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Abstract

The single-index model is known to offer a flexible way to model a
variety of high-dimensional real-world phenomena. However, despite
its relative simplicity, this dimension reduction scheme is faced with
severe complications as soon as the underlying dimension becomes
larger than the number of observations (“p larger than n” paradigm).
To circumvent this difficulty, we consider the single-index model es-
timation problem from a sparsity perspective using a PAC-Bayesian
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approach. On the theoretical side, we offer a sharp oracle inequality,
which is more powerful than the best known oracle inequality for other
common procedures of single-index recovery. The proposed method
is implemented by means of the reversible jump Markov chain Monte
Carlo technique and its performance is compared with that of stan-
dard procedures.

Index Terms — Single-index model, sparsity, regression estimation,
PAC-Bayesian, oracle inequality, reversible jump Markov chain Monte
Carlo method.

2010 Mathematics Subject Classification: 62G08, 62G05, 62G20.

1 Introduction

Let Dn = {(X1, Y1), . . . , (Xn, Yn)} be a collection of independent observa-
tions, distributed as a generic independent pair (X, Y ) taking values in R

p×R

and satisfying E|Y | < ∞. Throughout, we let P be the distribution of the
pair (X, Y ) and note that the sample Dn is distributed according to P⊗n.
In the regression function estimation problem, the mission is to use the data
Dn in order to construct an estimate rn : Rp → R of the regression function
r(x) = E[Y |X = x]. In the classical parametric linear model, one assumes

Y = θ⋆TX+W,

where θ⋆ = (θ⋆1, . . . , θ
⋆
p)

T ∈ R
p and E[W|X] = 0. Here

r(x) = θ⋆Tx =

p
∑

j=1

θ⋆jxj

is a linear function of the components of x = (x1, . . . , xp)
T . More generally,

we might define
Y = f ⋆(θ⋆TX) +W, (1.1)

where f ⋆ is an unknown univariate measurable function. This is the cele-
brated single-index model, which is recognized as a particularly useful vari-
ation of the linear formulation and can easily be interpreted: the model
changes only in the direction θ⋆, and the way it changes in this direction is
described by the function f ⋆. This semiparametric paradigm has applica-
tions to a variety of fields, such as discrete choice analysis in econometrics
and dose response models in biometrics, where high-dimensional regression
models are often employed. There are too many references to be included
here, but the monographs of McCullagh and Nelder [30] and Horowitz [24]
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together with the references [22, 25, 18, 15, 26] will provide the reader with
good introductions to the general subject area.

One of the main advantages of the single-index model is its supposed abil-
ity to deal with the so-called curse of dimensionality (Bellman [5]), which
means that estimating the regression function is especially difficult when-
ever the dimension p of X becomes large. As a matter of fact, the optimal
mean squared convergence rate n−2k/(2k+p) for the estimation of a k-times
differentiable regression function converges to zero dramatically slowly if the
dimension p of X is large compared to k. This leads to an unsatisfactory
accuracy of estimation for moderate sample sizes, and the only possibility to
circumvent this problem is to impose additional assumptions on the regres-
sion function. Thus, in particular, if r(x) = f ⋆(θ⋆Tx) holds for every x ∈ R

p,
then the underlying structural dimension of the model is 1 (instead of p) and
the estimation of r can hopefully be performed easier. In this regard, Gäıffas
and Lecué show in [19] that the optimal rate of convergence over the single-
index model class is n−2k/(2k+1) (instead of n−2k/(2k+p)), thereby answering a
conjecture of Stone [36].

Nevertheless, practical estimation of the link function f ⋆ and the index θ⋆

still requires a degree of statistical smoothing. Perhaps the most common
approach to reach this goal is to use a nonparametric smoother (for instance,
a kernel or a local polynomial method) to construct an approximation f̂n of
f ⋆, then substitute f̂n into an empirical version Rn(θ) of the mean squared
error R(θ) = E[Y − f(θTX)]2, and finally choose θ̂n to minimize Rn(θ) (see
e.g. Härdle, Hall and Ichimura [22] and Delecroix, Hristache and Patilea
[18] where the procedure is discussed in detail). The rationale behind this
type of two-stage approach is that it produces a root-n consistent estimate
of θ, thereby devolving the difficulty to the simpler problem of computing
a good estimate for the one-dimensional function f ⋆. However, the relative
simplicity of this strategy is faced with severe difficulties when the dimension
p becomes larger than the number of observations n. Indeed, finding a good
estimate for θ⋆ necessitates to solve a minimization problem which turns
out to be inefficient as soon as p is larger than n. In fact, this drawback
considerably reduces the ability of the single-index model to behave as an
effective dimension reduction technology.

On the other hand, there is empirical evidence that many signals in high-
dimensional spaces admit a sparse representation. As an example, wavelet
coefficients of images often exhibit exponential decay, and a relatively small
subset of all wavelet coefficients allow for a good approximation of the original
image. Such signals have few nonzero coefficients and can therefore be de-
scribed as sparse in the signal domain (see for instance [7]). Similarly, recent
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advances in high-throughput technologies such as microarrays and aCGH ar-
rays indicate that, despite the huge dimensionality of problems, only a small
number of genes may play a role in determining the outcome and be required
to create good predictors ([39] for instance). Sparse estimation is playing an
increasingly important role in the statistics and machine learning communi-
ties, and several methods have recently been developed in both fields, which
rely upon the notion of sparsity (e.g. penalty methods like the Lasso and
Dantzig selector, see [37, 9, 8, 6, 13] and the references therein).

In the present document, we consider the single-index model (1.1) from a
sparsity perspective, i.e., we assume that θ⋆ has only a few coordinates dif-
ferent from 0. In the dimension reduction scenario we have in mind, the
ambient dimension p can be very large, much larger than the sample size n,
but we believe that the representation is sparse, i.e., that very few coordi-
nates of θ⋆ are nonzero. This assumption is helpful at least for two reasons:
if p is large and the number of nonzero coordinates is small enough, then the
model is easier to interpret and its efficient estimation becomes possible. Our
modus operandi will rely on the so-called PAC-Bayesian approach, originally
developed in the classification context by Shawe-Taylor and Williamson [35],
McAllester [29] and Catoni [10, 11]. This strategy was further investigated
for regression by Audibert [4] and Alquier [1] and, more recently, worked out
in the sparsity framework by Dalalyan and Tsybakov [16, 17] and Alquier
and Lounici [2]. The main message of [16, 17, 2] is that aggregation with a
properly chosen prior is able to deal nicely with the sparsity issue. Contrary
to procedures such as the Lasso, the Dantzig selector and other penalized
least square methods, which are provably consistent under rather restrictive
assumptions on the Gram matrix associated to the predictors, PAC-Bayesian
aggregation requires only minimal assumptions on the model. Besides, it is
computationally feasible even for a large p and exhibits good statistical per-
formance.

The paper is organized as follows. In Section 2, we first set out some notation
and introduce the single-index estimation procedure. Then we state our
main result (Theorem 2.1), which offers a sparsity oracle inequality more
powerful than the best known oracle inequality for other common procedures
of single-index recovery. Section 3 is devoted to the practical implementation
of the estimate via a reversible jump Markov chain Monte Carlo (MCMC)
algorithm, and to numerical experiments on both simulated and real-life data
sets. In order to preserve clarity, proofs have been postponed to Section 4
and the description of the MCMC method in its full length is given in the
Appendix Section 5.

Note finally that our techniques extend to the case of multiple-index models,
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of the form
Y = f ⋆(θ⋆T1 X, . . . , θ⋆Tm X) +W,

where the underlying structural dimension m is supposed to be larger than
1 but substantially smaller than p. However, to keep things simple, we let
m = 1 and leave the reader the opportunity to adapt the results to the more
general situation m ≥ 1.

2 Sparse single-index estimation

We start this section with some notation and basic requirements.

2.1 Notation

Throughout the document, we assume that the recorded data Dn is gen-
erated according to the single-index model (1.1). More precisely, for each
i = 1, . . . , n,

Yi = f ⋆(θ⋆TXi) +Wi,

where f ⋆ is a univariate measurable function, θ⋆ is a p-variate vector, and
W1, . . . ,Wn are independent real random variables satisfying E[Wi|Xi] = 0.
Within this framework, E[Wi] = 0. However, the distribution of Wi (in par-
ticular, the variance) may depend on Xi. We shall not precisely specify this
dependence, and will rather require the following condition on the common
distribution of the Wi.

Assumption N. There exist two positive constants σ and L such that, for
all integers k ≥ 2,

E
[

|W|k |X
]

≤ k!

2
σ2Lk−2.

Observe that AssumptionN holds ifW = σ(X)ε, where ε is a standard Gaus-
sian random variable independent of X and σ(X) is almost surely bounded.

Throughout the document, we will require that the random variable X is
almost surely bounded by a constant which, without loss of generality, can
be taken equal to 1. Moreover, it will also be assumed that the link function
f ⋆ is bounded by some known positive constant C. Thus, denoting by ‖X‖∞
the supremum norm of X and by ‖f ⋆‖∞ the functional supremum norm of
f ⋆, we set
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Assumption B. The condition ‖X‖∞ ≤ 1 holds almost surely and there
exists a positive constant C larger than 1 such that ‖f ⋆‖∞ ≤ C.

Let ‖θ‖1 denote the ℓ1-norm of the vector θ = (θ1, . . . , θp)
T , i.e., ‖θ‖1 =

∑p
j=1 |θj|. Without loss of generality, it will be assumed throughout the

document that the index θ⋆ belongs to Sp
1,+, where Sp

1,+ is the set of all
θ ∈ R

p with ‖θ‖1 = 1 and θj(θ) > 0, where j(θ) is the smallest j ∈ {1, . . . , p}
such that θj 6= 0.

In order to approximate the link function f ⋆, we shall use the vector space
F spanned by a given countable dictionary of measurable functions {ϕj}∞j=1.
Put differently, the approximation space F is the set of (finite) linear com-
binations of functions of the dictionary. Each ϕj of the collection is assumed
to be defined on [−1, 1] and take values in [−1, 1]. To avoid getting into too
much technicalities, we will also assume that each ϕj is differentiable and
such that, for some positive constant ℓ, ‖ϕ′

j‖∞ ≤ ℓj. This assumption is
typically satisfied by the (non-normalized) trigonometric system

ϕ1(t) = 1, ϕ2j(t) = cos(πjt), ϕ2j+1(t) = sin(πjt), j = 1, 2, . . .

Finally, for any f : Rp → R and θ ∈ Sp
1,+, we let

R(θ, f) = E

[

(

Y − f(θTX)
)2
]

and denote by

Rn(θ, f) =
1

n

n
∑

i=1

(

Yi − f(θTXi)
)2

the empirical counterpart of R(θ, f) based on the sample Dn.

2.2 Estimation procedure

We are now in a position to describe our estimation procedure. The method
which is presented here is a version of the Gibbs estimate introduced by
Catoni in [10, 11]. The approach strongly relies on the choice of a probability
measure π on Sp

1,+ × F , called the prior, which in our framework should
enforce the sparsity properties of the target regression function. With this
objective in mind, we first let

dπ(θ, f) = dµ(θ)dν(f),

i.e., we assume implicitly that the distribution over the indexes is independent
of the distribution over the link functions. With respect to the parameter θ,
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we put

dµ(θ) =

p
∑

i=1

2−i
∑

I⊂{1,...,p},|I|=i

(

p

i

)−1

dµI(θ)

1− (1
2
)p

, (2.1)

where |I| denotes the cardinality of I and dµI(θ) is the uniform probability
measure on the set

Sp
1,+(I) = {θ = (θ1, . . . , θp) ∈ Sp

1,+ : θj = 0 if and only if j /∈ I}.

We see that Sp
1,+(I) may be interpreted as the set of active coordinates in the

single-index regression of Y on X, and note that the prior on Sp
1,+ is a convex

combination of uniform probability measures on the subsets Sp
1,+(I). The

weights of this combination depend only on the size of the active coordinate
subset I. As such, the value |I| characterizes the sparsity of the model: the
smaller |I|, the sparser r(x) = E[Y |X = x]. Thus, the larger the number of
active coordinates, the fewer the magnitude of the prior, in accordance with
the sparsity idea.

The choice of the prior dν(f) on F is more involved. To begin with, we
define, for any positive integer M ≤ n and all r > 0,

BM (r) =

{

(β1, . . . , βM) ∈ R
M :

M
∑

j=1

j|βj| ≤ r and βM 6= 0

}

.

Next, we let, for each positive integer M ≤ n, FM(C) ⊂ F be the image of
BM (C + 1) by the map

ΦM : RM → F
(β1, . . . , βM) 7→ ∑M

j=1 βjϕj .

Finally, we define νM(df) on the set FM(C) as the image of the uniform
measure on BM(C + 1) induced by the map ΦM , and take

dν(f) =

n
∑

M=1

10−MdνM(f)

1− ( 1
10
)n

. (2.2)

Some comments are in order here. At first, we note once and for all that
the prior π is defined on Sp

1,+ × Fn(C) endowed with its canonical Borel σ-
field. The integer M should be interpreted as a measure of the “dimension”
of the function f—the larger M , the more complex the function—and the
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prior dν(f) adapts again to the sparsity idea by penalizing large-dimensional
functions f . The coefficients 2−i and 10−M which appear in (2.1) and (2.2)
show that the influence of the cardinality of I (that is, the sparsity) decreases
geometrically with |I|. Note however that the values 2 and 10, which have
been chosen because of their good practical results, are somehow arbitrary.
They could be, in all generality, replaced by more general coefficients α and
β at the price of a more technical analysis. Finally, we observe that, for each
f =

∑M
j=1 βjϕj ∈ FM(C),

‖f‖∞ ≤
M
∑

j=1

|βj| ≤ C + 1.

Now, let λ be a positive real number, called the temperature parameter
hereafter. The estimates θ̂λ and f̂λ of θ and f , respectively, are simply
obtained by randomly drawing

(θ̂λ, f̂λ) ∼ ρ̂λ,

where ρ̂λ is the so-called Gibbs posterior distribution defined by

dρ̂λ
dπ

(θ, f) =
exp [−λRn(θ, f)]

∫

exp [−λRn(θ, f)] dπ(θ, f)

.

[The notation dρ̂λ/dπ means the density of ρ̂λ with respect to π.] The es-
timate (θ̂λ, f̂λ) has a simple interpretation. Firstly, the level of significance
of each pair (θ, f) is assessed via its least square error performance on the
data Dn. Secondly, a Gibbs distribution with respect to the prior π en-
forcing those pairs (θ, f) with the most empirical significance is assigned on
the space Sp

1,+ × Fn(C). Finally, the resulting estimate is just a random
realization (conditional to the data) of this Gibbs posterior distribution.

2.3 Sparsity oracle inequality

For any I ⊂ {1, . . . , p} and any positive integer M ≤ n, we set

(

θ⋆I,M , f ⋆
I,M

)

∈ arg min
(θ,f)∈Sp

1,+(I)×FM (C)
R(θ, f).

The main result of the paper is the following theorem. Here and everywhere,
the wording “with probability 1 − ε” means the probability evaluated with
respect to the distribution P⊗n of the data Dn and the conditional probability
measure ρ̂λ.
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Theorem 2.1 Assume that Assumption N and Assumption B hold. Set
w = 8(2C + 1)max[L, 2C + 1] and take

λ =
n

w + 2 [(2C + 1)2 + 4σ2]
. (2.3)

Then, for all ε ∈ ]0, 1[, with probability at least 1− 2ε we have

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆) ≤ C inf
I ⊂ {1, . . . , p}
1 ≤ M ≤ n

{

R(θ⋆I,M , f ⋆
I,M)− R(θ⋆, f ⋆)

+
M log(Cn) + |I| log

(

pn
|I|

)

+ log
(

1
ε

)

n

}

,

where C is a positive constant function of L, C, σ and ℓ only.

Theorem 2.1 can be simply interpreted. Indeed, we see that if there is a
“small” I and a “small” M such that R(θ⋆I,M , f ⋆

I,M) is close to R(θ⋆, f ⋆), then

R(θ̂λ, f̂λ) is also close to R(θ⋆, f ⋆) up to terms of the order 1/n. However, if no
such I or M exists, then one of the terms M log(Cn)/n and |I| log(pn/|I|)/n
starts to dominate, thereby deteriorating the general quality of the bound. A
good approximation with a “small” I is typically possible when θ⋆ is sparse
or, at least, when it can be approximated by a sparse parameter. On the
other hand, a good approximation with a “small” M is possible if f ⋆ has a
sufficient degree of regularity.

To illustrate the latter remark, assume for instance that {ϕj}∞j=1 is the (non-
normalized) trigonometric system and suppose that the target f ⋆ belongs to
the Sobolev ellipsoid

W
(

k,
6(C + 1)2

π2

)

=

{

f ∈ L2([−1, 1]) : f =

∞
∑

j=1

βjϕj and

∞
∑

j=1

j2kβ2
j ≤ 6(C + 1)2

π2

}

for some unknown regularity parameter k ≥ 2 (see, e.g., Tsybakov [38]).
Observe that, in this context, the approximation sets FM(C) take the form

FM(C)

=

{

f ∈ L2([−1, 1]) : f =

M
∑

j=1

βjϕj ,

M
∑

j=1

j|βj| ≤ C + 1 and βM 6= 0

}

.
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We insist on the fact that the regularity parameter k is assumed to be un-
known, and this casts our results in the so-called adaptive setting. The
following additional assumption will be needed:

Assumption D. The random variable θ⋆TX has a probability density on
[−1, 1], bounded by a positive constant B.

Last, we let I⋆ be the set I such that θ⋆ ∈ Sp
1,+(I) and set ‖θ⋆‖0 = |I⋆|.

Corollary 2.1 Assume that Assumption N, Assumption B and Assumption
D hold. Suppose also that f ⋆ belongs to the Sobolev ellipsoid W(k, 6(C +
1)2/π2), where k ≥ 2 is an unknown regularity parameter. Set w = 8(2C +
1)max[L, 2C +1] and take λ as in (2.3). Then, for all ε ∈ ]0, 1[, with proba-
bility at least 1− 2ε we have

R(θ̂λ, f̂λ)− R(θ⋆, f ⋆)

≤ C







(

log(Cn)

n

) 2k
2k+1

+
‖θ⋆‖0 log

(

pn
‖θ⋆‖0

)

n
+

log
(

1
ε

)

n







, (2.4)

where C is a positive constant function of L, C, σ, ℓ and B only.

We see that, asymptotically, the leading term on the right-hand side of in-

equality (2.4) is (log(n)/n)
2k

2k+1 . This is the minimax rate of convergence over
a Sobolev class, up to a log(n). However, when n is “small” and θ⋆ is not
sparse (i.e., ‖θ⋆‖0 is not “small”), the term ‖θ⋆‖0 log(pn/‖θ⋆‖0)/n starts to
emerge and cannot be neglected. Put differently, in large dimension, the es-
timation of θ⋆ itself is a problem—this phenomenon is not taken into account
by asymptotic studies.

Finally, it should be stressed that the choice of λ in Theorem 4.3 and Corol-
lary 2.1 is not the best possible and may eventually be improved, at the price
of a more technical analysis however.

3 Implementation and numerical results

A series of experiments were conducted, both on simulated and real-life data
sets, in order to assess the practical capabilities of the proposed method and
compare its performance with that of standard procedures. Prior to analysis,
we first need to discuss its concrete implementation, which has been carried
out via a Markov Chain Monte Carlo (MCMC) method.
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3.1 Implementation via reversible jump MCMC

The use of MCMC methods has become a popular way to compute Bayesian
estimates. For an introduction to the domain, one should refer to the compre-
hensive monograph of Marin and Robert [27] and the references therein. Im-
portantly, in this computational framework, an adaptation of the well-known
Hastings-Metropolis algorithm to the case where the posterior distribution
gives mass to several models of different dimensions was proposed by Green
[20] under the name Reversible Jump MCMC (RJMCMC) method. In the
PAC-Bayesian setting, MCMC procedures were first considered by Catoni
[10], whereas Dalalyan and Tsybakov [16, 17] and Alquier and Lounici [2]
explore their practical implementation in the sparse context using Langevin
Monte Carlo and RJMCMC, respectively. Regarding the single-index model,
MCMC algorithms were used to compute Bayesian estimates by Antoniadis,
Grégoire and McKeague [3] and, more recently, by Wang [40], who develop
a fully Bayesian method to analyse the single-index model. Our implemen-
tation technique is close in spirit to the one of Wang [40].

As a starting point for the approximate computation of our estimate, we
used the RJMCMC method of Green [20], which is in fact an adaptation of
the Hastings-Metropolis algorithm to the case where the objective posterior
probability distribution (here, ρ̂λ) assigns mass to several different models.
The idea is to start from an initial given pair (θ(0), f (0)) ∈ Sp

1,+ ×Fn(C) and

then, at each step, to iteratively compute (θ(t+1), f (t+1)) from (θ(t), f (t)) via
the following chain of rules:

• Sample a random pair (τ (t), h(t)) according to some proposal conditional
density kt( . |(θ(t), f (t))) with respect to the prior π;

• Take

(θ(t+1), f (t+1)) =

{

(τ (t), h(t)) with probability αt

(θ(t), f (t)) with probability 1− αt,

where

αt = min

(

1,
dρ̂λ
dπ (τ

(t), h(t))× kt
(

(θ(t), f (t))|(τ (t), h(t))
)

dρ̂λ
dπ (θ

(t), f (t))× kt ((τ (t), h(t))|(θ(t), f (t)))

)

.

This protocol ensures that the sequence {(θ(t), f (t))}∞t=0 is a Markov chain
with invariant probability distribution ρ̂λ (see e.g. Marin and Robert [27]).
A usual choice is to take kt ≡ k, so that the Markov chain is homogeneous.
However, in our context, it turns out to be more convenient to let kt = k1
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if t is odd and kt = k2 if t is even. Roughly, k1 is akin to modify the
index θ(t) while k2 will essentially act on the link function f (t). While the
ideas underlying the proposal densities k1 and k2 are quite simple, a precise
description in its full length turns out to be more technical. Thus, in order
to preserve the readability of the paper, the explicit construction of k1 and
k2 has been postponed to the Appendix Section 5.

3.2 Simulation study

In this subsection, we illustrate the finite-sample performance of the pre-
sented estimation method on three synthetic data sets and compare its pre-
dictive capabilities with those of three standard statistical procedures. In
all our experiments, we took as dictionary the (non-normalized) trigonomet-
ric system {ϕj}∞j=1 and denote accordingly the resulting regression function

estimate defined in Section 2 by F̂Fourier. In accordance with the order of
magnitude indicated by the theoretical results, we set λ = 4n. This choice
can undoubtedly be improved a bit but, as the numerical results show, it
seems sufficient for our procedure to be fairly competitive.

The tested competing methods are the Lasso (Tibshirani [37]), the stan-
dard regression kernel estimate (Nadaraya [31, 32] and Watson [41], see also
Tsybakov [38]), and the estimation strategy discussed in Härdle, Hall and
Ichimura [22]. While the procedure of Härdle, Hall and Ichimura is specifi-
cally tailored for single-index models, the Lasso is designed to deal with the
estimation of sparse linear models. On the other hand, the nonparametric
kernel method is one of the best options when no obvious assumption (such
as the single-index one) can be made on the shape of the targeted regression
function.

We briefly recall that, for a linear model of form Y = θ⋆TX+W, the Lasso
estimate takes the form F̂Lasso(x) = θ̂TLassox, where

θ̂Lasso ∈ arg min
θ∈Rp

{

1

n

n
∑

i=1

(

Yi − θTXi

)2
+ ℓ

p
∑

j=1

|bj |
}

and ℓ > 0 is a regularization parameter. Theoretical results (see e.g. Bunea,
Wegkamp and Tsybakov [8]) indicate that ℓ should be of the order ℓ⋆ =
σ
√

log(p)/n. Throughout, σ is assumed to be known, and we let ℓ = ℓ⋆/3,
since this choice is known to give good practical results. The Nadaraya-
Watson kernel estimate will be denoted by F̂NW. It is defined as

F̂NW(x) =

∑n
i=1 YiKh(x−Xi)
∑n

i=1Kh(x−Xi)
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for some nonnegative kernel K on R
p and Kh(z) = K(z/h)/h. In the ex-

periments, we let K be the Gaussian kernel K(z) = exp(−zTz) and chose
the smoothing parameter h via a classical leave-one-out procedure on the
grid G = {0.75k, k = 0, . . . , ⌊log(n)⌋}, see, e.g., Györfi, Kohler, Krzyżak and
Walk [21] (notation ⌊.⌋ stands for the floor function). Finally, the estimation
procedure advocated in Härdle, Hall and Ichimura [22] takes the form

F̂HHI(x) =

∑n
i=1 YiGĥ

(

θ̂THHI(x−Xi)
)

∑n
i=1Gĥ

(

θ̂THHI(x−Xi)
)

for some kernel G on R, with Gh(z) = G(z/h)/h and

(

ĥ, θ̂HHI

)

∈ arg min
h>0,θ∈Rp

n
∑

i=1

[

Yi −
∑

j 6=i YjGh

(

θT (Xj −Xi)
)

∑

j 6=iGh (θT (Xj −Xi))

]2

.

All calculations were performed with the Gaussian kernel. We used the grid
G for the optimization with respect to h, whereas the best search for θ was
implemented via a pathwise coordinate optimization.

The various methods were tested for the general regression model

Yi = F (Xi) +Wi, i = 1, . . . , n,

for three different choices of F (single-index or not) and two values of n,
namely n = 20 and n = 100. In each of these models, the observations Xi

take values in R
p, with p = 10, and have independent components uniformly

distributed on [−1, 1]. The noise variables W1, . . . ,Wn are independently
distributed according to a Gaussian N (0, σ2), with σ = 0.2. It is worth
pointing out that, for n = 20, p and n are of the same order, which means
that the setting is nonasymptotic. It is essentially in this case that the
use of sparse estimates, which reduce the variance, is expected to improve
the performance over generalist methods. On the other hand, the situation
n = 100 and p = 10 is less difficult and mimics the asymptotic setting.

The three examined functions F (x), for x = (x1, . . . , x10), were the following
ones:

[Model 1] A linear model FLinear(x) = 2θ⋆Tx.

[Model 2] A single-index function FSI(x) = 2(θ⋆Tx)2 + θ⋆Tx.

[Model 3] A purely nonparametric model FNP(x) = 2|x2|
√

|x1| − x3
3,

13



n = 20 F̂Fourier F̂HHI F̂Lasso F̂NW
FLinear median 0.091 0.297 0.051 0.354

mean 0.104 0.320 0.056 0.400
s.d. 0.083 0.129 0.028 178

FSI median 0.083 0.268 0.388 0.287
mean 0.264 0.298 0.508 0.296
s.d. 0.408 0.158 0.361 0.158

FNP median 0.503 0.406 1.480 0.378

mean 0.576 0.420 1.389 0.376

s.d. 0.318 0.180 0.471 0.126

n = 100 F̂Fourier F̂HHI F̂Lasso F̂NW
FLinear median 0.051 0.056 0.043 0.129

mean 0.059 0.058 0.045 0.247
s.d. 0.011 0.011 0.006 0.039

FSI median 0.047 0.054 0.352 0.227
mean 0.049 0.055 0.348 0.230
s.d. 0.009 0.012 0.075 0.058

FNP median 0.316 0.356 0.809 0.314

mean 0.318 0.360 0.822 0.3284
s.d. 0.062 0.062 0.122 0.058

Table 1: Numerical results for the simulated data, with n = 20 and n = 100.
The characters in bold indicate the best performance.

where, in the first and second model, θ⋆ = (0.5, 0.5, 0, . . . , 0)T . Thus, in
[Model 1] and [Model 2], even if the ambient dimension is p = 10, the
intrinsic dimension of the model is in fact equal to 2.

For each experiment, a learning set of size n was generated to compute the
estimates and their performance, in terms of mean squared prevision error,
was evaluated on a separate test set of the same size. The results are shown
in Table 1. As each experiment was repeated 20 times, this table also reports
the median, the mean and the standard deviation (s.d.) of the prevision error
of each procedure.

Some comments are in order. First, we note without surprise that

1. The Lasso performs well in the linear setting [Model 1].

2. The single-index methods FFourier and FHHI are the best ones when
the targeted regression function really involves a single-index model
[Model 2].
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3. The kernel method gives good results in the purely nonparametric set-
ting [Model 3].

Interestingly, we note that F̂Fourier provides slightly better results than the
single-index-tailored estimate F̂HHI, especially in the nonasymptotic setting
(n = 20, p = 10). This observation can be easily explained by the fact that
F̂HHI does not integrate any sparsity information regarding the parameter
θ⋆, whereas F̂Fourier tries to focus on the dimension of the active coordinates,
which is equal to 2 in this simulation.

As an important result, we observe in Table 1 that F̂Fourier is the most
robust of all the tested procedures. In fact, this method provides results in
the linear and purely nonparametric cases which are close to the best ones.
Consequently, in the next subsection, we decided to give up F̂HHI and focus
on the comparison of F̂Fourier with F̂Lasso and F̂NW on real-life data sets.

3.3 Real data

The real-life data sets used in this second series of experiments are from two
different sources. The first one, called AIR-QUALITY data (n = 111,
p = 3), has been first used by Chambers, Cleveland, Kleiner and Tukey
[12] and has been later considered as a benchmark in the study and com-
parison of single-index models (see, for example, Antoniadis, Grégoire and
McKeague [3] and Wang [40], among others). This data set originated from
an environmental study relating n = 111 ozone concentration measures to
p = 3 meteorological variables, namely wind speed, temperature and radi-
ation. The data is available as a package in the software R [34], which we
employed in all the numerical experiments. The programs are available upon
request from the authors.

The second category of data arises from the UC Irvine Machine Learning
Repository http://archive.ics.uci.edu/ml, where the following packages
have been downloaded from:

• AUTO-MPG (Quinlan [33], n = 392, p = 7).

• CONCRETE (Yeh [42], n = 1030, p = 8).

• HOUSING (Harrison and Rubinfeld [23], n = 508, p = 13).

• SLUMP-1, SLUMP-2 and SLUMP-3, which correspond to the con-
crete slump test data introduced by Yeh [43] (n = 51, p = 7). Since
there are 3 different output variables Y in the original data set, we
created a single experiment for each of these variables (1 refers to the

15



output “slump”, 2 to the output “flow” and 3 to the output ’28-day
Compressive Strength’).

• WINE-RED and WINE-WHITE (Cortez, Cerdeira, Almeida, Ma-
tos and Reis [14], n = 1599, n = 4898, p = 11).

We refer to the above-mentioned references for a precise description of the
meaning of the variables involved in these data sets. For homogeneity rea-
sons, all data were normalized to force the input variables to lie in [−1, 1]—in
accordance with the setting of our method—and to ensure that all output
variables have standard deviation 0.5. In two data-sets (AIR-QUALITY

and AUTO-MPG) there were some missing values and the corresponding
observations were simply removed.

For each method and each of the nine data sets, we split the observations in a
learning and a test set of equal sizes, computed the estimate on the learning
set, evaluated the prediction error on the test set, and repeated this protocol
20 times. The results are summarized in Table 2.

We see that all the tested methods provide reasonable results on most data
sets. The Lasso procedure is very competitive, especially in the nonasymp-
totic framework. In particular, it is interesting to note that, according to
these numerical results, there seems to be no particular advantage in using
a single-index model in place of a linear one for the AIR-QUALITY data,
which is a standard benchmark in the single-index literature.

The estimation procedure F̂Fourier offers the best performance in terms of pre-
diction error in 3 out of 9 experiments (AUTO-MPG, CONCRETE and
HOUSING) and provides the worst result in only 1 experiment (WHINE-

WHITE). Besides, when it is not the best, the method F̂Fourier is very close
to the best one, as for example in SLUMP-3 and WINE-RED. As an il-
lustrative example, the plot of the resulting fit of our procedure to the data
set AUTO-MPG is shown in Figure 1.

Thus, as a general conclusion to this experimental section, we may say that
our PAC-Bayesian oriented procedure has an excellent predictive ability, even
in nonasymptotic/high-dimensional situations. It is fast, robust, and exhibits
performance at the level of the gold standard Lasso.
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Data set F̂Fourier F̂Lasso F̂NW
AIR QUALITY median 0.146 0.136 0.160
n = 111 mean 0.150 0.137 0.156
p = 3 s.d. 0.043 0.033 0.037
AUTO-MPG median 0.044 0.071 0.066
n = 392 mean 0.047 0.072 0.069
p = 7 s.d. 0.010 0.009 0.007
CONCRETE median 0.088 0.109 0.098
n = 1030 mean 0.090 0.108 0.097
p = 8 s.d. 0.008 0.005 0.57
HOUSING median 0.076 0.091 0.088
n = 508 mean 0.074 0.090 0.094
p = 13 s.d. 0.012 0.011 0.022
SLUMP-1 median 0.217 0.214 0.225
n = 51 mean 0.233 0.219 0.228
p = 7 s.d. 0.069 0.027 0.030
SLUMP-2 median 0.182 0.167 0.223
n = 51 mean 0.192 0.168 0.215
p = 7 s.d. 0.047 0.027 0.026
SLUMP-3 median 0.061 0.052 0.131
n = 51 mean 0.066 0.053 0.136
p = 7 s.d. 0.024 0.011 0.026
WINE-RED median 0.174 0.171 0.184
n = 1599 mean 0.172 0.171 0.183
p = 11 s.d. 0.010 0.007 0.009
WINE-WHITE median 0.191 0.185 0.184

n = 4898 mean 0.202 0.186 0.185

p = 11 s.d. 0.045 0.004 0.004

Table 2: Numerical results for the real-life data sets. The characters in bold

indicate the best performance.

4 Proofs

4.1 Preliminary results

Throughout this section, we let π be the prior probability measure on R
p ×

Fn(C) equipped with its canonical Borel σ-field, which is defined in Section 2.
Recall that Fn(C) ⊂ F and that, for each f ∈ Fn(C), we have ‖f‖∞ ≤ C+1.
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Figure 1: AUTO-MPG example: Estimated link function by the method

F̂Fourier.

We start with three technical lemmas. Lemma 4.1 is a version of Bernstein’s
inequality, whose proof can be found in Massart [28, Chapter 2, inequality
(2.21)]. Lemma 4.2 is due to Catoni [11, page 4]. For a random variable Z,
the notation (Z)+ means the positive part of Z.

Lemma 4.1 Let T1, . . . , Tn be independent real-valued random variables. As-
sume that there exist two positive constants v and w such that, for all integers
k ≥ 2,

n
∑

i=1

E
[

(Ti)
k
+

]

≤ k!

2
vwk−2.

Then, for any ζ ∈ ]0, 1/w[,

E

[

exp

(

ζ

n
∑

i=1

[Ti − ETi]

)]

≤ exp

(

vζ2

2(1− wζ)

)

.

Given a measurable space (E, E) and two probability measures µ1 and µ2 on
(E, E), we denote by K(µ1, µ2) the Kullback-Leibler divergence of µ1 with
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respect to µ2, defined as

K(µ1, µ2) =







∫

log

(

dµ1

dµ2

)

dµ1 if µ1 ≪ µ2,

∞ otherwise.

Lemma 4.2 Let (E, E) be a measurable space. For any probability measure
µ on (E, E) and any measurable function h : E → R such that

∫

(exp ◦h)dµ <
∞, we have

log

∫

(exp ◦h)dµ = sup
m

(
∫

hdm−K(m,µ)

)

, (4.1)

where the supremum is taken over all probability measures on (E, E) and, by
convention, ∞−∞ = −∞. Moreover, as soon as h is upper-bounded on the
support of µ, the supremum with respect to m on the right-hand side of (4.1)
is reached for the Gibbs distribution g given by

dg

dµ
(e) =

exp [h(e)]
∫

(exp ◦h)dµ
, e ∈ E.

Lemma 4.3 Assume that AssumptionN holds. Set w = 8(2C+1)max[L, 2C+
1] and take

λ ∈
]

0,
n

w + [(2C + 1)2 + 4σ2]

[

.

Then, for all ε ∈ ]0, 1[ and any data-dependent probability measure ρ̂ abso-
lutely continuous with respect to π we have, with probability at least 1− ε,

R(θ̂, f̂)− R(θ⋆, f ⋆) ≤

1

1− λ[(2C+1)2+4σ2]
n−wλ

(

Rn(θ̂, f̂)− Rn(θ
⋆, f ⋆) +

log
(

dρ̂
dπ
(θ̂, f̂)

)

+ log
(

1
ε

)

λ

)

,

where the pair (θ̂, f̂) is distributed according to ρ̂.

Proof of Lemma 4.3. Fix θ ∈ Sp
1,+ and f ∈ Fn(C). The proof starts

with an application of Lemma 4.1 to the random variables

Ti = −
(

Yi − f(θTXi)
)2

+
(

Yi − f ⋆(θ⋆TXi)
)2

, i = 1, . . . , n.
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Note that these random variables are independent, identically distributed,
and that

n
∑

i=1

ET 2
i

=

n
∑

i=1

E

{

[

2Yi − f(θTXi)− f ⋆(θ⋆TXi)
]2 [

f(θTXi)− f ⋆(θ⋆TXi)
]2
}

=
n
∑

i=1

E

{

[

2Wi + f ⋆(θ⋆TXi)− f(θTXi)
]2 [

f(θTXi)− f ⋆(θ⋆TXi)
]2
}

≤ 2

n
∑

i=1

E

{

[

4W2
i + (2C + 1)2

] [

f(θTXi)− f ⋆(θ⋆TXi)
]2
}

≤ 2
[

(2C + 1)2 + 4σ2
]

n
∑

i=1

E

{

[

f(θTXi)− f ⋆(θ⋆TXi)
]2
}

(by Assumption N)

= v,

where we set

v = 2n[(2C + 1)2 + 4σ2] [R(θ, f)−R(θ⋆, f ⋆)] .

More generally, for all integers k ≥ 3,

n
∑

i=1

E
[

(Ti)
k
+

]

≤
n
∑

i=1

E

{

∣

∣2Yi − f(θTXi)− f ⋆(θ⋆TXi)
∣

∣

k ∣
∣f(θTXi)− f ⋆(θ⋆TXi)

∣

∣

k
}

=
n
∑

i=1

E

{

∣

∣2Wi + f ⋆(θ⋆TXi)− f(θTXi)
∣

∣

k ∣
∣f(θTXi)− f ⋆(θ⋆TXi)

∣

∣

k
}

≤ 2k−1

n
∑

i=1

E

{

[

2k|Wi|k + (2C + 1)k
]

(2C + 1)k−2
∣

∣f(θTXi)− f ⋆(θ⋆TXi)
∣

∣

2
}

.
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Therefore, by Assumption N,

n
∑

i=1

E
[

(Ti)
k
+

]

≤
n
∑

i=1

[

22k−2k!σ2Lk−2 + 2k−1(2C + 1)k
]

(2C + 1)k−2 [R(θ, f)−R(θ⋆, f ⋆)]

= v ×
[

22k−2k!σ2Lk−2 + 2k−1(2C + 1)k
]

(2C + 1)k−2

2[(2C + 1)2 + 4σ2]

≤ v × 8k−2k! max
[

Lk−2, (2C + 1)k−2
]

(2C + 1)k−2

2

=
k!

2
vwk−2,

with w = 8(2C + 1)max[L, 2C + 1].

Thus, for any temperature parameter λ ∈ ]0, n/w[, setting ζ = λ/n, we may
write by Lemma 4.1

E

{

exp [λ (R(θ, f)−R(θ⋆, f ⋆)− Rn(θ, f) +Rn(θ
⋆, f ⋆))]

}

≤ exp

(

vλ2

2n2(1− wλ
n
)

)

.

Therefore, using the definition of v, we obtain

E

{

exp

[(

λ− λ2 [(2C + 1)2 + 4σ2]

n(1− wλ
n
)

)

(R(θ, f)− R(θ⋆, f ⋆))

+ λ (−Rn(θ, f) +Rn(θ
⋆, f ⋆))− log

(

1

ε

)

]}

≤ ε.

Next, we use a standard PAC-Bayesian approach (Catoni [10, 11], Audibert
[4] and Alquier [1]). Let us remind the reader that π is a prior probability
measure on the set Sp

1,+ × Fn(C). We have

∫

E

{

exp

[(

λ− λ2 [(2C + 1)2 + 4σ2]

n(1− wλ
n
)

)

(R(θ, f)− R(θ⋆, f ⋆))

+ λ (−Rn(θ, f) +Rn(θ
⋆, f ⋆))− log

(

1

ε

)

]}

dπ(θ, f) ≤ ε

21



and consequently, using Fubini’s Theorem,

E

{

∫

exp

[(

λ− λ2 [(2C + 1)2 + 4σ2]

n(1− wλ
n
)

)

(R(θ, f)− R(θ⋆, f ⋆))

+ λ (−Rn(θ, f) +Rn(θ
⋆, f ⋆))− log

(

1

ε

)

]

dπ(θ, f)

}

≤ ε.

Therefore, for any data-dependent posterior probability measure ρ̂ absolutely
continuous with respect to π, adopting the convention ∞× 0 = 0,

E

{

∫

exp

[(

λ− λ2 [(2C + 1)2 + 4σ2]

n(1− wλ
n
)

)

(R(θ, f)− R(θ⋆, f ⋆))

+ λ (−Rn(θ, f) +Rn(θ
⋆, f ⋆))

− log

(

dρ̂

dπ
(θ, f)

)

− log

(

1

ε

)

]

dρ̂(θ, f)

}

≤ ε.

Recalling that P⊗n stands for the distribution of the sample Dn, the latter
inequality can be more conveniently written as

EDn∼P⊗nE(θ̂,f̂)∼ρ̂

{

exp

[(

λ− λ2 [(2C + 1)2 + 4σ2]

n(1− wλ
n
)

)

(

R(θ̂, f̂)−R(θ⋆, f ⋆)
)

+ λ
(

−Rn(θ̂, f̂) +Rn(θ
⋆, f ⋆)

)

− log

(

dρ̂

dπ
(θ̂, f̂)

)

− log

(

1

ε

)

]}

≤ ε.

Thus, using the elementary inequality exp(λx) ≥ 1R+(x) we obtain, with
probability at most ε,
(

1− λ [(2C + 1)2 + 4σ2]

n(1− wλ
n
)

)

(

R(θ̂, f̂)−R(θ⋆, f ⋆)
)

≥ Rn(θ̂, f̂)− Rn(θ
⋆, f ⋆) +

log
(

dρ̂

dπ
(θ̂, f̂)

)

+ log
(

1
ε

)

λ
,

where the probability is evaluated with respect to the distribution P⊗n of the
data Dn and the conditional probability measure ρ̂. Put differently, letting

λ ∈
]

0,
n

w + [(2C + 1)2 + 4σ2]

[

,
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we have, with probability at least 1− ε,

R(θ̂, f̂)− R(θ⋆, f ⋆) ≤

1

1− λ[(2C+1)2+4σ2]
n−wλ

(

Rn(θ̂, f̂)− Rn(θ
⋆, f ⋆) +

log
(

dρ̂

dπ
(θ̂, f̂)

)

+ log
(

1
ε

)

λ

)

.

This concludes the proof of Lemma 4.3. �

4.2 Proof of Theorem 2.1

The proof relies on an application of Lemma 4.3 with ρ̂ = ρ̂λ (the Gibbs
distribution) as posterior distribution. More precisely, we know that, with
probability larger than 1− ε,

R(θ̂λ, f̂λ)− R(θ⋆, f ⋆) ≤

1

1− λ[(2C+1)2+4σ2]
n−wλ



Rn(θ̂λ, f̂λ)−Rn(θ
⋆, f ⋆) +

log
(

dρ̂λ
dπ

(θ̂λ, f̂λ)
)

+ log
(

1
ε

)

λ



 ,

where the probability is evaluated with respect to the distribution P⊗n of
the data Dn and the conditional probability measure ρ̂λ. Observe that

log

(

dρ̂λ
dπ

(θ̂λ, f̂λ)

)

= log









exp
[

−λRn(θ̂λ, f̂λ)
]

∫

exp [−λRn(θ, f)] dπ(θ, f)









= −λRn(θ̂λ, f̂λ)− log

∫

exp [−λRn(θ, f)] dπ(θ, f).

Consequently, with probability at least 1− ε,

R(θ̂λ, f̂λ)− R(θ⋆, f ⋆) ≤
1

λ
(

1− λ[(2C+1)2+4σ2]
n−wλ

)

(

− log

∫

exp [−λRn(θ, f)] dπ(θ, f)

− λRn(θ
⋆, f ⋆) + log

(

1

ε

)

)

.
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Using Lemma 4.2 we deduce that, with probability at least 1− ε,

R(θ̂λ, f̂λ)− R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
ρ̂

{

∫

Rn(θ, f)dρ̂(θ, f)− Rn(θ
⋆, f ⋆)

+
K(ρ̂, π) + log

(

1
ε

)

λ

}

,

where the infimum is taken over all probability measures on Sp
1,+ × Fn(C).

In particular, letting M(I,M) be the set of all probability measures on
Sp
1,+(I)× FM(C), we have, with probability at least 1− ε,

R(θ̂λ, f̂λ)− R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}
1 ≤ M ≤ n

inf
ρ̂∈M(I,M)

{

∫

Rn(θ, f)dρ̂(θ, f)− Rn(θ
⋆, f ⋆)

+
K(ρ̂, π) + log

(

1
ε

)

λ

}

.

Next, observe that, for ρ̂ ∈ M(I,M),

K(ρ̂, π) = K(ρ̂, µ⊗ ν) = K(ρ̂, µI ⊗ νM ) + log

[(

1−
(

1
2

)p) (
1−

(

1
10

)n) ( p
|I|

)

2−|I|10−M

]

≤ K(ρ̂, µI ⊗ νM) + log

[ (

p
|I|

)

2−|I|10−M

]

.

Therefore, with probability at least 1− ε,

R(θ̂λ, f̂λ)− R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}
1 ≤ M ≤ n

inf
ρ̂∈M(I,M)

{

∫

Rn(θ, f)dρ̂(θ, f)−Rn(θ
⋆, f ⋆)

+

K(ρ̂, µI ⊗ νM) + log

[

( p

|I|)
2−|I|10−M

]

+ log
(

1
ε

)

λ

}

. (4.2)

Applying Lemma 4.1 again with Ti = (Yi−f(θTXi))
2−(Yi−f ⋆(θ⋆TXi))

2 and
following the same method, we obtain, for any data-dependent distribution
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ρ̂ ∈ M(I,M), with probability at least 1− ε,

∫

Rn(θ, f)dρ̂(θ, f)− Rn(θ
⋆, f ⋆)

≤
(

1 +
λ [(2C + 1)2 + 4σ2]

n− wλ

)(
∫

R(θ, f)dρ̂(θ, f)− R(θ⋆, f ⋆)

)

+

K(ρ̂, µI ⊗ νM) + log

[

( p

|I|)
2−|I|10−M

]

+ log
(

1
ε

)

λ
. (4.3)

Combining inequalities (4.2) and (4.3), we may write, with probability at
least 1− 2ε,

R(θ̂λ, f̂λ)− R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}
1 ≤ M ≤ n

inf
ρ̂∈M(I,M)

{

(

1 +
λ [(2C + 1)2 + 4σ2]

n− wλ

)(
∫

R(θ, f)dρ̂(θ, f)− R(θ⋆, f ⋆)

)

+ 2

K(ρ̂, µI ⊗ νM) + log

[

( p

|I|)
2−|I|10−M

]

+ log
(

1
ε

)

λ

}

. (4.4)

For any subset I of {1, . . . , p}, any positive integer M ≤ n and any δ, γ ∈
]0, 1/n], let the probability measure ρI,M,δ,γ be defined as

dρI,M,δ,γ(θ, f) = dρ1I,M,δ(θ)dρ
2
I,M,γ(f),

with
dρ1I,M,δ

dµI
(θ) ∝ 1[‖θ−θ⋆

I,M
‖1≤δ]

and
dρ2I,M,γ

dνM
(f) ∝ 1[‖f−f⋆

I,M
‖M≤γ]

where, for f =
∑M

j=1 βjϕj ∈ FM(C), we put

‖f‖M =
M
∑

j=1

j|βj|.
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With this notation, inequality (4.4) leads to

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}
1 ≤ M ≤ n

inf
δ,γ>0

{

(

1 +
λ [(2C + 1)2 + 4σ2]

n− wλ

)

(

∫

R(θ, f)dρI,M,δ,γ(θ, f)− R(θ⋆, f ⋆)

)

+ 2

K(ρI,M,δ,γ, µI ⊗ νM) + log

[

( p

|I|)
2−|I|10−M

]

+ log
(

1
ε

)

λ

}

. (4.5)

To finish the proof, we have to control the different terms in (4.5). Note first
that

log

(

p

|I|

)

≤ |I| log
(

pe

|I|

)

and, consequently,

log

[ (

p
|I|

)

2−|I|10−M

]

≤ |I| log
(

pe

|I|

)

+ |I| log 2 +M log 10

= |I| log
(

2pe

|I|

)

+M log 10. (4.6)

Next,

K(ρI,M,δ,γ, µI ⊗ νM) = K(ρ1I,M,δ ⊗ ρ2I,M,γ, µI ⊗ νM)

= K(ρ1I,M,δ, µI) +K(ρ2I,M,γ, νM).

Observe that

K(ρ2I,M,γ, νM) = log









∫

1[
∑M

j=1 j|βj |≤C+1]dβ
∫

1[
∑M

j=1 j|βj−(β⋆
I,M

)j |≤γ]dβ









= M log

(

C + 1

γ

)

and, similarly,

K(ρ1I,M,δ, µI) = log









1
∫

1[‖θ−θ⋆
I,M

‖1≤δ]dµI(θ)









≤ |I| log
(

2

δ

)

.
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The last inequality is obtained by observing that, in the worst case, the set
{θ : ‖θ − θ⋆I,M‖1 ≤ δ} intersects 2|I| sides of Sp

1,+(I). Putting all the pieces
together, we are led to

K(ρI,M,δ,γ, µI ⊗ νM) ≤ |I| log
(

2

δ

)

+M log

(

C

γ

)

. (4.7)

Finally, it remains ton control the term
∫

R(θ, f)dρI,M,δ,γ(θ, f).

To this aim, we may write
∫

R(θ, f)dρI,M,δ,γ(θ, f)

=

∫

E

[

(

Y − f(θTX)
)2
]

dρI,M,δ,γ(θ, f)

=

∫

E
[(

Y − f ⋆
I,M(θ⋆TI,MX) + f ⋆

I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

+ f(θ⋆TI,MX)− f(θTX)
)2]

dρI,M,δ,γ(θ, f)

= R(θ⋆I,M , f ⋆
I,M)

+

∫

E

[

(

f ⋆
I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

)2

+
(

f(θ⋆TI,MX)− f(θTX)
)2

+ 2
(

Y − f ⋆
I,M(θ⋆TI,MX)

) (

f ⋆
I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

)

+ 2
(

Y − f ⋆
I,M(θ⋆TI,MX)

) (

f(θ⋆TI,MX)− f(θTX)
)

+ 2
(

f ⋆
I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

) (

f(θ⋆TI,MX)− f(θTX)
)

]

dρI,M,δ,γ(θ, f)

:= R(θ⋆I,M , f ⋆
I,M) +A+B+C+D+ E.

Computation of C By Fubini’s theorem,

C = E

[
∫

2
(

Y − f ⋆
I,M(θ⋆TI,MX)

) (

f ⋆
I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

)

dρI,M,δ,γ(θ, f)

]

= E

{

∫

[

2
(

Y − f ⋆
I,M(θ⋆TI,MX)

)

×
∫

(

f ⋆
I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

)

dρ2I,M,γ(f)

]

dρ1I,M,δ(θ)

}

.
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But
∫

(

f ⋆
I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

)

dρ2I,M,γ(f) = 0

since ρ2I,M,γ is centered at f ⋆
I,M . This proves that C = 0.

Control of A Clearly,

A ≤
∫

sup
y∈R

(

(f ⋆
I,M(y)− f(y)

)2
dρ2I,M,γ(f) ≤ γ2.

Control of B We have

B =

∫

E

[

(

f(θ⋆TI,MX)− f(θTX)
)2
]

dρI,M,δ,γ(θ, f)

≤
∫

E

[

(

ℓ(C + 1)(θ⋆TI,M − θT )X
)2
]

dρ1I,M,δ(θ)

(by the mean value theorem)

≤ ℓ2(C + 1)2E
[

‖X‖2∞
]

∫

‖θ⋆I,M − θ‖21dρ1I,M,δ(θ)

≤ ℓ2(C + 1)2δ2

(by Assumption D).

Control of E Write

|E| ≤ 2

∫

E

[

∣

∣f ⋆
I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

∣

∣

×
∣

∣f(θ⋆TI,MX)− f(θTX)
∣

∣

]

dρI,M,δ,γ(θ, f)

≤ 2

∫

E

[

∣

∣f ⋆
I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

∣

∣

× ℓ(C + 1)
∣

∣(θ⋆TI,M − θT )X
∣

∣

]

dρI,M,δ,γ(θ, f)

≤ 2

(
∫

E

[

(

f ⋆
I,M(θ⋆TI,MX)− f(θ⋆TI,MX)

)2
]

dρI,M,δ,γ(θ, f)

)
1
2

(
∫

E

[

(

ℓ(C + 1)(θ⋆TI,M − θT )X
)2
]

dρI,M,δ,γ(θ, f)

)
1
2

(by the Cauchy-Schwarz inequality)

≤ 2
(

γ2
)

1
2
(

ℓ2(C + 1)2δ2
)

1
2

= 2ℓ(C + 1)γδ.
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Control of D Finally,

D = 2

∫

E
[(

Y − f ⋆
I,M(θ⋆TI,MX)

) (

f(θ⋆TI,MX)− f(θTX)
)]

dρI,M,δ,γ(θ, f)

= 2

∫

E
[(

Y − f ⋆
I,M(θ⋆TI,MX)

) (

f ⋆
I,M(θ⋆TI,MX)− f ⋆

I,M(θTX)
)]

dρ1I,M,δ(θ)

(since

∫

fdρ2I,M,δ(f) = f ⋆
I,M)

= 2E

[

(

Y − f ⋆
I,M(θ⋆TI,MX)

)

∫

(

f ⋆
I,M(θ⋆TI,MX)− f ⋆

I,M(θTX)
)

dρ1I,M,δ(θ)

]

≤ 2

√

E

[

(

Y − f ⋆
I,M(θ⋆TI,MX)

)2
]

×
√

E

[
∫

(

f ⋆
I,M(θ⋆TI,MX)− f ⋆

I,M(θTX)
)

dρ1I,M,δ(θ)

]2

(by the Cauchy-Schwarz inequality)

= 2
√

R(θ⋆I,M , f ⋆
I,M)

√

E

[∫

(

f ⋆
I,M(θ⋆TI,MX)− f ⋆

I,M(θTX)
)

dρ1I,M,δ(θ)

]2

.

The inequality
∣

∣f ⋆
I,M(θ⋆TI,MX)− f ⋆

I,M(θTX)
∣

∣ ≤ ℓ(C + 1)
∣

∣(θ⋆TI,M − θT )X
∣

∣

≤ ℓ(C + 1)‖θ⋆I,M − θ‖1

leads to
[
∫

(

f ⋆
I,M(θ⋆TI,MX)− f ⋆

I,M(θTX)
)

dρ1I,M,δ(θ)

]2

≤ ℓ2(C + 1)2
[
∫

‖θ⋆I,M − θ‖1dρ1I,M,δ(θ)

]2

.

Consequently,

[∫

(

f ⋆
I,M(θ⋆TI,MX)− f ⋆

I,M(θTX)
)

dρ1I,M,δ(θ)

]2

≤ ℓ2(C + 1)2δ2,

and therefore

D ≤ 2ℓ(C + 1)δ
√

R(0, 0)/2

≤
√
2ℓ(C + 1)δ

√
C2 + σ2.
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Thus, taking δ = γ = 1/n and putting all the pieces together, we obtain

A+B + C +D + E ≤ C1
n
,

where C1 is a positive constant function of C, σ and ℓ. Combining this
inequality with (4.5)-(4.7) yields, with probability larger than 1− 2ε,

R(θ̂λ, f̂λ)− R(θ⋆, f ⋆)

≤ 1

1− λ[(2C+1)2+4σ2]
n−wλ

inf
I ⊂ {1, . . . , p}
1 ≤ M ≤ n

{

(

1 +
λ [(2C + 1)2 + 4σ2]

n− wλ

)

(

R(θ⋆I,M , f ⋆
I,M)

− R(θ⋆, f ⋆) +
C1
n

)

+ 2
M log(10Cn) + |I| log

(

4epn
|I|

)

+ log
(

1
ε

)

λ

}

.

Choosing finally

λ =
n

w + 2 [(2C + 1)2 + 4σ2]
,

we obtain that there exists a positive constant C2 function of L, C, σ and ℓ
such that, with probability at least 1− 2ε,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆) ≤ C2 inf
I ⊂ {1, . . . , p}
1 ≤ M ≤ n

{

R(θ⋆I,M , f ⋆
I,M)−R(θ⋆, f ⋆)

+
M log(10Cn) + |I| log

(

4epn
|I|

)

+ log
(

1
ε

)

n

}

.

This concludes the proof of Theorem 2.1.

4.3 Proof of Corollary 2.1

We already know, by Theorem 2.1, that with probability at least 1− 2ε,

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆) ≤ C inf
I ⊂ {1, . . . , p}
1 ≤ M ≤ n

{

R(θ⋆I,M , f ⋆
I,M)−R(θ⋆, f ⋆)

+
M log(Cn) + |I| log

(

pn
|I|

)

+ log
(

1
ε

)

n

}

.

By definition, for all (θ, f) ∈ Sp
1,+(I)× FM(C),

R(θ⋆I,M , f ⋆
I,M) ≤ R(θ, f).
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In particular, if there exists I⋆ such that θ⋆ ∈ Sp
1,+(I

⋆), then

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆) ≤ C inf
1 ≤ M ≤ n

f ∈ FM (C)

{

R(θ⋆, f)− R(θ⋆, f ⋆)

+
M log(Cn) + |I⋆| log

(

pn
|I⋆|

)

+ log
(

1
ε

)

n

}

.

(4.8)

Observe that, for any f ∈ FM(C),

R(θ⋆, f)− R(θ⋆, f ⋆) =

∫

Rp

[

f
(

θ⋆Tx
)

− f ⋆
(

θ⋆Tx
)]2

dP(x, y)

≤ B2

∫ 1

−1

[f (t)− f ⋆ (t)]2 dt.

Since f ⋆ ∈ L2 ([−1, 1]), we may write

f ⋆ =

∞
∑

j=1

β⋆
jϕj

and apply (4.8) with

f =

M
∑

j=1

β⋆
jϕj.

In order to do so, we just need to check that f ∈ FM(C), that is

M
∑

j=1

j|β⋆
j | ≤ C + 1.

But, by the Cauchy-Schwarz inequality,

M
∑

j=1

j|β⋆
j | =

M
∑

j=1

jk|β⋆
j |j1−k

≤

√

√

√

√

M
∑

j=1

j2k(β⋆
j )

2

√

√

√

√

M
∑

j=1

j2−2k.
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Thus,

M
∑

j=1

j|β⋆
j | ≤

π√
6

√

√

√

√

M
∑

j=1

j2k(β⋆
j )

2

(since, by assumption, k ≥ 2)

≤ C + 1

(since f ⋆ ∈ W(k, 6(C + 1)2/π2)).

Next, with this choice of f ,

∫ 1

−1

[f (t)− f ⋆ (t)]2 dt ≤ ΛM−2k

for some positive constant Λ depending only on k and C (see for instance
Tsybakov [38]). Therefore, inequality (4.8) takes the form

R(θ̂λ, f̂λ)−R(θ⋆, f ⋆) ≤ C inf
1≤M≤n

{

ΛM−2k

+
M log(Cn) + |I⋆| log

(

pn
|I⋆|

)

+ log
(

1
ε

)

n

}

.

(4.9)

Letting ⌈.⌉ be the ceiling function and choosing M = ⌈(n/ log(Cn))
1

2β+1 ⌉ in
(4.9) concludes the proof.

5 Annex: Description of the MCMC algo-

rithm

This annex is intended to make thoroughly clear the specification of the
proposal conditional densities k1 and k2 introduced in Section 3.

5.1 Notation

To provide explicit formulas for the conditional densities k1((τ, h)|(θ, f)) and
k2((τ, h)|(θ, f)), we first set

f =

mf
∑

j=1

βf,jϕj and h =

mh
∑

j=1

βh,jϕj ,
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where it is recalled that {ϕj}∞j=1 denotes the (non-normalized) trigonometric
system. We let I (respectively, J) be the set of nonzero coordinates of the
vector θ (respectively, τ), and denote finally by θI (respectively, τJ) the vector
of dimension |I| (respectively, |J |) which contains the nonzero coordinates of
θ (respectively, |τ |). Recall that all densities are defined with respect to the
prior π, which is made explicit in Subsection 2.2.

For a generic h ∈ Fmh
(C), given τ ∈ Sp

1,+ and s > 0, we let the density
denss(h|τ,mh) with respect to π be defined as

denss(h|τ,mh)

∝ exp

[

− 1

2s2

mh
∑

j=1

(

βh,j − β̃j(τ,mh)
)

]

1

[

mh
∑

j=1

j2|βh,j| ≤ C + 1

]

,

where the β̃j(τ,mh) are the empirical least square coefficients given by

{

β̃j(τ,mh)
}

j=1,...,mh

∈ arg min
b∈Rmh

n
∑

i=1

(

Yi −
mh
∑

j=1

bjϕj(τ
TXi)

)2

.

In the experiments, we fixed s = 0.1. Note that simulating with respect to
denss(h|τ,mh) is an easy task, since one just needs to compute a least square
estimate and then draw from a truncated Gaussian distribution.

5.2 Description of k1

We take

k1 (·|(θ, f)) =
2k1,= (·|(θ, f)) + k1,+ (·|(θ, f))

3
1[|I|=1]

+
k1,− (·|(θ, f)) + 2k1,= (·|(θ, f)) + k1,+ (·|(θ, f))

4
1[1<|I|<p]

+
k1,− (·|(θ, f)) + 2k1,= (·|(θ, f))

3
1[|I|=p].

Roughly, the idea is that k1,− tries to remove one component in θ, k1,= keeps
the same number of components, whereas k1,+ adds one component. The
density k1,= takes the form

k1,= ((τ, h)|(θ, f)) = k1,=(τ |θ)denss(h|τ,mf).

The density k1,=(.|θ) is the density of τ when J = I and

τI =
θI + E

‖θI + E‖1
sgn

(

(θI + E)j(θI+E)

)

,
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where E = (E1, . . . , E|I|) and the Ei are independent random variables uni-
formly distributed in [−δ, δ]. Throughout, the value of δ was fixed at 0.5.
It is noteworthy that when we change the parameter from θ to τ , then we
also change the function from f to h. Thus, with this procedure, the link
function h is more “adapted” to τ and the subsequent move is more likely to
be accepted in the Hastings-Metropolis algorithm.

In the case where we are to remove one component, k1,− is given by

k1,− ((τ, h)|(θ, f)) =
∑

j∈I

cj1[τ=θ−j ]denss(h|τ,mf),

where θ−j is just obtained from θ by setting the j-th component to 0 and by
renormalizing the parameter in order to have ‖θ−j‖1 = 1. We set

cj =
exp (−|θj |)1[|θj|<δ]

∑

ℓ∈I exp (−|θℓ|)1[|θℓ|<δ]

.

The idea is that smaller components are more likely to be removed than
larger ones. Finally, the density k1,+ takes the form

k1,+ ((τ, h)|(θ, f)) =
∑

j /∈I

c′j1[τ−j=θ]

1[|τj |<δ]

2δ
denss(h|τ,mf).

We set

c′j =
exp

(∣

∣

∑n
i=1

(

Yi − f(θTXi)
)

(Xi)j
∣

∣

)

∑

ℓ/∈I exp (|
∑n

i=1 (Yi − f(θTXi)) (Xi)ℓ|)
where (Xi)j denotes the j-th component of Xi. In words, the idea is that a
new nonzero coordinate in θ is more likely to be interesting in the model if
the corresponding feature is correlated with the current residual.

5.3 Description of k2

In the same spirit, we let the conditional density k2 be defined as

k2 (·|(θ, f)) =
2k2,= (·|(θ, f)) + k2,+ (·|(θ, f))

3
1[mf=1]

+
k2,− (·|(θ, f)) + 2k2,= (·|(θ, f)) + k2,+ (·|(θ, f))

4
1[1<mf<n]

+
k2,− (·|(θ, f)) + 2k2,= (·|(θ, f))

3
1[mf=n].

We choose
k2,= ((τ, h)|(θ, f)) = 1[τ=θ]denss(h|τ,mf)
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and
k2,+ ((τ, h)|(θ, f)) = 1[τ=θ]denss(h|τ,mf + 1).

With this choice, mh = mf+1, which means that the proposal density tries to
add one coefficient in the expansion of h, while leaving θ unchanged. Finally

k2,− ((τ, h)|(θ, f)) = 1[τ=θ]denss(h|τ,mf − 1),

and the proposal tries to remove one coefficient in h.
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