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Optimization of Aeroelastic Composite Structures using 

Evolutionary Algorithms 

A. Manan, G.A. Vio, M.Y. Harmin and J.E. Cooper    

Department of Engineering, University of Liverpool , Liverpool, L69 7EF, UK 

The flutter / divergence speed of a simple rectangular composite wing is maximised 

through the use of different ply orientations.  Four different biologically inspired 

optimization algorithms (binary genetic algorithm, continuous genetic algorithm, particle 

swarm optimization and ant colony optimization) and a simple meta-modelling approach are 

employed statistically on the same problem set.  It was found in terms of the best flutter 

speed, that similar results were obtained using all of the methods, although the continuous 

methods gave better answers than the discrete methods.  When the results were considered 

in terms of the statistical variation between different solutions, Ant Colony Optimization 

gave estimates with much less scatter. 

Keywords:  Aeroelastic Tailoring, Composite Lay-up, Flutter, Evolutionary Optimization 

I. Introduction 

 

 Aeroelasticity (Wright & Cooper 2007) is the science that incorporates the interactions between a flexible 

structure and surrounding aerodynamic forces. In general, aeroelastic phenomena are undesirable and can either 

reduce aircraft performance or, in extreme cases, cause structural failure either statically (divergence) or 

dynamically (flutter). Aircraft designers are interested in the speeds at which any instabilities occur, the dynamic 

response due to gusts and manouvres, and also the shape that the aircraft wings take in-flight as this has a significant 

effect on the drag and resulting fuel efficiency and performance.    

 

 Traditional aircraft design has always tended to avoid aeroelastic problems through stiffening the structure with 

extra material and accepting the resulting weight penalty.  In recent years, there has been a move towards trying to 

use aeroelastic deflections in a positive manner, and this has resulted in research programmes such as the Active 

Flexible Wing (Perry et al. 1995), the Active Aeroelastic Wing (Pendleton et al. 2000), the Morphing Program 

(Wlezin et al. 1998) and Active Aeroelastic Aircraft Structures project (Schweiger & Suleman 2003) that have used 

made used to several novel active technologies.  However, a more traditional passive approach to making use of 

aeroelastic deflections in a positive way is to use carbon fibre composite structures. 

 

Despite the benefits of composite structures, it is only recently that the main load bearing structures in large 

aircraft such as the Boeing 787 and Airbus A350 have started to be manufactured using carbon fibre composites. 

Even then, the unique directionality properties of composite laminates have yet to be exploited fully in order to 

improve the aircraft performance.  Examples of work that has optimized the stacking sequence of composite 

structures include (Pagano et.al. 1971) who studied the effect of 15,45 ply lay-up on the laminate strength. Genetic 

Algorithms have been widely used couple in multi-level optimisation routines to optimise wing stiffeners elements 

(Herencia et.al. 2007, Liu et al. 2008. The effect of stacking sequence was investigated for the creation of composite 

bi-stable laminates (Mattioni et al. 2009) using 0,90 and 45 degrees ply directions.  (Autio 2000) used a lamination 

parameter in order to optimise buckling/frequency of a composite plate with a ply angle search. 

 

 The idea of using the directional property of composites for aeroelastic tailoring has been around since the 1970s 

(Shirk et al. 1986, Weisshaar 1981). However, since tailoring was demonstrated on the X-29 in the late 1970s and 

early 1980s, very few aircraft have used these directional properties to achieve beneficial aeroelastic effects. The 
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original application was to reduce the likelihood of divergence occurring on forward-swept wings (Shirk et al. 1986, 

Weisshaar 1981); recent applications have included weight reduction (Arizono & Isogai 2005, Kim et al. 2007, 

Kameyama & Fukunaga 2007, Eastep et al. 1999, Guo 2007), drag reduction (Weisshaar and Duke 2006)  and 

passive gust alleviation (Petit& Grandhi 2003, Kim & Hwang 2005) of composite wings. Although the new 

generation of commercial civil aircraft has started to use composites, they have only exploited the superior 

strength/weight ratio of composite materials rather than employing aeroelastic tailoring, in effect using the 

composite as a “black metal”. 

 

 There are a wide range of different optimization approaches that can be used for design problems.  The two main 

categories are Hill-Climbing and Evolutionary Methods.  Evolutionary algorithms tend to be based upon the 

mimicry of some biological or physical process and have been proven to be effective for large parameter space 

solutions and do not suffer from the local optima problems that can occur in the Hill-Climbing approaches; however, 

Evolutionary Algorithms do not guarantee to achieve the global optimum solution.  In the aeroelastic tailoring field, 

Genetic Algorithms have been used to minimise the structural weight whilst satisfying a number of aeroelastic 

parameters such as flutter and divergence (Shirk et al. 1986, Weisshaar 1981, Kim et al. 2007). However there have 

been few known aeroelastic applications of Particle Swarm Optimization or Ant Colony Optimization. 

 

 In this study, a simple assumed modes mathematical model of a rectangular composite wing with unsteady 

aerodynamics was developed in order to assess the ability of tailoring the composite structure to maximise the flutter 

/ divergence speed. Four different biologically inspired optimization techniques, including discrete and continuous 

approaches, were applied 100 times each to this problem in order to evaluate their performance in a statistical 

manner.  A further set of analysis was performed using a simple meta-modelling approach. 

 

II. Mathematical Model 

 

A. Structural Modelling  

 

 The composite lifting surface was idealised as a rectangular plate, as shown in Figure 1, using the Rayleigh-Ritz 

assumed modes method (Wright & Cooper 2007, Al-Obeid & Cooper 1995), which addresses the minimization of 

energy functional composed of strain and kinetic energy.  The problem considered here is a rectangular composite 

plate wing with a semi-span to chord ratio of four (i.e. on a full aircraft modeling both wings this would give an 

aspect ratio of eight) and a six layer fibre angle lay-up of (θ1, θ2, θ3)s . 

 

 

 

 
Figure 1.  Rectangular Wing with Six Composite Layers 
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The strain energy over the entire plate domain Ω can be expressed as 

 

dxdydzU xyxyyzyzxzxzzzyyxx∫∫∫
Ω

+++++= )(
2

1
εσεσεσεσεσεσ                   (1) 

    

which reduces, by taking into account of assumptions that transverse shear and normal stresses are negligible, to  

 

dxdydzU xyxyyyxx∫∫∫
Ω

++= )(
2

1
εσεσεσ                            (2) 

 

in which iσ and iε are stress and strain(where xyyxi ,,= ) that are related to each other via transformed reduced 

stiffness matrix, ijQ , by the following relation for each ply k 
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Replacing stress relations defined in (3) into (2) we get following equation 

 

dxdydzQQQQQQU xyyxyyxyxyxx∫∫∫
Ω
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11 εεεεεεεεε                                          (4) 

 

Then, utilising the strain-displacement relations for this pure bending problem with symmetric lay-up 

configurations, expression (4) reduces to 
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where )()(
3

1 3

1

1

3

−
=

∑ −= k

n

k

kkijij zzQD in which kz is kth layer distance along z-axis from mid-plane of the plate 

and w is the out of plane deflection of the plate. Out of plane deflections (expressed at some point P(x,y) on the 

surface of the wing) of the composite lifting surface are expressed as 

 

)(),(
1

tqyxw
n

i

ii∑
=

= γ                                                                                                           (6) 

 

where )(tqi is the generalised displacement of the i
th

 mode represented with ),( yxiγ
 
( Taken here as polynomial 

series of 2
x , 3

x , 4
x , )(2

fyyx − , )(3
fyyx − , )(4

fyyx − , 22 )( fyyx − , 23 )( fyyx −  and 24 )( fyyx −  …, then 

strain energy can be calculated by utilizing equation (5). Similarly, the maximum kinetic energy of the entire plate 

domain Ω  can be formulated as  
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∫∫
Ω

= dxdyyxwhT ),(
2

1 22
max ωρ                                                                                              (7) 

 

where ρ is the mass per unit area of plate, h is plate thickness and ω is the frequency of vibration. Minimization of 

the functional ( maxmax TU − ) with respect to each coefficient iq results the following stiffness and mass matrices 

respectively 
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∫∫
Ω

= dxdyA jiij γργ                                                                                                               (9) 

Comparison with Finite Element analysis showed that a very good representation of the dynamic behavior of the 

composite wing could be achieved using the above model.   

 

B. Aerodynamic Modelling 

 

 In this work a modified strip theory approach, in which unsteady effects are introduced via the torsional velocity 

term (Wright & Cooper 2007), was employed to develop the aerodynamic model. Strip theory divides the wing into 

infinitesimal strips on which lift acting on the quarter chord is assumed to be proportional to the dynamic pressure, 

local angle of attack, lift curve slope and the downwash due to the vertical motion.  Although strip theory would not 

be used for the design of commercial jet aircraft by the aerospace industry, the approach does give a representative 

conservative model of the static and dynamic aeroelastic behavior of high aspect ratio wings at low speeds, and 

remains as a possible analysis approach in the airworthiness regulations.  Previous unpublished studies have shown 

that similar results for the type of wing model considered here are obtained using the modified strip theory 

compared to the Doublet Lattice approach used in commercial software packages. The aim of this paper is to 

investigate the behavior of several optimization methods and not to produce a perfect aeroelastic model, thus any 

variations in the aerodynamic modeling will not affect the optimization methods, however, further investigation is 

required in the transonic flight regime where the aerodynamic behavior becomes nonlinear.  For ease of 

computational effort it was decided to use the modified strip theory approach throughout this work. 

 

C. Aeroelastic Modelling 

 

Considering the incremental work done over entire wing due to the lift and pitching moment (about the flexural 

axis), application of Lagrange’s equations eventually leads to the formulation of the B (aerodynamic damping) and 

C (aerodynamic stiffness) matrices (Wright & Cooper 2007) which can be coupled with the above structural terms to 

give the aeroelastic equation of motions in the classical form 

 

         
( ) 2
A q ( VB D)q ( V C E)q 0+ ρ + + ρ + =&& &                 (10) 

 

D is the structural damping matrix which cannot be predicted and requires test measurements to get accurate 

estimates. As with most aeroelastic modeling, the structural damping can be set to zero as the aerodynamic damping 

terms have a far greater effect (Wright & Cooper 2007). 

 

 Rewriting into first order matrix form, equation (10) becomes 
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                (11) 

 

and the eigenvalues of matrix Q lead to the system frequency and damping ratios at any given flight condition.  The 

flutter speed at a given altitude can be determined by finding the air speed where one of the damping values 

becomes negative.  In some cases divergence might occur before flutter, and this is characterised by positive real 

eigenvalues occurring.   

 

A total of nine assumed modes were assumed for the composite wing model for which material properties used are 

given in Table 1. The frequency and damping ratio trends of the lowest three modes for a typical case are shown in 

Figure 2, and it can be seen that a classical flutter mechanism results through the coupling between the first two 

modes and the flutter speed occurs when the Mode 2 damping curve becomes zero. 

 

 

 
Figure 2.  Typical Frequency and Damping Ratio Trends vs. Speed 

 

III. Optimization Methods and Application  

Four different optimization methods were considered for this study, all of which are based upon some form of 

evolutionary search based upon the mimicry of various types of biological system.  Two of the approaches, Binary 

Genetic Algorithm (BGA) and Ant Colony Optimization (ACO), are discrete in the sense that the set of possible 

solutions are defined a-priori; here the number of possible orientations for each layer is defined by the number of 

bits in each gene (BGA) or the number of possible paths between each waypoint (ACO).   The other two methods, 

Continuous Genetic Algorithm (CGA) and Particle Swarm Optimization (PSO) allow any orientation within the 

defined search space (-90
o
 ≤ θ ≤ 90

o
 for each layer) to be obtained.  

 

In all cases, the objective was to find the combinations of ply orientations that maximised the air speed at which 

aeroelastic instability occurred, due to either flutter or divergence.  Although this might seem to be a trivial problem 
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with only three parameters (θ1, θ2, θ3) needing to be determined, due to the highly coupled nature of the aeroelastic 

system the optimized lay-up is not easy to find.  Figure 3 shows a section of the solution space for constant θ3 = 50
o
, 

calculated by enumeration, and it can be seen that there are a number of local optima and also regions of rather low 

instability speeds corresponding to solutions where the divergence speed is the critical case. 

 

  

-100
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-100

-50
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100
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Figure 3.  Flutter Speed Solutions for θ1vs. θ2 for constant θ3 

 

 

A total of 20 solutions (genes, particles or ants) were used for each approach.  For each solution case the methods 

were run for a maximum of 100 generations / iterations, with convergence considered to occur if the best solution 

did not vary for 20 iterations.  A very brief description of the application of each optimization algorithm follows. 

 

A. Binary Genetic Algorithm 

 

Genetic Algorithms attempt to mimic Darwinian theory of natural selection which is based upon the traits of the 

most successful animals being passed onto future generations.  In an optimization setting (Haupt & Haupt 2004), the 

characteristics of the best solutions from a range of initial estimates (“genes”) are passed onto subsequent iterations 

via a series of mathematical operators, which is repeated until convergence is achieved. Randomness is added via 

application of a mutation function and also, possibly, the inclusion of “new-blood” solutions. The most common 

approach is to use a binary representation (BGA) of the system parameters. 

 

Here, the binary representation of the composite lay-up assigned 5 bits (32 possible orientations – i.e. 5.625
o
 

between each possible orientation) to each layer, giving a gene length of 15 bits.  A classical implementation of the 

binary GA was employed, with 20 genes being included in the gene pool, the 4 best genes saved after each iteration, 

a 90% probability of crossover, 5% probability of mutation and a 10% likelihood of translation.   

 

B. Continuous Genetic Algorithm 
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Continuous or real number genetic algorithms (CGA) work (Haupt & Haupt 2004) in a similar way to the binary 

genetic algorithm described above. However, as the name suggests, the primary difference is in the variable 

representation of each gene. In CGA, the genes are represented using real numbers and consequently a re-definition 

of the mutation and crossover operators must be employed. 

 

1. Mutation 

The mutation operator for CGA requires the selection of a number of variables based on a mutation rate to be 

replaced by a new random variable. The best gene is left untouched in order to give an element of elitism to the 

generation. 

 

2. Crossover 

As for the binary BGA, a pair of genes is selected to create any offspring. For the BGA, if two points are selected 

and swapped, i.e. 

 

 
1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

N

N

parent p p p p p p p

parent p p p p p p p

=   

=   

K

K

 (12) 

 

where N is the number of genes. By applying crossover (randomly chosen to occur after the 2
nd

 cell), the following 

offspring are obtained 

 

 
1 11 12 23 24 25 16 1

2 21 22 13 14 15 26 2

N

N

offspring p p p p p p p

offspring p p p p p p p

=   

=   

K

K

 (13) 

 

It can be seen that no new information is passed to the offspring.  However, for the CGA, new genetic material is 

introduced into the cross over process via the use of a blending function β  such that  

 

 ( )1 1 1 2offspring parent parent parentβ= − −  (14) 

where β is a random number between 0 and 1.   

 

In this application, a population of 20 genes was chosen, with the mutation rate set at 0.2 and the crossover rate at 

0.5.  

 

 

C Particle Swarm Optimization 

 

 Particle Swarm Optimization (PSO) is a heuristic search method which is based on a simplified social model that 

is closely tied to swarming theory and intelligence in which each particle of the swarm has memory and can also 

communicate with each other (Clerc 2006). The position and velocity of particle is updated by knowing the previous 

best values of each particle and overall swarm such that for the kth iteration 

 

    ))()(())()(()()1( 2211 kxkgckxkpckwvkv idddididdidid −+−+=+ φφ                    (15) 

 

            )()()1( kvkxkx ididid +=+             (16) 

 

where iv  and ix  are the velocity and position of particle i , ip  and ig  are the best positions found by each particle 

and the entire population; d1φ  and d2φ  are independent uniformly distributed random numbers and are generated 
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independently.  w , 
1c  and 

2c  are the user defined inertia factor ( w =1), particle belief factor (
1c =2) and swarm 

belief ( 2c =2) factors respectively.  

 

 In this application, 20 particles were selected and the process was continued for 100 iterations or until 

convergence occurred.   

 

 

D Ant Colony Optimization 

 

 Ant Colony Optimization (Dorigo & Stutzle 2004) attempts to mimic mathematically the process by which ant 

colony sends out scouts to search for food and a pheromone is laid upon the trail depending upon the success of that 

route.  The probability of ants following a particular trail is increased by the amount of pheromone that it contains.   

ACO has primarily been applied for scheduling / routing problems, however, in this application a different approach 

has to be employed.   

 

 In figure 4 it can be seen composite layer optimization problem is formulated as a series of way-points that each 

ant must pass through, representing each of the composite layer, however, there are many paths that can be taken 

between each way-point representing the possible orientations for each layer, in this case the same discrete 

orientations as used for the BGA were used, i.e. 32 possible orientations, leading to increments of 5.625
o 
in the range 

-90
o
 to 90

o
.  

 

 
Figure 4   ACO Solution of Composite Layer Optimization Problem (dashed line indicates all paths between 

78.75
o
 and -78.75

o
) 

 

 

 

 Suppose there are nant ants that initially take a random set of routes.  The single ant with the best route found at 

each iteration deposits pheromone, which will also evaporate at some predefined rate. Further sets of routes are 

chosen, with those sections containing more pheromone being more likely to be chosen.  This process is repeated 

either for a set number of times, or until convergence to a solution is found. 
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Mathematically, the route that each ant takes depends upon the probabilities Pij (ith layer and jth orientation) 

assigned to each path via pheromone intensity ( i jτ ) information contained in the m* Nθ
 
pheromone matrix, where 

m  is the number of layers that need to be defined ( m = 3) and Nθ  is the number of possible orientations ( Nθ =32).    

 

The probability of choosing a particular composite lay-up sequence for the each ant was set as 

 
 (17) 

 

   

with all pheromone intensities set as zero for the first iteration  

 

The updating process consists of adding and evaporating the pheromone intensity is represented as 

 )t()t()1()1t( ijijij τ∆+τρ−=+τ  (18) 

where ρ  is the amount of percentage evaporation ( ρ = 0.02) and i jτ∆   is an additional pheromone deposited on 

each best route, defined here as  

  

 

(19) 

 

where Q  is a constant and ( ){ }
n

J X  is the best solution (cost function) of a colony at the nth iteration (best iteration 

ant).  In this work, the constant Q was taken as a maximum possible of cost function (35 m/s) so that the maximum 

value of i jτ∆ was of order unity. 

 

 In order to optimize the ACO solution, it is essential to have a proper parameter setup of the evaporation 

constant ρ , i jτ∆  and pheromone constant
  

z  so as to ensure there is an appropriate balance of inclusion of random 

material, avoiding premature convergence whilst still ensuring that the solution converges.  The inclusion of the 

pheromone constant term in equation (17), defined as  

 

 
(20) 

 

where Pmax is the maximum allowable size of probability (taken as 50%) that correspond to the maximum allowable 

pheromone intensity in the pheromone matrix.  This approach has been found by the authors to address these issues, 

preventing some of the pheromone intensities becoming either too high or too low and leading to more variation on 

the pheromone matrix. 
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E Meta-Modelling Approach 

 
A further approach that was employed was to take 20 emulations of the system with parameters that were chosen 

using a random Latin Hypercube (Sacks et al. 1989) to ensure that a broad distribution of the parameters was 

considered.  A cubic model of the form  

 
2

1 1 2 2 3 3 1 1 1 1 2

3 2
1 1 1 1 2 1 2 3

fV A B B B C .... D ....

E .... F ... G

θ θ θ θ θ θ

θ θ θ θ θ θ

= + + + + + + +

+ + + + +
 (21) 

was chosen where the unknown A,B,…G parameters are found from a simple regression analysis using the test data 

sets.  The maximum value of the resulting reduced order model was then determined.   It was found that in order to 

ensure that a concave solution was found it was necessary to include a further set of 26 sample points around the 

edge of the solution space.  This process was repeated 100 times using a different set of Latin Hypercube solutions 

each time with a resolution of 1
o
. 

IV. Results 

 

   

 

Figures 5 – 9 show the best flutter speed solutions and corresponding ply angles from all 100 solutions for each of 

the methods and figure 10 shows the number of iterations required to achieve convergence of each solution along 

with the corresponding optimized instability speed.  Table 2 shows the best solutions and corresponding composite 

layer orientations achieved by all the methods over the 100 runs, whereas Table 3 shows the statistical behavior of 

the 100 solution set, showing both the mean and also the standard deviations of the instability speed, flutter 

frequency, lay-up orientations and number of iterations to achieve convergence. 

 

In terms of the overall best solution from the 100 runs, the PSO method gave the best answer with the CGA 

approach giving a very similar result. Both these continuous solutions give better solutions that the two discrete 

methods (which both found the same optimum solution) as they have an infinite possible number of possible 

solutions.  All of the four optimization methods found very similar orientations for θ1 and θ2 however, there is a 

marked difference in the θ3 solution found by the PSO and CGA methods compared to the BGA and ACO 

approaches.  The performance of the meta-modelling approach was much worse than the optimization methods, 

highlighting that the problem requires a significantly higher order model than the cubic one that was employed.  
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Figure 5.  CGA Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 6.  PSO Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 7.  BGA Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 8.  ACO Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 9.  Meta-Model Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 10.  Iterations Required for Convergence for the Four Different Methods 

 

Property Value 

E1(GPa) 98.0 

E2(GPa) 7.9 

V12 0.28 

G12 5.6 

G13 5.6 

G23 5.6 

Ply thickness 0.134 (mm) 

Density 1520(Kg/m
3
) 

Table 1. Composite Material 

Properties 

 

 

Best Speed Best Speed m/s Ө1 (deg) Ө2 (deg) Ө3 (deg) 

CGA 33.12 -33.16 45.16 48.29 

PSO 33.13 -33.08 44.26 48.34 

BGA  32.77 -33.75 45.00 67.50 

ACO  32.77 -33.75 45.00 67.50 

MM  26.03 -44.00 -35.00 -42.00 

Table 2.  Best Speeds and Orientations from all 100 solution cases. 
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Mean Best Speed 

m/s 

Ө1 (deg) Ө2 (deg) Ө3 (deg) Iterations to 

convergence 

CGA 31.63 -24.63 42.52 22.13 17.23 

PSO 31.14 27.82 25.10 6.24 36.49 

BGA 29.57 -33.86 50.23 5.79 17.11 

ACO 32.57 -33.98 48.38 47.76 46.51 

MM 21.70 -41.88 -30.17 -4.32  

Standard 

Deviations 

     

CGA 1.56 29.07 26.56 29.98 9.68 

PSO 3.31 26.79 36.87 38.83 14.39 

BGA 2.05 10.05 14.81 53.72 6.29 

ACO 0.64 1.11 4.93 24.34 15.95 

MM 1.16 4.44 23.41 43.42  

Table 3.  Mean and Standard Deviations of Speeds, Orientations and Required Iterations from all 100 solution cases. 

 

 D11 (N.m) D16   (N.m) D66  (N.m) D16 /D11   D66 /D11   

CGA 2.0866 -0.5704 1.0074 -0.27 0.48

PSO 2.1078 -0.5638 1.0059 -0.27 0.48

BGA 2.0269 -0.5888 1.0008 -0.29 0.49

ACO 2.0269 -0.5888 1.0008 -0.29 0.49

MM 1.7019 -1.0622 1.0784 -0.62 0.63

Table 4.  Bending, Bend-Torsion and Torsion stiffness terms for the Optimal Solutions for each Method 

 

 

The statistical investigation provides a rather different picture.  When all 100 solutions are considered, the ACO 

approach gives the best average result  and has a much lower standard deviation, however it does take around 2.5 

times as many iterations than the GA method and 30% more computation than PSO.  There is very little scatter in 

the ACO results and the mean values are close to the optimal answers, many of the estimates are found repeatedly.  

There is a large variance in both the PSO and CGA solutions, however it can be seen that the PSO results for the ply 

orientations are in distinct closely formed clusters whereas there is a much more scattered appearance for the CGA 

results.  The BGA scatter is between that of the ACO and the other two continuous methods for θ1and θ2 however 

the variation for θ3 is larger.  The variance is very large in most cases as its calculation included all possible 

solutions which includes some significantly different answers.  To use this information in practice, the worst 

solutions should be discarded and some form of clustering algorithm used to determine groups about which 

meaningful information on the solution distributions.  

 

Figure 10 highlights how much better the ACO and to some extent the PSO methods are in consistently producing 

good estimates, however, the key observation is that for all methods there is no correlation between the number of 

iterations used and the optimality of the solution. 

 

The results give optimal orientations between ±45
o
 for a composite wing as predicted by Weisshaar, however, it 

should be noted that due to coupling between the bending and stiffness behavior, optimal results are not simply 

found from ±45
o
 lay-ups.    The θ3 layer has the least effect due to it being placed closest to the neutral axis, 

resulting in a greater scatter in its results.  Table 4 shows the Bending (D11), Bend-Torsion(D16)  and Torsion (D66)  

stiffness terms for the best results obtained by all the methods.  It can be seen that the ratio between the torsion 

stiffness and the other two terms results remains almost constant for all results showing that the same stiffness ratio 

pattern is found by all methods. 

 

The above discussion is enhanced by comparison with exhaustive searches for the more usual industry lay-up using 

any possible combination of (0
o
, ±45

o
, 90

o
) and 0

o
, ±30

o
, ±45

o
, ±60

o
, 90

o
), leading to optimum lay-ups and 

maximum instability speeds of  [-45 45 45]s, 25.43m/s and [-30 45 45]s, 30.73m/s respectively.  These results 
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demonstrate the sensitivity of the flutter process to the orientation angles and show how relatively small changes in 

the lay-up can make a big difference. 

 

  

V. Conclusions 

 

 Four biologically inspired optimization methods (Genetic Algorithms (binary and continuous), Particle Swarm 

Optimization and Ant Colony Optimization) were used to determine the optimal lay-up for a simple composite wing 

in order to maximize the flutter and divergence speeds.  A statistical investigation was performed in order to 

investigate the variation of the parameters that were optimized.  The best single results were found using the Particle 

Swarm and Continuous Genetic Algorithm however, the statistical investigation showed that Ant Colony 

Optimization gave results with much less scatter than the other methods.  A polynomial based meta-modelling 

approach gave much worse answers than the other methods.  It was also shown that for all methods there was no 

correlation between the accuracy of the optimization and the number of iterations required for convergence.   

 

Obviously these results only refer to the optimization of a single aeroelastic system, however, it is conjected that 

similar findings would be found if the methods were applied to larger more realistic models.  Further work is 

currently investigating the application of these evolutionary approaches in combination with gradient based methods 

to industrial type wing Finite Element models combined with potential flow aerodynamics. 
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Optimization of Aeroelastic Composite Structures using 

Evolutionary Algorithms 

A. Manan, G.A. Vio, M.Y. Harmin and J.E. Cooper    

Department of Engineering, University of Liverpool , Liverpool, L69 7EF, UK 

The flutter / divergence speed of a simple rectangular composite wing is maximised 

through the use of different ply orientations.  Four different biologically inspired 

optimization algorithms (binary genetic algorithm, continuous genetic algorithm, particle 

swarm optimization and ant colony optimization) and a simple meta-modelling approach are 

employed statistically on the same problem set.  It was found in terms of the best flutter 

speed, that similar results were obtained using all of the methods, although the continuous 

methods gave better answers than the discrete methods.  When the results were considered 

in terms of the statistical variation between different solutions, Ant Colony Optimization 

gave estimates with much less scatter. 

Keywords:  Aeroelastic Tailoring, Composite Lay-up, Flutter, Evolutionary Optimization 

I. Introduction 

 

 Aeroelasticity (Wright & Cooper 2007) is the science that incorporates the interactions between a flexible 

structure and surrounding aerodynamic forces. In general, aeroelastic phenomena are undesirable and can either 

reduce aircraft performance or, in extreme cases, cause structural failure either statically (divergence) or 

dynamically (flutter). Aircraft designers are interested in the speeds at which any instabilities occur, the dynamic 

response due to gusts and manouvres, and also the shape that the aircraft wings take in-flight as this has a significant 

effect on the drag and resulting fuel efficiency and performance.    

 

 Traditional aircraft design has always tended to avoid aeroelastic problems through stiffening the structure with 

extra material and accepting the resulting weight penalty.  In recent years, there has been a move towards trying to 

use aeroelastic deflections in a positive manner, and this has resulted in research programmes such as the Active 

Flexible Wing (Perry et al. 1995), the Active Aeroelastic Wing (Pendleton et al. 2000), the Morphing Program 

(Wlezin et al. 1998) and Active Aeroelastic Aircraft Structures project (Schweiger & Suleman 2003) that have used 

made used to several novel active technologies.  However, a more traditional passive approach to making use of 

aeroelastic deflections in a positive way is to use carbon fibre composite structures. 

 

Despite the benefits of composite structures, it is only recently that the main load bearing structures in large 

aircraft such as the Boeing 787 and Airbus A350 have started to be manufactured using carbon fibre composites. 

Even then, the unique directionality properties of composite laminates have yet to be exploited fully in order to 

improve the aircraft performance.  Examples of work that has optimized the stacking sequence of composite 

structures include (Pagano et.al. 1971) who studied the effect of 15,45 ply lay-up on the laminate strength. Genetic 

Algorithms have been widely used couple in multi-level optimisation routines to optimise wing stiffeners elements 

(Herencia et.al. 2007, Liu et al. 2008. The effect of stacking sequence was investigated for the creation of composite 

bi-stable laminates (Mattioni et al. 2009) using 0,90 and 45 degrees ply directions.  (Autio 2000) used a lamination 

parameter in order to optimise buckling/frequency of a composite plate with a ply angle search. 

 

 The idea of using the directional property of composites for aeroelastic tailoring has been around since the 1970s 

(Shirk et al. 1986, Weisshaar 1981). However, since tailoring was demonstrated on the X-29 in the late 1970s and 

early 1980s, very few aircraft have used these directional properties to achieve beneficial aeroelastic effects. The 
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original application was to reduce the likelihood of divergence occurring on forward-swept wings (Shirk et al. 1986, 

Weisshaar 1981); recent applications have included weight reduction (Arizono & Isogai 2005, Kim et al. 2007, 

Kameyama & Fukunaga 2007, Eastep et al. 1999, Guo 2007), drag reduction (Weisshaar and Duke 2006)  and 

passive gust alleviation (Petit& Grandhi 2003, Kim & Hwang 2005) of composite wings. Although the new 

generation of commercial civil aircraft has started to use composites, they have only exploited the superior 

strength/weight ratio of composite materials rather than employing aeroelastic tailoring, in effect using the 

composite as a “black metal”. 

 

 There are a wide range of different optimization approaches that can be used for design problems.  The two main 

categories are Hill-Climbing and Evolutionary Methods.  Evolutionary algorithms tend to be based upon the 

mimicry of some biological or physical process and have been proven to be effective for large parameter space 

solutions and do not suffer from the local optima problems that can occur in the Hill-Climbing approaches; however, 

Evolutionary Algorithms do not guarantee to achieve the global optimum solution.  In the aeroelastic tailoring field, 

Genetic Algorithms have been used to minimise the structural weight whilst satisfying a number of aeroelastic 

parameters such as flutter and divergence (Shirk et al. 1986, Weisshaar 1981, Kim et al. 2007). However there have 

been few known aeroelastic applications of Particle Swarm Optimization or Ant Colony Optimization. 

 

 In this study, a simple assumed modes mathematical model of a rectangular composite wing with unsteady 

aerodynamics was developed in order to assess the ability of tailoring the composite structure to maximise the flutter 

/ divergence speed. Four different biologically inspired optimization techniques, including discrete and continuous 

approaches, were applied 100 times each to this problem in order to evaluate their performance in a statistical 

manner.  A further set of analysis was performed using a simple meta-modelling approach. 

 

II. Mathematical Model 

 

A. Structural Modelling  

 

 The composite lifting surface was idealised as a rectangular plate, as shown in Figure 1, using the Rayleigh-Ritz 

assumed modes method (Wright & Cooper 2007, Al-Obeid & Cooper 1995), which addresses the minimization of 

energy functional composed of strain and kinetic energy.  The problem considered here is a rectangular 
composite plate wing with a semi-span to chord ratio of four (i.e. on a full aircraft modeling both wings this 
would give an aspect ratio of eight) and a six layer fibre angle lay-up of (θ1, θ2, θ3)s . 
 
 
 

 
Figure 1.  Rectangular Wing with Six Composite Layers 
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The strain energy over the entire plate domain Ω can be expressed as 

 

dxdydzU xyxyyzyzxzxzzzyyxx∫∫∫
Ω

+++++= )(
2

1
εσεσεσεσεσεσ                   (1) 

    

which reduces, by taking into account of assumptions that transverse shear and normal stresses are negligible, to  

 

dxdydzU xyxyyyxx∫∫∫
Ω

++= )(
2

1
εσεσεσ                            (2) 

 

in which iσ and iε are stress and strain(where xyyxi ,,= ) that are related to each other via transformed reduced 

stiffness matrix, ijQ , by the following relation for each ply k 
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Replacing stress relations defined in (3) into (2) we get following equation 

 

dxdydzQQQQQQU xyyxyyxyxyxx∫∫∫
Ω
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11 εεεεεεεεε                                          (4) 

 

Then, utilising the strain-displacement relations for this pure bending problem with symmetric lay-up 

configurations, expression (4) reduces to 
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where )()(
3

1 3

1

1

3

−
=
∑ −= k

n

k

kkijij zzQD in which kz is kth layer distance along z-axis from mid-plane of the plate and 

w is the out of plane deflection of the plate. Out of plane deflections (expressed at some point P(x,y) on the surface 

of the wing) of the composite lifting surface are expressed as 

 

)(),(
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where )(tqi is the generalised displacement of the i
th

 mode represented with ),( yxiγ  
( Taken here as polynomial 

series of 2x , 3x , 4x , )(2
fyyx − , )(3

fyyx − , )(4
fyyx − , 22 )( fyyx − , 23 )( fyyx −  and 24 )( fyyx −  …, then 

strain energy can be calculated by utilizing equation (5). Similarly, the maximum kinetic energy of the entire plate 

domain Ω  can be formulated as  

 

∫∫
Ω

= dxdyyxwhT ),(
2

1 22
max ωρ                                                                                              (7) 

 

where ρ is the mass per unit area of plate, h is plate thickness and ω is the frequency of vibration. Minimization of 

the functional ( maxmax TU − ) with respect to each coefficient iq results the following stiffness and mass matrices 

respectively 
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∫∫
Ω

= dxdyA jiij γργ                                                                                                               (9) 

Comparison with Finite Element analysis showed that a very good representation of the dynamic behavior of the 

composite wing could be achieved using the above model.   

 

B. Aerodynamic Modelling 

 

 In this work a modified strip theory approach, in which unsteady effects are introduced via the torsional velocity 

term (Wright & Cooper 2007), was employed to develop the aerodynamic model. Strip theory divides the wing into 

infinitesimal strips on which lift acting on the quarter chord is assumed to be proportional to the dynamic pressure, 

local angle of attack, lift curve slope and the downwash due to the vertical motion.  Although strip theory would not 

be used for the design of commercial jet aircraft by the aerospace industry, the approach does give a representative 

conservative model of the static and dynamic aeroelastic behavior of high aspect ratio wings at low speeds, and 

remains as a possible analysis approach in the airworthiness regulations.  Previous unpublished studies have shown 

that similar results for the type of wing model considered here are obtained using the modified strip theory 

compared to the Doublet Lattice approach used in commercial software packages. The aim of this paper is to 

investigate the behavior of several optimization methods and not to produce a perfect aeroelastic model, thus any 

variations in the aerodynamic modeling will not affect the optimization methods, however, further investigation is 

required in the transonic flight regime where the aerodynamic behavior becomes nonlinear.  For ease of 

computational effort it was decided to use the modified strip theory approach throughout this work. 

 

C. Aeroelastic Modelling 

 

Considering the incremental work done over entire wing due to the lift and pitching moment (about the flexural 

axis), application of Lagrange’s equations eventually leads to the formulation of the B (aerodynamic damping) and 

C (aerodynamic stiffness) matrices (Wright & Cooper 2007) which can be coupled with the above structural terms to 

give the aeroelastic equation of motions in the classical form 

 

         
( ) 2A q ( VB D)q ( V C E)q 0+ ρ + + ρ + =&& &                 (10) 
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D is the structural damping matrix which cannot be predicted and requires test measurements to get accurate 

estimates. As with most aeroelastic modeling, the structural damping can be set to zero as the aerodynamic damping 

terms have a far greater effect (Wright & Cooper 2007). 

 

 Rewriting into first order matrix form, equation (10) becomes 

 

                (11) 

 

and the eigenvalues of matrix Q lead to the system frequency and damping ratios at any given flight condition.  The 

flutter speed at a given altitude can be determined by finding the air speed where one of the damping values 

becomes negative.  In some cases divergence might occur before flutter, and this is characterised by positive real 

eigenvalues occurring.   

 

A total of nine assumed modes were assumed for the composite wing model for which material properties 
used are given in Table 1. The frequency and damping ratio trends of the lowest three modes for a typical 
case are shown in Figure 2, and it can be seen that a classical flutter mechanism results through the 
coupling between the first two modes and the flutter speed occurs when the Mode 2 damping curve 
becomes zero. 

 
 

 
Figure 2.  Typical Frequency and Damping Ratio Trends vs. Speed 
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III. Optimization Methods and Application  

Four different optimization methods were considered for this study, all of which are based upon some form of 

evolutionary search based upon the mimicry of various types of biological system.  Two of the approaches, Binary 

Genetic Algorithm (BGA) and Ant Colony Optimization (ACO), are discrete in the sense that the set of possible 

solutions are defined a-priori; here the number of possible orientations for each layer is defined by the number of 

bits in each gene (BGA) or the number of possible paths between each waypoint (ACO).   The other two methods, 

Continuous Genetic Algorithm (CGA) and Particle Swarm Optimization (PSO) allow any orientation within the 

defined search space (-90
o
 ≤ θ ≤ 90

o
 for each layer) to be obtained.  

 

In all cases, the objective was to find the combinations of ply orientations that maximised the air speed at which 

aeroelastic instability occurred, due to either flutter or divergence.  Although this might seem to be a trivial problem 

with only three parameters (θ1, θ2, θ3) needing to be determined, due to the highly coupled nature of the aeroelastic 

system the optimized lay-up is not easy to find.  Figure 3 shows a section of the solution space for constant θ3 = 50
o
, 

calculated by enumeration, and it can be seen that there are a number of local optima and also regions of rather low 

instability speeds corresponding to solutions where the divergence speed is the critical case. 
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Figure 3.  Flutter Speed Solutions for θ1vs. θ2 for constant θ3 

 

 

A total of 20 solutions (genes, particles or ants) were used for each approach.  For each solution case the methods 

were run for a maximum of 100 generations / iterations, with convergence considered to occur if the best solution 

did not vary for 20 iterations.  A very brief description of the application of each optimization algorithm follows. 

 

A. Binary Genetic Algorithm 

 

Genetic Algorithms attempt to mimic Darwinian theory of natural selection which is based upon the traits of the 

most successful animals being passed onto future generations.  In an optimization setting (Haupt & Haupt 2004), the 
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characteristics of the best solutions from a range of initial estimates (“genes”) are passed onto subsequent iterations 

via a series of mathematical operators, which is repeated until convergence is achieved. Randomness is added via 

application of a mutation function and also, possibly, the inclusion of “new-blood” solutions. The most common 

approach is to use a binary representation (BGA) of the system parameters. 

 

Here, the binary representation of the composite lay-up assigned 5 bits (32 possible orientations – i.e. 5.625
o
 

between each possible orientation) to each layer, giving a gene length of 15 bits.  A classical implementation of the 

binary GA was employed, with 20 genes being included in the gene pool, the 4 best genes saved after each iteration, 

a 90% probability of crossover, 5% probability of mutation and a 10% likelihood of translation.   

 

B. Continuous Genetic Algorithm 

 

Continuous or real number genetic algorithms (CGA) work (Haupt & Haupt 2004) in a similar way to the binary 

genetic algorithm described above. However, as the name suggests, the primary difference is in the variable 

representation of each gene. In CGA, the genes are represented using real numbers and consequently a re-definition 

of the mutation and crossover operators must be employed. 

 

1. Mutation 

The mutation operator for CGA requires the selection of a number of variables based on a mutation rate to be 

replaced by a new random variable. The best gene is left untouched in order to give an element of elitism to the 

generation. 

 

2. Crossover 

As for the binary BGA, a pair of genes is selected to create any offspring. For the BGA, if two points are selected 

and swapped, i.e. 

 

 
1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

N

N

parent p p p p p p p

parent p p p p p p p

=   

=   

K

K

 (12) 

 

where N is the number of genes. By applying crossover (randomly chosen to occur after the 2
nd

 cell), the following 

offspring are obtained 

 

 
1 11 12 23 24 25 16 1

2 21 22 13 14 15 26 2

N

N

offspring p p p p p p p

offspring p p p p p p p

=   

=   

K

K

 (13) 

 

It can be seen that no new information is passed to the offspring.  However, for the CGA, new genetic material is 

introduced into the cross over process via the use of a blending function β  such that  

 

 ( )1 1 1 2offspring parent parent parentβ= − −  (14) 

where β is a random number between 0 and 1.   

 

In this application, a population of 20 genes was chosen, with the mutation rate set at 0.2 and the crossover rate at 

0.5.  

 

 

C Particle Swarm Optimization 
 

 Particle Swarm Optimization (PSO) is a heuristic search method which is based on a simplified social model that 

is closely tied to swarming theory and intelligence in which each particle of the swarm has memory and can also 

communicate with each other (Clerc 2006). The position and velocity of particle is updated by knowing the previous 

best values of each particle and overall swarm such that for the kth iteration 
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    ))()(())()(()()1( 2211 kxkgckxkpckwvkv idddididdidid −+−+=+ φφ                    (15) 

 

            )()()1( kvkxkx ididid +=+             (16) 

 

where iv  and ix  are the velocity and position of particle i , ip  and ig  are the best positions found by each particle 

and the entire population; d1φ  and d2φ  are independent uniformly distributed random numbers and are generated 

independently.  w , 1c  and 2c  are the user defined inertia factor ( w =1), particle belief factor ( 1c =2) and swarm 

belief ( 2c =2) factors respectively.  

 

 In this application, 20 particles were selected and the process was continued for 100 iterations or until 

convergence occurred.   

 

 

D Ant Colony Optimization 

 

 Ant Colony Optimization (Dorigo & Stutzle 2004) attempts to mimic mathematically the process by which ant 

colony sends out scouts to search for food and a pheromone is laid upon the trail depending upon the success of that 

route.  The probability of ants following a particular trail is increased by the amount of pheromone that it contains.   

ACO has primarily been applied for scheduling / routing problems, however, in this application a different approach 

has to be employed.   

 

 In figure 4 it can be seen composite layer optimization problem is formulated as a series of way-points that each 

ant must pass through, representing each of the composite layer, however, there are many paths that can be taken 

between each way-point representing the possible orientations for each layer, in this case the same discrete 

orientations as used for the BGA were used, i.e. 32 possible orientations, leading to increments of 5.625
o 
in the range 

-90
o
 to 90

o
.  

 

 
Figure 4   ACO Solution of Composite Layer Optimization Problem (dashed line indicates all paths between 

78.75
o
 and -78.75

o
) 
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 Suppose there are nant ants that initially take a random set of routes.  The single ant with the best route found at 

each iteration deposits pheromone, which will also evaporate at some predefined rate. Further sets of routes are 

chosen, with those sections containing more pheromone being more likely to be chosen.  This process is repeated 

either for a set number of times, or until convergence to a solution is found. 

 

Mathematically, the route that each ant takes depends upon the probabilities Pij (ith layer and jth orientation) 

assigned to each path via pheromone intensity ( i jτ ) information contained in the m* Nθ
 
pheromone matrix, where 

m  is the number of layers that need to be defined ( m = 3) and Nθ  is the number of possible orientations ( Nθ =32).    

 

The probability of choosing a particular composite lay-up sequence for the each ant was set as 

 
 (17) 

 

   

with all pheromone intensities set as zero for the first iteration  

 

The updating process consists of adding and evaporating the pheromone intensity is represented as 

 )t()t()1()1t( ijijij τ∆+τρ−=+τ  (18) 

where ρ  is the amount of percentage evaporation ( ρ = 0.02) and i jτ∆   is an additional pheromone deposited on 

each best route, defined here as  

  

 

(19) 

 

where Q  is a constant and ( ){ }
n

J X  is the best solution (cost function) of a colony at the nth iteration (best iteration 

ant).  In this work, the constant Q was taken as a maximum possible of cost function (35 m/s) so that the maximum 

value of i jτ∆ was of order unity. 

 

 In order to optimize the ACO solution, it is essential to have a proper parameter setup of the evaporation 

constant ρ , i jτ∆  and pheromone constant
  

z  so as to ensure there is an appropriate balance of inclusion of random 

material, avoiding premature convergence whilst still ensuring that the solution converges.  The inclusion of the 

pheromone constant term in equation (17), defined as  

 

 
(20) 
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where Pmax is the maximum allowable size of probability (taken as 50%) that correspond to the maximum allowable 

pheromone intensity in the pheromone matrix.  This approach has been found by the authors to address these issues, 

preventing some of the pheromone intensities becoming either too high or too low and leading to more variation on 

the pheromone matrix. 

 

E Meta-Modelling Approach 

 

A further approach that was employed was to take 20 emulations of the system with parameters that were chosen 

using a random Latin Hypercube (Sacks et al. 1989) to ensure that a broad distribution of the parameters was 

considered.  A cubic model of the form  

 
2

1 1 2 2 3 3 1 1 1 1 2

3 2
1 1 1 1 2 1 2 3

fV A B B B C .... D ....

E .... F ... G

θ θ θ θ θ θ

θ θ θ θ θ θ

= + + + + + + +

+ + + + +
 (21) 

was chosen where the unknown A,B,…G parameters are found from a simple regression analysis using the test data 

sets.  The maximum value of the resulting reduced order model was then determined.   It was found that in order to 

ensure that a concave solution was found it was necessary to include a further set of 26 sample points around the 

edge of the solution space.  This process was repeated 100 times using a different set of Latin Hypercube solutions 

each time with a resolution of 1
o
. 

IV. Results 

 

   

 

Figures 5 – 9 show the best flutter speed solutions and corresponding ply angles from all 100 solutions for each of 

the methods and figure 10 shows the number of iterations required to achieve convergence of each solution along 

with the corresponding optimized instability speed.  Table 2 shows the best solutions and corresponding composite 

layer orientations achieved by all the methods over the 100 runs, whereas Table 3 shows the statistical behavior of 

the 100 solution set, showing both the mean and also the standard deviations of the instability speed, flutter 

frequency, lay-up orientations and number of iterations to achieve convergence. 

 

In terms of the overall best solution from the 100 runs, the PSO method gave the best answer with the CGA 

approach giving a very similar result. Both these continuous solutions give better solutions that the two discrete 

methods (which both found the same optimum solution) as they have an infinite possible number of possible 

solutions.  All of the four optimization methods found very similar orientations for θ1 and θ2 however, there is a 

marked difference in the θ3 solution found by the PSO and CGA methods compared to the BGA and ACO 

approaches.  The performance of the meta-modelling approach was much worse than the optimization methods, 

highlighting that the problem requires a significantly higher order model than the cubic one that was employed.  
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Figure 5.  CGA Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 6.  PSO Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 7.  BGA Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 8.  ACO Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 9.  Meta-Model Maximum Flutter Speeds for θ1, θ2 and θ3 
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Figure 10.  Iterations Required for Convergence for the Four Different Methods 

 

Property Value 

E1(GPa) 98.0 

E2(GPa) 7.9 

V12 0.28 

G12 5.6 

G13 5.6 

G23 5.6 

Ply thickness 0.134 (mm) 

Density 1520(Kg/m
3
) 

Table 1. Composite Material 

Properties 

 

 

Best Speed Best Speed m/s Ө1 (deg) Ө2 (deg) Ө3 (deg) 

CGA 33.12 -33.16 45.16 48.29 

PSO 33.13 -33.08 44.26 48.34 

BGA  32.77 -33.75 45.00 67.50 

ACO  32.77 -33.75 45.00 67.50 

MM  26.03 -44.00 -35.00 -42.00 

Table 2.  Best Speeds and Orientations from all 100 solution cases. 
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Mean Best Speed 

m/s 

Ө1 (deg) Ө2 (deg) Ө3 (deg) Iterations to 

convergence 

CGA 31.63 -24.63 42.52 22.13 17.23 

PSO 31.14 27.82 25.10 6.24 36.49 

BGA 29.57 -33.86 50.23 5.79 17.11 

ACO 32.57 -33.98 48.38 47.76 46.51 

MM 21.70 -41.88 -30.17 -4.32  

Standard 

Deviations 

     

CGA 1.56 29.07 26.56 29.98 9.68 

PSO 3.31 26.79 36.87 38.83 14.39 

BGA 2.05 10.05 14.81 53.72 6.29 

ACO 0.64 1.11 4.93 24.34 15.95 

MM 1.16 4.44 23.41 43.42  

Table 3.  Mean and Standard Deviations of Speeds, Orientations and Required Iterations from all 100 solution cases. 

 

 D11 (N.m) D16   (N.m) D66  (N.m) D16 /D11   D66 /D11   

CGA 2.0866 -0.5704 1.0074 -0.27 0.48

PSO 2.1078 -0.5638 1.0059 -0.27 0.48

BGA 2.0269 -0.5888 1.0008 -0.29 0.49

ACO 2.0269 -0.5888 1.0008 -0.29 0.49

MM 1.7019 -1.0622 1.0784 -0.62 0.63

Table 4.  Bending, Bend-Torsion and Torsion stiffness terms for the Optimal Solutions for each Method 

 

 

The statistical investigation provides a rather different picture.  When all 100 solutions are considered, the ACO 

approach gives the best average result  and has a much lower standard deviation, however it does take around 2.5 

times as many iterations than the GA method and 30% more computation than PSO.  There is very little scatter in 

the ACO results and the mean values are close to the optimal answers, many of the estimates are found repeatedly.  

There is a large variance in both the PSO and CGA solutions, however it can be seen that the PSO results for the ply 

orientations are in distinct closely formed clusters whereas there is a much more scattered appearance for the CGA 

results.  The BGA scatter is between that of the ACO and the other two continuous methods for θ1and θ2 however 

the variation for θ3 is larger.  The variance is very large in most cases as its calculation included all possible 

solutions which includes some significantly different answers.  To use this information in practice, the worst 

solutions should be discarded and some form of clustering algorithm used to determine groups about which 

meaningful information on the solution distributions.  

 

Figure 10 highlights how much better the ACO and to some extent the PSO methods are in consistently producing 

good estimates, however, the key observation is that for all methods there is no correlation between the number of 

iterations used and the optimality of the solution. 

 

The results give optimal orientations between ±45
o
 for a composite wing as predicted by Weisshaar, however, it 

should be noted that due to coupling between the bending and stiffness behavior, optimal results are not simply 

found from ±45
o
 lay-ups.    The θ3 layer has the least effect due to it being placed closest to the neutral axis, 

resulting in a greater scatter in its results.  Table 4 shows the Bending (D11), Bend-Torsion(D16)  and Torsion (D66)  

stiffness terms for the best results obtained by all the methods.  It can be seen that the ratio between the torsion 

stiffness and the other two terms results remains almost constant for all results showing that the same stiffness ratio 

pattern is found by all methods. 

 

The above discussion is enhanced by comparison with exhaustive searches for the more usual industry lay-up using 

any possible combination of (0
o
, ±45

o
, 90

o
) and 0

o
, ±30

o
, ±45

o
, ±60

o
, 90

o
), leading to optimum lay-ups and 
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maximum instability speeds of  [-45 45 45]s, 25.43m/s and [-30 45 45]s, 30.73m/s respectively.  These results 

demonstrate the sensitivity of the flutter process to the orientation angles and show how relatively small changes in 

the lay-up can make a big difference. 

 

  

V. Conclusions 

 

 Four biologically inspired optimization methods (Genetic Algorithms (binary and continuous), Particle Swarm 

Optimization and Ant Colony Optimization) were used to determine the optimal lay-up for a simple composite wing 

in order to maximize the flutter and divergence speeds.  A statistical investigation was performed in order to 

investigate the variation of the parameters that were optimized.  The best single results were found using the Particle 

Swarm and Continuous Genetic Algorithm however, the statistical investigation showed that Ant Colony 

Optimization gave results with much less scatter than the other methods.  A polynomial based meta-modelling 

approach gave much worse answers than the other methods.  It was also shown that for all methods there was no 

correlation between the accuracy of the optimization and the number of iterations required for convergence.   

 

Obviously these results only refer to the optimization of a single aeroelastic system, however, it is conjected that 

similar findings would be found if the methods were applied to larger more realistic models.  Further work is 

currently investigating the application of these evolutionary approaches in combination with gradient based methods 

to industrial type wing Finite Element models combined with potential flow aerodynamics. 
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