

(~Aw) = 7 [ 2 Z DLl (Vui)i - (V10 = 3015, [ on].

LeMoe&(L oEEN

where (15), is given by (6).



Remark 1 (Consistency with the two-point scheme and maximum principle)

If one only wants to ensure the stability of the scheme, the quantity (Rua)k o is defined up
to a multiplicative constant; indeed the specific coefficient v/d in (9) is chosen so as to recover
the usual finite volume two-point diffusion flux for (2D) acute angle triangular meshes and for
rectangular grids (d = 2 or d = 3), provided that the choice for the points (xx)xer is the
usual one, namely the circumcenter of the triangle K in the first case and the mass centre of
K in the second one [9, Lemma 2.1].

In this case, the proposed discretization of the diffusion term thus satisfies a discrete maximum
principle, which does not hold in the general case, as stated in Theorem 3.2.

Remark 2 (Extension to variable diffusion coefficient) The extension of the scheme to
variable diffusion coefficient may be done by defining a diffusion coefficient kg, for K € M,
and changing (4) to:

. 1
((—dlvnV)Mu)K = m [/Q ki Vu- V1% — /(mN

gN ].K} .
The result of Remark 1 then still holds, with an expression of the (two-point) flux involving
a diffusion at the face which is identical to the classical harmonic average under geometrical

conditions on the mesh (see [9, Lemma 2.1] for the expression of the diffusion coefficient).

Remark 3 (The interpolate of the functions 1% in 1D)

For the sake of clarity, we illustrate the construction of the interface values. Let us suppose that
we work on the one-dimensional domain © = (0, 1), with a constant space step. We suppose in
addition that the solution is prescribed at & = 0 and obeys a Neumann boundary condition at
x = 1, so that we have to provide a way to calculate an interpolated value of discrete families
at any internal interface and at the interface located at @ = 1. To this purpose, a reasonable
choice seems to be the following one:

- at an internal face, the interpolated value is defined as the average of the values taken at
the two neighbouring cells,

- at the interface o located at @ = 1, we set:

3 1

Usg = UKy — ZUKn_1>

2 2

where N stands for the number of cells, and the cells are indexed from & =0 to x = 1.

The interpolated values obtained with this choice for the characteristic function of the cells of
the mesh are given on Figure 2.

3.2. Discretization of the convection operator

The strategy used to design the convection scheme relies on the following remark: it is possible
to state some conditions for the values u}} of the unknown at the face which are sufficient to
ensure that the scheme satisfies a discrete maximum principle (in a sense given by Lemma 3.1
then Theorem 3.2 below); moreover, these conditions provide an admissible interval for the
(ul). Then a discretization naturally follows: first compute a tentative value for (ul) by an
affine interpolation, and then ”limit the flux” (according to the terminology of the MUSCL
family of schemes) by projecting this value on the admissible interval.
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Figure 2. Interpolated values for the characteristic functions of the cells in 1D.

The present exposition follows this line: we first state the conditions to be satisfied by
the face values (Section 3.2.1), then show how they may be exploited to obtain a limitation
procedure (Section 3.2.2).

3.2.1. Conditions for the satisfaction of a mazimum principle The usual first order scheme
for the convection operator is the upstream scheme, which consists in choosing u” in (2) for
an internal face o = K|L as follows:

ul =ugk if Fx , >0, wu) =uy otherwise. (11)

The upstream choice is wellknown to ensure the maximum principle. Let us briefly review the
ingredients which yield this property. For K € M, let ﬂ’;(“ stand for the value updated with
the convection term:

ot
it =l — = > Frooul. (12)
Using the discrete divergence-free constraint (3), with u? defined by (11), we get:
~n ot n : n
ant = [1 e Z maX(FK,U,O)] up — — Z min(Fk »,0) uf. (13)
c€E(K) ce&(K),0=K|L
We denote by cfl the following number:
1
cfl = max {— |FK_<7|}- (14)
Kem U|K]| U;:K) ’

Then, under the so-called CFL-condition cfl < 1, Equation (13) yields that ﬁ’;(“ is a convex
combination of the values taken by u™ in the neighbouring cells of K.

The same principle holds for MUSCL-type schemes which attempt to go higher order while
remaining stable: a piecewise linear reconstruction is performed to evaluate the quantities



u?, and the resulting slopes are limited in order for the expression (12) to remain a convex

combination of the values taken by u™ in the neighbouring cells of K. For a linear advection
term such as addressed here, this latter property is shown to be ensured by the following
conditions. First, for internal faces, we suppose:

VK € M, Yo € E(K) N &, there exists of € 0,1] and a cell MX € M such that

(uK—uMg) ifFKJ >0 (15)
(upx —ug)  otherwise.

Then, we denote by £ (resp. 5]‘5 ) the faces o of &p where the flow is entering (resp. leaving)
the domain, i.e. Fx , < 0 (resp. Fk,, > 0). For the faces included in 5]'3" and &y (where, by

assumption Fg , > 0), we suppose that the (first part of) (15) holds. For faces of &, we
suppose that ug is given by the boundary conditions, which we denote by ug = up ,.

The obtained stability property is stated below and its proof is recalled for the sake of
completeness.

Lemma 3.1. Let us suppose that ¢l < 1. Let K € M. We denote by Ny (K) the set of cells
ME o € E(K), which are such that (15) is satisfied. Then, VK € M, the value ﬂ?j’l given

o

by (12) is a convex combination of {uf, (Wy;)men,, (k) (UB,U)UESSQE(K)}'

Proof Let K € M. By definition, we get:

|K|~n+1_|K| n n
TS T ks D, PR,
ce&(K)
and thus, invoking as above the discrete divergence-free constraint (3):

St uK+1: ol E F;;a (ull —ul) + g F, (ul —ug).
oeE(K) oeE(K)

Let us first consider the internal faces where the flow is entering K, i.e. Fp . > 0, F;g’a =0.
By (15), there exists a cell M, € N,(K) and a, € [0,1] such that:

Wl =g (ufy, —uf),  so Fig, (ul - uf) = ap i, (uly, — k).

Similarly, on the faces (including faces of &y and &;}) where the flow is leaving K, i.e. F. I—(i_,a >0,
Fi , =0, by (15), there exists M, € Ny(K) and a, € [0,1] such that:

n n __ n n . + n n _ + n n
Uy — Uy = 0 (g —ulhy ), so —Fg, (ul —uf) = oy Fy, (uhy, — ug).
With these expressions, we thus get:

K], |K]| -
St U’K+1 = [ or Z o | Fro| — Z FKJ} Uk
ce&(K)\ép ce&(K)NEp

+ > aolFrolul, + Y. Fr,ub,,
c€&(K)\Ep ce&(K)NEG



which concludes the proof, since cfl < 1. |

For the sake of thoroughness, we now show that, under assumptions on the diffusion operator,
this result yields a discrete maximum principle for the complete scheme (2). To this purpose,
let us write (2) as:

((Id N u"+1)K= antt, (16)

where Id — k0t A stands for the operator acting on discrete functions which maps u =
(ur)kem to (Id — kKdt Ap) u = (uk — KOt (Apmu) i) kem- Note that, from the definition of
the discrete Laplace operator of Section 3.1, this operator is affine, and not linear (i.e., in the
case of non-homogeneous Dirichlet boundary conditions, (Id — k6t A ) u does not vanish for
u=0).

Theorem 3.2 (A discrete maximum principle)
Let us suppose that cfl < 1, and that both f = 0 and gn = 0. Then we have the following
stability results:

(1) if Kk = 0, the solution to the scheme (2) salisfies a local mazimum principle, namely
VK € M, )" is a convex combination of {u%, (W};)rren (i), (ugﬂ)aegmg(m}.

(i)  if the discrete Laplace operator is such that:
(s —a)  for any constant function w such that w < min{(ups)ocep} (Tesp. v >
max {(up,s)oeen 1)y —Amu <0 (resp. —Apu >0),

(i — b)  all the entries of the inverse of the matriz Mi_.5:n associated to the operator
Id — k 0t A g are non-negative, i.e. Mi_.5:a S a positive inverse matriz.

the solution to the scheme (2) satisfies the following global mazimum principle:
VK € M, min {(uh)nents (4 o) pesy s (Wl oce, b < uit!
< max {(uf)vert, (uBo)peess (W5 )ocen |-
Proof When « = 0, the scheme (2) (or (16)) boils down to @7 = ut, VK € M, Ttem (i)
is a straightforward consequence of Lemma 3.1. We now turn to Item (i4) and define u by:
u=min { (i) werts (uho)peess (U )ocen |-
We have, VK € M:
((Id — k6t Apq) (™t — w)), = @t — u™ + kOt (Apmu) k- (17)

By Lemma 3.1 and Assumption (it — a), the right-hand side of this relation is non-negative,
which, since, by Assumption (i — b), the operator at the left-hand side is associated to a
positive inverse matrix, yields that «"*! — u is non-negative. The other estimate follows by
the same computation with u = max {(u%)kem, (ug,a)aesgv (ugfgl)neg[) }. |

Remark 4. Assumptions (it —a) and (i — b) are satisfied with the usual two-point-flux finite
volume operator; unfortunately, this is not the case for the discrete Laplace operator introduced
in Section 3.1 (neither, to our knowledge, by any linear discrete diffusion operator acting on
general meshes).
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3.2.2. A limitation procedure, and the convection scheme We now reformulate (15) to obtain
a limitation procedure, i.e. a constructive process to bound the face values u.

Let o € &y, let us denote by V'~ and VT the upstream and downstream cell separated by
o, and by N, (V™) and N, (V) two sets of neighbouring cells of V= and V' respectively. We
would like to use (15), or possibly a stronger version of (15), to define an admissible interval
for ug; this admissible interval must allow the usual upstream choice, i.e. uy = uy,_. This is
realized by the following two assumptions, provided that V— € N, (V') (see Remark 5), which
we thus suppose:

+
(H1) — there exists M € N,(VT) such that ul} € [ul},, ul; + %(u(ﬁ —u)],

(H2) — there exists M € N,(V ™) such that v € [uj,—,uf,- + 7(117&_ —u)],

where, for a, b € R, we denote by [a,b]| the interval {aa + (1 — )b, a € [0,1]}, and (T and
¢~ are two numerical parameters lying in the interval [0, 2]. For o € Eéxy U ES , Condition (H1)
is irrelevant, and the only acting constraint is Condition (H2). The sets N, (V™) and N, (V)
have to be specified to complete the definition of the limitation process.

The link between (H1)-(H2) and (15) is quite obvious, as we now show. Let K € M and
o€ EK). If Fgy < 0, i.e. K is the downstream cell for o denoted above by VT, since
¢t €[0,2], condition (H1) yields that there exists M € M such that u? € [u%,u?,] which
is (15). Otherwise, i.e. if Fx, > 0 and K is the upstream cell for o denoted above by
V~, condition (H2) yields that there exists M € M such that u? € [ul,2ul — uly], so
ul? — ulk € )0, u% — uf,], which is once again (15).

Remark 5. For o € &y, since V~ € N, (VT), the upstream choice u? = uy,_ always satisfies
the conditions (H1) and (H2), and is the only one to satisfy them if we choose (= = (T = 0.

Remark 6 (1D case) Let us take the example of an edge o separating K; and K;;+1 in a
1D case (see Figure 3 for the notations), with a uniform meshing and a positive advection
velocity, so that V~ = K; and V™ = K, ;1. In 1D, a natural choice is N, (K;) = {K;_1} and
No(Ki+1) = {Ki}.

On Figure 3, we sketch: on the left, the admissible interval given by (H1) with (* =1 (green)
and ¢t = 2 (orange); on the right, the admissible interval given by (H2) with (= =1 (green)
and (- = 2 (orange). The parameters (- and (T may be seen as limiting the admissible
slope between (x;,u?) and (x,,u?) (with x; the abscissa of the mass centre of K; and x,
the abscissa of o), with respect to a left and right slope, respectively. For (= = (T = 1, one
recognises the usual minmod limiter (eg. [11, Chapter III]).

Note that, since, on the example depicted on Figure 3, the discrete function w™ has an
extremum in K, the combination of the conditions (H1) and (H2) imposes that, as usual,
the only admissible value for u is the upwind one.

We are now in position to give the algorithm used for the discretization of the convection
term:
1. Compute a tentative value i, for the unknown at the face o, by Relation (6), which yields
an affine interpolation at the mass centre of the face.
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Figure 4. Notations for the definition of the limitation process. In orange, control volumes of the set
N, (V™) for 0 =V~ |V, with a constant advection field F: upwind cells (a) or opposite cells (b).

2. For each face o of the mesh, determine V~ and V' according to the sign of the mass flux

through o, and exploit (H1) and (H2) to obtain an admissible interval I, for the value of
the unknown at the face, which, as explained in Remark 5, is not empty.
This step depends on the definition of the sets M, (V™) and N, (V). Here, we just set
N,(VT) = {V~}; note however that this choice prevents second order, since an affine
function is not represented exactly (see Remark 7 below). Two different choices of N, (V™)
are implemented (see Figure 4):

(a) N,(V7) is defined as the set of "upstream cells” to V=, i.e. No (V™) = {L € M, L
shares a face o with V™~ and Fy - , < 0},

(b) when this makes sense (i.e. with a mesh obtained by @1 mappings from the (0, 1)?
reference element), NV, (V™) may be chosen as the opposite cells to o in V. Note that,
for a structured mesh, this choice allows to recover the usual minmod limiter.

3. Compute u, as the nearest point to i, in I,.

Remark 7 (Reconstruction of affine functions) Let us suppose that we are trying to
transport (i.e., in fact, to keep constant) in R? the initial function u(x) = @2, with a constant
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advection velocity u = (1,0)!. Let K7 and K> be two cells, of mass centre located at &1 = (1,0)*
and Ty = (2,0) respectively, and suppose that we initialize the scheme by setting for any
K € M the value ug at the mean value of u(x), so that ux, = ug, = 0. Let the face
o = K;|K> be vertical, with a mass centre located at x, = (1.5,0.5)". Any affine reconstruction
must yield v, = u(x,) = 0.5 for the value u, of the approximation of u on o, but Condition
(H1) with NV, (K2) = {K;} yields u, = 0.

4. Numerical tests

The computations performed in this section were performed with the open-source ISIS
computer code [13], developped at IRSN on the basis of the software component library
PELICANS [15].

4.1. Transport of irregular functions

We address the pure transport (i.e. without diffusion), of an irregular function defined on
Q= (—1,1)? as follows:

for ¢ € (0.1,0.6) x (—0.25,0.25), u=1,
if r < 0.35, u=1——,
otherwise, u=0.

where r stands for the distance from the current point  to the point (—0.45,0), i.e.
r? = (x1 + 0.45)% + x2. The advection field is given by v(z) = 2 (x2, —x1)!, so, at the
end of n complete revolutions, the solution is identical to the initial condition for ¢ = nm,
n c N.

We begin with uniform Cartesian grids. If we set N, (V™) to the opposite cell and choose
(T = (= =1, the proposed scheme boils down to an usual MUSCL scheme with a minmod
limiter (see Remark 6). Results obtained with a 120 x 120 mesh and 6t = 7/(125 * n) (which
yields a cfl number close to 1) at t = 7 are plotted on Figure 5.

On Figure 6, we plot the value of the unknown along the x—axis, for the same mesh and
time step and various options of the scheme: the MUSCL minmod one, the upwind scheme
(obtained here by taking (* = ¢~ = 0), and two variants with less stringent limitations
obtained by taking ¢(* = ¢~ = 2 and by enlarging A, (V™) to the set of upstream cells. At
first glance, results may seem better with less limitation, but the shape of the initial condition
is deformed, as may be seen on Figure 7.

We next turn to unstructured meshes. Starting from a regular Cartesian grid and applying a
random displacement of length 0.3 h to each node, we first obtain an unstructured quadrangular
mesh; then, splitting each cell in four along its diagonals, we obtain a simplicial mesh. The
coarsest meshes used in this study, together with the discrete initial condition (determined for
each cell K as the value of the initial data at x k), are plotted on Figure 8. From now on, we
restrict the choice for N, (V™) to the opposite mesh for quadrangles and to the set of upstream
cells for simplices, and we set (T = (= = 1.
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Figure 5. Transport of irregular functions - Results obtained with the usual MUSCL scheme and a
minmod limiter, for a uniform 120 x 120 Cartesian grid.

1.2

upwi nd
Opposite cells (1) -------
Opposite cells (2) -
Upstreamcells -

1 .....50l ution

Figure 6. Transport of irregular functions - Value of the unknown along the xz—axis obtained with

the usual upwind scheme, the MUSCL minmod scheme (curve Opposite cell (1)), the same scheme

with ¢t = ¢~ = 2 (curve Opposite cell (2)), and taking for N5 (V™) to the set of upstream cells,
for a uniform 120 x 120 Cartesian grid.

The value of the unknown along the x—axis is plotted for meshes obtained from n x n
structured grids, with n = 20, 40, 80, 160 and 320, and 6t = 7/(175 % n), for quadrangles
(Figure 9) and n = 20, 40, 80 and 160, and 0t = 7/(600 *n), for triangles (Figure 10). In both
cases, the cfl number is near to 1, and is the same for all the computations performed with the
same family of meshes (i.e. quadrangular or simplicial meshes). The main qualitative effect of
using an unstructured mesh seems to be an additional smearing of the solution.
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Figure 7. Transport of irregular functions - Results obtained with less limitation (¢t = ¢~ = 2), for
a uniform 120 x 120 Cartesian grid.

Figure 8. Transport of irregular functions - Mesh and initial value for quadrangular (left) and simplicial
(right) meshes obtained from an initial 20 x 20 structured Cartesian grid.

The difference between the obtained solution, in a discrete L'-norm defined by:

lallsag = D 1] fulzs)],

KeM

is given in the following table, as a function of the initial regular grid, for the different
computations already invoked in this study.



ol ution

15

Figure 9. Transport of irregular functions - Value of the unknown along the z—axis, obtained with

the quadrangular cells, as a function of the mesh step.

1.2

1 - — sol ution

Figure 10. Transport of irregular functions - Value of the unknown along the x—axis, obtained with

simplicial cells, as a function of the mesh step.

initial mesh

structured mesh
quadrangles
triangles

20 x 20 40 x40 80 x 80 160 x 160 320 x 320
0.38 0.21 0.12 0.077 0.042
0.42 0.28 0.18 0.12 0.081
0.37 0.26 0.19 0.13 //

As may be expected, the accuracy is lower with unstructured meshes, and the fact that the
numerical diffusion is greater is confirmed by the comparison of the trace of the solutions along
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structured
uad
triangles ==

sol ution

Figure 11. Transport of irregular functions - Value of the unknown along the x—axis, obtained with
various meshes, built from a regular 160 x 160 mesh.

the line x5 = 0 obtained with the various meshes built in this study from the 160 x 160 grid,
displayed on Figure 11.

To conclude, we assess the capability of the scheme to deal with a locally refined non-
conforming mesh. To this purpose, we start from a regular quadrangular mesh and split in
four the cells located above the line &2 = 0. Results obtained at ¢ = 7, starting with a 80 x 80
regular grid, are displayed on Figure 12 and Figure 13. No spurious numerical phenomenon is
observed (especially near hanging nodes), and the computation performed with the partially
refined mesh appears less diffusive. As predicted by the theory, here as in all the performed test
cases, no overhoot or undershoot of the solution is observed (i.e., here, the solution remains
in the interval [0, 1]).

4.2. A convection-diffusion case

We now turn to a convection-diffusion tests case, built by combining a classical solution of
the heat equation with a constant skew-to-the mesh transport. The computational domain is
Q = (0,2) x (0,2), the advection velocity is v = (0.8, 0.8)%, the solution is given by:

1

YT

exp( X2 +v? [X} o ([0.5

Ay E—— t
c@rn)” |y 0.5] ttv),

with k = 0.01. The function u satisfies the advection-diffusion equation (1a) with f = 0, and
initial and Dirichlet boundary conditions given by value of u at ¢ = 0 and on 0f) respectively.

As in the previous section, we use meshes of quadrangles obtained by perturbation of regular
grids, by a displacement of each node in a random direction, here of length 0.2 h. We reduce
N5 (V™) to the opposite mesh of o in V= and choose (T = (¢~ = 1.
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Figure 12. Transport of irregular functions - Solution at ¢ = 7 obtained with a locally refined mesh
(part of the computational domain only). If u < 0.01, meshes are coloured in white — If 0.01 < u < 0.25,
in blue — If 0.25 < w < 0.5, in green — If 0.5 < u < 0.75, in yellow — If 0.75 < w, in red.

1.2
initial
refined
sol ution
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= L | |
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0.2 3 > bal
=l 5 ’
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iy 1 f
W
o L.
1 0.5 0 0.5 1

Figure 13. Transport of irregular functions - Value of the unknown along the z—axis, obtained with a
locally refined mesh and with the quadrangular initial (i.e. before refinement) mesh.

The L2-norm of the difference between the numerical and continuous solution at t = 1.2
is given for several meshes (with a time step adjusted accordingly to have cfl = 0.5) in the
following table.

initial mesh 40 x40 80 x 80 160 x 160 320 x 320
time step 0.005 0.0025 0.001 0.0005
error (L%norm) | 0.0095  0.0028 0.00095 0.00042
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Figure 14. Convection-diffusion case - Solution obtained at ¢t = 1.2 with a locally refined mesh (zoom
on a part of the computational domain). If w < 0.01, meshes are coloured in white — If 0.01 < u < 0.05,
in blue — If 0.05 < v < 0.1, in green — If 0.1 < u < 0.15, in yellow — If 0.15 < w, in red.

The convergence seems to be rather fast for coarse meshes, then slows down, the convergence
rate however remaining greater than 1.

We now assess the capability of the scheme to work on a locally refined mesh. We start from
the mesh of quadrangles obtained from the 80 x 80 mesh and cut in four sub-quadrangles the
meshes located under the line s = ;. The result obtained at ¢ = 1.2 in the upper left part
of the computational domain (the part where the solution varies at that time) is plotted on
Figure 14. We observe the absence of numerical perturbations at the edges where the mesh
is non-conforming. In the upper part of the domain (i.e. 2 > 1), the numerical diffusion
appears slightly larger, which is consistent with the fact that the mesh is coarser.

5. Conclusion

In this paper, we described a finite volume scheme for the solution of the advection-diffusion
equation, which copes with almost arbitrary meshes. This scheme combines two ingredients:
- a discrete diffusion operator, which is both consistent and stable,
- anon-linear discrete transport operator using a prediction/limitation procedure, with
a limitation step which ensures the satisfaction of a local maximum principle without
invoking any geometrical argument.

The material presented here may be developed in several directions:
- first, the proposed limitation procedure may be used to complement any other existing
algorithm, as a final step to ensure the local maximum principle without any restriction
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on the mesh; doing so, the parameters should probably be tuned to limit as less as
possible (i.e. to enlarge as much as possible the admissible interval for the value at
the face),

- second, we payed no particular attention here to the reconstruction of the value at
the face, and, especially for the transport of smooth functions, it is probably possible
to design a more accurate evaluation, for instance using a least squares technique,

- last but not least, still for the transport of smooth functions, it is certainly preferable
to switch to a second-order in time scheme.

In addition, the convection scheme presented here extends to variable density flows [2], i.e.

to

a balance equation for @ of the form 0;(pu) + div(puv) — div(kVa) = f, where the density

o and the velocity field v are linked by the usual mass balance equation d;p + div(ov) = 0.
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