
HAL Id: hal-00556547
https://hal.science/hal-00556547v1

Submitted on 17 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical study of the hydrodynamics of regular waves
breaking on a sloping beach

Pierre Lubin, Stéphane Glockner, Olivier Kimmoun, Hubert Branger

To cite this version:
Pierre Lubin, Stéphane Glockner, Olivier Kimmoun, Hubert Branger. Numerical study of the hydro-
dynamics of regular waves breaking on a sloping beach. European Journal of Mechanics - B/Fluids,
2011, 30 (6), pp.552-564. �10.1016/j.euromechflu.2011.01.001�. �hal-00556547�

https://hal.science/hal-00556547v1
https://hal.archives-ouvertes.fr


Accepted Manuscript

Numerical study of the hydrodynamics of regular waves breaking over
a sloping beach
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aUniversité de Bordeaux, IPB, TREFLE UMR CNRS 8508, ENSCBP, 16 avenue
Pey-Berland 33607 Pessac Cedex France
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Abstract

In the last three decades, great improvements have been brought to the

knowledge of the hydrodynamics and general processes occurring in the surf

zone, widely affected by the breaking of the waves. Nevertheless, the tur-

bulent flow structure is still very complicated to investigate. The aim of

this work is to present and discuss the results obtained by simulating two-

dimensional breaking waves by solving the Navier-Stokes equations, in air

and water, coupled with a dynamic subgrid scale turbulence model (Large

Eddy Simulation, LES). First, the ability of the numerical tool to capture the

crucial features of this complicated turbulent two-phase flow is demonstrated.

Numerical results are compared with experimental observations provided by

Kimmoun and Branger [1]. Spilling/plunging breaking regular waves are con-
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sidered. Generally, there is good agreement and the model provides a precise

and efficient tool for the simulation of the flow field and wave transformations

in the nearshore.

Key words: Navier-Stokes, Numerical simulation, Large Eddy Simulation,

Two-phase flow, Breaking waves, Splash-up, Air entrainment, Vortices

1. Introduction

Simulating the air entrainment phenomenon generated by breaking waves

remains a major challenge for modern CFD tools. Numerous problems mo-

tivated by fundamental research and applications, from environmental and

coastal engineering sciences, require an accurate description of wave break-

ing. Highly complex hydrodynamic features are usually encountered in the

surf zone: transition from irrotational flow motion to high frequency tur-

bulence, interacting with large- and small-scale interface deformations, from

overturning and breaking of the waves to complex fractioning and coales-

cence of bubbles and droplets. A broad range of relevant length and time

scales is thus involved in this multiphase turbulent flow, making it extremely

complicated to investigate both experimentally and numerically.

The general knowledge and understanding of turbulence generated by

breaking waves have greatly been improved in the last three decades. Bro-

ken waves involve motions of different types and scales, including large-scale

coherent vortical motions and small-scale turbulence [2]. Once waves break,

a large amount of energy is released and turned into turbulence [3]. Nev-

ertheless, a lot of work still has to be done, some aspects suffering from a

lack of efficiency or unsolved limitations. It is widely accepted that such

2
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complicated high-Reynolds number turbulent multiphase flow is inaccessible

for Direct Numerical Simulations (DNS), Reynolds Averaged Navier-Stokes

Equations (RANS) or Large Eddy Simulations (LES) therefore being effective

alternatives.

Zhao and Tanimoto [4] first applied the LES method to breaking waves

and showed very promising results compared with experimental measure-

ments, considering a two-dimensional configuration. Then some numerical

works proved the ability of the LES method [5, 6, 7, 8, 9] to deal with spilling,

plunging, strongly plunging and spilling/plunging breakers. The authors pro-

vided a great improvement in the numerical methods allowing a description

with a very promising accuracy for both the free surface and the general be-

havior of the turbulent flow structures. Major contributions gave interesting

insights into the hydrodynamics under broken waves. Nevertheless, as all the

cited authors stated, air entrainment was not taken into account, although it

was widely identified as an important feature to be considered. Indeed, most

numerical surf zone studies are based on single phase flow assumption, ignor-

ing the air phase for the convenience of computation. Moreover, comparisons

led to the conclusion that the poor description of air/water mixing was re-

sponsible for the discrepancies observed due to coarse mesh grid resolutions.

Strong surface distortions, surface tension and air-water interactions were

usually omitted. A generally good agreement was usually found, but some

major differences were shown to occur when phase-averaged velocity and tur-

bulent quantities were examined in aerated regions. Indeed, the resolution

was mainly chosen to provide acceptable computation times with a sufficient

accuracy for the free surface description considering the macro structures.

3
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This often resulted in missing the correct breaking point, which is very sen-

sitive to any imperfections in wave generation [9]. It was also found that the

results of plunging breakers showed better agreement than spilling breakers

compared to experimental measurements.

Many experimental works drew attention to the generation and the im-

portance of air entrainment during the wave breaking process [10, 11, 2, 12,

13, 14]. The velocity field under broken waves is characterized by the ex-

istence of very active turbulence associated with air entrainment, which is

responsible for wave energy damping in the surf zone. Lin and Hwung [15]

showed that the main mechanism driving the motion in the bubble region

was the vortex system generated during the jet-splash cycles. Experiments

proved that the eddies contained a large quantity of air bubbles which en-

hanced the upwelling of sediment. Chanson and Lee [16] measured the rate of

energy dissipation to be increased with the bubble penetration depth. Huang

et al. [17] recently presented experimental measurements of spilling break-

ing waves. Significant turbulent dissipation was shown to occur initially in

the roller region at the frontal wave crest and then to spread to the entire

crest region after the establishment of a turbulent bore. The small-scale

interactions thus have important effects on large-scale behavior [18].

More recent numerical studies proved the importance of air entrainment

for turbulence generation in numerical simulations of breaking waves. Chris-

tensen et al. [19] highlighted that since the mixture of air and water in the

roller region had, on average, a smaller density than that of the water, the

turbulence produced in the roller would have difficulties in penetrating the

underlying fluid. Therefore, a large part of the production and dissipation

4
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took place in the roller before it was diffused downward, which explained the

overestimation on the turbulence in the surf zone by numerical models so

far. Moreover, the de-entrainment of air bubbles from the water after wave

breaking may have released some wave energies into the air and may have

contributed significantly to the wave energy dissipation process. Hieu and

Tanimoto [20] improved their numerical model [6] showing better compar-

isons with experimental data concerning free surface elevations. The numer-

ical results were also compared with those from Zhao et al. [7] and a higher

accuracy was shown. They pointed out the major role of air entrainment and

the necessity to take it into account to get accurate numerical results. Lubin

et al. [21] discussed the results obtained from simulating three-dimensional

plunging breaking waves by solving the Navier-Stokes equations, in air and

water. The splash-up mechanism was carefully detailed and vortex genera-

tion and air entrainment processes were described. The behavior of the gas

pockets was analyzed and its impact on energy dissipation was shown. Re-

cently, Wang et al. [22, 23] improved the numerical methods for describing

the free surface, dedicated to breaking waves. Iafrati [24] numerically ana-

lyzed the role played by the breaking intensity on free surface dynamics, air

entrainment and general hydrodynamics. Clear improvements were made to

the general understanding of the complicated flow.

Kimmoun and Branger [1] recently experimented surf-zone breaking waves.

Particle Image Velocimetry (PIV) experimental techniques were improved to

be able to calculate velocities and void fractions in the aerated regions. De-

tailed pictures showed that a short spilling event occurred at the crest of the

waves, before degenerating into strongly plunging breaker. Numerical works

5
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usually showed better agreements when simulating plunging breaking waves

than the spilling case compared with available experimental data. Fine mesh

grid resolutions and appropriate numerical methods are required to accu-

rately describe the length scales of the interface deformations experimentally

measured (plunging jet, white foam, etc.).

Based on a previous numerical study, Lubin et al. [25] presented the re-

sults obtained for the LES of 2D and 3D regular waves shoaling and breaking

over a sloping beach, compared with the experimental results of Kimmoun et

al. [26]. A spilling/plunging breaking event was expected to occur according

to the experimental measurements, but the numerical results showed dis-

crepancies, due to the coarse mesh grid resolution. So, considering the new

experimental results from Kimmoun and Branger [1] and the discrepancies

highlighted by Lubin et al. [25], 2D numerical simulation of the phenomenon

has been performed to show the ability of the numerical tool to finally cap-

ture the spilling initiation process and air entrainment during the early stage

of the phenomenon. The effect of air has not been studied yet in detail

in most of the cited two- and three-dimensional numerical studies found in

the literature. Taking the mixture of air and water into account is crucial

and still remains one of the challenges of the coming years. The aim of this

paper is to simulate this unsteady two-phase wave breaking motion using a

LES method to gain further understanding of the complicated features of

the flow, including wave overturning, occurrence of splash-ups and air en-

trainment. The limitations in the description of the air entrainment will be

highlighted and discussed. Great care will be taken to highlight the impor-

tance of the mesh grid size. The paper is organized as follows. In section

6
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2, we introduce the numerical model. Numerical wave generation procedure

is detailed. Some preliminary numerical results and applications are pro-

vided to demonstrate the ability of the numerical tool to deal with breaking

waves. We then provide, in section 3, a discussion of the numerical results

obtained by simulating regular waves breaking over a sloping beach. This

section is devoted to the qualitative comparison of our numerical results with

the experimental observations [1]. The case study is carefully described and

boundary conditions are given. We aim to accurately describe the free sur-

face behavior, as we will focus on capturing and describing the spilling phase

experimented by Kimmoun and Branger [1]. Finally, in section 4, a short cri-

tique of our numerical results is discussed. We then outline the perspectives

and future works.

2. Description of the numerical model and validation

We solve the Navier-Stokes equations in air and water, coupled with a

subgrid scale turbulence model (LES). The numerical tool is well suited to

dealing with strong interface deformations occurring during wave breaking,

for example, and with turbulence modeling in the presence of a free surface

in a more general way. Solving the Navier-Stokes equations in an air/water

configuration is still a real challenge, especially when dealing with strong

interface deformations and tearing, turbulence and free surface interactions.

2.1. Governing equations

An incompressible multiphase phase flow between non-miscible fluids can

be described by the Navier-Stokes equations in their multiphase form. In the

single fluid formulation of the problem [27], a phase function C, or ”color”

7
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function, is used to locate the different fluids standing C = 0 in the outer

medium, C = 1 in the considered medium. Intermediate values of C indicate

the proportion of the medium (water) in the control volume around each node

of the mesh. The interface between two media is repaired by the discontinuity

of C between 0 and 1. In practice, C = 0.5 is used to characterize this

surface. The governing equations for the Large Eddy Simulation (LES) of

an incompressible fluid flow are classically derived by applying a convolution

filter to the unsteady Navier-Stokes equations. The resulting set of equations

reads (Eqs. 1-3):

∇ · u = 0 (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + ρg +∇ · (µ + µt)

[∇u +∇Tu
]
+ F (2)

and

∂C

∂t
+ u · ∇C = 0 (3)

where u is the velocity, C the phase function, t the time, p the pressure, g

the gravity vector, ρ the density, µ the dynamic viscosity, µt the turbulent

viscosity and F the surface tension volume force.

To deal with solid obstacles within the numerical domain, it is possible to

use multi-bloc domains, but it is often much simpler to consider the numerical

domain as a unique porous medium [28, 29, 30]. The permeability coefficient

K defines the ability of a porous medium to let pass the fluids more or less

freely through it. If this permeability coefficient is large (K → +∞), the

8
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medium is equivalent to a fluid. If it is zero, we can model an impermeable

solid. A real porous medium is modeled with intermediate values of K. To

take this coefficient K into account in our system of equations, we thus add

an extra term in the right-hand side of the momentum equations (Eq. 2),

− µ

K
u.

The magnitudes of the physical characteristics of the fluids depend on the

local phase. They are defined according to C in a continuous manner as:

ρ = Cρ1 + (1− C)ρ0

µ = Cµ1 + (1− C)µ0

(4)

where ρ0, ρ1, µ0 and µ1 are the densities and viscosities of fluid 0 and 1

respectively.

Based on the review of Lubin and Caltagirone [31], we find that the

most widely used subgrid scale model is the Smagorinsky model. However,

it has been proved to be much too dissipative [32]. In spite of its negative

aspects, its simplicity is still widely appreciated. In Eq. 2), the turbulent

viscosity µt is calculated with the Mixed Scale model [32], which has proved

its accuracy for geophysical flows [33, 34, 21, 35, 36]. The model exhibits a

triple dependency on the large and small structures of the resolved field as a

function of the cut-off length. The eddy viscosity µt is calculated as follows

(Eq. 5):

µt(x, t) = ρCM∆
1+α(|S|)α

2 (q2
c (x, t))

1−α
2 (5)

where S is the resolved deformation rate tensor and ∆ is the cut-off length of

the filter. CM is the model constant chosen as CM = 0.06, α is a parameter

9
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with a value that varies between 0 and 1. Generally, and in the following, α is

taken to be equal to 0.5. The quantity qc represents the kinetic energy of the

test field extracted from the resolved velocity field through the application of

a test filter associated to the cut-off lengthscale ∆̃ > ∆. We choose ∆̃ = 2∆,

because it is the value which is most used and seems to give the best results.

This subgrid kinetic energy is assumed to be equal to the kinetic energy at

cut-off q2
c , evaluated in real space as (Eq. 6):

q2
c (x, t) =

1

2
u(x, t)′ u(x, t)′ (6)

where the test field velocity (u′) can be evaluated thanks to an explicit test

filter applied to the resolved scales, noted (̃.). This explicit discrete filtering

operation is a linear combination of the neighboring values [32, 37]. This test

field velocity represents the high frequency part of the resolved velocity field.

The use of this model does not require a complementary wall model, as the

Smagorinsky model does, because the eddy viscosity vanishes as the kinetic

energy tends to zero at cut-off.

Model (Eqs. 1-4) describes all the hydrodynamic and geometrical pro-

cesses involved in the motion of multiphase media.

2.2. Numerical methods

Time discretization is implicit and the equations are discretized on a stag-

gered grid by means of the finite volume method. A dual grid, or underlying

grid [38], is used to gain improved accuracy for the interface description, the

mesh grid size being divided by two in each direction for interface tracking.

This technique also avoids the interpolations of the physical characteristics

10
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on the staggered grids, since the color function is defined on each point where

viscosities and densities are needed.

The main difficulty concerning the numerical treatment of the Navier-

Stokes equations (Eqs. 1-2) is the coupling between pressure and velocity

and the fulfillment of the incompressibility condition. Following the work

of Fortin and Glowinski [39], the Navier-Stokes system is formulated as a

velocity / pressure minimization - maximization problem requiring the com-

putation of a saddle point (u,p) associated with the augmented Lagrangian

of the problem. The pressure is considered as a Lagrange multiplier and

the incompressibility constraint is introduced implicitly into the momentum

equations (Eqs. 2). Then, the saddle-point (u,p) is computed using an itera-

tive Uzawa algorithm [40]. Parameters of the augmented Lagrangian method

are calculated automatically according to the fluids and flow characteristics

following [41]. The space derivatives of the inertial term are discretized by a

hybrid Upwind-Centered scheme [42] and the viscous term is approximated

by a second order centered scheme. The MUMPS direct solver is used to

solve the linear systems [43, 44].

Interface tracking is achieved by a Volume Of Fluid method (VOF), which

is able to handle interface reconnections without interface reconstruction.

Lin and Liu [45] gave a complete overview and discussion of the different

numerical techniques that have been used for interface tracking in numerical

simulations of breaking waves. Given that Eq. 3 is hyperbolic and C is

discontinuous, the explicit Total Variation Decreasing (TVD) Lax-Wendroff

(LW) scheme of LeVeque [46] is used to directly solve the interface evolutions

without the reconstruction of C. When the small scale structures of interface

11
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are large compared with the grid size, the LW-TVD method is accurate

and involves controlled numerical diffusion across the interface on three grid

points.

The numerical code has already been extensively verified and validated

through numerous test cases including mesh refinement analysis [33, 47, 21,

36]. The accuracy of the numerical schemes and the conservation laws of

mass and energy in the computational domain have been accurately verified.

For more details, the numerical methods have already been fully described

in Lubin et al. [21].

2.3. Internal wave maker

Prior to the simulation of the laboratory tests, an effort has been made

to implement and validate the procedure of regular and irregular wave gener-

ation developed by Lin and Liu [48]. The method consists in introducing an

internal mass source function in the continuity equation (Eq. 1) for a chosen

group of cells defining the source region:

∇ · u = S(x, y, t) in Ω (7)

where S(x, y, t) is calculated thanks to any chosen analytical wave solution.

2.4. Validation: a solitary wave propagating and breaking over a submerged

obstacle

Lubin et al.[21] validated the numerical tool considering some dam-break

and rising bubbles configurations. In this section, the propagation and the

overturning of a stable solitary wave over a submerged reef, consisting of a
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rectangular step-like obstacle, is investigated (Fig. 1). The reference case is

taken from the work presented by Yasuda et al. [49]. This test case shows

the ability of our numerical model to simulate overturning waves accurately,

as we will compare the wave profiles at breaking.

The mean water depth is d = 0.31 m and the height of the obstacle is

D = 0.263 m. The initial amplitude and celerity are H = 0.131 m and

c = 2.072 m.s−1, respectively. The incident solitary wave is initialized in the

numerical domain and the crest of the wave is set at x = 2 m, the internal

wave maker is not used in this test case. The reef face is located at x = 4 m.

The velocity field and the free surface profile are initially calculated with the

theoretical third-order solitary wave solution [50, 51]. The numerical domain

is 8 m long and 0.6 m high, discretized into 1200 × 200 nonuniform grids

in the x-direction, with ∆xmin ≃ 4.10−3 m in the vicinity of the submerged

obstacle. Uniform grid spacing ∆zmin ≃ 3.10−3 m is used. The solitary wave

propagates towards the right side of the numerical domain.

Yasuda et al. [49] used a fully nonlinear potential theory model to study

the internal velocity and acceleration fields and their relationship to breaker

type. They verified the accuracy of their numerical model with some ex-

perimental data. Four capacitance wave gauges recorded the free surface

elevations at different locations in the canal. The first gauge was placed up-

stream of the reef face to check the incident waveheight. The second gauge

was located above the upstream corner of the reef. The last two gauges

measured the free surface at 0.515 m and 1.020 m away from the tip of the

obstacle.

With respect to the positions of the three last gauges (referred to as

13
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Figure 1: Initial conditions for the propagation and the breaking of a

solitary wave over a submerged rectangular reef. t = 0 s, C > 0.5.
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(a) t = 0.7 s (b) t = 0.91 s

(c) t = 1.1 s (d) t = 1.2 s

Figure 2: Solitary wave propagating over the submerged reef: initiation of

the fission of the wave. The black line represents the reef profile. C > 0.5.
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Gauges Numerical Experimental Error (%)

P2 0.500 0.505 −1.0

P3 0.348 0.344 1.2

P4 0.358 0.354 1.1

Table 1: Maximum non-dimensional free surface elevation values, η/d,

recorded at the three considered locations. Numerical values are compared

with the experimental measurements [49].

P2, P3 and P4 by Yasuda et al. [49]), we plot our non-dimensional free

surface elevations η/d versus non-dimensional time t
√

g/d, compared with

the experimental values (Fig. 3). We can note that our numerical model gives

very satisfactory results. The general trend is followed with a reasonable

accuracy, the relative errors being presented in Table 1.

We verify that our numerical model accurately reproduces the propaga-

tion and the interaction between the solitary wave and the obstacle. First,

the wave propagates over a flat bottom without any change of form, as any

stable solitary wave would do. As it reaches the neighborhood of the obstacle,

the depth of water over the reef is abruptly reduced, which leads the wave

profile being dramatically transformed. The wave is then forced to reorganize

itself, causing the fission phenomenon: when solitary waves propagate from

deep water into shallower water, the incoming waves disintegrate into two

or more solitons [52, 53]. Figs. 2 present the incident wave separating into

a solitary wave, going to the left, and a transmitted wave, which is about

to break as it goes over the reef towards the right side of the domain. This

aspect would have deserved more systematic investigation for validation, but
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(a) P2

(b) P3 (c) P4

Figure 3: Comparisons of the non-dimensional free surface elevations, η/d,

plotted versus the non-dimensional time, t
√

g/d, recorded at each location

P2, P3 and P4. Black line: present numerical results; red ◦: experimental

results [49].
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it is not our concern in this paper.

As recorded by the gauge standing over the reef’s upstream corner (Fig.

3), the free surface elevation rises from the initial non-dimensional value

η/d = 0.424 to η/d = 0.498. The wave loses symmetry aspect and starts

steepening till the front face of the crest becomes vertical (Fig. 4 a). We

then have a plunging breaking wave (Fig. 4 b). A jet of liquid is about

to be projected from the crest of the wave. It free-falls down forward in a

characteristic overturning motion. It was observed that several gas pockets

were entrapped.

In order to compare our results with the work of Yasuda et al. [49],

we use the same non-dimensional values. Yasuda’s reef face is located at

x/d = 32, our reef being at x/d ≃ 12.9. So, we show in figures (4 (a)

and (b)) our free surface profiles translated to the same reference, with η/d

the non-dimensional free surface elevation. Figs. (4 a and b) present the

non-dimensional free surface profiles of the breaking wave at two different

locations. At first glance, the comparisons are not to our advantage, but

we voluntary zoomed the graphs, which enlarges the discrepancies. If we

consider the abscissa of the vertical front face of the wave (Fig. 4 a), the

relative error between our numerical result and the experimental measure-

ment is ≃ −1.5 %. At the instant of jet fall initiation (Fig. 4 b), if we again

consider the abscissa of the vertical face of the wave, under the overhang-

ing jet, the relative error between the numerical result and the experimental

measurement is ≃ −1.2 %. The numerical and experimental jets of water

are approximately of the same length. However, we can observe that the

computed jet looks ”thicker” than the experimental one. This tendency is
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generally observed when using VOF methods for simulating breaking waves

[54, 33, 22].

Unfortunately, Yasuda et al. [49] presented no experimental pictures giv-

ing information about the abscissa of the jet impact or the splash-up behav-

ior. However, our numerical results fit very well with the published results

of Yasuda et al. [49] considering the wave breaking initiation phenomenon.

The ability of the numerical tool to predict accurately the breaking point

initiation is thus proved.

3. Large Eddy Simulations of breaking waves

Based on the numerical methods detailed in section 2, Lubin et al. [25]

presented the results obtained for the LES of regular 2D and 3D waves shoal-

ing and breaking over a sloping beach, compared with the experimental re-

sults from Kimmoun et al. [26]. The main observed differences were that the

first short spilling event was missed and the dislocation of the gas pockets

into small bubbles could not be simulated, even though, in the numerical re-

sults, the gas pockets corresponded to some air-water mixing zones observed

in the experimental pictures. In order to overcome the observed discrepan-

cies, mainly due to the coarse mesh grid resolution, new numerical simulation

was performed considering the new experimental study from Kimmoun and

Branger [1]. The mesh grid distribution was improved to be able to capture

the spilling phase.

3.1. Description of the experimental configuration

The experiments were performed in the École Centrale wave tank in Mar-

seille. The glass-windowed tank is 17 m long and 0.65 m wide. The water
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(a) Breaking point

(b) Jet fall initiation

Figure 4: Comparison of the free surface profiles (a) prior to the jet ejection

and (b) at jet initiation. Black �: present LES (C = 0.5); black ◦:
experimental results [49]. The variables indicated on both axis are those

shown in Figure 4 by Yasuda et al. [49].
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depth was set at d = 0.705 m. The 1/15 sloping beach was about 13 m long,

starting at about 4 m from the wavemaker. The length of the surf zone was

about 3 m. Camera PIV measurements were made in fourteen different loca-

tions from the incipient breaking location up to the swash zone. Fifth order

Stokes waves were generated, corresponding to the analytical solution devel-

oped by Fenton [55]. The wave period was T = 1.275 s and wave amplitude

before the sloping beach was a ≃ 0.057 m. The wavelength was L ≃ 2.4 m

and the measured height at breaking was Hb = 0.14 m. The waves are ob-

served to start breaking about 2.50 m away from the shoreline, or 12.275 m

away from the wavemaker.

A sketch of a wave breaking event is displayed by Kimmoun and Branger

[1]. The wave starts breaking showing a brief spilling phase, the white cap

was observed to be about 1−mm high. Then a jet of liquid is rapidly ejected

from the wave crest and the overturning wave front curls forward. A first

splash-up is generated when the jet of liquid hits the front face of the wave.

We can then see a large amount of air entrained with foam and bubbles.

Some other splash-ups are then generated. A roller propagates towards the

shoreline, with a great air-water mixing area. It can be seen that the bubbles

are generated in the upper part of the water column, and advected towards

the bottom with a slight slanting axis. The volume of the entrained bubbles

decreases gradually till the wave crosses the shoreline and runs up before

coming back. This is in agreement with the general description of Peregrine

[56], for example. More details of the experiments are given by Kimmoun

and Branger [1].
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3.2. Initial and boundary conditions

The computational domain is 15 m long and 1 m high (Fig. 5). The

sloping beach starts at x = 3.5 m, the source function being located at

xS = 3.5 m and zS = 0.3675 m. The center of the source region is at

d/2, right above the toe of the sloping beach to save computation time.

The numerical beach is considered as an impermeable solid obstacle, the

permeability coefficient K being initialized at zero (Eq. 2).

522 000 mesh grid points are used to discretize the numerical domain,

with nonuniform grids in both directions (∆xmin ≃ 1.10−3 m and ∆zmin ≃
2.5 × 10−3 m). These values have to be divided by two, in both directions,

for the free surface description thanks to the dual grid. Two-phase flow sim-

ulations and turbulence modeling require fine mesh cells to be very accurate,

even if LES is supposed to save some mesh grid points. Moreover, when

simulating two-phase flows, the interface can become smaller than the mesh

grid size (droplets or bubbles). These small inclusions are thus “lost” and

their contribution to the flow can lead to a wrong description of the flow. In

our study, the major physical parameters leading the choice of our mesh grid

distribution are the length scales of the free surface deformations, especially

the overturning jet and the entrained gas pockets.

The time step is chosen to ensure a Courant-Friedrichs-Levy condition

less than 1, necessary for the explicit advection of the free surface. The

calculation is made with the densities and the viscosities of air and water

(ρa = 1.1768 kg.m−3 and ρw = 1000 kg.m−3, µa = 1.85 × 10−5 kg.m−1.s−1

and µw = 1×10−3 kg.m−1.s−1). Table 2 presents the former and new physical

and numerical parameters, used in the successive studies.
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Experimental studies Kimmoun et al. [26] Kimmoun and Branger [1]

d(m) 0.735 0.705

T (s) 1.3 1.275

a(m) 0.07 0.057

L(m) 2.5 2.4

Hb(m) 0.137 0.14

xb(m) 2.65 2.5

Numerical comparisons Lubin et al. [25] Present study

Sizes of domains 20m× 1.2m 15m× 1m

Mesh grid points 520 000 522 000

∆xmin(m) 5.10−3m ≃ 5.10−4m

∆zmin(m) ≃ 1.25× 10−3m ≃ 1.25× 10−3m

Table 2: Physical and numerical parameters used in the successive studies.

The mesh grid sizes have been divided by two considering the dual grid

used for the interface capture (see section 2.2).
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Figure 5: Numerical domain configuration. The small rectangular box is the

wave generator, located right above the toe of the sloping beach. The

dashed line shows the initial water depth. The gray box on the left side of

the numerical domain is a sponge layer. The slanted line shows the sloping

beach.
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We adapted Fenton’s [55] analytical developments for the fifth-order Stokes

wave theory, corresponding to the experimental conditions, to the source

function method (Eq. 7):

S(x, y, t) =
∑

i

∑
j

2c

Ak
Bij ǫi cos i

(π

2
− σt− ps

)
(8)

where A is the area of the source region. c, k and σ are the celerity, wave

number and angular frequency respectively. ǫ =
kH

2
is the wave steepness

and Bij are dimensionless coefficients. The detailed expressions for the dis-

persion relationship, wave celerity and Bij coefficients are given by Fenton

[55], Sobey et al. [57] or Fenton and McKee [58]. ps is the phase shift calcu-

lated to have S(x, y, 0) = 0. The source region is 0.06 m wide and 0.0735 m

high. The area and the location of the source function have been designed

applying the rules described by Lin and Liu [48]. The height of the source

region is recommended to be in the range of 1/10−1/2 of water depth, while

the width of the source region is suggested to be less than 5% of the wave-

length. The distance between the center of the source region and the still

water level is advised to be in the range of 1/3−1/2 of the water depth. The

method has been extensively verified and validated compared with analytical

profiles to ensure accurate wave generation.

At the beginning of the numerical simulation, the water is at rest, and, as

the time increments, the source function is calculated to generate the regular

waves. In Fig. 6, we show the velocity field around the source function,

acting like a pump. Two trains of surface gravity waves are thus generated,

as the free surface responds to a pressure increment defined within the source

region cells.
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a. S(x, z, t) > 0 b. S(x, z, t) < 0

Figure 6: Velocity fields generated by the presence of the source function.

The two wave trains propagate in opposite directions towards both ends

of the numerical domain. The Neumann boundary condition is thus set at the

left side of the numerical domain to let the outgoing wave exit the numerical

domain. In order to ensure that no numerical reflection occurs at the left side

of the numerical domain, a sponge layer is set in addition to the Neumann

boundary condition. It consists in a region where the permeability coefficient

K is chosen such that the outgoing wave train is properly attenuated before

reaching the open boundary.

As detailed by Hieu and Tanimoto [20], the source function is gradually

intensified during the first four wave periods to ensure a stable regular wave

train generation. So the first four generated waves are smaller than the

experimental wave height. The small waves are observed to reach the shore

and run-up along the beach without breaking. After four wave periods,

the simulated waves reach the desired amplitude and the sixth wave starts

breaking as a plunging breaker at xb ≃ 108 cm away from the shoreline. The
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breaking point then moves offshore, as the next two waves overturn as strong

plunging breakers again. The first spilling event is observed as the ninth

wave break. Fifteen breaking waves were simulated. Only instantaneous

quantities are presented and discussed.

3.3. Results and discussion

Experimentally, the white cap was about 1 − mm thick as shown by

Kimmoun and Branger [1] in their Figs. 4 - windows 2 and 3. So, numerically,

the mesh grid refinement and the distribution were chosen to be able to

capture this feature. In Figs. 7, 8, 10 and 11, we present the free surface

evolution with the numerical velocity field in the water, corresponding to

the 10th breaking wave. In Figs. 12, we present some snapshots of the free

surface evolution with the numerical velocity fields in both media, air and

water, corresponding to the same 10th breaking wave.

3.3.1. General flow description

Spilling breakers are observed to start as a small zone of bubbles and

droplets on the forward side of the crest [59, 1]. This small region then grows

by spreading downslope, most of the forward face becoming a turbulent flow

region. Duncan [59] reported that, for the long wavelengths considered here,

spilling breakers can be initiated by a small jet at the crest of the wave,

creating a small turbulent patch of fluid well above the mean water level.

Figs. 7 present the initiation of the spilling phase. Once the front face

of the crest steepens and becomes vertical (Fig. 7 a), a thin jet of water

is indeed observed to be projected (Fig. 7 b). In our numerical results,

the spilling phase then starts as a very weak plunging breaking wave, with a

27



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

small tongue of water thrown from the crest developing and free-falling down

forward into a characteristic overturning motion. This is in accordance with

reports from Duncan [59] and Kimmoun and Branger [1]. Miller [10] also

presented pictures showing a spilling breaking wave starting with a 5−mm

high impinging jet at the crest of the wave. Once the jet is ejected from the

wave crest and plunges down, it hits the water at the plunge point, located

very near the crest of the wave. The plunging jet closes over a small gas

pocket (Fig. 8 c). The resulting splash is directed down the wave leading

to a spilling breaker (Fig. 8 d), where white foam, consisting of a turbulent

air/water mixing, should appear at the wave crest and spill down the front

face of the propagating wave [59, 1].

However, compared with the 1 − mm thick layer of foam initiating the

experimental spilling wave from Kimmoun and Branger [1], we find that the

gas pockets entrapped are about 5 − mm thick. Fig. 9 presents the jet

appearing at the wave crest and the mesh grid density used to capture the

generation of the jet. The jet is clearly very small, about 1 − cm high, but

it is probably thicker than experimentally. This is probably due to the same

tendency detailed in section 2.4, where the plunging jet was also thicker than

experimentally measured.

Then, the spilling breaker transitions into a strong plunging breaker (Fig.

10 a). A jet is ejected farther towards the lower part of the face of the

steepening wave. The plunging breaking wave is then responsible for the

generation of larger jet-splash cycles, this, in turn, being responsible for the

generation of a sequence of large-scale coherent vortices (Fig. 10 b).

A high velocity region is located at the breaking crest of the wave. High
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(a)

(b)

Figure 7: Breaking wave evolution with velocity field in water. Only one

vector over two is shown. Tenth breaking wave spilling phase initiation and

jet ejection. The free surface profile corresponds to C = 0.5.
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(c)

(d)

Figure 8: Breaking wave evolution with velocity field in water. Only one

vector over two is shown. Tenth breaking wave spilling phase initiation and

air entrainment (continuation of Figs. 7). The free surface profile

corresponds to C = 0.5.
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Figure 9: Jet ejection at the crest of the breaking wave for initiation of the

spilling phase. Mesh grid is shown with the free surface profile

corresponding to C = 0.5. Dual grid not shown here.

splash-ups are rising, with high velocities directed upward, in the wave prop-

agation direction, which generates counter- and co-rotative vortices (Figs. 10

b and c), as observed by Bonmarin [60], Miller [10] or Sakäı et al. [61]. This

process is observed to repeat, each successive splash-up being weaker than

the preceding one. Large volumes of air and water are put into rotation,

the successive rebounds causing more entrainment of air and energy dissi-

pation. Miller [10] indicated the formation of many air bubbles during the

jet-splash cycles which illustrated that the vortices in plunging breakers sig-

nificantly affect bottom flow. Large spinning gas pockets are observed in our

numerical results, dissipating wave energy. Most of the rotating structures

are entrained to the bottom before rising again to the surface. And once

the wave moves into a bore propagating towards the shoreline (Figs. 11 d

to f), we have very similar results for the free surface description detailed by

Kimmoun and Branger [1]. High velocities are located near the free surface,
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due the jet-splash cycles, during the bore propagation. The free surface is

distorted and very dynamic. The bore running up the beach at some point

meets the flow running down from the previous broken wave.

Nevertheless, discrepancies again appear. Experimentally, air cavities are

observed to be quickly fragmented into large plumes of bubbles. The dislo-

cation of the gas pockets into small bubbles cannot be simulated, even if, in

the numerical results, the gas pockets correspond to some air-water mixing

zones observed in the experimental pictures. This is due to the mesh grid

resolution, which is still too coarse to be able to capture this flow feature.

Indeed, the order of magnitude of bubble radii is usually 10−4 m [62], whereas

our mesh grid resolution is ∆xmin ≃ 5.10−4 m and ∆zmin ≃ 1.25 × 10−3 m

thanks to the dual grid. We are able to track the largest gas pockets and

bubbles greater than 1 mm, as illustrated in the figures presented in this

paper, where a large variety of inclusion length scales can be seen. Turbu-

lence is associated with air entrainment, which is responsible for wave energy

damping in the surf zone. In the experiments, it appears that the entrained

air bubbles are contained mostly in the large structures and diffused towards

the bottom due to the eddies. The rate of energy dissipation is increased

with the bubble penetration depth and strong vertical motion is induced

by the rising air bubbles. These mechanisms are mostly 3D, which cannot

be taken into account in a 2D numerical simulation. Moreover, numerical

diffusion due to the LW-TVD method [46] must also be responsible for the

discrepancies. The free surface is diffused over three mesh grid cells, so any

small inclusions (droplets or bubbles) are described less precisely.

We can also see strong flow dynamics in the air. We can see that the
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(a)

(b)

(c)

Figure 10: Wave in the process of breaking with velocity field in water.

Only one vector over two is shown. Tenth breaking wave transition to

strong plunging breaker with splash-ups generation and air entrainment

(continuation of Figs. 7 and 8). The free surface profile corresponds to

C = 0.5.
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(d)

(e)

(f)

Figure 11: Wave in the process of breaking with velocity field in water.

Only one vector over two is shown. Tenth breaking wave transition to

strong plunging breaker and run-up of the bore (continuation of Figs. 7, 8

and 10). The free surface profile corresponds to C = 0.5.34
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spilling phase occurs in quiet air dynamics and then meets air agitation

generated by the previous breaking waves. A large amount of air is affected by

the violence of the plunging breaking event. Figs 12 present some snapshots

of gas pockets entrapped at various stages of the breaking of the tenth wave.

Rotating and fractioning air pockets can be clearly seen. A large range of

inclusions can be described by the numerical simulation, interacting with

complex free surface behavior and chaotic hydrodynamics.

3.3.2. Quantitative comparisons

Table 3 compares the locations of the spilling breaking point, the plung-

ing occurrence and the first splash-up generation, from the numerical and

experimental results. The shoreline is located at xS = 14.075 m (see Fig.

5). The wave height at breaking is Hb = 13 cm, compared with the ex-

perimental value Hb = 14 cm. The numerical breaking point is located at

xb ≃ 358 cm away from the shoreline, compared with the experimental value

xb ≃ 250 cm. The occurrence of breaking was numerically detected when the

horizontal velocity component reached a magnitude higher than the wave

celerity, matching with a vertical topography of the front face of the wave

(see Fig. 10 a). The sequence of the main events can be qualitatively well de-

scribed by the numerical tool, as the same distance separates approximately

each event.

Figure 13 compares the numerical and experimental results for the crest-

envelopes (locations of the wave maxima) and the trough-envelopes (locations

of the wave minima). Arrows indicate the locations of the main events (begin-

ning of breaking, beginning of plunging and beginning of the first splash-up).

The general trend of the flow is found to be qualitatively well described.
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(a)

(b)

(c)

Figure 12: Snapshots of the wave in the process of breaking with velocity

field in air and water. Only one vector over two is shown. Tenth breaking

wave transition to strong plunging breaker with rotating and dislocating

gas pockets. The free surface profile corresponds to C = 0.5.36
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Figure 13: Comparison of the space evolution of the maximum and

minimum water levels near the shoreline. Symbols: experimental

measurements (stars: wave crest; circles: wave trough). Solid lines:

numerical results. The occurrence of the main events are indicated, for the

numerical (sbn, pbn and s1n) and experimental results (sbe, pbe and s1e).
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Experimental study Numerical simulation

Hb(cm) 14 13

sb(cm) ≃ −250 ≃ −358

pb(cm) ≃ −210 ≃ −280

s1(cm) ≃ −170 ≃ −250

Table 3: Experimental and numerical values for the approximate locations

of the beginning of the main events: beginning of spilling breaking sb,

beginning of plunging breaking pb and beginning of first splash-up s1 (see

Figs. 12 and 13 from Kimmoun and Branger [1]). Distances are given from

the shore.

Figure 14 compares the numerical and experimental wave profiles and

velocity fields for the main events. Despite the discrepancies in the abcissae,

a general agreement can be seen in the velocity magnitudes and free surface

description. Figure 15 presents the numerical and experimental wave profiles

when the broken wave runs-up along the beach. Air entrainment can be seen

in the experimental pictures with the gray areas. As already mentioned, the

gas pockets observed in the numerical pictures correspond to some air-water

mixing zones presented in the experimental pictures, but the coarse mesh grid

size does not allow the dislocation of the pockets into bubbles. Splash-ups

cycles are well described, with horizontal eddies generation [21, 1].

The general trend of the flow dynamics is found to be correctly simulated.

3.3.3. General discussion

So, we slightly underpredict the wave height at breaking and waves break

earlier than experimentally observed. It has been observed that a steady
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Figure 14: Comparison for the main breaking events (spilling sb, plunging

pb and first splash-up s1). Right column: numerical results; left column:

experiments.
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Figure 15: Comparison for the broken wave running-up the beach. Right

column: numerical results; left column: experiments.

breaking point was not yet reached. Indeed, some variations occurred in the

last breaking waves giving xb varying ±60 cm. This is consistent with the

experimental observations, the breaking point varying by ±30 cm around

the average value. For each experimental run, the 128 first wave cycles were

dedicated to reaching a statistical quasi-stationary sea-state before starting

data acquisition [1]. Image acquisition duration was set to 128 wave periods

(wave-cycles 129 to 256). Experimentally, the ten first breaking waves were

observed to differ from one another.

This remark raises an issue that should be addressed: how many wave

cycles should be simulated to be compared with experimental results? For

example, Ting and Kirby [63, 64, 65] indicated that waves were generated

for a minimum of 20 mn before data were taken, which gives 250 to 600 pe-

riodic waves (considering plunging and spilling breakers, respectively). Lin

and Liu [66] simulated about ten periodic waves considering spilling break-

ers [64]. The computed results for mean velocities and free surface profiles
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indicated that the waves computed in the surf zone have nearly, but not com-

pletely, reached the quasi-steady state, i.e. there was very a small difference

between two successive wave cycles. Lin and Liu [67] confirmed that, with

the improvement of the wave generation mechanism and absorbing bound-

ary conditions, the RANS models could run a long time until the waves

reached the quasi-steady state, during which both the mean water level and

time-averaged mean flow field could be accurately computed. However, the

turbulence closure models did not give completely satisfactory results for tur-

bulence simulation in the surf zone, the errors ranging from 25% to 100% for

the turbulence calculation in the spilling breaker. With LES, Christensen [9]

computed the experimental configurations of Ting and Kirby [64, 65], calcu-

lating average quantities over the last five wave periods considering 16 to 20

wave periods (plunging and spilling breakers, respectively). Wang et al. [23]

simulated up to ten spilling waves [64], calculating average quantities over

the last two wave periods. Hieu and Tanimoto [20] set a computation time

of 50 s, checking that time profiles of free surface elevations were almost sta-

ble after 30 s. When compared with to experimental results [64, 65], better

agreement was shown for plunging breakers. Nadoaka et al. [68] discussed

the fact that the breaking point is sensitive to any imperfection in wave

generation or to the effect of the previous broken wave. Therefore, the dif-

ferent wave generation procedures used between experiments and numerical

simulations may also have contributed to the discrepancies observed in the

comparisons presented in this paper. High order moments, such as skewness

and flatness of the velocity signal, probably have to be estimated to check

that steady state is reached in numerical simulations, to ensure accurate
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turbulent quantities.

It has therefore been proved that our simulation of fifteen wave periods

was insufficient to get a stable and accurate breaking point. Indeed, we

observed that the last three waves broke as plunging breakers. So more wave

periods would be needed to clearly address this issue. Thus, we did not

calculate average quantities, considering the expected discrepancies which

could have resulted from the comparisons. Considering these simulations as a

validation step, our numerical model gives very satisfactory and encouraging

results for this 2D configuration.

4. Conclusions and perspectives

We focused on describing the spilling phase of the experiments detailed

by Kimmoun and Branger [1]. The numerical results presented in this paper

concern instantaneous quantities, simulating 2D regular waves breaking over

a sloping beach. Our model was found to be reliable to describe correctly

the complicated two-phase flow interactions that happen when waves break.

The breaking process, in terms of wave overturning and splash-up occurrence,

is in accordance with the general observations given in the literature. Air

entrainment is described, which is important as it plays a great role in the

energy dissipation process. The utility of the numerical approach is to provide

a complete and accurate description of free surface and velocity evolutions

in both air and water media during the breaking of the waves, which must

lead to the understanding of the generation processes of energy dissipation

and turbulent flow structures. Nevertheless, wave breaking is a 3D two-phase

turbulent problem, so the 2D numerical results presented here consisted in a
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first attempt.

A major limitation of our numerical methods has been illustrated in the

results presented in this paper. The accuracy of the whole physical process

description is closely linked to the mesh grid size. Although LES allows

the use of coarser mesh grids to simulate turbulent flows, on the condition

that an appropriate subgrid model is implemented, an accurate free surface

description requires fine mesh grids. LES of breaking waves involve large

numerical domains, to include the generation of regular waves propagating

towards sloping beaches, and fine mesh grid resolutions to be able to describe

a large variety of physical processes (overturning jet, air entrainment, gas

pocket dislocations and coalescences). Long CPU time for the calculations

is also required to simulate a sufficient number of wave periods to reach a

steady state in the surf zone to perform correct averaging over time. Parallel

computing will enhance access to a better level of description of the turbulent

behavior of the entrained and rising air bubbles, providing refined mesh grids

are used to ensure an accurate free surface description [36].

With mesh refinment and 3D simulations, we could expect a better de-

scription of the air entrainment and energy dissipation. Considering the

difficulty to capture all the small bubbles and droplets encountered in the

wave breaking problem, these small interface structures can also be consid-

ered as subgrid interfaces. Mimicking the LES approach for turbulence, an

appropriate model of inclusions smaller than the mesh grid size could then

be proposed [69].
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