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The Optional Sampling Theorem for Submartingales in the
Sequentially Planned Context

M. Mar Fenoy∗ Pilar Ibarrola

Departamento de Estad́ıstica e I.O.

Universidad Complutense de Madrid (Spain)

Abstract

The optional sampling theorem is considered in the sequentially planned context. We prove the
optional sampling theorem for direct successors and for sampling plans with a finite number of stages.
Also, the theorem is studied in the general case under a uniform integrability condition; we obtain it
for submartingales with a last element, and for submartingales that verify a bounded condition based
on uniform integrability.
Keywords: Sampling plan, sequentially planned, optional sampling.
Ams: 62L10, 60G40.

1 Introduction

The Sequentially Planned Decision Procedures were introduced by Schmitz (1993); the underlying idea
is to take sequential sub-samples whose random size will be determined (planned) according to the
information gathered up to that time.

In this paper we study the Optional Sampling Theorem (OST) in the sequentially planned context;
i.e. the submartingales are indexed by a set A of sampling sequences, and a partial order represented by
� is defined on A. Thus, let a = (a1, · · · , aj) ∈ A, b = (b1, · · · , bm) ∈ A finite sampling sequences; a � b
means that a1 = b1, · · · , aj = bj with j ≤ m, and each ai, bk ∈ M ⊂ N. For details, see Schmitz (1993),
Fenoy and Ibarrola (2003).

The optional sampling theorem for stopping times is already studied for submartingales indexed by
different sets. For example, Doob (1953), Bochner (1955) studied the OST in the general context of
a directed index set. Krickeberg (1956), Helms (1958) and Chow, Robbins, and Siegmund (1971) have
obtained results for linearly ordered index sets. Washburn and Willsky (1981) proved it for uniformly
bounded submartingales indexed by partially ordered sets for reachable pairs of stopping times. They also
proved that any admissible sampling plan is reachable from the stopping time 0, but the results obtained
are for stopping times (i.e. in a classical sequential context).

In the sequentially planned context we use sampling plans instead of stopping times. For (X ,B, Pθ) a
probability space and (Ba)a∈A an isotonic family of sub-σ-fields of B, let τ be a sampling plan if it verifies

{τ � a} ∈ Ba, ∀a ∈ A (1)

{τ � ah} ∈ Ba, ∀a ∈ A, h ∈ M. (2)

The main difference between a stopping time and a sampling plan is given by condition (2): the size of
the next sub-sample is determined sequentially and based on the information accumulated. In general,
we focus our attention on admissible sampling plans, i.e. sampling plans which stop a.s.

In this article, we study the OST for any submartingale, and we obtain it for sampling plans with a
fixed number of stages, not necessarily direct successors. Next, we study the OST for any sampling plans
and we obtain it for submartingales uniformly integrable.

The structure of this paper is as follows:
In section 2, we obtain the OST for sampling plans that they are direct successors. This result allows

us to prove the OST for any pair of sampling plans, τ , σ, and such that σ � τ with a fixed number of
stages. These results are obtained without any extra-conditions about the submartingales.

∗Corresponding author: Departamento de Estad́ıstica e I.O. I, Facultad de Matemáticas, Universidad Complutense de
Madrid, 28040 Madrid, Spain.E-mail :Mar Fenoy@mat.ucm.es
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The OST is studied under the uniform integrability condition in section 3; we have obtained it for
submartingales with a last element. And we prove a version of the OST for submartingales that verifies
the following condition based on uniform integrability:

E(|Xbk −Xb|/Bb) ≤ c < +∞, on {τ � b}.

We do not discuss some concepts in detail since the background of this note can be found in the
reference Fenoy and Ibarrola (2003).

2 The Optional Sampling Theorem

For a sampling plan τ we define Bτ = {C ∈ B : ∀a ∈ A,C ∩ {τ = a} ∈ Ba}. Bτ is a σ-field, and for any
two pairs of sampling plans, such that σ � τ , Bσ ⊂ Bτ . Let τ, σ be two sampling plans; we say they are
direct successors if τ � σ; and if τ � σ, τ must only have one stage more than σ.

The theorem below shows that the OST holds for direct successors.

Theorem 2.1 Let {Xa,Ba}a∈A be a submartingale. Let {τn}n ∈N be an admissible sampling plan se-
quence, such that ∀n ∈ N τn � τn+1 are direct successors and E(|Xτn |) < +∞. Then {Xτn ,Bτn}n∈N is a
submartingale.

Proof: {Bτn
}n∈N is a filtration since τn � τn+1 (see Fenoy and Ibarrola (2003)). For B ∈ Bτn

, it
holds that∫

B

Xτn+1dP ≥
∫

B

Xτn
dP (3)

since B =
⋃
a∈A

B ∩ {τn = a} =
⋃
a∈A

Da, ∀a ∈ A, Da ∈ Ba and {τn = a} ⊂ {τn+1 � a}.

∫
Da

Xτn+1dP =
∫

B∩{τn=a}
Xτn+1dP =

∫
Da∩{τn+1�a}

Xτn+1dP

=
∫

Da∩{τn+1=a}
XadP +

∑
k∈M̃a

∫
Da∩{τn+1=ak}

E(Xak/Ba)dP (4)

≥
∫

Da∩{τn+1=a}
XadP +

∑
k∈M̃a

∫
Da∩{τn+1=ak}

XadP

=
∫

Da∩{τn+1�a}
XadP =

∫
Da

XadP =
∫

Da

Xτn
dP

(4) follows from {τn = a} ∩ {τn+1 = ak} = {τn = a} ∩ {τn+1 � ak} ∈ Ba, since τn and τn+1 are direct
successors.

Remark 1 In Theorem 2.1, the condition E(|Xτn
|) < +∞ will hold if the number of observations of τn

is at most kn < +∞, ∀n ∈ N, particulary, if A is a finite set.

For any two sampling plans τ σ, such that σ � τ , we introduce the following functions, k ∈ N:

τ1(x) = σ(x)I{τ=σ}(x) +
∑

a1∈M

(σ(x), a1)I{τ�(σ,a1)}(x) (5)

τ2(x) = τ1(x)I{τ=τ1}(x) +
∑

a1∈M

(τ1(x), a1)I{τ�(τ1,a1)}(x) (6)

...
τk(x) = τk−1(x)I{τ=τk−1}(x) +

∑
a1∈M

(x)(τk−1(x), a1)I{τ�(τk−1,a1)}(x) (7)

...

Let τ0 = σ.
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Proposition 2.1 Let τ and σ be sampling plans, such that τ � σ; then τk, k ∈ N defined in (7), is an
admissible sampling plan and τk � τk+1 are direct successors. Also, if τ is admissible ∀x, there exists
k ∈ N, such that τ(x) = τk(x). Thus

τ(x) = lim
k→∞

τk(x), a.s.

Proof: For j = 1, a ∈ A, h ∈ M

{τ1 � a} = {τ1 � a} ∩ {σ � a}

=
h(a)−1⋃

i=1

[
{τ1 � a} ∩ {σ = ai}

]
∪ {τ1 � a} ∩ {σ = a}

=
h(a)−1⋃

i=1

{σ = ai} ∪ {τ = a} ∩ {σ = a} ∈ Ba

{τ1 � ah} = {τ1 � ah} ∩ {σ � ah} ∪ {τ1 � ah} ∩ {σ � ah}
= {σ � ah} ∪ {σ = a} ∩ {τ � ah} ∈ Ba

Thus, we obtain that τ1 is an admissible sampling plan. Now suppose that the result is true for τj−1, it
is easy to see that it is true for j, following a similar scheme. 2

Theorem 2.2 Let {Xa,Ba}a∈A be a submartingale. Let τ , σ be admissible sampling plans such that,
τ � σ. Suppose that ∃k ∈ N, such that, τ(x) = τk(x), ∀x ∈ X (for τk defined in (7)), and ∀j = 0, · · · , k,
E(|Xτj

|) < +∞, then

E(Xτ/Bσ) ≥ Xσ. (8)

Proof: First we see that condition (8) holds for k = 1. Since τ1 defined in (5) is a direct successor of σ,
we can apply Theorem 2.1, and we obtain E(Xτ1/Bσ) ≥ Xσ. On the other hand, for any j = 1, · · · , k,
since τj−1, τj are direct successors, we obtain

E(Xτj
/Bτj−1) ≥ Xτj−1 . (9)

Finally, suppose that E(Xτj
/Bσ) ≥ Xσ is true for k − 1; we prove that is true for k. By induction

hypothesis and equation (9), it follows that

E(Xτ/Bσ) = E[E(Xτk
/Bτk−1)/Bσ] ≥ E(Xτk−1/Bσ) ≥ Xσ.

2

3 Uniform Integrability

Now we prove the OST under conditions based on the concepts related with uniform integrability. We
introduce some necessary concepts about sampling plans.

For a = (a1, · · · , aj) ∈ A, let h(a) = j be the number of sub-samples of the sample sequence a, and
let g(a) =

∑j
i=1 aj be the total number of observations of the sample sequence a.

Definition 3.1 Let τ be a sampling plan; let us define kτ , ∀k ∈ N, as follows:

kτ =
{

τ h(τ) ≤ k
τk = (τ1, ..., τk) h(τ) > k.

Remark 2 1. kτ , ∀k ∈ N, is an admissible sampling plan with almost k-stages and kτ −−−−→
k→∞

τ a.s.

2. k+1τ and kτ are direct successors, ∀k ∈ N.

3. B
kτ ⊂ B

k+1τ , ∀k ∈ N.
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4. B
kτ ⊂ Bτ , ∀k ∈ N.

Definition 3.2 Let τ be a sampling plan, let us define kτ , ∀k ∈ N, as follows:

kτ =
{

τ g(τ) ≤ k
(τ1, ..., τj , b) g(τ1, ..., τj) < k, g(τ1, ..., τj+1) > k, g(τ1, ..., τj , b) = k

b ∈ M .

Remark 3 kτ , ∀k ∈ N, is an admissible sampling plan with almost k observations, and kτ −−−−→
k→∞

τ a.s.

Definition 3.3 A sequence {Xa,Ba}a∈A is uniformly integrable if∫
{|Xa|≥c}

|Xa|dP −→
c→∞

0

uniformly in a ∈ A.

Definition 3.4 Let {Xa,Ba}a∈A be a submartingale; we say that it has a ”last element” if a random
variable X∞ exists, such that Xa ≤ E(X∞/Ba), ∀a ∈ A.

Theorem 3.1 Let {Xa,Ba}a∈A be a submartingale with a last element. Let τ and σ be sampling plans.
Then

E(Xτ/Bσ) ≥ Xσ c.s., ∀τ � σ.

Proof:
For a ∈ A, let Za = E(X∞/Ba) and Wa = Xa − E(X∞/Ba), thus, Xa = Za + Wa.

1. Za, is a uniformly integrable martingale. Let τ be a sampling plan; we consider the admissible
sampling plans that we have defined in Definition 3.1, that is, kτ , ∀k ∈ N. By the optional
projection theorem (see Fenoy and Ibarrola (2003)), Z

kτ = E(X∞/B
kτ ), Zτ = E(X∞/Bτ ); and Zτ ,

Z
kτ are integrable random variables, ∀k ∈ N:

E(|Zτ |) = E(|E(X∞/Bτ )|) ≤ E(E(|X∞|/Bτ )) = E(|X∞|) < +∞
E(|Z

kτ |) = E(|E(X∞/B
kτ )|) ≤ E(E(|X∞|/Bkτ )) = E(|X∞|) < +∞

Hence, {Z
kτ ,B

kτ}k∈N is a convergence uniformly integrable martingale, and its limit is Zτ .
σ � τ , then (kσ) � (kτ), ∀k ∈ N, and h(kτ) ≤ k; also, E(|X

kτ |) < +∞. Thus, we can apply
Theorem 2.2, obtaining

E(Z
kτ/B

kσ) ≥ Z
kσ a.s. ∀k ∈ N.

Let us write Zτ = Z
kτ + (Zτ − Z

kτ )I{τ 6=kτ}. For B ∈ Bσ

∫
B

ZτdP =
∫

B∩(h(σ)≤k)

Z
kτdP +

∫
B∩(h(σ)≤k)

(Zτ − Z
kτ )I{τ 6=kτ}dP

+
∫

B∩(h(σ)>k)

Z
kτdP +

∫
B∩(h(σ)>k)

(Zτ − Z
kτ )I{τ 6=kτ}dP.

(10)

Since ∀k ∈ N, B ∩ (h(σ) ≤ k) ∈ B
kσ and∫

B∩(h(σ)≤k)

Z
kτdP ≥

∫
B∩(h(σ)≤k)

Z
kσdP, (11)

equation (10) becomes∫
B

ZτdP ≥
∫

B∩(h(σ)≤k)

ZσdP +
∫

B∩(h(σ)≤k)

(Zτ − Z
kτ )I{τ 6=kτ}dP

+
∫

B∩(h(σ)>k)

ZτI{τ 6=kτ}dP.

(12)
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Now, we consider
∫

B∩(h(σ)≤k)
ZσdP . Since Zσ is an integrable r.v., and σ is an admissible sampling

plan, i.e. I{h(σ)≤k} −−−−→
k→∞

1 a.s., we obtain

ZσI{h(σ)≤k}
a.s.−−−−→

k→∞
Zσ,

and by the dominated convergence theorem∫
B∩(h(σ)≤k)

ZσdP −−−−→
n→∞

∫
B

ZσdP. (13)

On the other hand,

|
∫

B∩(h(σ)≤k)

(Zτ − Z
kτ )I{τ 6=kτ}dP | ≤

∫
B∩(h(σ)≤k)

|(Zτ − Z
kτ )|dP −−−−→

k→∞
0, (14)

and ∫
B∩(h(σ)>k)

ZτI{τ 6=kτ}dP −−−−→
k→∞

0. (15)

Taking limits in equation (12), it follows that

E(Zτ/Bσ) ≥ Zσ a.s. (16)

2. Wa is an integrable random variable, such that Wa ≤ 0, ∀a ∈ A. For τ , we consider the sampling
plan jτ defined in 3.2. Then,

E(|Wjτ |) ≤
∑
a∈A

g(a)≤j

E(|Wa|) < +∞, ∀a ∈ A

and by the Fatou’s lemma we deduce that Wτ is integrable. Also, for B ∈ Bσ, k ∈ N, since
B ∩ (h(σ) ≤ k) ∈ B

kσ, and from Theorem 2.2, we have∫
B∩(h(σ)≤k)

WσdP =
∫

B∩(h(σ)≤k)

W
kσdP ≤

∫
B∩(h(τ)≤k)

W
kτdP =

∫
B∩(h(τ)≤k)

WτdP. (17)

By the dominated convergence theorem, it follows that ∀B ∈ Bσ,∫
B

WσdP ≤
∫

B

WτdP. (18)

From equations (16) and (18) the result follows.

2

Theorem 3.2 Let {Xb,Bb}b∈A be a submartingale and τ an admissible sampling plan, such that, τ � a,
for some a ∈ A. Let us suppose

1. E(h(τ)) < +∞.

2. E(|Xbk −Xb|/Bb) ≤ c < +∞, in {τ � b}, with b � a, and k ∈ M .

Then

E(Xτ/Ba) ≥ Xa a.s.

Proof:
For b ∈ A, Xb =

∑h(b)
i=1 (Xbi −Xbi−1), with X() = 0. Thus,

|Xτ | ≤
h(τ)∑

i=h(a)

|X
iτ −X

i−1τ |+ |Xah(a)−1 | =
h(τ)∑

i=h(a)

Z
iτ + |Xah(a)−1 | = Yτ + |Xah(a)−1 | (19)

5
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and ∀k ≥ h(a), |X
kτ | ≤ Yτ + |Xah(a)−1 | is an integrable random variable, since Xah(a)−1 is integrable and

E(Yτ ) ≤ cE(h(τ)) < +∞. For all k ≥ h(a), by Theorem 2.2, we have that

E(X
kτ/Ba) ≥ Xa. (20)

Also

lim inf
k→∞

E((Xτ −X
kτ )I{τ 6=kτ}/Ba) = 0. (21)

Since

E(Xτ/Ba) = E(X
kτ/Ba) + E((Xτ −X

kτ )I{τ 6=kτ}/Ba),

we can deduce from (20) and (21) that

E(Xτ/Ba) ≥ Xa a.s.

2
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