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The optional sampling theorem is considered in the sequentially planned context. We prove the optional sampling theorem for direct successors and for sampling plans with a finite number of stages. Also, the theorem is studied in the general case under a uniform integrability condition; we obtain it for submartingales with a last element, and for submartingales that verify a bounded condition based on uniform integrability.

Introduction

The Sequentially Planned Decision Procedures were introduced by [START_REF] Schmitz | Optimal sequentially planned decision procedures[END_REF]; the underlying idea is to take sequential sub-samples whose random size will be determined (planned) according to the information gathered up to that time.

In this paper we study the Optional Sampling Theorem (OST) in the sequentially planned context; i.e. the submartingales are indexed by a set A of sampling sequences, and a partial order represented by is defined on A. Thus, let a = (a 1 , • • • , a j ) ∈ A, b = (b 1 , • • • , b m ) ∈ A finite sampling sequences; a b means that a 1 = b 1 , • • • , a j = b j with j ≤ m, and each a i , b k ∈ M ⊂ N. For details, see [START_REF] Schmitz | Optimal sequentially planned decision procedures[END_REF], [START_REF] Fenoy | Sufficiency in sequentially planned decision procedures[END_REF].

The optional sampling theorem for stopping times is already studied for submartingales indexed by different sets. For example, [START_REF] Doob | Stochastic processes[END_REF], [START_REF] Bochner | Partial ordering in the theory of martingales[END_REF] studied the OST in the general context of a directed index set. [START_REF] Krickeberg | Convergence of martingales with a directed indexed set[END_REF], [START_REF] Helms | Mean convergence of martingales[END_REF] and [START_REF] Chow | Great expectations: the theory of optimal stopping[END_REF] have obtained results for linearly ordered index sets. [START_REF] Washburn | Optional sampling of submartingales indexed by partially ordered sets[END_REF] proved it for uniformly bounded submartingales indexed by partially ordered sets for reachable pairs of stopping times. They also proved that any admissible sampling plan is reachable from the stopping time 0, but the results obtained are for stopping times (i.e. in a classical sequential context).

In the sequentially planned context we use sampling plans instead of stopping times. For (X , B, P θ ) a probability space and (B a ) a∈A an isotonic family of sub-σ-fields of B, let τ be a sampling plan if it verifies

{τ a} ∈ B a , ∀a ∈ A (1) {τ ah} ∈ B a , ∀a ∈ A, h ∈ M. (2) 
The main difference between a stopping time and a sampling plan is given by condition (2): the size of the next sub-sample is determined sequentially and based on the information accumulated. In general, we focus our attention on admissible sampling plans, i.e. sampling plans which stop a.s.

In this article, we study the OST for any submartingale, and we obtain it for sampling plans with a fixed number of stages, not necessarily direct successors. Next, we study the OST for any sampling plans and we obtain it for submartingales uniformly integrable.

The structure of this paper is as follows:

In section 2, we obtain the OST for sampling plans that they are direct successors. This result allows us to prove the OST for any pair of sampling plans, τ , σ, and such that σ τ with a fixed number of stages. These results are obtained without any extra-conditions about the submartingales.

A c c e p t e d m a n u s c r i p t

The OST is studied under the uniform integrability condition in section 3; we have obtained it for submartingales with a last element. And we prove a version of the OST for submartingales that verifies the following condition based on uniform integrability:

E(|X bk -X b |/B b ) ≤ c < +∞, on {τ b}.
We do not discuss some concepts in detail since the background of this note can be found in the reference [START_REF] Fenoy | Sufficiency in sequentially planned decision procedures[END_REF].

The Optional Sampling Theorem

For a sampling plan τ we define B τ = {C ∈ B : ∀a ∈ A, C ∩ {τ = a} ∈ B a }. B τ is a σ-field, and for any two pairs of sampling plans, such that σ τ , B σ ⊂ B τ . Let τ, σ be two sampling plans; we say they are direct successors if τ σ; and if τ σ, τ must only have one stage more than σ.

The theorem below shows that the OST holds for direct successors. Proof: {B τn } n∈N is a filtration since τ n τ n+1 (see [START_REF] Fenoy | Sufficiency in sequentially planned decision procedures[END_REF]). For B ∈ B τn , it holds that Remark 1 In Theorem 2.1, the condition E(|X τn |) < +∞ will hold if the number of observations of τ n is at most k n < +∞, ∀n ∈ N, particulary, if A is a finite set.

B X τn+1 dP ≥ B X τn dP (3) since B = a∈A B ∩ {τ n = a} = a∈A D a , ∀a ∈ A, D a ∈ B a and {τ n = a} ⊂ {τ n+1 a}. Da X τn+1 dP = B∩{τn=a} X τn+1 dP = Da∩{τn+1 a} X τn+1 dP = Da∩{τn+1=a} X a dP + k∈ Ma Da∩{τn+1=ak} E(X ak /B a )dP (4) ≥ Da∩{τn+1=a} X a dP + k∈ Ma Da∩{τn+1=ak} X a dP = Da∩{τn+1 a} X a dP = Da X a dP = Da X τn dP ( 
For any two sampling plans τ σ, such that σ τ , we introduce the following functions, k ∈ N:

τ 1 (x) = σ(x)I {τ =σ} (x) + a1∈M (σ(x), a 1 )I {τ (σ,a1)} (x) (5) τ 2 (x) = τ 1 (x)I {τ =τ1} (x) + a1∈M (τ 1 (x), a 1 )I {τ (τ1,a1)} (x) (6) 
. . .

τ k (x) = τ k-1 (x)I {τ =τ k-1 } (x) + a1∈M (x)(τ k-1 (x), a 1 )I {τ (τ k-1 ,a1)} (x) (7) 
. . . Let τ 0 = σ.

A c c e p t e d m a n u s c r i p t

Proposition 2.1 Let τ and σ be sampling plans, such that τ σ; then τ k , k ∈ N defined in (7), is an admissible sampling plan and τ k τ k+1 are direct successors. Also, if τ is admissible ∀x, there exists k ∈ N, such that τ (x) = τ k (x). Thus τ (x) = lim k→∞ τ k (x), a.s.

Proof: For j = 1, a ∈ A, h ∈ M {τ 1 a} = {τ 1 a} ∩ {σ a} = h(a)-1 i=1 {τ 1 a} ∩ {σ = a i } ∪ {τ 1 a} ∩ {σ = a} = h(a)-1 i=1 {σ = a i } ∪ {τ = a} ∩ {σ = a} ∈ B a {τ 1 ah} = {τ 1 ah} ∩ {σ ah} ∪ {τ 1 ah} ∩ {σ ah} = {σ ah} ∪ {σ = a} ∩ {τ ah} ∈ B a
Thus, we obtain that τ 1 is an admissible sampling plan. Now suppose that the result is true for τ j-1 , it is easy to see that it is true for j, following a similar scheme. 2

Theorem 2.2 Let {X a , B a } a∈A be a submartingale. Let τ , σ be admissible sampling plans such that, τ σ. Suppose that ∃k ∈ N, such that, τ (x) = τ k (x), ∀x ∈ X (for τ k defined in ( 7)), and ∀j = 0,

• • • , k, E(|X τj |) < +∞, then E(X τ /B σ ) ≥ X σ . (8) 
Proof: First we see that condition (8) holds for k = 1. Since τ 1 defined in ( 5) is a direct successor of σ, we can apply Theorem 2.1, and we obtain E(X τ1 /B σ ) ≥ X σ . On the other hand, for any j = 1, • • • , k, since τ j-1 , τ j are direct successors, we obtain

E(X τj /B τj-1 ) ≥ X τj-1 . (9) 
Finally, suppose that E(X τj /B σ ) ≥ X σ is true for k -1; we prove that is true for k. By induction hypothesis and equation ( 9), it follows that

E(X τ /B σ ) = E[E(X τ k /B τ k-1 )/B σ ] ≥ E(X τ k-1 /B σ ) ≥ X σ .

3 Uniform Integrability

Now we prove the OST under conditions based on the concepts related with uniform integrability. We introduce some necessary concepts about sampling plans.

For a = (a 1 , • • • , a j ) ∈ A, let h(a) = j be the number of sub-samples of the sample sequence a, and let g(a) = j i=1 a j be the total number of observations of the sample sequence a. Definition 3.1 Let τ be a sampling plan; let us define k τ , ∀k ∈ N, as follows: 

k τ = τ h(τ ) ≤ k τ k = (τ 1 , ..., τ k ) h(τ ) > k. Remark 2 1. k τ , ∀k ∈ N,
Z σ dP ----→ n→∞ B Z σ dP. ( 13 
)
On the other hand,

| B∩(h(σ)≤k) (Z τ -Z k τ )I {τ = k τ } dP | ≤ B∩(h(σ)≤k) |(Z τ -Z k τ )|dP ----→ k→∞ 0, (14) 
and

B∩(h(σ)>k) Z τ I {τ = k τ } dP ----→ k→∞ 0. ( 15 
)
Taking limits in equation ( 12), it follows that

E(Z τ /B σ ) ≥ Z σ a.s. (16)
2. W a is an integrable random variable, such that W a ≤ 0, ∀a ∈ A. For τ , we consider the sampling plan j τ defined in 3.2. Then,

E(|Wj τ |) ≤ a∈A g(a)≤j E(|W a |) < +∞, ∀a ∈ A
and by the Fatou's lemma we deduce that W τ is integrable. Also, for B ∈ B σ , k ∈ N, since B ∩ (h(σ) ≤ k) ∈ B k σ , and from Theorem 2.2, we have

B∩(h(σ)≤k) W σ dP = B∩(h(σ)≤k) W k σ dP ≤ B∩(h(τ )≤k) W k τ dP = B∩(h(τ )≤k) W τ dP. ( 17 
)
By the dominated convergence theorem, it follows that ∀B ∈ B σ ,

B W σ dP ≤ B W τ dP. (18) 
From equations ( 16) and ( 18) the result follows. we can deduce from ( 20) and ( 21) that E(X τ /B a ) ≥ X a a.s.
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  4) follows from {τ n = a} ∩ {τ n+1 = ak} = {τ n = a} ∩ {τ n+1 ak} ∈ B a , since τ n and τ n+1 are direct successors.

  is an admissible sampling plan with almost k-stages and k τ ----→ k→∞ τ a.s. 2. k+1 τ and k τ are direct successors, ∀k ∈ N. 3. B k τ ⊂ B k+1 τ , ∀k ∈ N.

  consider B∩(h(σ)≤k) Z σ dP . Since Z σ is an integrable r.v., and σ is an admissible sampling plan, i.e. I {h(σ)≤k} ----→ k→∞ 1 a.s., we obtainZ σ I {h(σ)≤k} a.s. ----→ k→∞ Z σ ,and by the dominated convergence theorem B∩(h(σ)≤k)
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  Theorem 3.2 Let {X b , B b } b∈A be a submartingale and τ an admissible sampling plan, such that, τ a, for some a ∈ A. Let us suppose1. E(h(τ )) < +∞. 2. E(|X bk -X b |/B b ) ≤ c < +∞, in {τ b}, with b a, and k ∈ M . Then E(X τ /B a ) ≥ X a a.s. Proof: For b ∈ A, X b = h(b) i=1 (X b i -X b i-1 ), with X () = 0. Thus, |X τ | ≤ h(τ ) i=h(a) |X iτ -X i-1τ | + |X a h(a)-1 | = h(τ ) i=h(a) Z iτ + |X a h(a)-1 | = Y τ + |X a h(a)-1 | (19)

  ∀k ≥ h(a), |X k τ | ≤ Y τ + |X a h(a)-1 | is an integrable random variable, since X a h(a)-1 is integrable and E(Y τ ) ≤ cE(h(τ )) < +∞. For all k ≥ h(a), by Theorem 2.2, we have thatE(X k τ /B a ) ≥ X a . τ -X k τ )I {τ = k τ } /B a ) = 0. (21) Since E(X τ /B a ) = E(X k τ /B a ) + E((X τ -X k τ )I {τ = k τ } /B a ),

  Theorem 2.1 Let {X a , B a } a∈A be a submartingale. Let {τ n } n ∈N be an admissible sampling plan sequence, such that ∀n ∈ N τ n τ n+1 are direct successors and E(|X τn |) < +∞. Then {X τn , B τn } n∈N is a submartingale.

Definition 3.2 Let τ be a sampling plan, let us define k τ , ∀k ∈ N, as follows:

Remark 3 k τ , ∀k ∈ N, is an admissible sampling plan with almost k observations, and k τ ----→ k→∞ τ a.s.

Theorem 3.1 Let {X a , B a } a∈A be a submartingale with a last element. Let τ and σ be sampling plans. Then

1. Z a , is a uniformly integrable martingale. Let τ be a sampling plan; we consider the admissible sampling plans that we have defined in Definition 3.1, that is, k τ , ∀k ∈ N. By the optional projection theorem (see [START_REF] Fenoy | Sufficiency in sequentially planned decision procedures[END_REF]), Z k τ = E(X ∞ /B k τ ), Z τ = E(X ∞ /B τ ); and Z τ , Z k τ are integrable random variables, ∀k ∈ N:

Hence, {Z k τ , B k τ } k∈N is a convergence uniformly integrable martingale, and its limit is (12)