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ASYMPTOTIC BEHAVIOR OF THE MOMENTS OF THE RATIO OF THE
RANDOM SUM OF SQUARES TO THE SQUARE OF THE RANDOM SUM

SOPHIE A. LADOUCETTE

Abstract. Let {X1, X2, . . . } be a sequence of independent and identically distributed positive random
variables of Pareto-type and let {N(t); t ≥ 0} be a mixed Poisson process independent of the Xi’s. For
any fixed t ≥ 0, define:

TN(t) :=
X2

1 + X2
2 + · · ·+ X2

N(t)(
X1 + X2 + · · ·+ XN(t)

)2

if N(t) ≥ 1 and TN(t) := 0 otherwise. We determine the asymptotic behavior of any moment E
[
T k

N(t)

]

as t →∞ with k ∈ N. Our method relies on the theory of functions of regular variation and an integral
representation of these moments.

1. Introduction

Let {X1, X2, . . . } be a sequence of independent and identically distributed positive random variables
with distribution function F and let {N(t); t ≥ 0} be a counting process independent of the Xi’s. For
any fixed t ≥ 0, define:

TN(t) :=
X2

1 + X2
2 + · · ·+ X2

N(t)(
X1 + X2 + · · ·+ XN(t)

)2

if N(t) ≥ 1 and TN(t) := 0 otherwise.
Denote by Tn the random variable TN(t) when the counting process {N(t); t ≥ 0} is non-random.

An asymptotic analysis of Tn is provided by Albrecher et al. [1] and Albrecher and Teugels [2] under
the condition that the distribution function F of X1 is of Pareto-type with index α > 0. To be more
precise, Albrecher and Teugels [2] study the asymptotic behavior of arbitrary moments of Tn as n →∞,
generalizing earlier results pertaining to E[Tn] by Fuchs et al. [6], and Albrecher et al. [1] derive limit
distributions for the properly normalized quantity Tn as n →∞.

This paper focuses on moment convergence. We establish the asymptotic behavior of any moment of
order k ∈ N of the ratio TN(t) as t → ∞ under the conditions that the distribution function F of X1

is of Pareto-type with index α > 0 and that the counting process {N(t); t ≥ 0} is mixed Poisson. The
appropriate definitions are recalled in Section 2 along with some properties that will prove to be useful
later on. The results of the paper rely on the theory of functions of regular variation (e.g., Bingham et
al. [4]) and an integral representation of E

[
T k

N(t)

]
in terms of the probability generating function of N(t)

and the Laplace transform of X1, following in that the basis for the analysis in Albrecher and Teugels [2].
Let µβ denote the moment of order β > 0 of X1, i.e.:

µβ := E
[
Xβ

1

]
= β

∫ ∞

0

xβ−1 (1− F (x)) dx ≤ ∞.

As pointed out by Albrecher and Teugels [2], both the numerator and the denominator defining TN(t)

exhibit an erratic behavior if µ1 = ∞, whereas this is the case only for the numerator if µ1 < ∞ and
µ2 = ∞. When X1 (or equivalently F ) is of Pareto-type with index α > 0, it turns out that µβ is finite if
β < α but infinite whenever β > α. In particular, µ1 < ∞ if α > 1 while µ2 < ∞ as soon as α > 2. Since
the asymptotic behavior of TN(t) as t →∞ is influenced by the (non)finiteness of µ1 and/or µ2, different
kinds of results will then show up according to the range of α. This is expressed in our main results in
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2 LADOUCETTE

Section 3. Some concluding remarks are given in Section 4. In particular, we point out the connection
between TN(t) and the sample coefficient of variation of a random sample X1, . . . , XN(t) from a positive
random variable X of random size N(t) from a nonnegative integer-valued distribution.

2. Preliminaries

Though standard notations, we mention that a.s.−→ stands for almost sure convergence. For two mea-
surable functions f and g, we write f(x) = o(g(x)) as x →∞ if limx→∞ f(x)/g(x) = 0 and f(x) ∼ g(x)
as x →∞ if limx→∞ f(x)/g(x) = 1. Also, Γ(·) denotes the gamma function and B(·, ·) denotes the beta
function. Finally, the set of nonnegative integers is denoted by N0 := N ∪ {0}.

Recall that a counting process {N(t); t ≥ 0} is said to be a mixed Poisson process if there exists
a positive random variable Λ such that {N(t); t ≥ 0} = {Ñ(Λt); t ≥ 0}, where {Ñ(t); t ≥ 0} is a
homogeneous Poisson process with intensity 1 independent of Λ. For each fixed t ≥ 0, the random
variable N(t) has a mixed Poisson distribution given by:

pn(t) := P[N(t) = n] = E
[
(Λt)n

n!
e−Λt

]
=

∫ ∞

0

(λt)n

n!
e−λt dH(λ), n ∈ N0

where H denotes the distribution function of the mixing random variable Λ and is called the mixing
distribution. The role of the mixing random variable Λ can be highlighted by observing that:

N(t)
t

a.s.−→ Λ as t →∞.

When the mixing distribution H is degenerate at a single point λ ∈ (0,∞), we retrieve the homogeneous
Poisson process with intensity λ. The latter plays a crucial role in practical applications. In particular,
it is the most popular among all claim number processes in the actuarial literature. The mixed Poisson
process, introduced to actuaries by Dubourdieu [5], has always been very popular among (re)insurance
modelers. It has found many applications in (re)insurance mathematics because of its flexibility, its
success in actuarial data fitting and its property of being more dispersed than the Poisson process. For
a general overview on mixed Poisson processes, we refer to the monograph by Grandell [7].

For a fixed t ≥ 0, the probability generating function of N(t) is denoted by Qt and satisfies:

Qt(z) := E
[
zN(t)

]
=

∞∑
n=0

pn(t) zn = E
[
e−t(1−z)Λ

]
, |z| ≤ 1.

For every r ∈ N0, the rth derivative of Qt(z) with respect to z is denoted by Q
(r)
t (z) and defined for

|z| < 1. It can be expressed in terms of expectations as:

Q
(r)
t (z) = r!E

[(
N(t)

r

)
zN(t)−r

]
= tr E

[
e−t(1−z)ΛΛr

]
.

We define the auxiliary quantities qr(w) := E[e−wΛΛr] for all w ≥ 0 and r ∈ N0. Note that qr(0) =
E[Λr] ≤ ∞. For all w ∈ [0, t] and r ∈ N0, the following identity then holds:

1
tr

Q
(r)
t (1− w/t) = qr(w)

where the right-hand side does no longer depend upon t.
Before giving an easy but useful result on the moment condition for the mixing random variable Λ,

notice that for any β > 0 and r ∈ N0:
∫ ∞

0

wβ−1 qr(w) dw = Γ(β)E
[
Λr−β

]
. (1)

Lemma 1. Let Λ be a positive random variable with distribution function H. Then for all 0 < r ≤ s,
E[Λs] < ∞ =⇒ E[Λr] < ∞ and E[Λ−s] < ∞ =⇒ E[Λ−r] < ∞.

Proof. Let 0 < r ≤ s be fixed. Assume that E[Λs] < ∞. Then:

E[Λr] =
∫ 1

0

λr dH(λ) +
∫ ∞

1

λr dH(λ) ≤ P[Λ ≤ 1] + E[Λs] < ∞.
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ASYMPTOTIC BEHAVIOR OF THE MOMENTS OF A RATIO 3

Now, assume that E[Λ−s] < ∞. Then:

E[Λ−r] =
∫ 1

0

λ−r dH(λ) +
∫ ∞

1

λ−r dH(λ) ≤ E[Λ−s] + P[Λ > 1] < ∞

and the claim is proved. ¤
Let us turn to the distribution function F of X1. Our asymptotic results are derived under the

condition that F is of Pareto-type with index α > 0. This means that 1 − F is regularly varying at ∞
with index −α < 0, i.e.:

1− F (x) ∼ x−α`(x) as x →∞ (2)

where the function ` is slowly varying at ∞.
Recall that a measurable function f : (0,∞) → (0,∞) is regularly varying at ∞ with index γ ∈ R

(written f ∈ RV∞γ ) if for all x > 0, limt→∞ f(tx)/f(t) = xγ . When γ = 0, f is said to be slowly varying
at ∞. Similarly, a measurable function g : (0,∞) → (0,∞) is regularly varying at 0 with index γ ∈ R
(written g ∈ RV0

γ) if for all x > 0, lims↓0 g(sx)/g(s) = xγ . When γ = 0, g is said to be slowly varying at 0.
We refer to Bingham et al. [4] for a textbook treatment on the theory of functions of regular variation.

It is well-known that the tail condition (2) appears in extreme value theory as the essential condition
in the Fréchet-Pareto domain of attraction problem. For a recent treatment, see Beirlant et al. [3]. When
α ∈ (0, 2), the condition is necessary and sufficient for F to belong to the additive domain of attraction
of a non-normal stable law with exponent α (e.g., Theorem 8.3.1 of Bingham et al. [4]).

The common Laplace transform of the Xi’s is defined and denoted by:

ϕ(s) := E
[
e−sX1

]
=

∫ ∞

0

e−sx dF (x), s ≥ 0.

For every n ∈ N, we denote by ϕ(n)(s) the nth derivative of ϕ(s) with respect to s. By Lemma 3.1 of
Albrecher and Teugels [2] and Bingham-Doney’s lemma (e.g., Theorem 8.1.6 of Bingham et al. [4]), the
asymptotic behavior of ϕ(n) at the origin when F satisfies (2) is the following.

Lemma 2. Assume that the distribution function F of X1 satisfies 1 − F (x) ∼ x−α`(x) as x → ∞ for
some α > 0 and ` ∈ RV∞0 . Then for any n ∈ N, we have as s ↓ 0:

(−1)n ϕ(n)(s) ∼





α Γ(n− α) sα−n `(1/s) if n > α

α ˜̀(1/s) if n = α and µn = ∞
µn if n < α or if n = α and µn < ∞

where ˜̀(x) :=
∫ x

0
`(u)

u du ∈ RV∞0 .

Now, we give our results.

3. Results

We start by deriving an integral representation for the kth moment of TN(t) for fixed t ≥ 0 and k ∈ N.
Note that we do not make any specific assumption on the distribution function F of X1 and on the
counting process {N(t); t ≥ 0}.
Lemma 3. Let t ≥ 0 and k ∈ N be fixed. The kth moment of TN(t) is then given by:

E
[
T k

N(t)

]
=

k∑
r=1

∑

(k1,... ,kr)∈Nr

k1+···+kr=k

k!∏r
i=1 ki!

Bt(k1, . . . , kr)
(2k − 1)! r!

(3)

with:

Bt(k1, . . . , kr) :=
∫ ∞

0

s2k−1
r∏

i=1

ϕ(2ki)(s) Q
(r)
t (ϕ(s)) ds. (4)

Proof. Let t ≥ 0 and k ∈ N be fixed. For each n ∈ N, we interpret
(
n
r

)
:= 0 whenever r ≥ n + 1. Using

Lemma 2.1 of Albrecher and Teugels [2], we easily derive:

E
[
T k

N(t)

]
=

∞∑
n=0

pn(t)E
[
T k

N(t)

∣∣N(t) = n
]

=
∞∑

n=1

pn(t)E
[
T k

n

]
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4 LADOUCETTE

=
∞∑

n=1

pn(t)
k∑

r=1

∑

(k1,... ,kr)∈Nr

k1+···+kr=k

k!∏r
i=1 ki!

(
n
r

)

(2k − 1)!

∫ ∞

0

s2k−1
r∏

i=1

ϕ(2ki)(s)ϕn−r(s) ds

=
k∑

r=1

∑

(k1,... ,kr)∈Nr

k1+···+kr=k

k!∏r
i=1 ki!

1
(2k − 1)!

∫ ∞

0

s2k−1
r∏

i=1

ϕ(2ki)(s)
∞∑

n=r

(
n

r

)
pn(t) ϕn−r(s) ds

=
k∑

r=1

∑

(k1,... ,kr)∈Nr

k1+···+kr=k

k!∏r
i=1 ki!

1
(2k − 1)! r!

∫ ∞

0

s2k−1
r∏

i=1

ϕ(2ki)(s)Q
(r)
t (ϕ(s)) ds

and the proof is finished. ¤
We henceforth assume that {N(t); t ≥ 0} is a mixed Poisson process with mixing random variable Λ.

We rewrite Bt(k1, . . . , kr) in a more convenient form which will prove to be very useful. Defining ψ(s) :=
ϕ−1(1− s) for s ∈ [0, 1) and substituting s = ψ(w/t) in (4) leads for every t > 0 to:

Bt(k1, . . . , kr)

=

∫ ∞

0

s2k−1
r∏

i=1

ϕ(2ki)(s) Q
(r)
t (ϕ(s)) ds

=

∫ t

0

ψ2k−1(w/t)

r∏
i=1

ϕ(2ki)(ψ(w/t)) Q
(r)
t (1− w/t) dwψ(w/t)

= −tr−1 ψ2k−1(1/t)

ϕ(1)(ψ(1/t))

r∏
i=1

ϕ(2ki)(ψ(1/t))

∫ t

0

(
ψ(w/t)

ψ(1/t)

)2k−1 r∏
i=1

ϕ(2ki)(ψ(w/t))

ϕ(2ki)(ψ(1/t))

ϕ(1)(ψ(1/t))

ϕ(1)(ψ(w/t))

Q
(r)
t (1− w/t)

tr
dw

= −tr−1 ψ2k−1(1/t)

ϕ(1)(ψ(1/t))

r∏
i=1

ϕ(2ki)(ψ(1/t))

∫ ∞

0

(
ψ(w/t)

ψ(1/t)

)2k−1 r∏
i=1

ϕ(2ki)(ψ(w/t))

ϕ(2ki)(ψ(1/t))

ϕ(1)(ψ(1/t))

ϕ(1)(ψ(w/t))
qr(w)1(0,t)(w) dw

= ft(k1, . . . , kr)

∫ ∞

0

gt(w; k1, . . . , kr) dw

with:

ft(k1, . . . , kr) := −tr−1 ψ2k−1(1/t)
ϕ(1)(ψ(1/t))

r∏

i=1

ϕ(2ki)(ψ(1/t))

and:

gt(w; k1, . . . , kr) :=
(

ψ(w/t)
ψ(1/t)

)2k−1 r∏

i=1

ϕ(2ki)(ψ(w/t))
ϕ(2ki)(ψ(1/t))

ϕ(1)(ψ(1/t))
ϕ(1)(ψ(w/t))

qr(w)1(0,t)(w), w ≥ 0.

From now on, we assume that X1 is of Pareto-type with index α > 0, i.e. that F satisfies (2) for some
` ∈ RV∞0 . Here is the first of our main results pertaining to moment convergence for TN(t). It concerns
the case α ∈ (0, 1).

Theorem 1. Assume that X1 is of Pareto-type with index α ∈ (0, 1) and that {N(t); t ≥ 0} is a mixed
Poisson process with mixing random variable Λ. If E[Λε] < ∞ and E[Λ−ε] < ∞ for some ε > 0, then for
any fixed k ∈ N:

lim
t→∞

E
[
T k

N(t)

]
=

k!
(2k − 1)!

k∑
r=1

αr−1

r Γr(1− α)
G(r, k)

where G(r, k) is the coefficient of xk in the polynomial
(∑k−r+1

i=1
Γ(2i−α)

i! xi
)r

.

Proof. Let k ∈ N and α ∈ (0, 1) be fixed. Since 1 − F (x) ∼ x−α`(x) as x → ∞ for some ` ∈ RV∞0 , it
follows from Corollary 8.1.7 of Bingham et al. [4] that 1− ϕ(s) ∼ Γ(1− α) sα`(1/s) as s ↓ 0. Hence, we
easily deduce s = 1− ϕ(ψ(s)) ∼ Γ(1− α)ψα(s) `(1/ψ(s)) as s ↓ 0 which leads to:

lim
s↓0

s−1 ψα(s) `(1/ψ(s)) =
1

Γ(1− α)
. (5)

First, we determine the asymptotic behavior of Bt(k1, . . . , kr) as t →∞ for any fixed integer 1 ≤ r ≤ k.
Relation (5) learns us that ψ ∈ RV0

1/α, leading to lims↓0 ψ(s) = 0. For i = 1, . . . , r, we then have
ϕ(2ki) ◦ ψ ∈ RV0

(α−2ki)/α since ϕ(2ki) ∈ RV0
α−2ki

by Lemma 2. Moreover, −ϕ(1) ◦ ψ ∈ RV0
(α−1)/α since



Acc
ep

te
d m

an
usc

rip
t 

ASYMPTOTIC BEHAVIOR OF THE MOMENTS OF A RATIO 5

−ϕ(1) ∈ RV0
α−1 by Lemma 2. Set δr := ζ

2k+r with ζ = ε if ε ∈ (0, 1) or ζ ∈ (0, 1) otherwise. Thus, for
this chosen δr > 0, there exists Cr = Cr(δr) > 1 such that for t > 0 and w > 0:

gt(w; k1, . . . , kr) ≤ Cr w
2k−1

α

(
max

{
wδr , w−δr

})2k−1
w

rα−2k
α

(
max

{
wδr , w−δr

})r+1
w

1−α
α qr(w)

= Cr wr−1 max
{
wζ , w−ζ

}
qr(w) =: h(w)

by virtue of Potter’s theorem (e.g., Theorem 1.5.6 of Bingham et al. [4]). Now,
∫∞
0

h(w) dw < ∞ if and
only if

∫ 1

0
wr−1−ζ qr(w) dw < ∞ and

∫∞
1

wr−1+ζ qr(w) dw < ∞. Since ζ ∈ (0, 1) and ζ ≤ ε, we use (1)
together with Lemma 1 to get:

∫ 1

0

wr−1−ζ qr(w) dw ≤
∫ ∞

0

wr−1−ζ qr(w) dw = Γ(r − ζ)E[Λζ ] < ∞

and: ∫ ∞

1

wr−1+ζ qr(w) dw ≤
∫ ∞

0

wr−1+ζ qr(w) dw = Γ(r + ζ)E[Λ−ζ ] < ∞.

Hence, the function h is integrable. Finally, limt→∞ gt(w; k1, . . . , kr) = wr−1qr(w) for every w > 0.
Thus, applying Lebesgue’s theorem on dominated convergence and using (1), we deduce:

lim
t→∞

∫ ∞

0

gt(w; k1, . . . , kr) dw =
∫ ∞

0

wr−1 qr(w) dw = (r − 1)!.

Using Lemma 2 leads as t →∞ to:

ft(k1, . . . , kr) ∼ −αr
∏r

i=1 Γ(2ki − α) tr−1 ψrα−1(1/t) `r
(
1/ψ

(
1
t

))

−α Γ(1− α) ψα−1(1/t) `
(
1/ψ

(
1
t

))

= αr−1

∏r
i=1 Γ(2ki − α)

Γ(1− α)
tr−1 ψα(r−1)(1/t) `r−1(1/ψ(1/t))

so that we get by using the relation (5):

lim
t→∞

ft(k1, . . . , kr) =
αr−1

∏r
i=1 Γ(2ki − α)

Γr(1− α)
.

Therefore, we obtain:

lim
t→∞

Bt(k1, . . . , kr) =
(r − 1)! αr−1

∏r
i=1 Γ(2ki − α)

Γr(1− α)
.

Summing over all r = 1, . . . , k in (3), we finally arrive at:

lim
t→∞

E
[
T k

N(t)

]
=

k!
(2k − 1)!

k∑
r=1

αr−1

r Γr(1− α)

∑

(k1,... ,kr)∈Nr

k1+···+kr=k

r∏

i=1

Γ(2ki − α)
ki!

.

The theorem is proved since Albrecher and Teugels [2] have observed that:

G(r, k) :=
∑

(k1,... ,kr)∈Nr

k1+···+kr=k

r∏

i=1

Γ(2ki − α)
ki!

can be read off as the coefficient of xk in the r-fold product
(∑k−r+1

i=1
Γ(2i−α)

i! xi
)r

. ¤

Our next result deals with the case α = 1 if µ1 = ∞.

Theorem 2. Assume that X1 is of Pareto-type with index α = 1 and µ1 = ∞. Assume that {N(t); t ≥ 0}
is a mixed Poisson process with mixing random variable Λ. If E[Λε] < ∞ and E[Λ−ε] < ∞ for some ε > 0,
then for any fixed k ∈ N:

E
[
T k

N(t)

] ∼ 1
2k − 1

`(at)
˜̀(at)

as t →∞

where ˜̀(x) :=
∫ x

0
`(u)

u du ∈ RV∞0 and (at)t>0 is a sequence defined by limt→∞ t a−1
t

˜̀(at) = 1.
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Proof. Let k ∈ N be fixed. Since 1− F (x) ∼ x−1`(x) as x →∞ for some ` ∈ RV∞0 such that µ1 = ∞, it
follows from Lemma 2 that ϕ(1)(s) ∼ −˜̀(1/s) as s ↓ 0 and then that 1 − ϕ(s) ∼ s ˜̀(1/s) as s ↓ 0 with
˜̀(x) :=

∫ x

0
`(u)

u du ∈ RV∞0 . Since s = 1− ϕ(ψ(s)) ∼ ψ(s) ˜̀(1/ψ(s)) as s ↓ 0, we obtain:

lim
s↓0

s−1 ψ(s) ˜̀(1/ψ(s)) = 1. (6)

First, we determine the asymptotic behavior of Bt(k1, . . . , kr) as t →∞ for any fixed integer 1 ≤ r ≤ k.
Relation (6) learns us that ψ ∈ RV0

1, leading to lims↓0 ψ(s) = 0. For i = 1, . . . , r, we then have
ϕ(2ki) ◦ψ ∈ RV0

1−2ki
since ϕ(2ki) ∈ RV0

1−2ki
by Lemma 2. Moreover, −ϕ(1) ◦ψ ∈ RV0

0 since −ϕ(1) ∈ RV0
0.

Set δr := ζ
2k+r with ζ = ε if ε ∈ (0, 1) or ζ ∈ (0, 1) otherwise. Thus, for this chosen δr > 0, there exists

Cr = Cr(δr) > 1 such that for t > 0 and w > 0:

gt(w; k1, . . . , kr) ≤ Cr w2k−1
(
max

{
wδr , w−δr

})2k−1
wr−2k

(
max

{
wδr , w−δr

})r+1
qr(w)

= Cr wr−1 max
{
wζ , w−ζ

}
qr(w) =: h(w)

by virtue of Potter’s theorem. Now,
∫∞
0

h(w) dw < ∞ if and only if
∫ 1

0
wr−1−ζ qr(w) dw < ∞ and∫∞

1
wr−1+ζ qr(w) dw < ∞. Since ζ ∈ (0, 1) and ζ ≤ ε, we use (1) together with Lemma 1 to get:

∫ 1

0

wr−1−ζ qr(w) dw ≤
∫ ∞

0

wr−1−ζ qr(w) dw = Γ(r − ζ)E[Λζ ] < ∞

and:
∫ ∞

1

wr−1+ζ qr(w) dw ≤
∫ ∞

0

wr−1+ζ qr(w) dw = Γ(r + ζ)E[Λ−ζ ] < ∞.

Hence, the function h is integrable. Finally, limt→∞ gt(w; k1, . . . , kr) = wr−1qr(w). Thus, applying
Lebesgue’s theorem on dominated convergence and using (1), we deduce:

lim
t→∞

∫ ∞

0

gt(w; k1, . . . , kr) dw =
∫ ∞

0

wr−1 qr(w) dw = (r − 1)!.

Using Lemma 2, relation (6) and ϕ(1)(ψ(s)) ∼ −˜̀(1/ψ(s)) as s ↓ 0, we get as t →∞:

ft(k1, . . . , kr) ∼
r∏

i=1

Γ(2ki − 1) tr−1 ψr−1(1/t)
`r

(
1/ψ

(
1
t

))
˜̀(1/ψ

(
1
t

)) ∼
r∏

i=1

Γ(2ki − 1)

(
`
(
1/ψ

(
1
t

))
˜̀(1/ψ

(
1
t

))
)r

.

Therefore, we obtain:

Bt(k1, . . . , kr) ∼ (r − 1)!
r∏

i=1

Γ(2ki − 1)

(
`
(
1/ψ

(
1
t

))
˜̀(1/ψ

(
1
t

))
)r

as t →∞.

Since limt→∞
`(1/ψ( 1

t ))
˜̀(1/ψ( 1

t ))
= 0 (e.g., Proposition 1.5.9a of Bingham et al. [4]), only the summand with

r = 1 contributes to the dominating asymptotic term of (3). Hence, we get:

E
[
T k

N(t)

] ∼ 1
2k − 1

`
(
1/ψ

(
1
t

))
˜̀(1/ψ

(
1
t

)) as t →∞.

One easily notes that the limit relation (6) is equivalent to limt→∞ t ψ(1/t) ˜̀(1/ψ
(

1
t

))
= 1. Defining a

sequence (at)t>0 by limt→∞ t a−1
t

˜̀(at) = 1 implies that limt→∞ at ψ(1/t) = 1. By virtue of the uniform
convergence theorem for slowly varying functions (e.g., Theorem 1.2.1 of Bingham et al. [4]), we thus get
`
(
1/ψ

(
1
t

)) ∼ `(at) and ˜̀(1/ψ
(

1
t

)) ∼ ˜̀(at) as t →∞. Consequently, we finally arrive at:

E
[
T k

N(t)

] ∼ 1
2k − 1

`(at)
˜̀(at)

as t →∞

and the proof is finished. ¤

In the following result, the case α ∈ (1, 2) (including α = 1 if µ1 < ∞) is treated.
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Theorem 3. Assume that X1 is of Pareto-type with index α ∈ (1, 2) (including α = 1 if µ1 < ∞) and
that {N(t); t ≥ 0} is a mixed Poisson process with mixing random variable Λ. For any fixed k ∈ N, if
E[Λε] < ∞ and E[Λ−(k(α−1)+ε)] < ∞ for some ε > 0, then:

E
[
T k

N(t)

] ∼ α

µα
1

B(2k − α, α)E[Λ−(α−1)] t−(α−1) `(t) as t →∞.

Proof. Let k ∈ N be fixed. Let 1− F (x) ∼ x−α`(x) as x →∞ for some ` ∈ RV∞0 and α ∈ (1, 2) or α = 1
if µ1 < ∞.

First, we determine the asymptotic behavior of Bt(k1, . . . , kr) as t →∞ for any fixed integer 1 ≤ r ≤ k.
Since µ1 < ∞, it follows that ϕ(1)(0) = −µ1 and 1−ϕ(s) ∼ µ1s as s ↓ 0. Hence, s = 1−ϕ(ψ(s)) ∼ µ1ψ(s)
as s ↓ 0 and we deduce that ψ(s) ∼

s↓0
s/µ1 ∈ RV0

1, leading to lims↓0 ψ(s) = 0. For i = 1, . . . , r, we then

have ϕ(2ki) ◦ ψ ∈ RV0
α−2ki

since ϕ(2ki) ∈ RV0
α−2ki

by Lemma 2. Moreover, −ϕ(1) ◦ ψ ∈ RV0
0 since

−ϕ(1)(s) ∼
s↓0

µ1 ∈ RV0
0. Set δr := ζ

2k+r with ζ = ε if ε ∈ (0, 1) or ζ ∈ (0, 1) otherwise. Thus, for this

chosen δr > 0, there exists Cr = Cr(δr) > 1 such that for t > 0 and w > 0:

gt(w; k1, . . . , kr) ≤ Cr w2k−1
(
max

{
wδr , w−δr

})2k−1
wrα−2k

(
max

{
wδr , w−δr

})r+1
qr(w)

= Cr wrα−1 max
{
wζ , w−ζ

}
qr(w) =: h(w)

by virtue of Potter’s theorem. Now,
∫∞
0

h(w) dw < ∞ if and only if
∫ 1

0
wrα−1−ζ qr(w) dw < ∞ and∫∞

1
wrα−1+ζ qr(w) dw < ∞. Since ζ ∈ (0, 1) and ζ ≤ ε, we use (1) together with Lemma 1 to get:

∫ 1

0

wrα−1−ζ qr(w) dw ≤
∫ 1

0

wr−1−ζ qr(w) dw ≤
∫ ∞

0

wr−1−ζ qr(w) dw = Γ(r − ζ)E[Λζ ] < ∞

and since −(k(α− 1) + ε) ≤ −(r(α− 1) + ζ) < 0:
∫ ∞

1

wrα−1+ζ qr(w) dw ≤
∫ ∞

0

wrα−1+ζ qr(w) dw = Γ(rα + ζ)E[Λ−(r(α−1)+ζ)] < ∞.

Hence, the function h is integrable. Finally, limt→∞ gt(w; k1, . . . , kr) = wrα−1qr(w) for every w > 0.
Thus, applying Lebesgue’s theorem on dominated convergence and using (1), we deduce:

lim
t→∞

∫ ∞

0

gt(w; k1, . . . , kr) dw =
∫ ∞

0

wrα−1 qr(w) dw = Γ(rα)E[Λ−r(α−1)].

Since `(1/s) ∈ RV0
0, the uniform convergence theorem for slowly varying functions states that `(x/s) ∼

`(1/s) as s ↓ 0 uniformly on each compact x-set in (0,∞). Since lims↓0 s/ψ(s) = µ1 ∈ (0,∞), we then

get `(1/ψ(s)) = `
(

s
ψ(s)

1
s

)
∼ `(1/s) as s ↓ 0. This together with Lemma 2 and lims↓0 ϕ(1)(ψ(s)) = −µ1

yields as t →∞:

ft(k1, . . . , kr) ∼ αr

µ1

r∏

i=1

Γ(2ki − α) tr−1 ψrα−1(1/t) `r(1/ψ(1/t)) ∼ αr

µrα
1

r∏

i=1

Γ(2ki − α) t−r(α−1) `r(t).

Therefore, we obtain:

Bt(k1, . . . , kr) ∼
(

α

µα
1

)r

Γ(rα)
r∏

i=1

Γ(2ki − α)E[Λ−r(α−1)]
(
t−(α−1) `(t)

)r

as t →∞.

Note that when α = 1, we have `(x) = o(1) as x →∞ because µ1 < ∞. Since limt→∞ t−(α−1)`(t) = 0,
the first-order asymptotic behavior of (3) is solely determined by the term with r = 1. Hence, we obtain:

E
[
T k

N(t)

] ∼ α

µα
1

Γ(2k − α)Γ(α)
(2k − 1)!

E[Λ−(α−1)] t−(α−1) `(t) as t →∞.

Finally, E[Λ−(α−1)] < ∞ since −(k(α− 1) + ε) < −(α− 1) < 0 if α 6= 1 and α− 1 = 0 if α = 1. ¤

We pass to the case α > 2.

Theorem 4. Assume that X1 is of Pareto-type with index α > 2 and that {N(t); t ≥ 0} is a mixed
Poisson process with mixing random variable Λ. Let k ∈ N be fixed. If k = 1, assume further that
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E[Λ−(1+ε)] < ∞ for some ε > 0. If k ≥ 2, assume further that E[Λk−2+ε] < ∞ and E[Λ−(2k−1+ε)] < ∞
for some ε > 0. Then for k < α− 1:

E
[
T k

N(t)

] ∼
(

µ2

µ2
1

)k

E[Λ−k] t−k as t →∞ (7)

and for k > α− 1:

E
[
T k

N(t)

] ∼ α

µα
1

B(2k − α, α)E[Λ−(α−1)] t−(α−1) `(t) as t →∞. (8)

If k = α− 1, then:
(i) (7) holds if `(x) = o(1) as x →∞;

(ii) E
[
T k

N(t)

] ∼
((

µ2
µ2

1

)k

+ C (k+1) B(k−1,k+1)

µk+1
1

)
E[Λ−k] t−k as t → ∞ holds if limx→∞ `(x) = C for a

positive constant C;
(iii) (8) holds otherwise.

Proof. Let k ∈ N be fixed. Let 1 − F (x) ∼ x−α`(x) as x → ∞ for some ` ∈ RV∞0 and α > 2. Since
µ1 < ∞, it follows that ϕ(1)(0) = −µ1 and 1 − ϕ(s) ∼ µ1s as s ↓ 0. Hence, s = 1 − ϕ(ψ(s)) ∼ µ1ψ(s)
as s ↓ 0 and we deduce that ψ(s) ∼

s↓0
s/µ1 ∈ RV0

1, leading to lims↓0 ψ(s) = 0. For any n ∈ N, we then

have ϕ(2n) ◦ ψ ∈ RV0
α−2n if 2n > α and ϕ(2n) ◦ ψ ∈ RV0

0 if 2n ≤ α since ϕ(2n) ∈ RV0
α−2n if 2n > α and

ϕ(2n) ∈ RV0
0 if 2n ≤ α by Lemma 2. Moreover, −ϕ(1) ◦ ψ ∈ RV0

0 since −ϕ(1)(s) ∼
s↓0

µ1 ∈ RV0
0.

For simplicity, let us first assume that α /∈ N. We start by determining the asymptotic behavior of
Bt(k1, . . . , kr) as t →∞ for any fixed integer 1 ≤ r ≤ k. Set δr := ζ

2k+r with ζ = ε if ε ∈ (0, 1) or ζ ∈ (0, 1)
otherwise. It follows from Potter’s theorem that for this chosen δr > 0, there exists Cr = Cr(δr) > 1
such that for t > 0 and w > 0:

gt(w; k1, . . . , kr) ≤ Cr w2k−1
(
max

{
wδr , w−δr

})2k−1
wr1α−2u1

(
max

{
wδr , w−δr

})r+1
qr(w)

= Cr w2k−1+r1α−2u1 max
{
wζ , w−ζ

}
qr(w) =: h(w)

where r1 denotes the number of integers among k1, . . . , kr that are greater than α/2 and u1 is the sum
of these. It is readily seen that

∫∞
0

h(w) dw < ∞ if and only if
∫ 1

0
w2k−1+r1α−2u1−ζ qr(w) dw < ∞ and∫∞

1
w2k−1+r1α−2u1+ζ qr(w) dw < ∞. We have 2 − 2k ≤ r1α − 2u1 ≤ 0. Indeed, if r1 = 0 then obviously

r1α− 2u1 = 0. Now, if r1 6= 0 (i.e. r1 ≥ 1) then r1α− 2u1 < 0 on the one hand, and r1α− 2u1 ≥ α− 2k
on the other hand. Consequently, 1 ≤ 2k − 1 + r1α − 2u1 ≤ 2k − 1. Since ζ ∈ (0, 1) and ζ ≤ ε,
we get 0 < r − 2 + ζ ≤ k − 2 + ε if r ≥ 2 and −(2k − 1 + ε) < −(1 − ζ) < 0 if r = 1. Moreover,
−(2k − 1 + ε) ≤ −(2k − r + ζ) < 0. Therefore, using (1) together with Lemma 1 leads to:

∫ 1

0

w2k−1+r1α−2u1−ζ qr(w) dw ≤
∫ 1

0

w1−ζ qr(w) dw ≤ Γ(2− ζ)E[Λr−2+ζ ] < ∞

and: ∫ ∞

1

w2k−1+r1α−2u1+ζ qr(w) dw ≤
∫ ∞

1

w2k−1+ζ qr(w) dw ≤ Γ(2k + ζ)E[Λ−(2k−r+ζ)] < ∞.

When k = 1, obviously r = 1 and we get −(1 + ε) ≤ −(1 + ζ) < −(1 − ζ) < 0. The condition
E[Λ−(1+ε)] < ∞ is thus sufficient for E[Λ−(1−ζ)] < ∞ and E[Λ−(1+ζ)] < ∞ to hold. Hence, the function h
is integrable. Finally, limt→∞ gt(w; k1, . . . , kr) = w2(k−u1)+r1α−1qr(w) for every w > 0. Thus, applying
Lebesgue’s theorem on dominated convergence and using (1), we deduce:

lim
t→∞

∫ ∞

0

gt(w; k1, . . . , kr) dw =
∫ ∞

0

w2(k−u1)+r1α−1qr(w) dw = Γ(2(k − u1) + r1α)E[Λr−2(k−u1)−r1α].

By virtue of the uniform convergence theorem for slowly varying functions, we get `(1/ψ(s)) ∼ `(1/s) as
s ↓ 0. This together with Lemma 2 and lims↓0 ϕ(1)(ψ(s)) = −µ1 yields as t →∞:

ft(k1, . . . , kr) ∼ αr1K1K2

µ1
tr−1 ψ2(k−u1)+r1α−1(1/t) `r1(1/ψ(1/t))

∼ αr1K1K2

µ
2(k−u1)+r1α
1

tr−2(k−u1)−r1α `r1(t) (9)
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where K1 :=
∏

i∈I1
Γ(2ki − α) with I1 := {i ∈ {1, . . . , r} : 2ki > α} and K2 :=

∏
i∈I2

µ2ki
with I2 :=

{i ∈ {1, . . . , r} : 2ki < α}. Since card(I1) = r1 and α /∈ N, we have card(I2) = r − r1. The asymptotic
behavior of Bt(k1, . . . , kr) as t →∞ is therefore given by:

Bt(k1, . . . , kr) ∼ αr1K1K2

µ
2(k−u1)+r1α
1

Γ(2(k − u1) + r1α)E[Λr−2(k−u1)−r1α] tr−2(k−u1)−r1α `r1(t).

It remains to determine the dominating asymptotic term among all possible Bt(k1, . . . , kr). For r1 > 0,
the largest exponent is obtained with r1 = 1, u1 = k and thus r = 1, so that the asymptotic order
is t−(α−1)`(t). Note that r1 > 0 is possible for 2k > α only. For r1 = 0, obviously r = k (which
implies k1 = · · · = kr = 1) yields the largest exponent, leading to the asymptotic order t−k. Hence, the
asymptotically dominating power among all Bt(k1, . . . , kr) is given by max{−(α − 1),−k}. From this,
we see that when k < α− 1, the term with r = k dominates and we obtain from (3):

E
[
T k

N(t)

] ∼
(

µ2

µ2
1

)k

E[Λ−k] t−k as t →∞.

Alternatively, when k > α− 1, the term with r = 1 dominates and we find:

E
[
T k

N(t)

] ∼ α

µα
1

B(2k − α, α)E[Λ−(α−1)] t−(α−1) `(t) as t →∞

which is the same expression as the one obtained in Theorem 3 for α ∈ (1, 2) or α = 1 if µ1 < ∞.
The above conclusions also hold for α ∈ N as long as k 6= α − 1. Nevertheless, just note that instead

of (9), we have the following by virtue of Lemma 2:

ft(k1, . . . , kr) ∼ αr1+r2K1K3

µ
2(k−u1)+r1α
1

tr−2(k−u1)−r1α `r1(t) ˜̀r2(t) as t →∞

where ˜̀(x) :=
∫ x

0
`(u)

u du ∈ RV∞0 , K3 :=
∏

i∈I2∪I3
µ2ki with I3 := {i ∈ {1, . . . , r} : 2ki = α, µ2ki < ∞}

and r2 := card({i ∈ {1, . . . , r} : 2ki = α, µ2ki = ∞}). Since card(I2 ∪ I3) = r − r1 − r2, note that
card(I2) = r − r1 − r2 − card(I3). When k = α − 1, the slowly varying function ` determines which
of the two terms t−(α−1)`(t) (corresponding to r = 1) and t−k (corresponding to r = k) dominates the
asymptotic behavior. If `(x) = o(1) as x → ∞, which is in particular fulfilled if µk+1 < ∞, the second
term dominates. If limx→∞ `(x) = C for a positive constant C, then both terms matter. Otherwise, the
first term dominates.

To end the proof, it remains to check that E[Λ−k] < ∞ for k ≤ α − 1 and that E[Λ−(α−1)] < ∞ for
k > α − 1. When k > α − 1, we have −(2k − 1 + ε) < −k < −(α − 1) < 0. When k ≤ α − 1, we have
−(2k − 1 + ε) < −k < 0. Thus, we conclude by using Lemma 1. ¤

Finally, we deal with the remaining case α = 2.

Theorem 5. Assume that X1 is of Pareto-type with index α = 2 and that {N(t); t ≥ 0} is a mixed
Poisson process with mixing random variable Λ.

(i) If E[Λ−(1+ε)] < ∞ for some ε > 0, then:

E[TN(t)] ∼




µ2 E[Λ−1]
µ2

1

1
t if µ2 < ∞

2E[Λ−1]
µ2

1

˜̀(t)
t if µ2 = ∞

as t →∞

where ˜̀(x) :=
∫ x

0
`(u)

u du ∈ RV∞0 .
(ii) For any fixed integer k ≥ 2, if E[Λk−2+ε] < ∞ and E[Λ−(2k−1+ε)] < ∞ for some ε > 0, then:

E
[
T k

N(t)

] ∼ E[Λ−1]
µ2

1 (k − 1) (2k − 1)
`(t)
t

as t →∞.

Proof. Let k ∈ N be fixed. Let 1− F (x) ∼ x−2`(x) as x →∞ for some ` ∈ RV∞0 . One can easily verify
that Theorem 4 remains true for α = 2, except when k = 1 if µ2 = ∞. In the latter case, obviously r = 1
and Bt(k1, . . . , kr) then becomes:

Bt(1) =
∫ ∞

0

s ϕ(2)(s) Q
(1)
t (ϕ(s)) ds
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=
−ψ(1/t)

ϕ(1)(ψ(1/t))
ϕ(2)(ψ(1/t))

︸ ︷︷ ︸
=:ft(1)

∫ ∞

0

ψ(w/t)
ψ(1/t)

ϕ(2)(ψ(w/t))
ϕ(2)(ψ(1/t))

ϕ(1)(ψ(1/t))
ϕ(1)(ψ(w/t))

q1(w)1(0,t)(w)
︸ ︷︷ ︸

=:gt(w;1)

dw.

Since µ1 < ∞, it follows that ϕ(1)(0) = −µ1 and 1−ϕ(s) ∼ µ1s as s ↓ 0. Hence, s = 1−ϕ(ψ(s)) ∼ µ1ψ(s)
as s ↓ 0 and we deduce that ψ(s) ∼

s↓0
s/µ1 ∈ RV0

1, leading to lims↓0 ψ(s) = 0. We then have ϕ(2)◦ψ ∈ RV0
0

since ϕ(2) ∈ RV0
0 by Lemma 2. Moreover, −ϕ(1) ◦ ψ ∈ RV0

0 since −ϕ(1)(s) ∼
s↓0

µ1 ∈ RV0
0. Set δ := ζ/3

with ζ = ε if ε ∈ (0, 1) or ζ ∈ (0, 1) otherwise. Thus, for this chosen δ > 0, there exists C = C(δ) > 1
such that for t > 0 and w > 0:

gt(w; 1) ≤ C w
(
max

{
wδ, w−δ

})3
q1(w) = C w max

{
wζ , w−ζ

}
q1(w) =: h(w)

by virtue of Potter’s theorem. Now,
∫∞
0

h(w) dw < ∞ if and only if
∫ 1

0
w1−ζ q1(w) dw < ∞ and∫∞

1
w1+ζ q1(w) dw < ∞. Since ζ ∈ (0, 1) and ζ ≤ ε, we get −(1 + ε) ≤ −(1 + ζ) < −(1 − ζ) < 0.

Using (1) together with Lemma 1 then leads to:
∫ 1

0

w1−ζ q1(w) dw ≤
∫ ∞

0

w1−ζ q1(w) dw = Γ(2− ζ)E[Λ−(1−ζ)] < ∞

and: ∫ ∞

1

w1+ζ q1(w) dw ≤
∫ ∞

0

w1+ζ q1(w) dw = Γ(2 + ζ)E[Λ−(1+ζ)] < ∞.

Hence, the function h is integrable. Finally, limt→∞ gt(w; 1) = w q1(w) for every w > 0. Thus, applying
Lebesgue’s theorem on dominated convergence and using (1), we deduce:

lim
t→∞

∫ ∞

0

gt(w; 1) dw =
∫ ∞

0

w q1(w) dw = E[Λ−1].

By virtue of the uniform convergence theorem for slowly varying functions, we get ˜̀(1/ψ(s)) ∼ ˜̀(1/s)
as s ↓ 0. This together with lims↓0 ϕ(1)(ψ(s)) = −µ1 and ϕ(2)(ψ(s)) ∼ 2 ˜̀(1/ψ(s)) as s ↓ 0 where
˜̀(x) :=

∫ x

0
`(u)

u du ∈ RV∞0 yields:

ft(1) ∼ 2
µ2

1

˜̀(t)
t

as t →∞.

Therefore, we obtain:

E[TN(t)] = Bt(1) ∼ 2E[Λ−1]
µ2

1

˜̀(t)
t

as t →∞.

Finally, note that E[Λ−1] < ∞ since −(1 + ε) < −1. ¤

We end by remarking that as in Albrecher and Teugels [2], the integral representation approach that
we use in this paper does not permit to get a general asymptotic result for E

[
T k

N(t)

]
when F belongs to

the additive domain of attraction of a normal law, i.e. when F has a slowly varying truncated second
moment function. Note however that when F is defined as in Theorem 5, then F belongs to the additive
domain of attraction of a normal law.

4. Conclusion

In this paper, we have determined the asymptotic behavior of arbitrary moments of TN(t) as t → ∞
under the conditions that the distribution function F of X1 is of Pareto-type with index α > 0 and that
the counting process {N(t); t ≥ 0} is mixed Poisson. Different results have shown up according to the
range of α.

In the particular case where the mixing random variable Λ is degenerate at the point 1, our results are
then similar to those derived by Albrecher and Teugels [2] where the counting process is non-random.

The coefficient of variation of a positive random variable X is defined by:

CoVar(X) :=

√
V[X]
E[X]
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where V[X] denotes the variance of X. This risk measure is frequently used in practice. For instance, it
is very popular among actuaries. From a random sample X1, . . . , XN(t) from X of random size N(t) from
a nonnegative integer-valued distribution, the coefficient of variation CoVar(X) is naturally estimated by
the sample coefficient of variation of X defined by:

̂CoVar(X) :=
S

X

where X := 1
N(t)

∑N(t)
i=1 Xi is the sample mean and S2 := 1

N(t)

∑N(t)
i=1

(
Xi −X

)2
is the sample variance.

The properties of the sample coefficient of variation ̂CoVar(X) are usually studied under the tacite
assumption of the finiteness of sufficiently many moments of X. However, the existence of moments
of X is not always guaranteed in practical applications. It is therefore useful to investigate asymptotic
properties of ̂CoVar(X) also when such a moment condition is not satisfied. It turns out that this can be
achieved by using results on TN(t) due to the following equality:

̂CoVar(X) =
√

N(t) TN(t) − 1. (10)

Ladoucette and Teugels [8] focus on weak convergence by deriving limit distributions for the appropriately
normalized ratio TN(t) as t → ∞ when X is of Pareto-type with index α > 0 and the counting process
{N(t); t ≥ 0} satisfies some convergence conditions according to the range of α. Armed with their results
on TN(t) and thanks to the relation (10), they also derive asymptotic properties of the sample coefficient
of variation, even when the first moment and/or the second moment of X do not exist. Furthermore,
Ladoucette and Teugels [8] adapt the methodology to derive asymptotic properties of another measure
of variation, namely the sample dispersion. Recall that the value of the dispersion allows to compare the
volatility with respect to the Poisson case.
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