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Accuracy of one-dimensional design

procedures for finned-tube heat exchangers

G. Comini ∗, S. Savino

University of Udine, Department of Energy and Fluid Machinery,
Via delle Scienze 208, 33100 Udine, Italy

Abstract

In design procedures for finned-tube heat exchangers a common simplification is
assuming that the temperature distribution is one-dimensional. In this way, the
heat exchanger can be schematized as a thermal circuit with three thermal re-
sistances in series: internal convection to the tube, conduction through the tube
wall, and external convection through the fin assembly. The aim of this work is
to quantitatively evaluate the accuracy of one-dimensional schematizations in the
context of finned-tube heat exchangers utilized in air-conditioning applications. To
this purpose, first three-dimensional benchmark results are obtained employing an
in-house FEM code. Afterwards, a simplified two-dimensional model is proposed
and validated through a comparison with the three-dimensional results. Finally, the
simplified two-dimensional model and the commercial software COMSOL Multi-
physics are used to conduct a parametric study aimed at assessing the accuracy
of one-dimensional schematizations. The main conclusion is that the accuracy of
one-dimensional design procedures is quite acceptable for practical purposes, since
it leads to errors in the estimation of heat flow rates that are always less than 2 %.
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Nomenclature

A area m2

Bie external Biot number, Bie = heδf/k

cp specific heat at constant pressure J/(kg K)

D external tube diameter m

h convection coefficient W/(m2 K)

k thermal conductivity W/(m K)

L length m

ṁ′′ specific mass flow rate kg/(m2s)

n outward normal coordinate m

p pressure Pa

P pitch m

q heat flow rate W

q′′ heat flux W/m2

r radius and radial coordinate m

R thermal resistance K/W

Re Reynolds number, Re = ρuinfD/µ

S spacing m

t temperature ◦ C

T dimensionless temperature, T = (t − tinf)/(tfi − tinf )

v velocity vector

u, v, w velocity components m/s

x, y, z Cartesian coordinates m

δ thickness m

∆ dimensionless temperature depression [Eqs. (12) and (13)]

η̄ overall surface efficiency

µ dynamic viscosity kg/(s m)

ξx vorticity component in the x-direction rad/s
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 Ωx dimensionless vorticity component in the x-direction, Ωx = ξxD/uinf

ρ density kg/m3

ϑ time s

ξ vorticity vector

Subscripts

b at the fin-base

e external

f fluid; fin

h convective

H internal b.c. of the third kind (convection)

i internal

inf inflow

k conductive

l longitudinal

m bulk [Equation (5)]

max maximum

n in the normal direction

out outflow

t tube; transverse

T internal b.c. of the first kind (temperature)

tot total

u uncovered

x in the x-direction

τ in the tangential direction

Superscripts

− average value
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1 Introduction

In air-conditioning applications, heat exchangers are often of the tube-fin type,

since the addition of the fins greatly increases the heat transfer area on the

air-side. However, because of the finite conduction resistance of the fins, the av-

erage temperature difference between the external surface and the air-stream

(and, consequently, the associated heat flow rate) decreases. A suitable mea-

sure of the resulting performance of the fin-assembly is provided by the overall

surface efficiency. The overall surface efficiency is defined as the ratio between

the actual rate of heat transfer from the entire surface and the maximum rate

that would exist if the fin surface, as well as the exposed portion of the outer

tube, were maintained at the same base temperature [1,2].

Standard design procedures for finned-tube heat exchangers rely on the knowl-

edge of the overall surface efficiency, as well as on the assumption of ap-

proximately one-dimensional heat transport from the internal to the exter-

nal fluid. In this way, the heat exchanger can be represented in terms of a

one-dimensional thermal circuit with three thermal resistances in series: in-

ternal convection to the tube, conduction through the tube wall, and external

convection through the fin assembly [2,3]. Furthermore, the one-dimensional

schematization implies that the temperature at the fin root is uniform and

equal to the outer surface temperature of the tube. This simplification paves

the way to the analytical estimation of overall surface efficiencies in many

situations of technical interest [1,2,4].

Unfortunately, the fin-base temperature is different from the primary surface

temperature, being lower if the fin is cooled or higher if the fin is heated.
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Consequently, starting from the pioneering work of Sparrow and Hennecke [5],

the effects on heat transfer of the fin-base temperature depression have been

repeatedly investigated. However, because of limited computer capabilities

in past numerical studies and analytical difficulties in theoretical studies, the

investigations of Sparrow and Lee [6], Suryanarayana [7], Look and Kang [8,9],

and Juca and Prata [10] considered only fins of rectangular profile attached to

a plane wall. Moreover, the accent was on the fin-base temperature depression

and, consequently, reference was usually made to relatively thick fins and

to relatively large Biot numbers. In this context, persistent warnings were

issued on the necessity of two-dimensional design methods. In one instance, for

example, the errors in heat transfer predictions resulting from two-dimensional

effects were found to be as large as 80 percent [7]. On the contrary, referring

to compact heat exchangers of the plate-fin type with straight thin fins of

rectangular profile, Huang and Shah [11] found out that, in most situations of

practical interest, the relaxation of the one-dimensional assumption does not

lower more than 4 % the overall surface efficiency. In accordance with these

findings, Thomas [12] showed that the large differences between one- and two-

dimensional results reported in [7] were not really due to conduction effects

but to a poor approximation of the average temperature of the external wall.

With the aim of establishing the reliability of the boundary conditions of the

first kind that are commonly used in numerical investigations, in a most recent

study Comini and Savino [13] investigated the effect of the temperature non-

uniformity at the base of a fin. The conclusion reached was that the imposition

of a uniform base temperature leads to an error, evaluated in terms of heat

flow rates, of the order of 1 %.

In the present study the aim is the quantitative evaluation of the accuracy
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of the entirely one-dimensional approximation in the design of finned-tube

heat exchangers utilized in air-conditioning applications. To this purpose, first

benchmark three-dimensional results are obtained by employing an in-house

FEM code whose reliability had already been demonstrated through examples

of application concerning compact heat exchangers of both the plate-fin and

the tube-fin type [14,15,16]. Under the customary assumptions of steady state

heat transfer, constant thermal conductivity of the fins, and negligible heat

transfer from the outer edges, the simulations are carried out for a typical

one-row tube-fin heat exchanger in the range of Reynolds numbers: 250 ≤
Re ≤ 1000.

Afterwards, a simplified two-dimensional model is defined to replace the orig-

inal three-dimensional domain with a two-dimensional, axial-symmetric do-

main representing a circular fin having the same exchange area, and sub-

jected to suitably defined ”equivalent” thermal boundary conditions. The two-

dimensional axial-symmetric conduction problem is solved using the commer-

cial software Comsol Multiphysics [17], and the procedure is validated through

comparisons with the three-dimensional results.

Finally, using the two-dimensional model, a parametric study is conducted to

assess the accuracy of one-dimensional schematizations in design procedures

for air-conditioning applications. Starting from the geometrical parameters

corresponding to the three-dimensional geometry, the fin equivalent length,

the outer tube diameter, the tube thickness, the fin thickness and the fin

spacing are varied in the range of interest for commercial finned-tube heat

exchangers. In the parametric study, reference is made to the optimal value

of the external Biot number (Bie = 5 · 10−5, in this case), which gives the

maximum heat flow through a fin of given weight [18], and to two additional
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Biot numbers, one order of magnitude smaller and one order of magnitude

larger than the optimal value.

2 Three-dimensional model

For an incompressible, laminar flow of air, treated as a constant property fluid,

forced convection is governed by the continuity equation, the Navier-Stokes

equations, and the energy equation. The continuity and the Navier-Stokes

equations can be written as

∇ · v = 0 (1)

ρ
∂v

∂ϑ
+ ρv · ∇v = µ∇2v −∇p (2)

In the absence of volumetric heating and of significant viscous dissipation, the

energy equation can be written as

ρcp
∂t

∂ϑ
+ ρcpv · ∇t = k∇2t (3)

In the above equations v is the velocity vector, ϑ is the time, ρ is the density,

µ is the dynamic viscosity, p is the pressure, cp is the specific heat at constant

pressure, k is the thermal conductivity, and t is the temperature.

In the numerical solution, convergence to steady state is obtained through a

pseudo-stationary process. As illustrated in Figure 1 (a), the computational

domain encompasses both the fluid and the solid region, even if the Navier-

Stokes equations are solved only in the fluid region. The energy equation

is solved in both the fluid and the solid region, assuming v = 0 in the solid

region and referring to the pertinent thermophysical properties in each region.
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To complete the formulation, appropriate conditions must be imposed on all

boundaries.

For the Navier-Stokes equations, we impose the usual no-slip conditions v = 0

on solid walls. At inflow, we prescribe the inlet distributions of velocity u =

uinf ; v = w = 0. At outflow we impose the conditions ∂u/∂n = ∂v/∂n =

∂w/∂n = 0 where n is the outward normal to the boundary surface. On sym-

metry boundaries we impose the conditions vn = ∂vτ/∂n = 0 where vn is the

velocity component in the normal direction and vτ is the velocity component

in the tangential direction. In the context of the numerical solution [19,20],

appropriate boundary conditions for pressure are ∂p/∂n = 0 applied on the

whole boundary, with the value p = 0 specified at least in one point of the

domain to fix the pressure level.

For the energy equation, at the internal surface of the tube we use either

the convection boundary condition k ∂t/∂n + hi(t − tfi) = 0 or, to simulate

a very large value of hi, the temperature boundary condition: t = tfi. At

inflow we prescribe the inlet distribution of fluid temperature t = tinf , while

at outflow and on symmetry boundaries we impose the boundary condition

of the second kind ∂t/∂n = 0. It must be pointed out that the continuity of

temperature between the fluid and the solid region is already ensured by the

model, since the interface temperature is obtained from the equation itself.

Thus, no temperature boundary condition is needed at fluid-solid interfaces.

8
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2.1 External convection coefficient

The external convection coefficient he can be evaluated by post-processing

the results of the numerical solution. To this purpose, the heat flow rate is

evaluated as

q = (ρuinfAinf )cp(tm,out − tinf) (4)

where Ainf is the free inflow area, tinf is the inflow temperature, Aout = Ainf

is the outflow area and tm,out is the bulk temperature at outflow

tm,out =

∫
Aout

v · n t dA∫
Aout

v · n dA
(5)

The log-mean temperature difference is calculated from its definition

∆tlm =
(tm,out − tfi) − (tinf − tfi)

ln[(tm,out − tfi)/(tinf − tfi)]
(6)

by assuming, as it is very often the case in practice, that the internal fluid

changes of phase. The ratio between the heat flow rate and the log-mean

temperature yields the total thermal resistance

Rtot =
∆tlm

q
(7)

Finally, in accordance with the one-dimensional schematization illustrated in

Figure 1 (b) and the standard definition of the total thermal resistance

Rtot = Rhi + Rk + Rhe =
1

2πriLhi

+
1

2πLk
ln

rb

ri

+
1

η̄heAtot

(8)
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the external convection coefficient is estimated as

he =

[
η̄Atot

(
∆tlm

q
− 1

2πriLhi

− 1

2πLk
ln

rb

ri

)]−1

(9)

In the above equations L is the tube length, ri and rb are, respectively, the

internal and the external tube radii, and Atot = Af +Au is the total exchange

area, sum of fin and uncovered-tube areas.

The overall efficiency is given by the expression

η̄ =
q

qmax

(10)

where

q =
∫

Atot

q′′ dA (11)

is the actual rate of heat transfer through the total area Atot, and qmax is

the maximum possible rate obtained from Eq. (11) by setting the thermal

conductivity of the solid to a very large value, and simultaneously decreasing

the internal convection coefficient by a suitable amount corresponding to the

thermal resistance of the tube wall.

2.2 Benchmark results

Benchmark results concerning the one-row tube-fin heat exchanger illustrated

in Figure 1 (a) have been obtained employing the in-house FEM code illus-

trated in [14,15,16]. Geometrical parameters, chosen with reference to com-

mercial tube-fin heat exchangers, are: outer tube diameter D = 2rb = 10

mm, tube thickness δt = 0.5 mm, fin spacing Sf = 2 mm, fin thickness δf =
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0.2 mm, transverse pitch Pt = 20 mm and longitudinal pitch Pl = 30 mm.

Because of the existing lateral and vertical symmetries, the computational

domain reduces to the yellow-shaded zone which encompasses both the solid

(aluminum alloy) and the external fluid (air). The thermal conductivity of the

aluminum alloy is k = 120 W/(m K). The values of solid density and spe-

cific heat capacity have been chosen is such a way to speed-up convergence of

pseudo-stationary simulations.

The external flow is laminar and can be considered incompressible. The ther-

mophysical properties of air are: ρ = 1.19 kg/m3, µ = 1.81·10−5 kg/(m s), cp =

1.007 kJ/(kg K), and k = 2.58 ·10−2 W/(m K). The inlet velocities uinf vary in

the range from 0.385 m/s to 1.52 m/s yielding Reynolds numbers, referred to

the tube diameter: Re = ρuinfD/µ in the range from 250 to 1000. As already

stated, two different boundary conditions are utilized at the internal surface

of the tube: convective boundary conditions with a value of the convection co-

efficient hi = 1000 W/(m2K) chosen in the lowest range of practical interest,

and boundary conditions of prescribed temperature t = tfi to simulate a very

large value of hi.

Before the final runs, the distance of grid points and the time-step were de-

creased until further reductions did not lead to changes in the external convec-

tion coefficient he smaller than 1%. The final grid consisted of 90,129 nodes

and 83,676 eight-node hexahedral elements and the final time step ∆ϑ was

equal to 0.0001 s.

The velocity and temperature field are better visualized by referring to dimen-

sionless variables. The dimensionless temperature can be conveniently defined

as T = (t− tinf)/(tfi − tinf), while the dimensionless vorticity can be defined
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as Ωx = ξxD/uinf with reference to the ξx component of the vorticity vector

ξ = ∇× v.

The vorticity, for all Reynolds numbers investigated, is illustrated in Figure 2

(not to scale in the vertical direction). Two representative values (one positive

and one negative) of Ωx have been considered. A comparison of the vorticity

plots clearly indicates that the intensity of the vortices increase with Re and

from the inflow to the outflow boundary. As expected, the presence of the tube

leads to the formation of streamwise vortices in the vicinity of the fin walls.

The streamwise vortices have a strong influence on the distributions of tem-

peratures, which are visualized in Figures 3 and Figures 4 (not to scale in the

vertical direction). In the solid region, the fin temperatures decrease with the

distance from the tube and increase from inflow to outflow. In the flow region,

temperatures increase significantly from inflow to outflow. In both regions,

temperatures are lower in Figure 3 (with convective boundary conditions)

than in Figure 4 (with boundary conditions of prescribed temperature).

The circumferentially averaged temperature distributions in the tube are vi-

sualized in Figure 5 with reference to convective boundary conditions (on the

left) and to boundary conditions of prescribed temperature (on the right). Ob-

viously no temperature depression on the internal surface of the tube r = ri

can arise with boundary conditions of prescribed temperature. Conversely, the

boundary conditions of prescribed temperature lead to the largest temperature

depression at the fin-base r = rb (as can be inferred by the larger temperature

gradients in that zone). Finally, it must be pointed out that the temperature

distributions in the fins are not visualized since they become one-dimensional

at a very short distance from the fin-base.
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The dimensionless depressions can be conveniently expressed as

∆i =
ti − t̄i
∆tlm

(12)

at r = ri, and

∆b =
tb − t̄b
∆tlm

(13)

at r = rb. In the above equations, reference is made to the log-mean temper-

ature difference ∆tlm, the circumferentially averaged solutions ti and tb, and

the circumferentially and axially averaged mean temperatures t̄i and t̄b. The

differences ∆i and ∆b are plotted vs. the dimensionless axial coordinate z/D:

in Figure 6 (a) with reference to the convective boundary condition, and in

Figure 6 (b) with reference to the boundary condition of prescribed tempera-

ture. As can be seen, the temperature depressions are negligible for practical

purposes being always smaller than 0.02% at r = ri, and 0.8% at r = rb.

External convection coefficients he are calculated for every simulation as de-

scribed in Subsection 2.1. The resulting external Biot numbers, referred to

the fin-thickness (Bie = heδf/k) are reported in Table 1 as a function of the

Reynolds number for convective H and temperature T boundary conditions

at the internal tube surface.

As can be seen, for both H and T boundary conditions at the internal tube

surface, the external Biot number Bie is several orders of magnitude smaller

than 1, thus justifying the one-dimensional behavior of fin temperatures [4]. It

is also interesting to note that the optimum Biot number Bie = 5·10−5, which

gives the maximum heat flow through a fin of given weight [18], is well within

the range of Reynolds number investigated.
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3 Two-dimensional model

The benchmark results concerning Figure 1 (a) can be utilized to identify the

two-dimensional model illustrated in Figure 1 (c). As can be seen, the three-

dimensional domain, which encompasses both the fluid and the solid region,

is reduced to an axial-symmetric domain, which encompasses only the solid

region. The definition of the equivalent outer radius re =
√

PlPt/π ensures

that the fin portion served by each tube is the same in both models. The

energy equation reduces to

∂

∂r

(
kr

∂t

∂r

)
+ r

∂

∂z

(
k

∂t

∂z

)
= 0 (14)

and the previously evaluated convection coefficient he yields the coupling be-

tween the surface of the fin-assembly and the air, whose temperature is as-

sumed to be equal to the constant value tfe = tfi − ∆tlm. (The steady-state

version of the equation is utilized since the direct stationary COMSOL solver

is the most efficient in the present case).

3.1 Validation

The computational axial-symmetric domain, yellow-shaded in Figure 1 (c), is

characterized by an equivalent outer radius re = 13.82 mm. The other geo-

metrical parameters and the thermal conductivity of the solid do not change

with respect to the three-dimensional model illustrated in Subsection 2.2. Fur-

thermore, the mapped grid of two-dimensional bilinear elements matches the

corresponding three-dimensional grid.

The temperature distributions in the tube are visualized in Figure 7 with
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reference to convective boundary conditions (on the left) and to boundary

conditions of prescribed temperature (on the right). As can be seen, there

is a very good qualitative agreement between the two-dimensional results of

Figure 7 with the temperature distributions of Figure 5 obtained from the

circumferentially averaged three-dimensional calculations. A more quantita-

tive comparison is presented in Table 2 where the differences (q3D − q2D)/q3D,

between the computed values of the heat flow rates obtained from the 3D

and the 2D calculations, are reported as a function of the Reynolds number

for convective H and temperature T boundary condition at the internal tube

surface. As can be seen, the percent differences are always less than 2%, i.e.

quite acceptable for practical purposes.

3.2 Parametric study

Using the two-dimensional model, a parametric study has been conducted to

assess the accuracy of one-dimensional schematizations in design procedures

for air-conditioning applications. Starting from the configuration described in

Subsection 2.2, and with reference to the optimal value of the external Biot

number (Bie = 5 · 10−5), five geometrical parameters (fin equivalent radius

re, tube outer diameter rb, tube thickness δt, fin thickness δf and fin spacing

Sf) are varied in the range of interest for commercial air-conditioning heat

exchangers.

The most important quantity for design purposes is the heat flow rate ex-

changed by the fin assembly. Thus, in Figure 8 we consider the differences

(q2D − q1D)/q2D between values of the heat flow rates obtained from 2D and

1D calculations. These differences are plotted versus the dimensionless ratios
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φ between the value of a geometrical parameter and its initial value in the con-

figuration of Subsection 2.2 (indicated by the subscript 0). As can be seen, the

differences are always less than 0.01%, both for convective [Figure 8 (a)] and

temperature [Figure 8 (b)] boundary condition at the internal tube surface.

Two additional values of the external Biot numbers have also been considered:

Bie = 5 · 10−4 and Bie = 5 · 10−6. The changes in (q2D − q1D)/q2D brought

about by the changes in Bie were always less than 0.015%. Thus it can be

concluded that one- and two-dimensional design procedures lead to negligible

differences in the calculation of heat flow rates in the whole range of interest

for finned-tube exchangers utilized in air-conditioning applications.

4 Conclusions

A simplified two-dimensional model, based on the COMSOL Multiphysics soft-

ware, has been first defined to analyze finned-tube heat exchangers utilized in

air-conditioning applications. The simplified model has been validated trough

comparisons with three-dimensional benchmark results from an in-house FEM

code. It has thus been found out that the differences (q3D − q2D)/q3D between

heat flow rates obtained from 3D and the 2D calculations are always less than

2%, i.e. quite acceptable for practical purposes.

Afterwards, using the simplified model, a parametric study has been conducted

to assess the accuracy of one-dimensional schematizations utilized routinely

in design procedures. The external Biot number has been varied in the range:

5 · 10−6 ≤ Bie ≤ 5 · 10−4, while five geometrical parameters (fin equivalent

radius, tube outer diameter, tube thickness, fin thickness and fin spacing)

have been varied in the range from 0.25 to 2 with respect to the initial value.
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It has thus been found that the differences (q2D − q1D)/q2D between values of

the heat flow rates obtained from 2D and 1D calculations are always less than

0.015%, i.e. negligible for practical purposes.

The conclusion is that one-dimensional schematizations can be conveniently

utilized in the design of heat exchangers used in air conditioning operations.

With respect to three-dimensional calculations they lead, in fact, to errors in

the estimation of heat flow rates that are less than 2% in the whole range of

interest for finned-tube exchangers utilized in air-conditioning applications.
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Figure Captions

• Figure 1: Schematization of a one-row tube-fin heat exchanger (a) three-

dimensional domain, (b) one-dimensional thermal circuit and (c) two-dimensional

axial-symmetric domain. Computational domains are not to scale.

• Figure 2: One-row tube-fin exchanger: streamwise component of the vortic-

ity vector at different Reynolds numbers. Red colour: positive value; blue

colour: negative value.

• Figure 3: One-row tube-fin exchanger: temperature fields at different Reynolds

numbers for hi = 1000 W/(m2K). Red colour: maximum value; blue colour:

minimum value.

• Figure 4: One-row tube-fin exchanger: temperature fields at different Reynolds

numbers for t = tfi at the internal tube wall. Red colour: maximum value;

blue colour: minimum value.

• Figure 5: Three-dimensional, circumferentially averaged temperature distri-

butions in the tube wall for for hi = 1000 W/(m2K) on the left and t = tfi

at the internal tube wall on the right.

• Figure 6: Dimensionless temperature differences vs. dimensionless axial co-

ordinate: (a) at r = ri for hi = 1000 W/(m2K), and (b) at r = rb for t = tfi

at the internal tube wall.

• Figure 7: Two-dimensional temperature distributions in the tube wall for

hi = 1000 W/(m2K) on the left and t = tfi at the internal tube wall on the

right.

• Figure 8: Percent differences (q2D − q1D)/q2D between values of heat flow

rates from 2D and 1D calculations plotted against the dimensionless geo-

metrical ratios φ for: (a) convective and (b) temperature boundary condition

at the internal tube surface.
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Table 1
External Biot numbers as a function of the Reynolds number for the one-row heat
exchanger of Figure 1 (a). The subscripts denote convective H and temperature T
boundary conditions at the internal tube surface.

Re 250 500 750 1000

(Bie)H 3.6·10−5 4.4·10−5 5.1·10−5 5.8 ·10−5

(Bie)T 4.5·10−5 5.0·10−5 5.6·10−5 6.2 ·10−5

21



 

 

 

ACCEPTED MANUSCRIPT 

 

Table 2
Percent differences between computed values of the heat flow rates obtained from
3D and 2D calculations as a function of the Reynolds number. The subscripts denote
convective H and temperature T boundary conditions at the internal tube surface.

Re 250 500 750 1000

[(q3D − q2D)/q3D]H 0.7 % 1.1 % 1.7 % 1.8 %

[(q3D − q2D)/q3D]T 0.9 % 1.3 % 1.7 % 1.9 %
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