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Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility rates and the extension to spatial Hawkes processes with random fertility rates are discussed.

Introduction

Classical Hawkes processes [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods second[END_REF][START_REF] Hawkes | Point spectra of some mutually exciting point processes[END_REF][START_REF] Hawkes | Spectra of some self-exciting and mutually exciting point processes[END_REF][START_REF] Hawkes | Spectra of some mutually exciting point processes with associated variables[END_REF][START_REF] Hawkes | A cluster representation of a self-exciting process[END_REF] and their extensions to marked Hawkes processes [START_REF] Brémaud | Rate of convergence to equilibrium of marked Hawkes processes[END_REF][START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods second[END_REF][START_REF] Møller | Perfect simulation of Hawkes processes[END_REF][START_REF] Møller | Approximate simulation of Hawkes processes[END_REF][START_REF] Ogata | Space-time point-process models for earthquake occurrences[END_REF] play a fundamental role in the theory of point processes and its applications. This paper considers a spatial Hawkes process defined as a superposition X = ∪ ∞ n=0 G n of spatial point processes G n ⊂ R d (d ≥ 1) defined by the following branching structure. The points in G 0 are called immigrants, and we assume that G 0 is stationary with intensity µ 0 ∈ (0, ∞) (where "stationarity" and "intensity" are defined in Section 2.1). For n = 0, 1, . . ., the (n + 1)-th generation G n+1 given the
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previous generations G 0 , . . . , G n is a Poisson process on R d with intensity function

λ n+1 (ξ) = η∈G n γ(ξ -η) (1) 
where γ is a non-negative locally integrable function called the fertility rate. We can view G n+1 as a superposition ∪ η∈G n Φ(η), where conditional on G n the Φ(η) are independent Poisson processes (and for n ≥ 1 they are independent of G 0 , . . . , G n-1 ), and Φ(η) has intensity function γ(ξ -η), ξ ∈ R d . We refer to the points in G n+1

as offspring, to Φ(η) as an offspring process, and to the point process given by an immigrant point and all its associated offspring generated after some steps as a cluster.

Note that a classical Hawkes process on the line is the special case where d = 1, G 0 is a Poisson process, and γ(ξ) = 0 for ξ < 0.

To the best of our knowledge, spatial Hawkes processes have so far been studied very little in the literature. Brémaud, Massoulié, and Ridolfi [START_REF] Brémaud | Power spectra of random spike fields and related processes[END_REF] consider the extension of a spatial Hawkes process to the case of a random fertility rate specified by a socalled unpredictable mark (for details, see Section 3.3), and they obtain the Bartlett spectrum assuming the existence of the Bartlett spectrum of the immigrant process.

As explained later our results easily extend to this case of a random fertility rate, but for ease of presentation we have chosen to concentrate on the deterministic case.

This paper takes another route than [START_REF] Brémaud | Power spectra of random spike fields and related processes[END_REF]: In Section 2, we derive the pair correlation function of a spatial Hawkes process, whereby the Bartlett spectrum can be obtained.

Section 3.1 discusses the importance of our results in spatial statistics, Section 3.2 considers the case of a Gaussian fertility rate, and Section 3.3 deals with the extension of a spatial Hawkes process to the case of a random fertility rate specified by an unpredictable mark.

First-and second order characteristics

Throughout this paper we assume that the mean number of points in an offspring process is strictly less than one, i.e.

ν ≡ γ(η) dη < 1 (2)
and to avoid the trivial case where we have no offspring, we also assume that ν > 0.

Recall that a point process

Y ⊂ R d is stationary if the distribution of Y is invariant
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under translations in R d , and its intensity is then given by the mean number of points of Y per unit volume (the intensity may be infinite). From (1) we easily obtain the following proposition, which shows that ( 2) is equivalent to assume that X has finite intensity.

Proposition 1. Each G n is stationary with intensity ρ n = µ 0 ν n , and X is stationary with intensity

ρ = µ 0 /(1 -ν). (3) 
We now find the pair correlation function g(ξ, η) for a Hawkes process. Loosely speaking, ρ 2 g(ξ, η) dξ dη is the probability for observing a pair of points from X occurring jointly in each of two infinitesimally small balls with centres ξ, η and volumes dξ, dη. For further details, see Appendix A and [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF][START_REF] Stoyan | Stochastic Geometry and Its Applications second[END_REF].

We first need the following terminology and notation. Consider any Lebesgue integrable functions f and h defined on R d . Let f * h denote convolution, i.e. the

Lebesgue integrable function

f * h(ξ) = f (ξ -η)h(η) dη, ξ ∈ R d . Define f by f (ξ) = f (-ξ).
Let f * n denote convolution of f with itself n ≥ 1 times, and set f * 0 = δ, where δ denotes the Dirac delta function on Furthermore, let χ denote the mixture density of the densities φ * n with geometric

R d : δ(ξ) = ∞ if ξ = 0, δ(ξ) = 0 if ξ ∈ R d \ {0},
weights (1 -ν)ν n , χ(ξ) = (1 -ν) ∞ n=0 ν n φ * n (ξ), ξ ∈ R d ,
where in the trivial case ν = 0 we set χ = δ. Finally, we abuse notation and write e.g. g 0 (ξ, η) = g 0 (ξ -η) (which simply means that g 0 (ξ, η) depends only on (ξ, η) through ξ -η) for two different functions, however, it will always be clear from the context which function is used.

In the sequel we assume that G 0 has a translation invariant pair correlation function g 0 , i.e. g 0 (ξ, η) = g 0 (ξ -η) for all ξ, η ∈ R d . The following main result is proved in Appendix A.

Theorem 1. We have that

g(ξ, η) = g(κ) = g(-κ), g(κ) = χ * χ * g 0 + 1 µ 0 (1 -ν) δ (κ) (4) 
whenever κ = ξ -η = 0.

Since {(ξ, ξ) : ξ ∈ R d } is a nullset with respect to Lebesgue measure, we define arbitrary the value of g(0). The term g 0 in (4) corresponds to the case where ξ and η are not in the same cluster, while the other term δ/(µ 0 (1 -ν)) corresponds to the case where ξ and η are in the same cluster. From ( 4) we obtain immediately the following result.

Corollary 1. If g 0 = 1 then g(κ) = 1 + 1 µ 0 (1 -ν) χ * χ(κ) (5) 
for all κ ∈ R d \{0}.

Recall that the pair correlation function for a Poisson process is equal to one. By

(5), g > 1, which is in agreement with the usual interpretation that this indicates aggregation of the points in X, cf. [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF][START_REF] Stoyan | Stochastic Geometry and Its Applications second[END_REF].

We now consider the Bartlett spectrum of spatial Hawkes processes, which is derived in [START_REF] Brémaud | Power spectra of random spike fields and related processes[END_REF]. An alternative and more elementary way is to exploit its close connection to g.

The result is stated below; we refer to our technical report [START_REF] Møller | Second order analysis for spatial Hawkes processes[END_REF] for details.

First, recall the notion of Fourier transform of a tempered distribution: For a Borel measure m on R d , let m, ψ = ψ(ξ) m(dξ), ψ ∈ S, where S is the set of the rapid decreasing functions, see e.g. [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods second[END_REF]. By definition, the Fourier transform of the tempered

distribution m, • is the tempered distribution m, • such that m, ψ = m, ψ , ψ ∈ S, where ψ(ω) = exp(i ω • ξ)ψ(ξ) dξ, ω ∈ R d , is the usual Fourier transform; here • is the usual inner product on R d . Second, recall that c(κ) = ρ 2 (g(κ) -1) + ρδ(κ)
is the reduced covariance function of X, and denote by C(dξ) = c(ξ) dξ the reduced covariance measure of X (see e.g. [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods second[END_REF]). The Bartlett spectrum of X is the Borel measure Ĉ on R d defined by the tempered distribution Ĉ, • , see e.g. [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods second[END_REF]. Third, there exists a locally finite Borel measure α 0 on R d such that g 0 (ξ) ψ(ξ) dξ = ψ(ξ) α 0 (dξ), ψ ∈ S,

and the Bartlett spectrum of G 0 is Ĉ0 (dξ) = µ 2 0 α 0 (dξ) -(2π) d δ(ξ) dξ + µ 0 dξ (6) 
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see [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods second[END_REF][START_REF] Møller | Second order analysis for spatial Hawkes processes[END_REF] for details. In many applications, g 0 is of the form g 0 = 1 + f 0 , where f 0 is Lebesgue integrable, in which case Ĉ0 is absolutely continuous with respect to Lebesgue measure, with density ĉ0 (ξ) = µ 0 µ 0 f0 (ξ) + 1 .

We refer to ĉ0 as the spectral density of G 0 . Finally, let |z| denote the modulus of a complex number z.

Corollary 2. We have that

Ĉ(dξ) = 1 |1 -γ(ξ)| 2 Ĉ0 (dξ) + (µ 0 ν/(1 -ν)) dξ ( 8 
)
where Ĉ0 is given by (6) (and |z| denotes the modulus of a complex number z).

When G 0 has spectral density [START_REF] Hawkes | Spectra of some self-exciting and mutually exciting point processes[END_REF], the spatial Hawkes process has spectral density

ĉ(ξ) = µ 0 |1 -γ(ξ)| 2 µ 0 f0 (ξ) + 1 1 -ν (9) 
(that is, Ĉ(B) = B ĉ(ξ) dξ for Borel sets B ⊆ R d ).

Examples and discussion

Statistical applications

This section briefly discusses the potential statistical applications of our results in Section 2.

Spatial Hawkes processes may provide natural models for e.g. a population of reproducing individuals or the development of an epidemic. However, to the best of our knowledge, spatial Hawkes processes have yet not been used to model a real data set. A natural and interesting application could be the weed plant dataset previously modelled by a log Gaussian Cox process or a shot noise Cox process in [START_REF] Brix | Spatio-temporal modeling of weeds and shot-noise G Cox processes[END_REF][START_REF] Brix | Space-time multitype log Gaussian Cox processes with a view to modelling weed data[END_REF][START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF].

The pair correlation function and the closely related K-function

K(r) = κ ≤r g(κ) dκ, r > 0
are frequently used in spatial statistics, not only as characteristics of the second order properties of a spatial point process but also for parameter estimation (so-called
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minimum contrast estimation), see [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF][START_REF] Møller | Modern spatial point process modelling and inference[END_REF][START_REF] Stoyan | Stochastic Geometry and Its Applications second[END_REF]. On the other hand, the use of the Bartlett spectrum has played a minor role in spatial statistics [START_REF] Mugglestone | A practical guide to the spectral analysis of spatial point processes[END_REF], possibly because g is easier to interpret. However, in light of the much simpler expression (9) compared to (4), using the spectral density as a second order characteristic for spatial Hawkes processes seems appealing.

The empty space function F , the nearest-neighbour distribution function G, and the related J function, which are all widely used summary statistics (see [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF] and the references therein), seem intractable for spatial Hawkes processes. If G 0 is Poisson, then by [START_REF] Stoyan | Stochastic Geometry and Its Applications second[END_REF], since X is a Poisson cluster process, J ≤ 1.

Gaussian fertility rates

A particular tractable case of g occurs if we consider a two-dimensional radially symmetric Gaussian fertility rate, i.e. when φ is the density of N 2 (0, σ 2 I) where σ 2 > 0 is the variance. Then φ * n (ξ) = φ * n (r) depends only on r = ξ and is the density of N 2 (0, nσ 2 I), n ≥ 1, and a straightforward calculation shows that

χ * χ(r) = (1 -ν) 2 ∞ n=0 (n + 1)ν n φ * n (r). (10) 
First, let g 0 = 1 and consider (g(r) -1)µ 0 which by [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods second[END_REF] does not depend on the parameter µ 0 . By ( 5) and ( 10),

(g(r) -1)µ 0 = (1 -ν) ∞ n=1 (n + 1)ν n φ * n (r), r > 0,
which we can calculate by numerical methods using e.g. Maple. The left plot in Figure 1 shows (g(r)-1)µ 0 . The effect of increasing σ 2 from 1 to 4 and ν from 0.5 to 0.9 is clearly visible. For comparison we have also shown (g(r) -1)µ 0 = φ * 2 (r) for a Neyman-Scott (or modified Thomas) process when (σ 2 , ν) = (1, 0.9) (i.e. when g is the pair correlation function for offspring of the first generation). This curve has to some extent a similar shape as for a spatial Hawkes process, though it is much below the curve for the spatial Hawkes process with (σ 2 , ν) = (1, 0.9).

Next, the upper curve in Figure 1 is (g(r)-1)µ 0 when the immigrant pair correlation function is that of the Thomas process above, i.e. when g 0 = 1 + φ * 2 /µ 0 and

(g(r) -1)µ 0 = (1 -ν) ∞ n=1 (n + 1)ν n φ * n (r) + (1 -ν)φ * (n+2) (r) , r > 0,
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and where again (σ 2 , ν) = (1, 0.9). This curve is only slightly above the corresponding curve where g 0 = 1.

The right plot in Figure 1 shows spectral densities (9) on a logarithmic scale when still (σ 2 , ν) = (1, 0.9) and µ 0 = 1 or µ 0 = 10 and g 0 = 1 or g 0 = 1 + φ * 2 /µ 0 . For a low immigrant intensity, it is hard to distinguish between the two cases of spectral densities. symmetric Gaussian density φ with variance σ 2 . Full lines: for spatial Hawkes processes with (σ 2 , ν) = (1, 0.9), (1, 0.5), (4, 0.9), (4, 0.5) (from top to bottom at r = 0) and g 0 = 1. Dotted lines: for a modified Thomas process (bottom) and for a spatial Hawkes process when g 0 is the pair correlation of the modified Thomas process (top), with (σ 2 , ν) = (1, 0.9) in both cases. Right: Log spectral densities when (σ 2 , ν) = (1, 0.9) and µ 0 = 1 (bottom) or µ 0 = 10 (top) and g 0 = 1 (full lines) or g 0 = 1 + φ * 2 /µ 0 (dotted lines).

Unpredictable marks

The construction of the spatial Hawkes process in Section 1 immediately extends to the case of a random fertility rate specified by an unpredictable mark. More precisely, let the immigrants G 0 still be defined as in Section 1, and conditional on G 0 , let (Z η ) η∈G 0 be independent and identically distributed (iid) "marks" (i.e. random variables) with a distribution Π which is independent of G 0 (the marks are
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therefore said to be unpredictable). Further, for n = 0, 1, . . ., conditional on the first n generations G 0 , . . . , G n and their associated marks (Z η ) η∈G 0 , . . . , (Z η ) η∈G n , let G n+1 be a Poisson process with intensity function λ n+1 (ξ) = η∈G n γ(ξ -η, Z η ), where γ(ξ, Z η ) ≥ 0 is locally integrable with respect to ξ ∈ R d . Furthermore, conditional on G n+1 , we associate iid marks (Z η ) η∈G n+1 with distribution Π independent of the "previous history" given by G 0 , . . . , G n , G n+1 and (Z η ) η∈G 0 . . . , (Z η ) η∈G n (the marks are therefore said to be unpredictable). We call X = ∪ ∞ n=0 G n a spatial Hawkes process (this definition coincides with that one in Brémaud et al. [START_REF] Brémaud | Power spectra of random spike fields and related processes[END_REF]).

Note that all the marks are iid and independent of G 0 , but G n+1 (n ≥ 0) may depend on the marks associated to G n . Define γ(•) = Eγ(•, Z), where the expectation is with respect to a generic mark Z. Redefine ν = γ(η) dη and φ(•) = γ(•)/ν, where we again assume that 0 < ν < 1. Then, concerning the intensity, Proposition 1 is straightforwardly seen to hold. Define F (ξ) = R d cov (γ(ξ + x, Z), γ(x, Z)) dx (where the covariance is zero in the case of a deterministic fertility rate), and assume that

E R d γ(ξ, Z) dξ 2 < ∞ (11) 
which ensures that F is Lebesgue integrable. Exploiting the independence properties in the branching construction of the generations G n and their associated marks, it can be verified (see Appendix B) that Theorem 1 extends to the following result.

Theorem 2. The pair correlation function of X is

g(ξ, η) = g(κ) = g(-κ), g(κ) = χ * χ * g 0 + 1 µ 0 (1 -ν) (δ + F ) (κ) whenever κ = ξ -η = 0.
From Theorem 2 follows immediately the extension of Corollary 1. Concerning the Bartlett spectrum of X, using Theorem 2 and following the same lines as in the case where γ(•) is deterministic, Corollary 2 extends to

Ĉ(dξ) = 1 |1 -E[γ(ξ, Z)]| 2 Ĉ0 (dξ) + νµ 0 1 -ν dξ + µ 0 1 -ν var(γ(ξ, Z)) dξ (12) 
where

γ(ω, Z) = R d exp(iω • ξ) γ(ξ, Z) dξ, ω ∈ R d .
Indeed ( 12) is in accordance with Theorem 3 in [START_REF] Brémaud | Power spectra of random spike fields and related processes[END_REF].
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Finally, we notice that it is of course possible to extend the definition above of a spatial Hawkes process to the case with predictable marks, but then we do not see how to derive the pair correlation function and the Bartlett spectrum along similar lines as in the present paper. In fact we believe this to be a much harder problem.

Appendix A

For integers m, n ≥ 0 and Borel sets

C ⊆ R d × R d , define the measure α m,n (C) = E ξ∈G m ,η∈G n : ξ =η 1[(ξ, η) ∈ C]
where 1[•] is the indicator function. In the terminology of [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF], α m,n is the cross moment measure of (G m , G n ) if m = n, and α n,n is the second order factorial moment measure of G n . Since the point processes G 0 , G 1 , . . . are almost surely pairwise disjoint, the second order factorial moment measure of X = ∪ ∞ n=0 G n is given by

α (2) (C) = m,n≥0 α m,n (C). (13) 
If α (2) is absolutely continuous with respect to Lebesgue measure on R d × R d with density ρ (2) , then ρ (2) is called the second order product density, and the pair correlation function of X is given by g(ξ, η) = ρ (2) (ξ, η)/ρ 2 . By [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF], if α m,n is absolutely continuous with respect to Lebesgue measure on R d × R d with density ρ m,n , we can take ρ (2) = m,n ρ m,n . As in Theorem 1 we assume that G 0 has pair correlation function g 0 (ξ, η) = g 0 (ξ -η) = g 0 (η -ξ), and write ρ (2) 0 (ξ) = g 0 (ξ)µ 2 0 for its second order product density. We show in Lemma 1 below that ρ m,n exists. In particular,

g n = ρ n,n /ρ 2
n is the pair correlation function of G n , where ρ n = µ 0 ν n , cf. Proposition 1.

Lemma 1. We have that α m,n is absolutely continuous with respect to Lebesgue measure on R d × R d , and for all m, n ≥ 0 and ξ = η,

ρ m,n (ξ, η) = ρ m,n (ξ-η) = γ * m * γ * n * ρ (2) 0 (ξ-η)+ min{m-1,n-1} k=0 µ 0 ν k γ * (m-k) * γ * (n-k) (ξ-η) ( 14 
)
with the convention -1 k=0 • • • = 0.
Proof. The result is trivially true when m = n = 0. 

f (ξ, M ξ ) G 0 , . . . , G m-1   = E λ m (ξ)f (ξ, M ξ ) dξ G 0 , . . . , G m-1 (15) 
for non-negative measurable functions f , where we set λ 0 = µ 0 and condition on nothing if m = 0. Thereby, since with probability one the translated point processes

M ξ + ξ, ξ ∈ G m , are pairwise disjoint and their union is equal to G n , α m,n (C) = E λ m (ξ) η∈G n 1[(ξ, η) ∈ C] dξ = E λ n (η) λ m (ξ)1[(ξ, η) ∈ C] dξ dη (16) 
where to obtain the first equality we consider E

[• • • ] = EE[• • • |G 0 , . . . , G m-1
] and to obtain the second equality we consider E

[• • • ] = EE[• • • |G 0 , . . . , G n-1 ].
Similarly, for m > n, we obtain [START_REF] Ogata | Space-time point-process models for earthquake occurrences[END_REF]. For m = n > 0, since G n conditional on G 0 , . . . , G n-1 is a Poisson process with intensity function λ n , Slivnyak-Mecke's theorem (see e.g. [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]) and considering again E[

• • • ] = EE[• • • |G 0 , . . . , G n-1 ] imply that α n,n (C) = E λ n (ξ) E   η∈G n 1[(ξ, η) ∈ C] G 0 , . . . , G n-1   dξ
and so by Campbell's theorem we obtain [START_REF] Ogata | Space-time point-process models for earthquake occurrences[END_REF] with m = n.

Therefore, by ( 16) and Fubini's theorem, for all m, n ≥ 0, α m,n is absolutely continuous with respect to Lebesgue measure on

R d × R d , with density ρ m,n (ξ, η) = E[λ m (ξ)λ n (η)]. (17) 
Consequently,

ρ m,n (ξ, η) = ρ n,m (η, ξ) (18) 
for all ξ, η ∈ R d and m, n ≥ 0.

In the remainder of this proof, let ξ = η.
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We now prove by induction that ( 14) is satisfied when m = n. For m = n = 0, this is trivially satisfied. Assume that it is satisfied for a fixed m = n ≥ 0. By ( 1) and ( 17),

ρ n+1,n+1 (ξ, η) = E x 1 ,x 2 ∈G n : x 1 =x 2 γ(ξ -x 1 )γ(η -x 2 ) + E x∈G n γ(ξ -x)γ(η -x).
Applying the definition of ρ n,n in the first term and Campbell's theorem in the second term above,

ρ n+1,n+1 (ξ, η) = γ(ξ -x 1 )γ(η -x 2 )ρ n,n (x 1 , x 2 ) dx 1 dx 2 + γ(ξ -x)γ(η -x)ρ n dx
which after a straightforward computation reduces to

ρ n+1,n+1 (ξ, η) = γ * γ * (ρ n δ + ρ n,n )(ξ -η).
Therefore, by the induction hypothesis,

ρ n+1,n+1 (ξ, η) = µ 0 ν n γ * γ(ξ -η) + γ * (n+1) * γ * (n+1) * ρ (2) 0 (ξ -η) + n-1 k=0 µ 0 ν k γ * (n+1-k) * γ * (n+1-k) (ξ -η)
whereby the induction proof is completed. Note that from this and ( 17) we obtain that

ρ n,n (ξ, η) = ρ n,n (ξ -η) = ρ n,n (η -ξ). (19) 
Next, let m < n. Then

ρ m,n (ξ, η) = E[λ m (ξ)λ n (η)] = E x 1 ∈G n-1 γ(η -x 1 )λ m (ξ) = EE   x 1 ∈G n-1 γ(η -x 1 )λ m (ξ) G 0 , . . . , G n-2   = E γ(η -x 1 )λ m (ξ)λ n-1 (x 1 ) dx 1 = γ(η -x 1 )ρ m,n-1 (ξ, x 1 ) dx 1
where we have used [START_REF] Stoyan | Stochastic Geometry and Its Applications second[END_REF] in the first and last equalities, (1) in the second equality, and Campbell's theorem in the fourth equality. Iterating this calculation we obtain Thereby ( 14) is verified for all m, n ≥ 0.

Proof of Theorem 1: By ( 14), ρ (2) (ξ, η) = ρ (2) (ξ -η) whenever ξ = η, where for κ = 0, ρ (2) ρ (2) (ξ -η)/ρ 2 is easily seen to be given by the last expression in (4). Finally, it follows that g(•) is symmetric.

Appendix B

We sketch the proof of Theorem 2. First, [START_REF] Stoyan | Stochastic Geometry and Its Applications second[END_REF] in the proof of Lemma 1 holds with γ(ξ, Z ξ ) in place of γ(ξ). Second, following the same lines as in the proof of Lemma 1 and using that the marks are unpredictable, for any n ≥ 0, 

  and for any Lebesgue integrable or constant function f , f (ξ) = δ(ξ -η)f (η) dη. Accordingly we set δ * f = f * δ = f and δ * δ = δ. The normalized fertility rate is the density φ (with respect to the Lebesgue measure) of an offspring (in the first generation) generated by a point at 0: φ(ξ) = γ(ξ)/ν, ξ ∈ R d .

Figure 1 :

 1 Figure 1: Left: Transformed pair correlation functions (g(r) -1)µ 0 with d = 2 and a radially
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  Let m < n, and note that (G m , G n ) is determined by the marked point process obtained by attaching to each point ξ ∈ G m a mark M ξ given by the point process of all those points η -ξ such that η ∈ G n and η is an offspring generated by ξ in n -m steps. The point processes M ξ , ξ ∈ G m , are i.i.d. and independent of G 0 , . . . , G m . Furthermore, if m > 0, conditional on G 0 , . . . , G m-1 , we have that G m has intensity function λ m . Hence by Campbell's theorem,

ρ

  m,n (ξ, η) = γ(η -x 1 ) γ(x 1 -x 2 ) • • • γ(x n-m-1 -x n-m )ρ m,m (ξ, x n-m ) dx n-m • • • dx 2 dx 1 = γ * (n-m) * ρ m,m (ξ -η) ). Since ρ m,m satisfies[START_REF] Møller | Modern spatial point process modelling and inference[END_REF], we obtain that ρ m,n satisfies[START_REF] Møller | Modern spatial point process modelling and inference[END_REF].Third, let m > n. Observe that if h = f 1 * f 2 then h = f1 * f2 . Combining this with (14) (for the case so far verified), (18), and the fact that ρ

  is symmetric, we obtain thatρ m,n (ξ, η) = γ * n * γ * m * ρ

  k γ * (n-k) * γ * (m-k) (η -ξ) = γ * m * γ * n * ρ k γ * (m-k) * γ * (n-k) (ξ -η).

  ,n: m≥k, n≥k, k≥0 µ 0 ν k γ * (m+1-k) * γ * (n+1-k) (κ) and that δ(κ) = 0 since κ = 0. By (3) and (20), g(ξ, η) = g(ξ -η) =

ρ

  n+1,n+1 (ξ, η) = γ(ξ -x 1 )γ(η -x 2 )ρ n,n (x 1 , x 2 ) dx 1 dx 2 + γ(ξ -x)γ(η -x)ρ n dx + ρ n F (ξ -η)

A c c e p t e d m a n u s c r i p t

which after a straightforward computation reduces to

Therefore, we obtain

Now, arguing as in the proof of Lemma 1, for m, n ≥ 0,

As in the proof of Theorem 1, Theorem 2 follows by summing over all m, n ≥ 0 and dividing by ρ 2 .

A c c e p t e d m a n u s c r i p t