
HAL Id: hal-00556855
https://hal.science/hal-00556855

Submitted on 18 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the derivatives of the normalising constant of the
Bingham distribution
A. Kume, Andrew T.A. Wood

To cite this version:
A. Kume, Andrew T.A. Wood. On the derivatives of the normalising constant of the Bingham dis-
tribution. Statistics and Probability Letters, 2009, 77 (8), pp.832. �10.1016/j.spl.2006.12.003�. �hal-
00556855�

https://hal.science/hal-00556855
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/stapro

Author’s Accepted Manuscript

On the derivatives of the normalising constant of the
Bingham distribution

A. Kume, Andrew T.A. Wood

PII: S0167-7152(07)00017-X
DOI: doi:10.1016/j.spl.2006.12.003
Reference: STAPRO 4550

To appear in: Statistics & Probability Letters

Received date: 9 February 2005
Revised date: 27 October 2006
Accepted date: 19 December 2006

Cite this article as: A. Kume and Andrew T.A. Wood, On the derivatives of the nor-
malising constant of the Bingham distribution, Statistics & Probability Letters (2007),
doi:10.1016/j.spl.2006.12.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/stapro
http://dx.doi.org/10.1016/j.spl.2006.12.003


Acc
ep

te
d m

an
usc

rip
t 

On the derivatives of the normalising constant

of the Bingham distribution

A. Kume

Institute of Mathematics, Statistics and Actuarial Science, University of Kent,

Canterbury, CT2 7NF,UK

a.kume@kent.ac.uk

Andrew T.A. Wood

School of Mathematical Sciences, University of Nottingham, University Park,

Nottingham, NG7 2RD, UK

atw@maths.nott.ac.uk

Abstract

It is shown that an arbitrary joint partial derivative of the Bingham normalising

constant, expressed in standard form, is proportional to the normalising constant of a

Bingham distribution of higher dimension. Two consequences of this result are noted.
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1 Introduction

The Bingham distribution has proved useful as a model in Directional Statistics and, more

recently, the complex Bingham distribution has been widely used in planar Shape Analysis.

See, for example, Bingham (1974), Kent (1994), Dryden and Mardia (1998) and Mardia

and Jupp (2000). The Bingham distribution is defined as that of a zero-mean multivariate

normal random vector in R
p conditioned to lie on the unit sphere Sp−1 ⊂ R

p. For a given

symmetric p × p matrix Σ, the Bingham density with respect to the uniform measure

dSp−1(x) on Sp−1 is given by

f(x|Σ) = C0(Σ)−1 exp(−x>Σx), x>x = 1, (1)

where C0(Σ) is a normalizing constant. If Σ = QΛQ> is the spectral decomposition of Σ

where Q ∈ O(p), the space of p × p orthogonal matrices, and Λ = diag(λ1, λ2, ..., λp), then

it easy to see that C0(Σ) = C0(Λ), because the orthogonal transformation generated by left
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multiplication by Q is an isometry in Sp−1. Note that, from (1),

C0(Λ) =

∫

x∈Sp−1

exp

(

−

p
∑

i=1

λix
2
i

)

dSp−1(x). (2)

Moreover, as a consequence of the constraint x>x = 1, C0(Λ + tIp) = exp(−t)C0(Λ), where

Ip is the p × p identity matrix.

If x1, ..., xn is a sample of unit vectors in Sp−1 from the Bingham distribution with density

(1), and S =
∑n

i=1 xix
>
i , then the log-likelihood of the data is given by

L(Q, Λ) = −tr(SQΛQT ) − n log(C0(Λ)).

Moreover, the maximum likelihood estimator (MLE) of Q is given by Q̂, where S = Q̂Λ̂Q̂T

is the spectral decomposition of S, and

L(Q̂, Λ) = −
∑

liλi − n log(C0(Λ)). (3)

See e.g. Mardia and Jupp (2000) for further details. Two points to note are: (i) from

standard theory for exponential families, when the MLE of Λ exists, it is unique; and (ii)

the MLE of Λ exists with probability 1 when n ≥ p. Broadly, there are two ways to obtain

the MLE of Λ: one is to maximise (3); the other, bearing in mind points (i) and (ii) above,

is to solve

−C0(Λ)−1∂C0(Λ)

∂λi

=
li
n

, i = 1, 2, .., p. (4)

Neither C0(λ) nor its derivatives have useful closed-form expressions in the general case,

but Kume and Wood (2005) have recently proposed saddlepoint approximations to C0(λ)

which have desirable numerical and theoretical properties. The main purpose of this note

is to show that any derivative of (2) is itself proportional to the normalising constant of a

higher-dimensional Bingham distribution, with the consequence that these saddlepoint ap-

proximations can also be used to approximate the derivatives of (2). As a second application

of our main result, we derive an explicit expression for the complex Bingham normalising

constant in the case where the relevant eigenvalues have arbitrary multiplicities.

2 The main result

A multi-index is defined here as a row vector J = (j1, . . . , jp) whose components ji are

integers. Define |J | =
∑p

i=1 |ji|. If all components of J are non-negative, we say that
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J is non-negative. In this paper we only consider non-negative multi-indices. For each

non-negative J , we introduce the the partial differential operator DJ , where

DJ =

p
∏

i=1

Dji

i =

p
∏

i=1

∂ji

∂λji

i

=
∂|J |

∂λj1
1 . . . ∂λ

jp
p

.

Let C(λ; M), where λ = (λ1, . . . , λp)
T as before and M = (m1, . . . , mp) is a multi-index,

denote the Bingham normalising constant C0(Λ̃) in (2) where Λ̃ is a diagonal matrix of

dimension |M | × |M | consisting of diagonal elements λi with multiplicity mi, i = 1, . . . , p.

Note that if 1p is the p-vector of ones, then C(λ; 1p) = C0(Λ), where the latter is defined in

(2). The main result of this paper is the following.

Proposition 1

For any non-negative multi-indices J = (j1, . . . , jp) and M = (m1, . . . , mp),

DJC(λ; M) = α(J, M) C(λ; M + 2J) (5)

where α(J, M) is the constant given by

α(J, M) = (−1)|J |π−|J |

p
∏

i=1

Γ{(mi + 2ji)/2}

Γ(mi/2)
(6)

and Γ(δ) =
∫∞

0
xδ−1e−xdx is the gamma function.

Proof. It is convenient to break the proof into two steps.

Step 1. Show that

C(λ; M) =
2π|M |/2

Γ(|M |/2)
Ep(λ; M) (7)

where

Ep(λ; M) =
Γ(|M |/2)

∏p
i=1 Γ(mi/2)

∫

β∈Sp

p
∏

i=1

β
(mi−2)/2
i exp

(

−

p
∑

i=1

λiβi

)

[dβ], (8)

Sp is the standard simplex in R
p, consisting of those vectors with non-negative components

which sum to 1, and [dβ] is the Lebesgue measure on Sp.

Step 2. Show that

DJEp(λ; M) =
Γ(|M |/2)

Γ(|M + 2J |/2)
π|J |α(J, M)Ep(λ; M + 2J) (9)
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where α(J, M) is defined in (6).

Assuming that Step 1 and Step 2 hold, the proof of Proposition 1 is completed as follows:

DJC(λ; M) =
2π|M |/2

Γ(|M |/2)
DJEp(λ; M) [using (7)]

=
2π|M |/2

Γ(|M |/2)

Γ(|M |/2)

Γ(|M + 2J |/2)
π|J |α(J, M)Ep(λ; M + 2J) [using (9)]

= α(J, M)
2π|M+2J |/2

Γ(|M + 2J |/2)
Ep(λ; M + 2J)

= α(J, M)C(λ; M + 2J) [using (7) again].

Step 2 is proved directly by differentiating under the integral sign in (8); we omit the details.

To prove Step 1, let λ̃ denote a vector of length |M | where λi has multiplicity mi, i =

1, . . . , p. It is clear that

C(λ; M) = C(λ̃; 1|M |). (10)

Moreover, it follows from the representation of the Bingham normalising constant given in

the proof of Proposition 5 in Kume and Wood (2005), combined with formula (8) in that

paper, that

C(λ̃; 1|M |) =
2π|M |/2

Γ(|M |/2)
E|M |(λ̃; 1|M |). (11)

Therefore, using a standard property of the Dirichlet integral,

E|M |(λ̃; 1|M |) =
Γ(|M |/2)

Γ(1/2)|M |

∫

β̃∈S|M|





|M |
∏

r=1

β̃−1/2
r



 exp



−

|M |
∑

r=1

λ̃rβ̃r



 [dβ̃]

=
Γ(|M |/2)

Γ(1/2)|M |

∫

β̃∈S|M|





|M |
∏

r=1

β̃−1/2
r



 exp



−

p
∑

i=1

λi

∑

r: λ̃r=λi

β̃r



 [dβ̃]

=
Γ(|M |/2)

∏p
i=1 Γ(mi/2)

∫

β∈Sp

(

p
∏

i=1

β
(mi−2)/2
i

)

exp

(

−

p
∑

i=1

λiβi

)

[dβ]

= Ep(λ; M),

and so (7) follows from (10) and (11). This completes the proof of Proposition 1.

Remark 2.1. Note that Ep(λ; M) in (8) is the multivariate Laplace transform of a Dirichlet

random vector, β, with parameter vector 1
2
M .
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Remark 2.2. Jupp and Mardia (1979), who refer to Bingham (1976), and Muirhead (1982,

p. 288, Example 7.8), state that C(λ; 1|M |) = 1F1(1/2, |M |/2; Λ̃), where Λ̃ is the diagonal

matrix whose elements are the components of λ̃, and 1F1 is the confluent hypergoemetric

function of matrix argument. We note that (5) does not hold in general for the matrix

argument 1F1; this can be seen by differentiating the integral representation for 1F1 given

in Muirhead (1982, p. 264).

3 Numerical approximation of derivatives

There are two main practical motivations for calculating derivatives of the Bingham nor-

malising constant: (i) to calculate the maximum likelihood estimate, λ̂ of λ, by solving (4);

and (ii) to calculate asymptotic standard errors of λ̂ via the Fisher information matrix.

In this section we discuss how a saddlepoint approximation proposed by Kume and Wood

(2005), combined with Proposition 1, can be used for (i) and (ii).

3.1 Saddlepoint approximations

When specialised to the Bingham normalising constant, c(λ) = C0(λ; 1p), the third and most

accurate of the Kume and Wood (2005) approximations, ĉ3(λ), reduces to the following:

ĉ3(λ) = 21/2π(p−1)/2{K
(2)
λ (t̂)}−1/2 exp{T (t̂) − t̂}

p
∏

i=1

(λi − t̂)−1/2,

where

Kλ(t) = −
1

2

p
∑

i=1

log(1 − t/λi), K
(j)
λ =

∂jKλ(t)

∂tj
=

p
∑

i=1

(j − 1)!

2(λi − t)j
, j ≥ 1,

t̂ is the unique solution in (−∞, mini λi) to the equation K
(1)
λ (t) = 1, and

T (t) =
1

8
ρ4(t) −

5

24
ρ3(t)

2 where ρj(t) = K
(j)
λ (t)/{K

(2)
λ (t)}j/2. (12)

3.2 Approximation of derivatives

Kume and Wood (2005) suggested that, in an approximate likelihood procedure for estimat-

ing λ, the derivatives of c(λ) could be approximated using the corresponding derivatives of

the approximation. Here we note that an alternative approach is also tractable: to solve (4)

approximately using direct approximations to the derivatives obtained using Proposition 1.
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Let t̂0 and t̂i denote the solutions of K
(1)
λ (t) = 1 and (λi − t)−1 + K

(1)
λ (t) = 1, respectively,

write Ai(λ) = −Di log c(λ), and let Ti(t) denote (12), but with ρj(t), j = 3, 4, replaced by

(j − 1)!(λi − t)−j + K
(j)
λ (t)

{(λi − t)−2 + K
(2)
λ (t)}j/2

.

Then we solve (4) approximately by finding λ to solve Âi(λ) = li/n, where Âi(λ), the ratio

of saddlepoint approximations used to approximate Ai(λ), is given by

1

2

(

K
(2)
λ (t̂0)

∏p
j=1(λj − t̂0)

{(λi − t̂i)−1 + K
(2)
λ (t̂i)}(λi − t̂i)

∏p
j=1(λj − t̂j)

)1/2

exp{t̂0 − t̂i + Ti(t̂i) − T0(t̂0)}. (13)

We conclude with two comments. First, if a maximisation procedure which requires the

specification of derivatives is to be used to estimate λ, it is better to approximate derivatives

by the corresponding derivatives of the approximation, rather than using (13) to approx-

imate the derivatives directly. Second, details for the corresponding approximations for

Aij(λ) = {c(λ)}−1DiDjc(λ), which are needed to calculate the Fisher information matrix,

are similar and we omit the details.

4 Complex Bingham normalising constant

In this section we use Proposition 1 to provide an explicit expression for the complex

Bingham normalising constant when the Bingham exponent has eigenvalues λ1, . . . , λp of

multiplicity 2(1 + m1), ...,2(1 + mp), respectively. Note that the corresponding normalising

constant is C{λ; 2(1p + M)}. It seems that it would be difficult to calculate this directly,

but Proposition 1 gives us a systematic way of doing this. Kent (1994) has shown that

C(λ; 2p) = 2πp

p
∑

i=1

ai exp(−λi), where ai =
∏

r 6=i

(λr − λi)
−1, (14)

and 2p is a row vector of 2’s. Note that the formula is slightly different to that of Kent

(1994) because of the minus sign in the exponent of (1).

Proposition 2. We have

C{λ; 2(1p + M)} =
2πp+|M |

∏p
i=1 mi!

p
∑

i=1

(−1)mi exp(−λi)

∑

J0(i)≥0, |J0(i)|=mi

mi!

j0! . . . ji−1!ji+1! . . . jp!
(−1)j0

∏

r 6=i

(jr + mr)!

(λr − λi)1+jr+mr
.
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Remark 4.1. The second summation in the statement of Proposition 2 is over all non-

negative multi-indices J0(i) = (j0, j1, . . . , ji−1, ji+1, . . . , jp) with p components which sum to

mr. When mr = 0, the second sum above is interpreted as
∏

r 6=i jr!/(λr − λi)
1+jr . Note

that j0 in the second sum is the number of times that exp(−λi) is differentiated.

Proof. We prove the result by applying the differential operator DM to Kent’s formula

(14), multiplying the result by α(M, 2p)
−1, and then using Proposition 1. Write M(i) =

(m1, . . . , mi−1, mi+1, . . . , mp) with the obvious modifications when i = 1, p. Now

DM(i)ai =

(

∏

r 6=i

Dmr

r

)(

∏

r 6=i

1

λr − λi

)

=
∏

r 6=i

Dmr

r

(

1

λr − λi

)

= (−1)|M(i)|
∏

r 6=i

mr!

(λr − λi)1+mr
.

Therefore, using the fact that DM = Dmi

i DM(i) ,

DMC(λ; 2p) = 2πp

p
∑

i=1

DM [ai exp(−λi)]

= 2πp

p
∑

i=1

Dmi

i

[

exp(−λi)D
M(i)ai

]

= 2πp

p
∑

i=1

(−1)|M(i)|Dmi

i

[

exp(−λi)
∏

r 6=i

mr!

(λr − λi)1+mr

]

= (−1)|M |2πp

p
∑

i=1

(−1)mi exp(−λi)

∑

J0(i)≥0,|J0(i)|=mi

mi!

j0! . . . ji−1!ji+1! . . . jp!
(−1)j0

∏

r 6=i

(mr + jr)!

(λr − λi)1+mr+jr
.

The final step above uses the multivariate version of Leibnitz’s formula. The proof is

completed by multiplying by α(M, 2p)
−1 and then using Proposition 1.
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