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Abstract

The pricing of American style and multiple exercise options is a very
challenging problem in mathematical finance. One usually employs a
Least-Square Monte Carlo approach (Longstaff-Schwartz method) for the
evaluation of conditional expectations which arise in the Backward Dy-
namic Programming principle for such optimal stopping or stochastic con-
trol problems in a Markovian framework. Unfortunately, these Least-
Square Monte Carlo approaches are rather slow and allow, due to the
dependency structure in the Backward Dynamic Programming principle,
no parallel implementation; whether on the Monte Carlo level nor on the
time layer level of this problem.

We therefore present in this paper a quantization method for the com-
putation of the conditional expectations, that allows a straightforward
parallelization on the Monte Carlo level. Moreover, we are able to de-
velop for AR(1)-processes a further parallelization in the time domain,
which makes use of faster memory structures and therefore maximizes
parallel execution.

Finally, we present numerical results for a CUDA implementation of
this methods. It will turn out that such an implementation leads to an
impressive speed-up compared to a serial CPU implementation.

Keywords: Voronoi Quantization, Markov chain approzimation, CUDA, Paral-
lel computing for financial models, Stochastic control.
1 Introduction

The pricing of American style and multiple exercise options consists of solving
the optimal stopping problem

V= esssup{E(apT (Xr)|~7:0) : 7 is a (Fy)-stopping time}
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for an adapted stochastic process (Xj)o<r<n on a filtered probability space
(Q, (Fr)o<k<n,P) and obstacle functionals ¢, 0 < k < n.

It is well known (see e.g. [@]) that V is given by the solution V4 to the
Backward Dynamic Programming (BDP) Principle

Vo= Pt (Xn)

Vi :max(tptk(Xk); E(Vk+1|]:k)), 0<k<n-1. S

We focus here on the case of an adapted Markov chain (X}), so that it holds
E(Vi+1]|Fr) = E(Vit1|Xg). Then the main difficulty of solving ([l) by means of
Monte Carlo methods lies in the approximation of the conditional expectations
E(Vi+1|Xk). This is usually accomplished by a Least Squares regression as
proposed by the Longstaff-Schwartz method. Following [ﬁ, EI] and [@] the
main steps of this procedure consists of

e Simulating M paths of (X}) (forward step)

e Starting at k = n — 1, approximate fj(x) = E(Vy41|Xr = x) by a Least
Squares regression and proceed backwards to 0. (backward step)

From a practical point of view, the most expensive tasks are clearly the
repeated Least Square regressions on the huge number of Monte Carlo paths.
Due to the sequential dependency structure of the Backward Dynamic Program-
ming formula, the collection of the Least Squares problems as a whole cannot
be solved in parallel, but has to be processed in strict sequence. Moreover, it is
not an easy task to solve the single Least Square problems efficiently in parallel.

We therefore present in this paper a Quantization Tree algorithm, which
handles the most part of the work in a forward step which can be easily paral-
lelized on the Monte Carlo level (pathwise) as well as on the time layer level.
Therefore, this approach is well suited for the use of massive parallel computing
devices like GPGPUs. Using this approach, the subsequent backward process-
ing of the BDP principle becomes straightforward and negligible in terms of
computational costs when compared to the Least Squares backward step.

2 The Quantization Tree Algorithm

The Quantization Tree algorithm is an efficient tool to establish a pathwise
discretization of a discrete-time Markov chain (see e.g. [, B B or [{]). Such a
discretization can be used to solve optimal stopping or control problems, as they
occur in the evaluation of financial derivatives with non-vanilla exercise rights.
In this paper, we focus on a fast computation of the transition probabilities
in a Quantization Tree by means of GPGPU-devices, which make this approach
suitable for time-critical online computations.

Therefore, let (Xx)o<k<n be a discrete-time L?-Markov chain on a filtered
probability space (£, (Fi)o<k<n,P) with values in the vector space (RY, B%).
This vector space shall be endowed with an appropriated norm (often Euclidean



norm). For each time-step & we furthermore assume to a have a quantization
grid
k k
I = (ml,...,:I:Nk)
of size Ny.

This means that I} provides a discretization of the state space of the r.v.
X}, which is supposed to minimize the quadratic quantization error

E min || X; —2¥|? 2
 Join [ — 27 (2)
over all possible grids T}, ¢ R? with size |Ty| < Ni. (See [ for a comprehensive
introduction to quantization of probability distributions.)

For a grid I, let (C’Z- (Fk))1<i<Nk be a Voronoi Partition of R¢ induced by
the points in T, i.e. o

Ci(lx)  {y € Rt [ly —«f|| < min |y — 25|}

1<j<Ng
We then call the mapping
Ny,
20 Y wilomy ()
i=1

the Nearest Neighbor projection of z onto T¥.

This Nearest Neighbor projection defines in a natural way the Voronoi Quan-

tization
Ny,

)?ll;‘k - lelcz(rk)(Xk)5

=1

which obviously provides a discrete r.v. with not more than Nj states and

. |
Bl X, — X2 = min X, - b

Defining the cartesian product quantizer
n

=]
k=0

we arrive at a path discretization of the Markov chain (X}) with [I'| < [],_, Nk
paths, which we will call the Quantization Tree (see Figure [I).
To equip I' with a probability distribution, we introduce the transition prob-
abilities
k o) k| ple— k—1
T = ]P)(ka =T | X3 = )

(3)
= ]P)(Xk S Cj(Fk) |Xk71 S C’Z-(Fk,l)).

If the marginal distributions of (X},) are Gaussian and the norm is the canon-
ical Euclidean norm, grids which minimize (f]) are precomputed and available



Figure 1: A Quantization Tree I'

at [B] Otherwise, some sub-optimal grids, matching the first two moments of
X, can be employed at the price of not achieving the full optimal convergence
rate.

Nevertheless, the true difficulties of this approach actually consist in the
computations of the transition probabilities wfj These probabilities are usually
so strongly connected to the individual choice of the Markov chain (X}) that
they cannot be precomputed like the above quantization grids or approximated
by simple means.

We therefore have to perform a Monte-Carlo (MC) simulation of the Markov
chain (X%) in order to estimate the transition probabilities wfj Since these MC
simulations can be quite time consuming, we will take advantage of the massive
parallel computing capabilities of nowadays GPGPU-devices and reduce the com-
putational time for the estimation of the transition probabilities to a level that
actually is acceptable for time-critical applications in financial practice.

As the Quantization Tree I' exhibits a pathwise approximation of the Markov
chain (X}), we may numerically solve on I" stochastic control or optimal stopping
problems like they occur e.g. in the valuation of options with non-vanilla right
exercises.

In [ff], the optimal stopping problem

V= esssup{IE(cpT (X:)|Fo) : T a (Fi)-stopping time} (4)

with a payoff function ¢, (z) = (soexp((r — 02/2)t + oz) — K)Jr and (Xg) a
d-dimensional time-discretized Brownian motion is solved to approximate Amer-
ican option prices.

In [E]7 the authors employ the Quantization Tree to solve the stochastic



control problem

n—1

P(Q) = esssup{E(Z quk(Xk)’}'o) :Vk=0,...,n—1:
k=0 N (5)
gk * (Q;‘Fk) — [0; 1]; qu € [Qmin;Qmax]}v

k=0

where vy, can be interpreted as a payoff function and the couple Q = (Qmin, Qmax)
provides some global constraints on the cumulated consumption 22;01 qk, SO
that (ﬂ) yields the fair value of a swing option, which is an important derivative
in energy trading.

Concerning the Quantization Tree algorithm, note that I' contains such a
huge number of paths (e.g. at least 1003% in the example below) that it is
impossible to process above problems in a path-wise manner.

Therefore, one usually resorts on the Backward Dynamic Programming (BDP)
Principle, which allows a time-layer wise proceeding. This approach yields a
complexity of C'>"}'_; Ny_1Nj, L.e. increases only linearly in n.

In case of the optimal stopping problem (E), the true BDP-principle can be
approximated by setting

~

Vo = 1, (Xgn)

f}k = max(gotk ()/(:]Ek), E(Vk_,_l’)?{k)), 0 < k <n-— 1,
so that the Fy measurable r.v. IA/O yields an approximation for V. Doing so we
somehow “force” the Markov property of the Quantization sequence (X ,1;’“)

In case of the stochastic control problem @), it was shown in [@] that there
exists a bang-bang control for (E), so that the BDP-principle leads to

13n =0
ﬁk(Qk) = max{ka()?};’“)
B (Pt (@, 2) | K1), € {0,130 1
where the set Ig and the function x*(Q, ) ensure to keep consumption within
the global constraints [Qmin, Q@max]-

In both cases, we have to evaluate conditional expectations E(f(Xk+1)|Xk),
which reduce on T" to

Nt

E(f(X00[ X0 = ab)= 3" fah) k.
j=1

Concerning the approximation error for this approach, assume that the vy
are Lipschitz-continuous and that (Xj) has Lipschitz-Feller transition kernels.



We then get in case of a trivial o-field Fy for a constant C' > 0 (see [[f, Thm 3)

1/2

n—1
PQ) - Po(@)] < C Y (BIIXe — X12)
k=0

3 Swing options in the Gaussian 2-factor model

We will now focus on the implementation of the Quantization Tree algorithm for

the valuation of Swing options in a Gaussian 2-factor model and present in detail

the computation of the transition probabilities using CUDA on a GPGPU-device.
In this model, the dynamics of the underlying are given as

t t 1
Si = sgexp <01/ e*‘J‘l(t*S)dVVs1 + 02/ 67‘”‘2“75)&/1/52 — 5%)
0 0

for Brownian Motions W' and W?2 with some correlation parameter p.

Having introduced the time discretization ty = k/n, k = 0,...,n, we con-
sider the 2-dimensional Ornstein-Uhlenbeck process
tr tr
Xi = (/ e—m(tk—S)de,/ eI w?), (6)
0 0

This Markov chain admits a useful representation as a first-order auto-
regressive (AR-1)-process:

Proposition 1 For (X}) from (@) it holds
Xp+1 = A Xy + Tiex, k=0,...,n—1,

where Ay, and Ty, are deterministic matrices and (ex) is an i.i.d. standard normal
sequence.

In order to estimate the transition probabilities
ij = P(Xk S Cj(Fk) | X1 € Ci(kal))

_ P(Xk S Cj(Fk) NXg_1€ Cz(rkfl))
P(Xk—1 € Ci(Tk)) ’

we will therefore simulate M samples of (X}) according to Proposition [] and
perform in each time-layer k& a Nearest Neighbor search to identify the Voronoi
cell C;(T%) in which X}, falls.

Using the additional counters pfj and pf, a serial implementation for the
estimation of ij is given by Algorithm I.

We will adopt a numerical scenario, which has already proven in [E] to pro-
duce accurate results for the valuation of Swing options. Thus we set

# MC-Samples: M = 100.000



Algorithm I
form=1,...,M do
# Initialization
x<—x0,i90,p§<—1
for k=1,...,ndo
Simulate ¢,
z < Apx + Theyg
Find NN-Index j of x in I}
Set
Pi‘cj +=1
p;‘*le: 1
14— J
end for
end for
Set wfj —

k
Pij
Py

1<4,j <Np,1<k<n.

)

# Exercise days: n = 365
Grid size: N = N, =100—500 for k=1,...,n.

This setting results in a computational time of 30—90 seconds for non-parallel
estimation of the transition probabilities on a Intel Core i7 CPUQ2.8GHz
and N = 100 to 500.

Since any parallel implementation of the above algorithm has to perform
actually the following steps

1.) generation of the independent random numbers ¢
2.) a Nearest Neighbor search
3.) updating the counters pi—“j,pf,

we will discuss these tasks in more detail with respect to an implementation for
CUDA.

The amount of data which has to be processed in these steps when using
single precision floating-point numbers is summarized in Table m

Table 1: Amount of data to be processed for N = 100 — 500.

| per layer k | total
# Random numbers 100k 36.5M
# Nearest Neighbor searches 100k 36.5M
size of ij and pfj 40kB - 1IMB 15 - 3656MB
size of grids T}, 800Byte - 4kB | 285kB - 1.5MB



3.1 Random number generation

The challenge of random number generation on parallel devices consists in mod-
ifying the sequential random number generator algorithm in such a way, that
the original sequence {z,,n=1,...,M} with M =k - s

e is generated in independent blocks of size s, i.e. k streams {2,544, ¢ =
1,...,s}, where n =0,...,k — 1 (block approach)

or

e can be partitioned through a skip-ahead procedure, i.e. one generates
independently s streams {4, ¢ =0,...,k —1} for n =1,...,s (skip-
ahead)

The block-approach can be accomplished by generating a well chosen se-
quence of seed values to start the parallel computation of the random number
streams. In contrast to this, for the skip-ahead approach we have to modify
the main iteration of the random number generator itself . Nevertheless, this
modification can be easily carried out for linear congruential random number
generators

Tpt1 = azy + ¢ mod 2™,

For this kind of generator it holds
Tpts = Axy + C mod 2™

with A = a® and C = Y. _ja’c. Thus, once the coefficients A and C are
computed, the generation of the subsequence {z;, 45, € N} is as straightforward
as it is for {z,,,n € N}.

As a first parallel random number generator, we have implemented a parallel
version of drand48 in CUDA, which operates in 48bit arithmetic.

A slightly more sophisticated variant of this random number generator is
given by L’Ecuyer’s Multiple Recursive Generator MRG32k3a. (cf. [{])

xl = (1403580 ) _, — 810728 2} _;) mod m,
2 = (52761222 _; — 1370589 22_5) mod ma
Tn = (iC,ll — ZC%) mod mq

for my = 232 — 209 and mo = 232 — 22853.

Here, it is again possible to precompute constants (matrices) to generate the
skip-ahead sequence {4, € N} efficiently (see [LJ]). An implementation in
CUDA of this method is given by the GPU-Library of NAG.

A third kind of random number generators for CUDA is given by Marsaglia’s
XORWOW generator in the CURAND-Library of Cuda Toolkit 3.2. As de-
scribed in [@] one easily may compute starting seed values for a block approach
and the random numbers sequence is then given by very small number of fast
bit-shifts and XOR~operations. To be more precise the initialization procedure
of the CURAND-Library computes starting values for the blocks which correspond
to 267 iterations of the random engine. Moreover the main iteration of the
random number generator for the state variables v,w,x,y,z reads



unsigned int curand()

{
unsigned int t;
t=(0(x " (x> 2));
X =7y;
y =2z
Z = W;
W= V;
v=(v" " (v<<4))" (" (<)),
d += 362437;
return v + d;

}

To illustrate the performance of these three random number generators we
have chosen a Monte Carlo simulation with a very simple integrand to illustrate
the performance in simulations where the function evaluation is very cheap. To
be more precise, we estimated m = 3.14159265... by a Monte Carlo simulation
for $A?(B2(0,1)) using M = 10? random numbers.

The results for a NVIDIA GTX 480 device and CUDA 3.2 are given in Table
E. The mean and the standard deviation of the MC-Estimator were computed
from a sample of size 500.

RNG engine | computational time | mean | std. Dev.

drand48 0.2562 sec 3.141590 | 5.2585e-05
MRG32k3a 0.2573 sec 3.141594 | 5.20932e-05
CURAND 0.2085 sec 3.141592 | 5.03272e-05

Table 2: Results for a Monte Carlo estimation of # = 3.14159265...

One recognizes that the XORWOW generator from the CURAND-library slightly
outperforms the two linear congruential implementations, since the XORWOW-
step can be processed more efficiently than a modulo operation. Nevertheless
the differences between all three random number generator are rather marginal.

Especially, when we have in mind, that the original problem of swing op-
tion pricing needs only 35M random numbers in total, the generation of this
amount of random numbers becomes negligible compared to the time spent for
the nearest neighbor searches.

3.2 Nearest Neighbor search

For each MC-realization X}, we have to perform a Nearest Neighbor search in
every time-layer k to determine the Voronoi cell C;(I%) in which X}, falls.

These Nearest Neighbor searches can be performed completely independent
of each other, so we implemented them as sequential procedures and only have
to pay attention to a proper adaption to the CUDA-compute capabilities.



Note here that we cannot employ the CUDA built-in texture fetch methods
for this task, since the grids Iy do in general not consist of a lattice of integer
numbers.

From an asymptotical point of view, the kd-tree methods (cf [ﬂ]) obtain the
fastest results for Nearest Neighbor searches of O(log N)-time. Unfortunately,
all these divide & conquer-type approaches heavily rely on recursive function
calls; a programming principle which was introduced only very recently in the
CUDA Compute Capability 2.x specification. Alternatively, one may implement
a simple brute force Nearest Neighbor search of O(N)-time complexity.

The results for 36.5M NN Searches of a random number in a 2-dimensional
grid can be found in Table E It is striking that the brute force approach

N | brute force | kd-tree |
100 0.09 sec 3.56 sec
250 0.23 sec 5.14 sec
500 0.41 sec 6.59 sec

Table 3: Computational time for 36.5M Nearest neighbor searches on a NVIDIA
GTX 480 device

outperforms the kd-tree method in this setting by a huge factor, even though it
suffers from a sub-optimal asymptotic behavior.

Further analysis revealed that, when using the same random number for the
search in all threads of a given block, the kd-tree approach took in the same
setting only 0.25 to 0.34 sec (N = 100 to 500). The dramatic slowdown of Table
B, where the NN Search is performed for different random numbers in each single
thread, must be caused by a very inhomogeneous branching behavior of the
single threads during the kd-tree traversal, which prevents the GPGPU-scheduler
of distributing the threads efficiently.

We will therefore use in the sequel the brute force approach for the further
numerical experiments.

3.3 Updating p};

As soon as we have determined the Voronoi cells C;(I;—1) and C;(I%) in which
a realization of (Xj 1, Xy) falls, we have to increase the counter pf;.

Since, in a parallel execution of steps @ and ., it can happen that two
threads try to update the same counter pfj at the same time, we arrive at the
classical situation of a race condition.

Consequently, such a situation would lead to an undetermined result for the
counter pfj, which practically means that we randomly lose parts of the Nearest
Neighbor search results.

To avoid this race condition, we are forced to employ memory locks, which
are implemented in CUDA by means of atomic operations. Hence, we have to

increment pfj by calling the CUDA-function

int atomicAdd(int* address, int val);.

10



The resulting parallel procedure is stated as Algorithm II.

Algorithm IT
for m=1,..., M do in parallel

# Initialization

T4 20,04 0, ph 1

for k=1,...,ndo
Simulate e,
x < Apx + Thep
Find NN-Index j of « in T}

atomic increment pfj

atomic increment karl

J
147
end for
end for in parallel

Synchronize threads
k
Set in parallel ¥, < ’;k 1<i,j<Np1<k<n.

4 Numerical results

One of the key points in an efficient CUDA-implementation is the choice of the
proper memory structure for the individual data. Table E lists the available
memory types in CUDA Compute Capability 1.x.

local memory not cached | 16kB per thread
constant memory | cached 64kB per device
shared memory n/a 16kB per block
global memory not cached | =~ 1GB per device

Table 4: Memory types for CUDA compute capability 1.x

Note that shared memory is (beneath the processor registers) the fastest
memory available in CUDA, since it resides very close to the processor cores.
There are 16kB of shared memory available per Multiprocessor, whose content
is read- and writable by any thread in the same block of a grid.

The other memory types in TableH are about 400 times slower than shared
memory except constant memory which is cached and therefore achieves a sim-
ilar read performance as shared memory.

Taking into account the sizes of the arrays ﬂfj , pfj and I, from Table EI, there
is no other possibility for the above algorithm than to place all the arrays in
global memory, since any thread has to access the arrays ﬁfj, pi‘”j and I for any
k,1<k<n.

11



The fact that these arrays have to reside in global memory especially slows
down the Nearest Neighbor searches, which rely on a fast access to the grid
points of [}.

We therefore present another approach, which maximizes the parallel execu-
tion by splitting up the problem into smaller parts, that can make use of faster
memory.

Note that due to Proposition ﬂ we can directly simulate the couple (X, e) in
order to get a realization of (X, X1 ) without the need of generating X;, | < k.

Thus, if we accept to generate twice the amount of random numbers and
double the number of Nearest Neighbor searches, we arrive at Algorithm III.

Algorithm III
for k =1,...,n do in parallel
for m =1,..., M do in parallel
Simulate X, g

Find NN-Index 7 of X}, in I}
Find NN-Index j of Ax Xy + Trer in Tep

atomic increment pfj
atomic increment p¥
end for in parallel

Synchronize
k
Set in parallel ij — %}L,

1<4,j < Ng
end for in parallel

Here, we do not only parallelize with respect to the MC-samples (pathwise),
but also with respect to the time-layer k. Therefore, we are able to perform the
whole MC-simulation of a given time-layer k (i.e. the inner loop) on a single
Multiprocessor (i.e. within a single block in CUDA-terminology).

Hence, we can store the involved grids I, and I';4; entirely in shared memory
and benefit from a huge performance gain.

This can be seen in Table E and Figure E, which demonstrates that the shared
memory implementation - performing even twice as many Nearest Neighbor
searches - is still significantly faster than the usual pathwise parallelization for
CUDA Compute Capability 1.x.

N | 100 | 250 | 500 |
Algorithm IT | 0.82 sec | 1.25 sec | 1.83 sec
Algorithm IIT | 0.31 sec | 0.68 sec | 1.38 sec

Table 5: Computational times for the transition probabilities on a NVIDIA GTX
295 device

All the computations for CUDA Compute Capability 1.x were performed on
a NVIDIA GTX 295 GPGPU, CUDA Toolkit 2.3 and NVIDIA X-Driver 190.53

12



Algorithm | ——
Algorithm [l ---x-—-

18 |

16

12 |

sec

06 | i

04 L E

0.2 1 1 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500

N

Figure 2: Linear performance of Algorithms II & III with respect to N on a
NVIDIA GTX 295 device

for 64bit Linux. The running times in Table E also include the transfer of the
transition probabilities wfj back to the host CPU.

Furthermore, we have chosen in all examples 256 - 512 threads per block and
overall 365 - 400 blocks. This choice was optimal for our setting. Note here,
that the shared memory algorithm performs 73 - 10° Nearest Neighbor searches
in a 2-dimensional grid. Assuming that the brute force Nearest Neighbor search

(min < (z1 — y1)* + (z2 — y2)?)

for each grid point is equivalent to 6 FP-operations (3 additions, 2 multiplica-
tions, 1 comparison), we already arrive for N = 500 at a computing power of
approx. 175 GFLOPS only for the Nearest Neighbor searches (the pure kernel
execution takes in this case 1.25sec). Compared to the peak performance of
895 GFLOPS for one unit in the NVIDIA GTX 295-device, this fact underlines
that our implementation exploits a great amount of the theoretically available
computing power of a GPGPU-devices.

4.1 Progress in hardware: the Fermi-architecture

With the arrival of CUDA Compute Capability 2.x and the Fermi-architecture,
there are now L1- and L2 caches available of up to 48kB per block. It turned out
that this change in hardware design has strong implications on the performance
of Algorithm @ As it can be seen in Table E and Figure E, the new cache
can nearly completely compensate the advantage of the shared memory usage
in Algorithm . Moreover, both parallelizations differ roughly by a factor of
two which is caused by the fact that algorithm has to perform twice the

13



N | 100 | 250 | 500 |
Algorithm IT | 0.11 sec | 0.30 sec | 0.63 sec
Algorithm IIT | 0.21 sec | 0.50 sec | 0.99 sec

Table 6: Computational times for the transition probabilities on a NVIDIA GTX
480 device

Algorithm Il ——

Algorithm JJF"=--x---
09 | /X/ -

07t 1

0.6 |

sec

05

04 |

0.2 |

0.1 1 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500

N

Figure 3: Performance of Algorithms II & III with respect to N on a NVIDIA
GTX 480 device

number of Nearest Neighbor searches than Algorithm ﬂ The computations for
CUDA Compute Capability 2.x were performed on a NVIDIA GTX 480 GPGPU,
CUDA Toolkit 3.2 and NVIDIA X-Driver 260.19.29 for 64bit Linux

5 Conclusion

We have shown in this paper that the use of GPGPU-devices is quite efficient for
the estimation of transition probabilities in a Quantization Tree. Although we
resorted for the Nearest Neighbor search, which is the most compute intensive
part of the algorithm, to the sub-optimal brute-force approach, we could achieve
by means of the massive computing power of a GPGPU-device a speed-up of factor
200 compared to a serial CPU implementation. Those implementations can
therefore be used for online estimation of the transition probabilities in time-
critical applications in practice, which is not possible for a CPU implementation
that can take more than 1 min for the same task.

14
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