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ON THE KARLIN-KIMURA APPROACHES TO THE
WRIGHT-FISHER DIFFUSION WITH FLUCTUATING

SELECTION

THIERRY HUILLET

Abstract. The goal of this manuscript is a comparative study of two Wright-

Fisher-like diffusion processes on the interval, one due to Karlin and the other

one due to Kimura. Each model accounts for the evolution of one two-locus
colony undergoing random mating, under the additional action of selection

in random environment. In other words, we study the effect of disorder on
the usual Wright-Fisher model with fixed (nonrandom) selection. There is a

drastic qualitative difference between the two models and between the random

and nonrandom selection hypotheses.
We first present a series of elementary stochastic models and tools that

are needed to undergo this study in the context of diffusion processes theory,

including: Kolmogorov backward and forward equations, scale and speed func-
tions, classification of boundaries, Doob-transformation of sample paths using

additive functionals. In this spirit, we briefly revisit the neutral Wright-Fisher

diffusion and the Wright-Fisher diffusion with nonrandom selection.
With these tools at hand, we first deal with the Karlin approach to the

Wright-Fisher diffusion model with randomized selection differentials. The

specificity of this model is that in the large population case, the boundaries
of the state-space are natural, hence inaccessible and so quasi-absorbing only.

We supply some limiting properties pertaining to hitting times of points close
to the boundaries.

Next, we study the Kimura approach to the Wright-Fisher model with

randomized selection, which may be viewed as a modification of the Karlin
model, using an appropriate Doob transform which we describe. This model

also has natural boundaries but they turn out to be much more attracting

and sticky than in its Karlin’s version. This leads to a faster approach to the
quasi-absorbing states, a larger time needed to move from the vicinity of one

boundary to the other and to a local critical behavior of the branching diffu-
sion obtained after the relevant Doob transformation.

Running title: Karlin-Kimura Models with Fluctuating Selection.

Keywords: Wright-Fisher diffusion, fluctuating selection, Karlin, Kimura,

quasi-fixation, hitting times, natural boundaries, Doob transform, branching
diffusion, local criticality.

1. Introduction and outline of the results

The goal of this manuscript is the study of two diffusion processes on the unit
interval, due to Karlin for the first and to Kimura for the second. Each model
describes the evolution of one two-locus colony undergoing random mating, under
the additional action of selection in random environment. The effect of disorder
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on the usual Wright-Fisher model with fixed (nonrandom) selection is huge and the
conclusions to be drawn in each case radically different.

Besides the pioneer works [18] and [21] on which our own work chiefly relies, we wish
to cite the related works [19], [28], [24], [11] and [34], also dealing with temporally
varying selection coefficients.

Before proceeding with this program, we first revisit a series of elementary sto-
chastic diffusion models and needed tools which found their way over the last sixty
years, chiefly in mathematical population genetics [In this context, we refer to [30]
and to its extensive and non-exhaustive list of references for historical issues in the
development of modern mathematical population genetics (after Wright, Fisher,
Crow, Kimura, Nagylaki, Maruyama, Ohta, Watterson, Ewens, Kingman, Grif-
fiths, Tavaré...). See also the general monographs [3], [26], [9], [35] and [12]].

Section 2 is therefore devoted to generalities on one-dimensional diffusions on the
unit interval [0, 1] , with the usual Wright-Fisher (WF) diffusion in mind. It is
designed to fix the background and notations, following and completing a similar
treatment in [15]. Special emphasis is put on the Kolmogorov backward and forward
equations, while stressing the crucial role played by the boundaries in such one-
dimensional diffusion problems. Some questions such as the meaning of the speed
and scale functions, existence of an invariant measure, validity of detailed balance,
are addressed in the light of the Feller classification of boundaries. The important
problem of evaluating additive functionals along sample paths is then briefly recalled,
emphasizing the prominent role played by the Green function of the model ; several
simple illustrative examples are supplied. As a by-product, the transformation
(selection) of sample paths techniques, deriving from specific additive functionals,
are next briefly introduced in the general diffusion context. Some transformations
of interest are then investigated, together with the problem of evaluating additive
functionals of the transformed diffusion process itself. We will make use of one of
them in Section 5.

Roughly speaking, the transformation of paths procedure allows to select sample
paths of the original process with, say, a fixed destination and/or, more generally, to
kill certain sample paths that do not fit the integral criterion encoded by the additive
functional. They are very useful in the context of conditioning the original process
in various ways. One should therefore see it as a selection of paths procedure leading
to new processes described by an appropriate modification of the infinitesimal gen-
erator of the original process, including a multiplicative killing part, in general. It
turns out therefore that the same diffusion methods used in the previous discussions
apply to the transformed processes, obtained after a change of measure. For exam-
ple, we show how to obtain the Yaglom limit of the transformed process conditioned
on not being yet killed nor absorbed, exactly in the same way as the Yaglom limit
of the original process simply conditioned on not being yet absorbed can be obtained.

In Section 3, we briefly and informally recall how the specific continuous space-time
Wright-Fisher diffusion models, either neutral on nonneutral, can be obtained as
scaling limits of a biased discrete Poisson-Galton-Watson model with a conserva-
tive number of offsprings over the generations. This allows to introduce various
drifts of biological interest to force the neutral WF model in specific directions.
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Because our study is chiefly about selection, we focus on the bias to neutrality
arising from (deterministic) selection or fitness.

In the forthcoming three Sections, we study the announced problem of WF diffu-
sion in random uncorrelated environment. For interested readers not willing to go
through all technical details, we now summarize the obtained results. Whenever it
is the case, pointers to existing known results borrowed from the literature will be
introduced, in the course of the exposition of the results.

In Section 4, we deal with the Wright-Fisher model with randomized selection differ-
entials, as first studied by Karlin, [18]. In Karlin’s approach, the constant selection
intensities at each generation appearing in the usual WF model with selection are
regarded as a random iid selection sequence. By doing so, we study the effect of
disorder on the WF diffusion model with nonrandom selection.

In the diffusion approximation of the Karlin model, the local variance term turns
out to be the sum of two contributions, respectively one due to binomial sampling
(the genetic drift) and the other to the within generation selection variance. In the
latter contribution, the amplitude parameter ρ quantifying the selection intensities
fluctuations appears. The obtained drift is cubic. It is also the sum of two contri-
butions. In the first one, a parameter γ representing selective advantage of allele
1 over allele 2 comes in. It is not simply the difference between the mean selec-
tion intensities as it also involves their second-order moment properties (this is a
characteristic ingredient of random environments). The second contribution to the
drift term is also affected by the amplitude of the selection intensities fluctuations.
It accounts for a stabilizing drift toward 1/2. Both boundaries {0, 1} of this new
process being exit, this process is transient, just like the usual WF model with non-
random selection coefficients. Using techniques developed in Section 2, we compute
the expected time to fixation at the boundaries with the help of the Green function
of the model. In the symmetric or neutral case with equality in distribution of the
selection differentials (no selective advantage of any allele and γ = 0), the expected
time to fixation is seen to decrease with the amplitude ρ of their fluctuations (a
result first discussed in [17] and [14]). In this neutral case, the drift term of the
diffusion model is restricted to the stabilizing drift toward 1/2 proportional to ρ,
tending to increase the fixation time, competing with an increase of the selection
intensities fluctuations tending to make it shorter.

In the large population setup, we can drop the binomial sampling contribution to the
variance term in the former diffusion model with randomized selection. For this new
model, the boundaries become inaccessible and natural. The transition probability
kernel can easily be computed showing that if γ > 0 (< 0), the mass of the law of
the process accumulates near 1 (respectively 0) as time passes by. In the symmetric
or neutral case ( γ = 0), this law forms two symmetric peaks about both 0 and 1,
but without reaching the boundaries in finite time, expressing that quasi-fixation (or
quasi-loss) occurs, a phenomenon first observed and described by Kimura in [21].

Still with γ = 0, we estimate the probability starting from x ∈ Iε = [ε, 1− ε] to hit
first 1−ε before ε ( ε > 0 small). We conclude that, independently of ρ, when x < 1
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(x > 1
2), this probability is slightly smaller (larger) than 1/2 with a correcting term

of order 1
− log ε · log

(
x

1−x

)
.

Then we proceed with estimating the expected first exit time of Iε. We show that it
diverges like 1

ρ [log (ε)]2 as ε→ 0, somehow quantifying how inaccessible the natural
boundaries of this model are. As intuitively required, this quantity is a decreasing
function of ρ.

Assume the process does not leave Iε. As a measure of the process spending a sub-
stantial amount of time in the neighborhood of the boundaries of Iε where homozy-
gosity is largest, we compute a conditional empirical average of the heterozygosity
over the sample paths. We show that it tends to 0 like 1

− log(ε) as ε→ 0, indepen-
dently of ρ.

We finally show that the time to move from ε to 1 − ε is large in the following
sense. Using the Green potential function of the Kimura model, we compute the
law of τε,1−ε which is the first time that the process hits 1 − ε starting from ε.
We get that, as ε → 0, ρ

23[log(1/ε)]2
τε,1−ε converges in distribution to a stable law

of index 1/2. The order of magnitude of τε,1−ε is thus 23 [log (1/ε)]2 ρ−1 →
ε→0

∞.
This quantity is decreasing with ρ.

In Section 5, we introduce the Wright-Fisher-Kimura model with fluctuating selec-
tion intensities which turns out to be a significant modification of the Karlin model.
In the Karlin diffusion models, the stochastic differential equations were understood
in the sense of Itô. Looking at their equivalent Stratonovitch form, the drift is mod-
ified accordingly; it becomes quadratic and the ρ−dependent part of the Karlin drift
vanishes. Kimura considered a selection model in random environment where the
latter Stratonovitch diffusion was now understood in the classical sense of Itô; see
[21]. The drift term of the Kimura model no longer depends on the amplitude of
the selection intensities fluctuations, killing the stabilizing effect towards 1/2 of the
Karlin model studied in Section 4. As a result, one expects the boundaries of the
Kimura model to be much more attracting and sticky than in its previous Karlin
version.

Finally, in the last Section 6, we study the Kimura model in itself proposing in the
process a systematic comparative study of the Karlin and Kimura models.

We start with the easier symmetric case when γ = 0 (the Kimura martingale).
We show that it has again two natural inaccessible boundaries; the process is still
null-recurrent. For this driftless Kimura model, the transition probability density
can easily be obtained in closed-form. It converges more rapidly than for its Karlin
version to the quasi-absorption states {0, 1}.
We show that the probability starting from x ∈ Iε = [ε, 1− ε] to hit first 1−ε before
ε is no longer of order 1/2. Rather, still independently of ρ, it is given by x−ε

1−2ε

showing that the initial condition has a greater influence on this event than in the
Karlin model .
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Next, we estimate the expected first exit time of Iε. We show that it diverges like
− 2

ρ log (ε), which is smaller than 1
ρ [log (ε)]2 obtained previously in the Karlin con-

text . This quantity is again a decreasing function of ρ. The Kimura model hits
therefore the boundaries of Iε in a much shorter time on average than its Karlin’s
counterpart.

The conditional empirical average measure of heterozygosity for the Kimura mar-
tingale also tends to 0 when ε → 0, but like −2ε log ε, which is much faster than
in the Karlin model. In this sense, the Kimura martingale spends much more time
close to the boundaries than the corresponding Karlin process, because in the latter
case there is no more a stabilizing drift toward 1/2.

Using the Green potential function technique, we compute next the law of the time
needed to move from ε to 1−ε for the Kimura martingale. We show that a limiting
damped 1

2−stable law is involved. We find in particular that the probability that a
move from ε to 1 − ε occurs in finite time is of order ε : Whenever the Kimura
martingale approaches a boundary closely, its probability not to move back to the
opposite boundary approaches 1 accordingly. This opportunity did not exist when
dealing with the Karlin model. It shows how sticky the boundaries became, with
a behavior closer to the one expected would the quasi-absorbing boundaries of the
Kimura model be simply absorbing. Moreover, given the switch from ε to 1 − ε
occurs (an event with small probability), the expected waiting time is shown to be
of order −4 log (ε) /ρ →

ε→0
∞.

Finally we study the non-symmetric Kimura model with a drift ( γ 6= 0). We first
check that the boundaries are always natural. We show next that the Kimura process
can be obtained from the Karlin model with fluctuating selection after using a selec-
tion of paths procedure favoring paths whose square-root of the reciprocal heterozy-
gosity is large. This Doob transform therefore favors Karlin’s model sample paths
staying close to the boundaries, resulting in a process whose boundaries are much
more sticky than in its non-modified Karlin version. This construction connects the
two models in a clear way. The Doob transform produces an additive multiplicative
component in the Kimura generator G of the transformed process, which is a birth
and death rate: the new process can therefore be interpreted in terms of a branching
diffusion process of Kimura particles which we describe precisely.

We show that this branching diffusion process does not fit into the general framework
of positively regular branching models developed in [1] and [2], leading to strong law
of large numbers for global population growth or extinction. Rather, it fits to the
general framework developed in [8] for local population growth or extinction. More
precisely, we conclude that |γ| = ρ/2 is a case of local criticality. Would |γ| < ρ/2,
then local supercriticality (growth) holds: the expected number of Kimura particles
grows exponentially locally within each Borel subset with closure inside (0, 1) at rate

−λc = ρ
8

(
1− 4

(
γ
ρ

)2
)
> 0. Would |γ| > ρ/2, then local subcriticality (extinction)

holds at the decay rate λc: the drift towards the boundaries (either {0, 1}) is so
strong that it pushes all the Kimura particles very close to either boundaries where
they remain stuck, all ending up outside any such Borel subset in finite time. This
approach relies on the criticality of the operator G (·) + λc· (and its adjoint), in
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the sense of [31]. The ground states of the critical branching Kimura operators are
exactly identified.

2. Preliminaries on diffusions on the unit interval

Before particularizing our study to the Wright-Fisher model and its relatives, we
start with generalities on one-dimensional diffusions. For more technical details, we
refer to [6], [7], [20] and [25]. This Section is designed to fix the background and
notations for the rest of the paper.

2.1. Generalities on one-dimensional diffusions on the interval [0, 1]. Let
(wt; t ≥ 0) be a standard one-dimensional Brownian (Wiener) motion. Consider a
1−dimensional Itô diffusion driven by (wt; t ≥ 0) on the interval say I = [0, 1], see
[16]. Assume it has locally Lipschitz continuous drift f (x) and local standard devi-
ation (volatility) g (x), namely consider the stochastic differential equation (SDE):

(1) dxt = f (xt) dt+ g (xt) dwt, x0 = x ∈ (0, 1) .

The condition on f (x) and g (x) guarantees in particular that there is no point x∗
in the interior

◦
I := (0, 1) of I for which |f (x)| or |g (x)| would blow up and diverge

as |x− x∗| → 0.

The Kolmogorov backward infinitesimal generator of (1) isG = f (x) ∂x+ 1
2g

2 (x) ∂2
x.

As a result, for all suitable ψ in the domain of operator St := etG, u := u (x, t) =
Eψ (xt∧τx

) satisfies the Kolmogorov backward equation (KBE)

(2) ∂tu = G (u) ; u (x, 0) = ψ (x) .

In the definition of the mathematical expectation u, we have t ∧ τx := inf (t, τx)
where τx indicates a random time at which the process should possibly be stopped,
given the process was started at x. The description of this (adapted) absorption
time is governed by the type of boundaries which {0, 1} are to (xt; t ≥ 0) . We shall
return to this point later.

2.2. Natural coordinate, scale and speed measure. For such Markovian dif-
fusions, it is interesting to consider the G−harmonic coordinate ϕ ∈ C2 belonging
to the kernel of G, i.e. satisfying G (ϕ) = 0. For ϕ and its derivative ϕ′ := dϕ/dy,
with (x0, y0) ∈ (0, 1), one finds

ϕ′ (y) = ϕ′ (y0) e
−2
∫ y

y0

f(z)
g2(z)

dz

ϕ (x) = ϕ (x0) + ϕ′ (y0)
∫ x

x0

e
−2
∫ y

y0

f(z)
g2(z)

dz
dy.

One should choose a version of ϕ satisfying ϕ′ (y) > 0, y ∈
◦
I. The function ϕ

kills the drift f of (xt; t ≥ 0) in the sense that, considering the change of variable
yt = ϕ (xt) ,

dyt = (ϕ′g)
(
ϕ−1 (yt)

)
dwt, y0 = ϕ (x) .

The drift-less diffusion (yt; t ≥ 0) is often termed the diffusion in natural coordinates
with state-space [ϕ (0) , ϕ (1)]. Its volatility is g̃ (y) := (ϕ′g)

(
ϕ−1 (y)

)
. The function

ϕ is often called the scale function.
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Whenever ϕ (0) > −∞ and ϕ (1) < +∞, one can choose the integration constants
defining ϕ (x) so that

ϕ (x) =

∫ x

0
e
−2
∫ y
0

f(z)
g2(z)

dz
dy∫ 1

0
e
−2
∫ y
0

f(z)
g2(z)

dz
dy
,

with ϕ (0) = 0 and ϕ (1) = 1. In this case, the state-space of (yt; t ≥ 0) is again
[0, 1] , the same as for (xt; t ≥ 0) .

Finally, considering the random time change t → θt with inverse: θ → tθ defined
by θtθ

= θ and

θ =
∫ tθ

0

g̃2 (ys) ds,

the novel diffusion (wθ := ytθ
; θ ≥ 0) is easily checked to be identical in law to a

standard Brownian motion. Let now δy (·) = weak− limε↓0
1
2ε1(y−ε,y+ε) (·) stand

for the Dirac delta mass at y. The random time θt can be expressed as

θt =
∫ 1

0

dx ·m (x)
∫ t

0

δϕ(x) (ws) ds =
∫ t

0

m
(
ϕ−1 (ws)

)
ds

where m (x) := 1/
(
g2ϕ′

)
(x) is the (positive) speed density at x = ϕ−1 (y) and

Lt (y) := limε↓0
1
2ε

∫ t

0
1(y−ε,y+ε) (ws) ds the local time at y of Brownian motion

before time t. Both the scale function ϕ and the speed measure dµ = m (x) · dx are
therefore essential ingredients to reduce the original stochastic process (xt; t ≥ 0)
to the standard Brownian motion (wt; t ≥ 0). Indeed, it follows from the above
arguments that if θt =

∫ t

0
m (xs) ds, then (ϕ (xθt) ; t ≥ 0) is a Brownian motion.

The Kolmogorov backward infinitesimal generator G may be written in Feller form

(3) G (·) =
1
2
d

dµ

(
d

dϕ
·
)
.

Examples (from population genetics).

• Assume f (x) = 0 and g2 (x) = x (1− x). This is the neutral Wright-Fisher
(WF) model discussed at length later. This diffusion is already in natural scale and
ϕ (x) = x, m (x) = [x (1− x)]−1

. The speed measure is not integrable.

• With u1, u2 > 0, assume f (x) = u1 − (u1 + u2)x and g2 (x) = x (1− x). This is
the Wright-Fisher model with mutation. The parameters u1, u2 can be interpreted
as mutation rates. The drift vanishes when x = u1/ (u1 + u2) which is an attracting
point for the dynamics. Here:

ϕ′ (y) = ϕ′ (y0) y−2u1 (1− y)−2u2 , ϕ (x) = ϕ (x0) + ϕ′ (y0)
∫ x

x0
y−2u1 (1− y)−2u2 dy,

with ϕ (0) = −∞ and ϕ (1) = +∞ if u1, u2 > 1/2. The speed measure density is
m (x) ∝ x2u1−1 (1− x)2u2−1 and so is always integrable.

• With σ ∈ R, assume a model with quadratic logistic drift f (x) = σx (1− x)
and local variance g2 (x) = x (1− x). This is the WF model with selection. For
this diffusion (see, [23]), ϕ (x) = 1−e−2σx

1−e−2σ and m (x) ∝ [x (1− x)]−1
e2σx is not

integrable. Here, σ is a selection or fitness parameter.

• The WF model for which f (x) = σx (1− x) + u1 − (u1 + u2)x and g2 (x) =
x (1− x) is called the WF model with mutations and selection parameters (u1, u2;σ).
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We have: ϕ (x) = ϕ (x0) +ϕ′ (y0)
∫ x

x0
e−2σyy−2u1 (1− y)−2u2 dy and the speed den-

sity m (x) ∝ x2u1−1 (1− x)2u2−1
e2σx is integrable. �

2.3. The transition probability density. Assume that f (x) and g (x) are now

differentiable in
◦
I. Let then p (x; t, y) stand for the transition probability density

function of xt∧τx at y given x0 = x. Then p := p (x; t, y) is the smallest solution to
the Kolmogorov forward (Fokker-Planck) equation (KFE):

(4) ∂tp = G∗ (p) , p (x; 0, y) = δy (x)

where G∗ (·) = −∂y (f (y) ·) + 1
2∂

2
y

(
g2 (y) ·

)
is the adjoint of G (G∗ acts on the

terminal value y whereas G acts on the initial value x). It can be that p (x; t, y) is
a sub-probability in which case, letting ρt (x) :=

∫ 1

0
p (x; t, y) dy, we have ρt (x) =

P (τx > t) and this tail distribution is different from 1 unless the stopping time
τx = ∞ with probability 1.

For one-dimensional diffusions, the transition density p (x; t, y) is reversible with
respect to the speed density ([20], Chapter 15, Section 13) and so detailed balance
holds:

(5) m (x) p (x; t, y) = m (y) p (y; t, x) , 0 < x, y < 1.

The speed density m (y) satisfies G∗ (m) = 0. It may be written as a Gibbs measure
with density: m (y) ∝ 1

g2(x)e
−U(y) where the potential function U (y) reads:

U (y) := −2
∫ y

0

f (z)
g2 (z)

dz, 0 < y < 1

and with the measure dx
g2(x) standing for the reference measure.

Further, if p (s, x; t, y) is the transition probability density from (s, x) to (t, y),
s < t, then −∂sp = G (p), with terminal condition p (t, x; t, y) = δy (x) and so
p (s, x; t, y) also satisfies the KBE when looking at it backward in time. The Feller
evolution semigroup being time-homogeneous, one may as well observe that with
p := p (x; t, y), operating the time substitution t− s→ t, p itself solves the KBE

∂tp = G (p) , p (x; 0, y) = δy (x) .

In particular, integrating over y, ∂tρt (x) = G (ρt (x)), with ρ0 (x) = 1(0,1) (x).

Whenever p (x; t, y) is a sub-probability, define the normalized conditional proba-
bility density q (x; t, y) := p (x; t, y) /ρt (x), now with total mass 1. We get

∂tq = −∂tρt (x) /ρt (x) · q +G∗ (q) , q (x; 0, y) = δy (x) .

The term bt (x) := −∂tρt (x) /ρt (x) > 0 is the time-dependent birth rate at which
mass should be created to compensate the loss of mass of the original process due,
say, to absorption of (xt; t ≥ 0) at the boundaries. In this creation of mass process, a
diffusing particle started in x dies at rate bt (x) at point (t, y) where it is duplicated
in two new independent particles both started at y (resulting in a global birth)
evolving in the same diffusive way 1. The birth rate function bt (x) depends here
on x and t, not on y.

1Consider a diffusion process with forward infinitesimal generator G∗ governing the evolution
of p (x; t, y) . Suppose that a sample path of this process has some probability that it will be killed

or create a new copy of itself, and that the killing and birth rates d and b depend on the current

location y of the path. Then the process with the birth and death opportunities of a path has the
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When the boundaries of xt are absorbing, the spectrum of both −G and −G∗ is
discrete, meaning that there exist positive eigenvalues (λk)k≥1 ordered in ascending
sizes and eigenvectors (vk, uk)k≥1 of both −G∗ and −G satisfying −G∗ (vk) = λkvk

and −G (yk) = λkuk. Let λ1 > λ0 = 0 be the smallest non-null eigenvalue of
the infinitesimal generator −G∗ (and of −G). Clearly, − 1

t log ρt (x) →
t→∞

λ1 and by

L’ Hospital rule therefore bt (x) →
t→∞

λ1. Putting ∂tq = 0 in the latter evolution
equation, independently of the initial condition x

(6) q (x; t, y) →
t→∞

q∞ (y) = v1 (y) ,

where v1 is the eigenvector of −G∗ associated to λ1, satisfying −G∗ (v1) = λ1v1.
The limiting probability v1/norm (after a proper normalization) is called the Ya-
glom limit law of (xt; t ≥ 0) conditioned on being currently alive at all time t.

Example. When dealing with the neutral Wright-Fisher diffusion, it is known that
λ1 = 1 with v1 ≡ 1. The Yaglom limit in this case is the uniform measure. �

2.4. Feller classification of boundaries. The KBE equation may not have unique
solutions, unless one specifies the conditions at the boundaries {0, 1} .
For 1−dimensional diffusions as in (1) on [0, 1], the boundaries ∂I := {0, 1} are of
two types: either accessible or inaccessible. Accessible boundaries are either regular
or exit boundaries, whereas inaccessible boundaries are either entrance or natural
boundaries. Integrability of the scale function and the speed measure turn out to
be essential in the classification of boundaries due to Feller [10].

In the sequel, the symbol ◦ will designate either 0 or 1. We shall say that a function
f (y) ∈ L1 (y0, ◦) if −∞ <

∫ ◦
y0
f (y) dy < +∞.

(A1) The boundary ◦ is a regular boundary if ∀y0 ∈ (0, 1):

(i) ϕ′ (y) ∈ L1 (y0, ◦) and (ii) m (y) ∈ L1 (y0, ◦)

In this case, a sample path of (xt; t ≥ 0) can reach ◦ from the interior
◦
I of I and

reenter inside I, in finite time. The WF model with mutation has both regular
boundaries whenever u1, u2 < 1/2.

Remarks.

(i) If ◦ is not a regular boundary, it is unbridgeable and a sample path of (xt; t ≥ 0)
will never quit nor reenter I at ◦. For such an unbridgeable boundary at least, for
all t > 0: f (y) p (x; t, ◦) − 1

2∂y

(
g2 (y) p (x; t, ◦)

)
= 0 and the probability current

vanishes at (t, ◦) .
(ii) For diffusion processes with regular boundaries, one may think in some cases
that allowing the particle to quit the definition domain I and reentering later on,
lacks physical meaning. In this case, if ◦ is found to be a regular boundary, one may
force it a posteriori to be a reflecting or absorbing barrier or a mixture of them.
In this case, one needs to impose boundary conditions on the KBE at ◦; we shall

infinitesimal generator λ (y) ·+G∗ (·) , where λ (y) = b (y)− d (y). The rate can also depend on t
and x.
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return to this point later. �

(A2) The boundary ◦ is an exit boundary if ∀y0 ∈ (0, 1):

(i) m (y) /∈ L1 (y0, ◦) and (ii) ϕ′ (y)
∫ y

y0

m (z) dz ∈ L1 (y0, ◦)

In this case, a sample path of (xt; t ≥ 0) can reach ◦ from the inside of I in finite
time but cannot reenter. The sample paths are absorbed at ◦. There is an ab-
sorption at ◦ at time τ◦ (x) = inf (t > 0 : xt = ◦ | x0 = x) and P (τ◦ (x) <∞) = 1.
Whenever both boundaries {0, 1} are absorbing, the diffusion xt should be stopped
at τx = τx,0 ∧ τx,1. When at least one of the boundaries is an exit boundary, the
diffusion is transient and the process stops with probability 1 when hitting one
of these exit boundaries. Whenever none of the boundaries {0, 1} is absorbing,
τx = +∞. Examples of diffusion with exit boundaries are the driftless neutral WF
model and the WF model with selection.

(I1) The boundary ◦ is an entrance boundary if ∀y0 ∈ (0, 1):

(i) ϕ′ (y) /∈ L1 (y0, ◦) , (ii) m (y) ∈ L1 (y0, ◦)

(iii) m (y)
∫ y

y0

ϕ′ (z) dz ∈ L1 (y0, ◦) .

An entrance boundary is clearly not a regular boundary.

In case ◦ is entrance, a sample path of (xt; t ≥ 0) can enter from ◦ to the interior
of [0, 1] but cannot return to ◦ from the interior of [0, 1]. The WF model with
mutation has both entrance boundaries whenever u1, u2 > 1/2.

When both boundaries are entrance boundaries, the diffusion (xt; t ≥ 0) is positive
recurrent inside [0, 1] ; note that condition (ii) guarantees the integrability of the
(unique) invariant measure. In natural coordinate, (yt = ϕ (xt) ; t ≥ 0) is a diffusion
in R, since ϕ (0) = −∞ and ϕ (1) = +∞.

(I2) The boundary ◦ is natural in all other cases. When ◦ is natural, sample paths
cannot enter nor quit [0, 1] and sample paths are trapped inside [0, 1] with {0, 1}
inaccessible; the ‘simplest’ case is when (xt; t ≥ 0) is itself a Brownian motion. In
Sections 4 and 5 dedicated to WF diffusions with selection in random environment,
we will encounter some other examples of diffusions with natural boundaries.

2.5. Evaluation of additive functionals along sample paths. Let (xt; t ≥ 0)
be the diffusion model defined by (1) on the interval I where both endpoints are
assumed absorbing (exit). This process is thus transient. We wish to evaluate the
non-negative additive quantities

(7) α (x) = E
(∫ τx

0

c (xs) ds+ d (xτx)
)
,

where the functions c and d are both assumed non-negative. As is well-known, the
functional α (x) ≥ 0 solves:

−G (α) = c if x ∈
◦
I

α = d if x ∈ ∂I.
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Examples.

1. Assume c = 1 and d = 0 : here, α = E (τx) is the mean time of absorption
(average time spent in I before absorption), solution to:

−G (α) = 1 if x ∈
◦
I

α = 0 if x ∈ ∂I.

2. Whenever both {0, 1} are exit boundaries, it is of interest to evaluate the
probability that xt first hits [0, 1] (say) at 1, given x0 = x. This can be obtained
by choosing c = 0 and d (◦) = 1 (◦ = 1) .

Let then α =: α1 (x) = P (xt first hits [0, 1] at 1 | x0 = x) . α1 (x) is aG−harmonic
function solution to G (α1) = 0, with boundary conditions α1 (0) = 0 and α1 (1) =

1. Solving this problem, we get: α1 (x) =
∫ x

0
dye

−2
∫ y
0

f(z)
g2(z)

dz
/
∫ 1

0
dye

−2
∫ y
0

f(z)
g2(z)

dz
.

On the contrary, choosing α0 (x) to be a G−harmonic function with boundary con-
ditions α0 (0) = 1 and α0 (1) = 0, α0 (x) = P (xt first hits [0, 1] at 0 | x0 = x) =
1− α1 (x) .

3. Let y ∈
◦
I and put c = 1

2ε1(y−ε,y+ε) (x) and d = 0. As ε→ 0, c converges weakly
to δy (x) and, α =: g (x, y) = E

(
lim 1

2ε

∫ τx

0
1(y−ε,y+ε) (xs) ds

)
=
∫∞
0
p (x; s, y) ds is

the Green function, solution to:

−G (g) = δy (x) if x ∈
◦
I

g = 0 if x ∈ ∂I.

g is therefore the mathematical expectation of the local time at y, starting from x
(the sojourn time density at y). The solution is easily seen to be

g (x, y) = 2
(ϕ (x)− ϕ (0)) (ϕ (1)− ϕ (y))

(g2ϕ′) (y) (ϕ (1)− ϕ (0))
if x < y

(8) g (x, y) = 2
(ϕ (1)− ϕ (x)) (ϕ (y)− ϕ (0))

(g2ϕ′) (y) (ϕ (1)− ϕ (0))
if x > y

g (y, y) = 2
(ϕ (1)− ϕ (y)) (ϕ (y)− ϕ (0))

(g2ϕ′) (y) (ϕ (1)− ϕ (0))
if x = y

The Green function is of particular interest to solve the general problem of evaluat-
ing additive functionals α (x). Indeed, as is well-known, see ([20]) for example, the
integral operator with respect to the Green kernel inverts the second order operator
−G leading to

α (x) =
∫
◦
I

g (x, y) c (y) dy if x ∈
◦
I

α = d if x ∈ ∂I.

4. Also of interest are the additive functionals of the type
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αλ (x) = E
(∫ τx

0

e−λsc (xs) ds+ d (xτx
)
)
,

where the functions c and d are again both assumed to be non-negative. The
functional αλ (x) ≥ 0 solves the Dynkin problem ([20]):

(λI −G) (αλ) = c if x ∈
◦
I

αλ = d if x ∈ ∂I
involving the action of the resolvent operator (λI −G)−1 on c.

Whenever c (x) = δy (x) , d = 0, then,

αλ =: gλ (x, y) = E
(∫ τx

0

e−λsδy (xs) ds
)

=
∫ ∞

0

e−λsp (x; s, y) ds

is the λ−potential function, solution to:

(λI −G) (gλ) = δy (x) if x ∈
◦
I

gλ = 0 if x ∈ ∂I.
gλ is therefore the mathematical expectation of the exponentially damped local time
at y, starting from x (the temporal Laplace transform of the transition probability
density from x to y at t), with g0 = g. Then it holds that

αλ (x) =
∫
◦
I

gλ (x, y) c (y) dy if x ∈
◦
I

αλ = d if x ∈ ∂I.
The λ−potential function is also useful in the computation of the distribution of
the first-passage time τx,y to y starting from x. From the convolution formula

p (x; t, y) =
∫ t

0

P (τx,y ∈ ds) p (y; t− s, y) ,

and taking the Laplace transform of both sides with respect to time, we obtain the
Laplace-Stieltjes transform (LST) of the law of τx,y as

(9) E
(
e−λτx,y

)
=

gλ (x, y)
gλ (y, y)

.

We have P (τx,y <∞) = g0(x,y)
g0(y,y) ∈ (0, 1) as a result of both terms in the ratio being

finite and x, y belonging to the same transience class of the process (under our
assumptions that the boundaries are absorbing). �

2.6. Transformation of sample paths (Doob transform). Consider a one-
dimensional diffusion (xt; t ≥ 0) as in (1) with absorbing barriers. Let p := p (x; t, y)
be its transition probability and let τx be its absorption time at the boundaries.

Let α (x) := E
(∫ τx

0
c (xs) ds+ d (xτx)

)
be a non-negative additive functional solv-

ing

−G (α) = c if x ∈
◦
I

α = d if x ∈ ∂I.
Recall the functions c and d are both chosen non-negative so that so is α.
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Define a new transformed stochastic process (xt; t ≥ 0) by its transition probability

(10) p (x; t, y) =
α (y)
α (x)

p (x; t, y) .

In this construction of (xt; t ≥ 0) through a change of measure, sample paths of
(xt; t ≥ 0) for which α (y) is large are favored. This is a selection of paths procedure
due to Doob (see [6]).

Now, the KFE for p clearly is ∂tp = G
∗
(p), with p (x; 0, y) = δy (x) and G

∗
(p) =

α (y)G∗(p/α (y)). The Kolmogorov backward operator of the transformed process
is therefore by duality

G (·) =
1

α (x)
G (α (x) ·) .

Developing, with α′ (x) := dα (x) /dx and G̃ (·) := α′

α g
2∂x (·) +G (·), we get

(11) G (·) =
1
α
G (α) ·+G̃ (·) = − c

α
·+G̃ (·)

and the new KB operator can be obtained from the latter by adding a drift term
α′

α g
2∂x to the one in G of the original process to form a new process (x̃t; t ≥ 0)

with the KB operator G̃ and by killing its sample paths at death rate d (x) := c
α (x)

(provided c 6= 0). In others words, with f̃ (x) := f (x) + α′

α g
2 (x) , the novel time-

homogeneous SDE to consider is

(12) dx̃t = f̃ (x̃t) dt+ g (x̃t) dwt, x̃0 = x ∈ (0, 1) ,

possibly killed at rate d = c
α as soon as c 6= 0. Whenever (x̃t; t ≥ 0) is killed, it

enters conventionally into the coffin state {∂}. Let τ̃x be the new absorption time
at the boundaries of (x̃t; t ≥ 0) started at x, with τ̃x = ∞ if the boundaries are
now inaccessible to the new process x̃t. Let τ̃x,∂ be the killing time of (x̃t; t ≥ 0)
started at x (the hitting time of ∂), with τ̃x,∂ = ∞ if c = 0. Then τx := τ̃x ∧ τ̃x,∂

is the novel stopping time of (x̃t; t ≥ 0) . The SDE for (x̃t; t ≥ 0), together with its
global stopping time τx characterize the new process (xt; t ≥ 0) to consider.

For the new process (x̃t; t ≥ 0), it is also of interest to evaluate additive functionals
along their own sample paths. Let then α̃ (x) := Ẽx

(∫ τ(x)

0
c̃ (x̃s) ds+ d̃

(
x̃τ(x)

))
be such an additive functional where functions c̃ and d̃ are themselves both non-
negative. It solves

−G(α̃) = c̃ if x ∈
◦
I

α̃ = d̃ if x ∈ ∂I.

Then, recalling the expression of g (x, y), the Green function of (xt; t ≥ 0) , we find
explicitly

α̃ (x) =
1

α (x)

∫
◦
I

g (x, y)α (y) c̃ (y) dy.

Normalizing and conditioning.
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Consider again the process with infinitesimal generatorG losing mass due to absorp-
tion and/or killing at the boundaries. Integrating over y, with ρt(x) :=

∫
◦
I
p (x; t, y) dy =

P̃(τx > t), we have

(13) ∂tρt (x) = G(ρt (x)) = −d (x) ρt (x) + G̃(ρt (x)),

with ρ0 (x) = 1(0,1) (x). This gives the tail distribution of the full stopping time
τx.

Defining the conditional probability density q (x; t, y) := p (x; t, y) /ρt (x), now with
total mass 1, with q (x; 0, y) = δy (x) , we get

∂tq = −∂tρt (x) /ρt (x) · q +G
∗
(q)

=
(
bt (x)− d (y)

)
· q + G̃∗(q).

The term bt (x) = −∂tρt (x) /ρt (x) > 0 is the rate at which mass should be cre-
ated to compensate the loss of mass of the process (x̃t; t ≥ 0) due to its possible
absorption at the boundaries and/or killing. Again, we have bt (x) → λ1 where
λ1 is the smallest positive eigenvalue of −G and therefore, putting ∂tq = 0 in the
latter evolution equation, we get that, independently of the initial condition x

(14) q (x; t, y) →
t→∞

q∞ (y) ,

where q∞ (y) is the solution to

−G̃∗(q∞) = (λ1 − d (y)) · q∞, or

−G∗ (q∞) = λ1 · q∞.
With v1 the eigenvector of −G∗ associated to λ1, q∞ (y) is of the product form

(15) q∞ (y) = α (y) v1 (y) /
∫ 1

0

α (y) v1 (y) dy.

This results directly from the fact that G
∗
(·) = α (y)G∗(·/α (y)) and that v1 is the

stated eigenvector of −G∗. A different way to see this is as follows. We have

ρt (x) =
1

α (x)

∫ 1

0

α (y) p (x; t, y) dy

and the conditional density of xt given τx > t is therefore:

q (x; t, y) =
α (y) p (x; t, y)∫ 1

0
α (y) p (x; t, y) dy

.

The rest follows from observing that, to the leading order in t, for large time

p (x; t, y) ∼ b1e
−λ1t · u1 (x) v1 (y) ,

where u1 (respectively v1) is the eigenvector of −G (respectively −G∗) associated to

λ1 and b1 =
(∫ 1

0
dyu1 (y) v1 (y)

)−1

. From this, it is clear that − 1
t log ρt (x) →

t→∞
λ1

and

q (x; t, y) ∼ e−λ1t · α (y) v1 (y)

e−λ1t ·
∫ 1

0
α (y) v1 (y) dy

= q∞ (y) .

The limiting probability q∞ = αv1/norm can therefore be interpreted as the Ya-
glom limit law of (xt; t ≥ 0) conditioned on the event τx > t. See [32].
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Specific transformations of interest.

(i) The case c = 0 deserves a special treatment. Indeed, in this case, τ̃x,∂ = ∞
and so τx := τ̃x, the absorption time for the process (x̃t; t ≥ 0) governed by the

new SDE. Here G = G̃. Assuming α solves −G (α) = 0 if x ∈
◦
I with boundary

conditions α (0) = 0 and α (1) = 1 (respectively α (0) = 1 and α (1) = 0), the new
process (x̃t; t ≥ 0) is just (xt; t ≥ 0) conditioned on exiting at x = 1 (respectively
at x = 0). In the first case, boundary 1 is exit whereas 0 is entrance; α reads

α (x) =

∫ x

0
e
−2
∫ y
0

f(z)
g2(z)

dz
dy∫ 1

0
e
−2
∫ y
0

f(z)
g2(z)

dz
dy

with

f̃ (x) = f (x) +
g2 (x) e−2

∫ x
0

f(z)
g2(z)

dz∫ x

0
e
−2
∫ y
0

f(z)
g2(z)

dz
dy

giving the new drift. In the second case, α (x) =
∫ 1

x
e
−2

∫y
0

f(z)
g2(z)

dz
dy∫ 1

0 e
−2

∫y
0

f(z)
g2(z)

dz
dy

and boundary 0

is exit whereas 1 is entrance. Thus τ̃x is just the exit time at x = 1 (respectively at
x = 0). Let α̃ (x) := Ẽ (τ̃x). Then, α̃ (x) solves −G̃ (α̃) = 1, whose explicit solution
is:

α̃ (x) =
1

α (x)

∫
◦
I

g (x, y)α (y) dy

in terms of g (x, y) , the Green function of (xt; t ≥ 0) .

Examples.

(i) Consider the WF model on [0, 1] with selection for which, with σ ∈ R, f (x) =
σx (1− x) and g2 (x) = x (1− x). Assume α solves −G (α) = 0 if x ∈ (0, 1) with
α (0) = 0 and α (1) = 1; one gets, α (x) =

(
1− e−2σx

)
/
(
1− e−2σ

)
. The diffusion

corresponding to (12) has the new drift: f̃ (x) = σx (1− x) coth (σx), indepen-
dently of the sign of σ. It models the WF diffusion with selection conditioned on
exit at ◦ = 1.

(ii) Assume α now solves −G (α) = 1 if x ∈
◦
I with boundary conditions α (0) =

α (1) = 0. In this case study, one selects sample paths of (xt; t ≥ 0) with a large

mean absorption time α (x) = E (τx) . Sample paths with large sojourn time in
◦
I

are favored. We have

α (x) =
∫
◦
I

g (x, y) dy

where g (x, y) is the Green function (8). The boundaries of (x̃t; t ≥ 0) are now both
entrance boundaries and so τ̃x = ∞. (x̃t; t ≥ 0) is not absorbed at the boundaries.
The stopping time τx of (x̃t; t ≥ 0) is just its killing time τ̃x,∂ . Let α̃ (x) := Ẽ (τ̃x,∂).
Then, α̃ (x) solves −G(α̃) = 1, α̃ (0) = α̃ (1) = 0, with explicit solution:

α̃ (x) =
1

α (x)

∫
◦
I

g (x, y)α (y) dy.
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(iii) Assume α now solves −G (α) = δy (x) if x ∈
◦
I with boundary conditions

α (0) = α (1) = 0. In this case study, one selects sample paths of (xt; t ≥ 0) with a
large sojourn time density at y recalling α (x) =: g (x, y) = E

(∫ τx

0
δy (xs) ds

)
. The

stopping time τ̃y (x) of (x̃t; t ≥ 0) occurs at rate δy (x) /g (x, y). It is a killing time
when the process is at y for the last time after a geometrically distributed number
of passages there with rate 1/g (x, y) (or with success probability 1/ (1 + g (x, y))).
Let α̃y (x) := Ẽ (τ̃y (x)). Then, α̃y (x) solves −G(α̃) = 1, with explicit solution:

α̃y (x) =
1

g (x, y)

∫
◦
I

g (x, z) g (z, y) dz.

When x = 1/N, α̃y (1/N) may be viewed as the age of a mutant currently observed
to the present frequency y, see [13].

(iv) Let λ1 be the smallest non-null eigenvalue of the infinitesimal generator G. Let
α = u1 be the corresponding eigenvector, that is satisfying −G (u1) = λ1u1 with
boundary conditions u1 (0) = u1 (1) = 0. Then c = λu1. The new KB operator
associated to the transformed process (xt; t ≥ 0) is

G (·) =
1
α
G (α) ·+G̃ (·) = −λ1 ·+G̃ (·) ,

obtained while killing the sample paths of the process (x̃t; t ≥ 0) governed by G̃ at
constant death rate d = λ1. The transition probability of the transformed stochastic
process (xt; t ≥ 0) is

p (x; t, y) =
u1 (y)
u1 (x)

p (x; t, y) .

Define p̃ (x; t, y) = eλ1tp (x; t, y) . It is the transition probability of the process
(x̃t; t ≥ 0) governed by G̃, corresponding to the original process (xt; t ≥ 0) condi-
tioned on never hitting the boundaries {0, 1} (the so-calledQ−process of (xt; t ≥ 0)).
It is simply obtained from (xt; t ≥ 0) by adding the additional drift term u′1

u1
g2 to

f , where u1 is the eigenvector of G associated to its smallest non-null eigenvalue.
The determination of α = u1 is a Sturm-Liouville problem. When t is large, to the
dominant order

p (x; t, y) ∼ e−λ1t u1 (x) v1 (y)∫ 1

0
u1 (y) v1 (y) dy

,

where v1 is the Yaglom limit law of (xt; t ≥ 0) . Therefore

(16) p̃ (x; t, y) ∼ eλ1t u1 (y)
u1 (x)

e−λ1t u1 (x) v1 (y)∫ 1

0
u1 (y) v1 (y) dy

=
u1 (y) v1 (y)∫ 1

0
u1 (y) v1 (y) dy

.

Thus the limit law of theQ−process (x̃t; t ≥ 0) is the normalized Hadamard product
of the eigenvectors u1 and v1 associated respectively to G and G∗. On the other
hand, the limit law of (x̃t; t ≥ 0) is directly given by

(17) p̃ (x; t, y) →
t→∞

p̃ (y) =
1

Zg2 (y)
e
2
∫ y
0

f(z)+

(
u′1
u1

g2
)
(z)

g2(z)
dz =

u2
1 (y)

Zg2 (y)
e
2
∫ y
0

f(z)
g2(z)

dz
,
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where Z is the appropriate normalizing constant. Comparing (16) and (17)

v1 (y) =
u1 (y)
g2 (y)

e
2
∫ y
0

f(z)
g2(z)

dz = u1 (y)m (y) .

The eigenvector v1 associated to G∗ is therefore equal to the eigenvector u1 associ-
ated to G times the speed density of (xt; t ≥ 0) .

When dealing for example with the neutral Wright-Fisher diffusion, it is known that
λ1 = 1 with u1 = x (1− x) and v1 ≡ 1. The limit law of the Q−process (x̃t; t ≥ 0)
in this case is 6y (1− y). For additional similar examples in the context of WF
diffusions and related ones, see [15]. �

3. The Wright-Fisher example

In this Section, we briefly and informally recall how the specific continuous space-
time Wright-Fisher diffusion like models, either neutral on nonneutral, can be ob-
tained as scaling limits of a biased discrete Poisson-Galton-Watson model with a
conservative number of offsprings over the generations. This allows to introduce
various drifts of biological interest to force the neutral WF model in specific direc-
tions. Because our study is chiefly about selection, we focus on the bias to neutrality
arising from (deterministic) selection or fitness.

3.1. The neutral Wright-Fisher model. Consider a discrete-time Galton Wat-
son branching process preserving the total number of individuals at each generation.
We start with N individuals. The initial Cannings reproduction law is defined as
follows: Let |kN | :=

∑N
m=1 km = N and kN := (k1, ..., kN ) be integers. Assume

the first-generation random offspring numbers νN := (νN (1) , ..., νN (N)) admit
the following joint exchangeable polynomial distribution on the simplex |kN | = N :

(18) P (νN = kN ) =
N ! ·N−N∏N

n=1 kn!
.

This distribution can be obtained by conditioning N independent Poisson dis-
tributed random variables on summing to N . Assume subsequent iterations of this
reproduction law are independent so that the population remains with constant
size at all generations.

Let Nr (n) be the offspring number of the n first individuals at discrete generation
r ∈ N0 corresponding to (say) allele A1. This sibship process is a discrete-time
Markov chain with binomial transition probability given by:

P (Nr+1 (n) = k′ | Nr (n) = k) = P (ν1 + ..+ νk = k′) =
(
N

k′

)(
k

N

)k′ (
1− k

N

)N−k′

.

Assume next that n = [Nx] where x ∈ (0, 1) . Then, as well-known, the dynamics
of the continuous space-time re-scaled process xt := N[Nt] (n) /N , t ∈ R+ can
be approximated for large N , to the leading term in N−1, by a Wright-Fisher-Itô
diffusion on [0, 1] (the purely random genetic drift case):

(19) dxt =
√
xt (1− xt)dwt, x0 = x.

Here (wt; t ≥ 0) is a standard Wiener process. For this scaling limit process, a unit
laps of time t = 1 corresponds to a laps of time N for the original discrete-time
process; thus time is measured in units of N . If the initial condition is x = N−1, xt
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is the diffusion approximation of the offspring frequency of a singleton at generation
[Nt].

Equation (19) is a 1−dimensional diffusion as in (1) on I = [0, 1] , with zero drift
f (x) = 0 and volatility g (x) =

√
x (1− x). This diffusion is already in natu-

ral coordinate and so ϕ (x) = x. The scale function is x and the speed measure
[x (1− x)]−1

dx. One can check that both boundaries are exit in this case: The
stopping time is τx = τx,0 ∧ τx,1 where τx,0 is the extinction time and τx,1 the fix-
ation time. The corresponding infinitesimal generators are G (·) = 1

2x (1− x) ∂2
x (·)

and G∗ (·) = 1
2∂

2
y (y (1− y) ·) .

3.2. Non-neutral cases. Two alleles Wright-Fisher models (with non-null drifts)
can be obtained by considering the binomial transition probabilities bin(N, pN ) :

P (Nr+1 (n) = k′ | Nr (n) = k) =
(
N

k′

)(
pN

(
k

N

))k′ (
1− pN

(
k

N

))N−k′

where
pN (x) : x ∈ (0, 1) → (0, 1)

is now some state-dependent probability (which is different from the identity x)
reflecting some deterministic evolutionary drift from allele A1 to allele A2. For
each r, we have

E (Nr+1 (n) | Nr (n) = k) = NpN

(
k

N

)
σ2 (Nr+1 (n) | Nr (n) = k) = NpN

(
k

N

)(
1− pN

(
k

N

))
which is amenable to a diffusion approximation in terms of xt := N[Nt] (n) /N ,
t ∈ R+ under suitable conditions.

For instance, taking pN (x) = (1− π2,N )x + π1,N (1− x) where (π1,N , π2,N ) are
small (N -dependent) mutation probabilities from A1 to A2 (respectively A2 to
A1). Assuming (N · π1,N , N · π2,N ) →

N→∞
(u1, u2), leads after scaling to the drift of

WF model with positive mutations rates (u1, u2).

Taking

pN (x) =
(1 + s1,N )x

1 + s1,Nx+ s2,N (1− x)
where si,N > 0 are small N−dependent selection parameter satisfying N ·si,N →

N→∞
σi > 0, i = 1, 2, leads, after scaling, to the WF model with selective drift σx (1− x),
where σ := σ1 − σ2. Essentially, the drift f (x) is a large N approximation of the
bias: N (pN (x)− x) . The WF diffusion with selection is thus:

(20) dxt = σxt (1− xt) dt+
√
xt (1− xt)dwt

where time is measured in units of N. Letting θt = Nt define a new time-scale with
inverse tθ = θ/N , the time-changed process yθ = xθ/N now obeys the SDE

(21) dyθ = syθ (1− yθ) dθ +

√
1
N
yθ (1− yθ)dwθ,
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with a small diffusion term. Here s = s1 − s2 and time θ is the usual time-clock.

The WF diffusion with selection (20) has two absorbing barriers. It tends to drift
to ◦ = 1 (respectively ◦ = 0) if allele A1 is selectively advantageous over A2 :
σ1 > σ2 (respectively σ1 < σ2) in the following sense: if σ > 0 (respectively < 0),
the fixation probability at ◦ = 1, which is [23]

P (τx,1 < τx,0) =
1− e−2σx

1− e−2σ
,

increases (decreases) with σ taking larger (smaller) values. Putting x = 1/N , the
fixation probability at 1of an allele A1 mutant is of order: 2σ/N , see [23].

4. The Wright-Fisher-Karlin model with randomized fitness

We wish now to study the WF model with selection in random environment, using
the reminders of the latter two Sections. In other words, the main purpose of
this Section is to study the effect of disorder on the WF model with selection just
alluded to in (20). Such models were first introduced in [18] and [21]. We start
with the construction of [18] before switching to the related one of [21] in the next
Section.

4.1. Karlin model: The small population case. The introduction of disorder
is the simplest possible: One replaces the constant selection intensities (s1,N , s2,N )

at each generation r by the random iid sequence
(
s
(r)
1,N , s

(r)
2,N

)
r≥1

. We assume next

that the following conditions (C) hold

N ·E (si,N ) →
N→∞

σi > 0, i = 1, 2

N ·E
(
s2i,N

)
→

N→∞
µi > 0, i = 1, 2

N ·E (s1,Ns2,N ) →
N→∞

µ1,2.

and that all moment terms higher than second degree are of smaller order than 1/N.

A straightforward computation shows (see [18], [5] Subsection 7.2) that the diffusion
approximation in terms of xt := N[Nt] (n) /N , t ∈ R+ is of the type (1), now with
volatility

(22) g (x) =
√
x (1− x) + ρx2 (1− x)2

and drift

(23) f (x) = x (1− x) [η − ρx] .

Again, time is measured in units of N . Under the conditions (C), the parameters
appearing in (22), (23) are

η = σ1 − σ2 + µ2 − µ1,2 = lim
N→∞

NE ((1− s2,N ) (s1,N − s2,N ))

ρ = µ1 + µ2 − 2µ1,2 = lim
N→∞

NE
(
(s1,N − s2,N )2

)
> 0.
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The drift may also be written as:

(24) f (x) = x (1− x)
[
γ + ρ

(
1
2
− x

)]
where γ = γ1−γ2, with γi = σi−µi/2, i = 1, 2. It is the sum of two contributions,
one involving γ, the other one ρ. The latter one introduces a stabilizing drift towards
1/2.

The local variance term g2 (x) is now the sum of two contributions respectively, one
due to binomial sampling and the other the within generation selection variance.
When ρ is not large compared to 1 (the small population size case) both terms
contribute equally likely and we shall first deal with this case.

The selective advantage of allele A1 over allele A2 is now given by γ1 > γ2. Because
γi = σi − µi/2, each involves the second-order moment of the si,N , not only the
means σi.

We note that if η ≤ 0 (γ ≤ −ρ/2), the drift term f (x) is < 0 when x ∈ (0, 1),
whereas when η ≥ ρ (γ ≥ ρ/2), the drift term f (x) is > 0. In the former
case, 0 is a stable equilibrium of f whereas in the latter case, 1 is stable. When
ρ > η > 0, (|γ| < ρ/2), the drift term vanishes inside the interval (0, 1) at some
point x̂ = η/ρ = γ/ρ + 1/2 corresponding to a stable equilibrium point of f . In
particular x̂ = 1/2 when γ = 0, x̂ ∈ (1/2, 1] (respectively x̂ ∈ [0, 1/2)) when
γ ∈ (0, ρ/2] (γ ∈ [−ρ/2, 0)).

The key parameters (γ, ρ) appearing in the new diffusion model (1), (22), (24),
arise in the following setting. Consider the discrete-time updating of the allele A1

frequency under fluctuating selection:

xr+1 = pN (xr) =

(
1 + s

(r+1)
1,N

)
xr

1 + s
(r+1)
1,N xr + (1− xr) s

(r+1)
2,N

.

Here
(
s
(r)
1,N , s

(r)
2,N

)
r≥1

is the random iid sequence introduced earlier. Assume x0 is

fixed (non-random). Let yr = xr/ (1− xr) . Then

yr+1 = yr

1 + s
(r+1)
1,N

1 + s
(r+1)
2,N

and with zr = log yr,

zr = z0 +
r∑

t=1

log

(
1 + s

(t)
1,N

1 + s
(t)
2,N

)
.

Under the assumptions (C) on (s1,N , s2,N ) , we have

E (zr) = z0 +
r∑

t=1

E log

(
1 + s

(t)
1,N

1 + s
(t)
2,N

)
= z0 + rE log

1 + s1,N

1 + s2,N

= z0 +
r

N

(
γ + o

(
1
N

))
.
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Therefore,

(25)
1
t
E
(
z[Nt]

)
→

t→∞
γ,

and γ interprets as an asymptotic Malthus mean growth parameter for yr (and
therefore also for xr when xr is rare). Similarly,

σ2 (zr) = rσ2

(
log

1 + s1,N

1 + s2,N

)
=

r

N

(
ρ+ o

(
1
N

))
.

Therefore,

(26)
1
t
σ2
(
z[Nt]

)
→

t→∞
ρ.

Additive functionals. We now study some aspects of the diffusion model in
random environment defined by (22), (23). We have

−2f (x)
g2 (x)

= −2
η − ρx

1 + ρx (1− x)
=

κ1

x− r1
+

κ2

r2 − x

where the roots ri = 1∓
√

1+4/ρ

2 , i = 1, 2, satisfy r1 < 0 < 1 < r2 and r1 + r2 = 1.
We shall let r =

√
1 + 4/ρ > 1 so that ri = 1∓r

2 . Thus

κ1 = −1− 2γ
ρr
, κ2 = 1− 2γ

ρr
.

It is possible to define the normalized scale function

ϕ (x) =

∫ x

0
e
−2
∫ y
0

f(z)
g2(z)

dz
dy∫ 1

0
e
−2
∫ y
0

f(z)
g2(z)

dz
dy
,

satisfying ϕ (0) = 0 and ϕ (1) = 1.With Z =
∫ 1

0
(y − r1)

−1− 2γ
ρr (1− y − r1)

−1+ 2γ
ρr dy <

∞, we get

(27) ϕ (x) =
1
Z

∫ x

0

(y − r1)
−1− 2γ

ρr (1− y − r1)
−1+ 2γ

ρr dy

with ϕ (1/2) 6= 1/2. The speed measure density reads

(28) m (x) =
1

(g2ϕ′) (x)
=

1
Z

(x− r1)
2γ
ρr (1− x− r1)

− 2γ
ρr

ρx (1− x)
.

Clearly with ◦ = either 0 or 1

(i)
1

(g2ϕ′) (y)
/∈ L1 (y0, ◦) and (ii) ϕ′ (y)

∫ y

y0

1
(g2ϕ′) (z)

dz ∈ L1 (y0, ◦)

showing that both boundaries are exit. As a result, ϕ (x) = P (xτx
= 1) = P (τx,1 < τx,0)

and the process with small population size is transient.

With ϕ and g2ϕ′ given by (27) and (28), the Green function can be explicitly
computed from (8). The expected time to fixation is therefore

(29) E (τx) = 2ϕ (x)
∫ 1

x

(1− ϕ (y))
(g2ϕ′) (y)

dy + 2 (1− ϕ (x))
∫ x

0

ϕ (y)
(g2ϕ′) (y)

dy.



22 THIERRY HUILLET

Remark. Consider the random time change t → θt with inverse: θ → tθ defined
by θtθ

= θ and

θ =
∫ tθ

0

g2 (xs) ds =
∫ tθ

0

[
xs (1− xs) + ρx2

s (1− xs)
2
]
ds.

The novel diffusion (uθ := xtθ
; θ ≥ 0) is easily checked to satisfy the Langevin SDE

on [0, 1]

duθ =
η − ρuθ

1 + ρuθ (1− uθ)
dθ + dwθ = −1

2
∂uU (uθ) dθ + dwθ,

with additive noise. The invariant measure is therefore e−U(u) where

U (u) = log
[
(u− r1)

−1− 2γ
ρr (1− u− r1)

−1+ 2γ
ρr

]
if u ∈ [0, 1] ⊂ (r1, r2). �

The symmetric case. suppose s1,N
d= s2,N (equality in distribution). Then,

σ1 = σ2, µ1 = µ2 and

η = µ2 − µ1,2 and ρ = 2
(
µ2 − µ1,2

)
.

Thus γ = 0 and this particular model consists in the neutral WF model in random
environment with drift and local variance

f (x) = ρx (1− x)
(

1
2
− x

)
; g2 (x) = x (1− x) + ρx2 (1− x)2

involving only ρ. In this case, m (x) = r

2ρ log
[

1−r1
−r1

] 1
x(1−x) and

(30) P (τx,1 < τx,0) = ϕ (x) =
log
[

x−r1
−r1

1−r1
1−x−r1

]
2 log

[
1−r1
−r1

] =
1
2

1 +
log
[

x−r1
1−x−r1

]
log
[

1−r1
−r1

]


with ϕ (1/2) = 1/2 (See (8) in [17]). As ρ → ∞, r1 → 0− and r2 → 1+ with
ϕ (x) → 1/2.

The expected time to fixation is

E (τx) = 2ϕ (x)
∫ 1

x

(1− ϕ (y))
(g2ϕ′) (y)

dy + 2 (1− ϕ (x))
∫ x

0

ϕ (y)
(g2ϕ′) (y)

dy

which, thanks to the symmetries of ϕ, takes the simple form (See [18], [5] and [14])

(31) E (τx) = 2
∫ x

0

log ((1− y) /y)
1 + ρy (1− y)

dy

Whatever the value of x, this quantity decreases with ρ, consistently with the fact
that fluctuations in differential selection intensities tend to decrease the expected
fixation time (despite the presence of a competing drift toward 1/2). Note that if
ρ → 0, E (τx) gets close to −2 (x log x+ (1− x) log (1− x)) which is the expected
fixation time of the usual neutral WF model (19). This can be understood as
follows; recall ρ = limNE

(
(s1,N − s2,N )2

)
. If ρ→ 0, then (s1,N − s2,N ) d→ δ0 and

therefore s1,N = s2,N almost surely. Thus, γ itself tends to 0 simultaneously and
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the model with random selection boils down to the neutral WF model (19) in the
limit.

4.2. The large population case ρ � 1. In this case, we are led to the study of
the diffusion model (1) with volatility and drift

(32) g (x) =
√
ρx (1− x) ; f (x) = x (1− x)

[
γ + ρ

(
1
2
− x

)]
.

Here we simply dropped the binomial sampling contribution to the variance term
g2 (x) in (22) because it is small under the large population case assumption. Con-
sider the change of variable yt =

∫ xt

0
dx

x(1−x) = log
(

xt

1−xt

)
. Applying Itô calculus

(33) dyt = γdt+
√
ρdwt,

with a Gaussian transition kernel. Using this fact, we easily conclude that the
solution to the KF equation for xt defined by (32) is explicitly given by

(34) p (x; t, y) =
1√
2πρt

1
y (1− y)

e−
1

2ρt (log( y(1−x)
(1−y)x )−γt)2

.

If γ > 0 (< 0), the mass of the law of xt accumulates near y = 1 (y = 0). When
γ = 0, the law of xt forms two symmetric peaks about both y = 1 and y = 0
as time increases, but without reaching the boundaries since p (x; t, y) vanishes at
both y = 1 and y = 0.

It turns out that this can be understood by noting that both boundaries are natural,
therefore inaccessible. Using this solution, it can be checked that, whatever ε > 0

P (xt ∈ (1− ε, 1) | x0 = x) →
t→∞

1 if γ > 0

P (xt ∈ (0, ε) | x0 = x) →
t→∞

1 if γ < 0

P (xt ∈ (1− ε, 1) | x0 = x) →
t→∞

1/2 if γ = 0

P (xt ∈ (0, ε) | x0 = x) →
t→∞

1/2 if γ = 0

expressing that, at the boundaries, quasi-fixation (or quasi-extinction) occurs. Note
that the limits do not depend on the initial condition x. We conclude that under
the conditions of randomly varying selection, quasi-fixation of allele A1 possessing
the selective advantage γ1 > γ2 over A2 (γ > 0) will occur with probability 1,
regardless what its initial frequency is and no matter on how large the fluctua-
tions in selection intensities really are. In this case, the density function p (x; t, y)
increasingly concentrates near the boundary ◦ = 1 which is stochastically locally
stable in the sense of [19]. The boundaries, either {0, 1} or both are eventually
attained although not in finite time. When there is no selective advantage (γ = 0),
quasi-absorption at both endpoints of I occurs equally likely, whatever the initial
condition.

Let us now check that the boundaries are natural (and therefore that −G and −G∗
corresponding to the Karlin diffusion no longer have a discrete spectrum). We have

−2f (x)
g2 (x)

= −2
η − ρx

ρx (1− x)
=
κ1

x
+

κ2

1− x

where
κ1 = −1− 2γ

ρ
, κ2 = 1− 2γ

ρ
.
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Thus

(35) ϕ′ (y) = e
−2
∫ y f(z)

g2(z)
dz = y−(1+ 2γ

ρ ) (1− y)−(1− 2γ
ρ )

and there is no way to define a normalized scale function satisfying ϕ (0) = 0 and
ϕ (1) = 1. The speed measure density reads

(36) m (x) =
1

(g2ϕ′) (x)
=

1
ρ
x

2γ
ρ −1 (1− x)−

2γ
ρ −1

.

When γ > 0, m is not integrable at ◦ = 1 and ϕ′ (y)
∫ y

m (x) dx ∼
y→1

(1− y)−1 is not

integrable near y = 1. Thus {1} is a natural boundary. However, m is integrable
at ◦ = 0, but ϕ′ is not integrable and mϕ is not integrable there showing that
{0} is also a natural boundary. Similar conclusions may be drawn when γ < 0 :
both boundaries are natural. When γ = 0, m (x) dx is the speed measure of the
neutral WF diffusion which is not integrable near either x = 0 or x = 1. Moreover,
ϕ′ (y)

∫ y
m (x) dx ∼

y→0
y−1 log y ( ∼

y→1
− (1− y)−1 log (1− y)) is not integrable nei-

ther at y = 0 (nor at y = 1). Thus both boundaries are again natural and therefore
inaccessible and τx = τx,0 ∧ τx,1 = ∞ with probability 1.

The symmetric (neutral) case. Assume now γ = 0. Then the realizations of
xt oscillate back and forth between the boundaries, infinitely often, so that there
is a substantial amount of time spent in their neighborhood. The process is null-
recurrent. The diffusion model (32) may be recast as:

(37) dxt = ρxt (1− xt)
(

1
2
− xt

)
dt+

√
ρxt (1− xt) dwt

with a stabilizing drift toward 1/2.

Let ε > 0 be a small parameter. Let x ∈ Iε. Because the extreme boundaries {0, 1}
are inaccessible, we shall work (with the tools developed in Section 2) on Iε rather
than on I.

Let τx,Iε = τx,ε ∧ τx,1−ε be the first exit time of Iε. We wish to estimate the
probability P (τx,1−ε < τx,ε) as ε→ 0, together with E (τx,Iε) .

The scale function of (37) is ϕ (x) = log
(

x
1−x

)
.Defining a normalized scale function

ϕε (x) = ϕ(x)−ϕ(ε)
ϕ(1−ε)−ϕ(ε) satisfying ϕε (ε) = 0 and ϕε (1− ε) = 1, we easily get

(38) P (τx,1−ε < τx,ε) = ϕε (x) =
1
2

1−
log
(

x
1−x

)
log
(

ε
1−ε

)
 .

We conclude that, independently of ρ:

If x < 1
2 , P (τx,1−ε < τx,ε) ∼

ε→0

1
2

(
1− log( 1−x

x )
− log ε

)
which is slightly less than 1/2

with a correcting term of order −1/ log ε. If ε = 1/ (2N) and x = 1/N , the quasi-
fixation probability at 1− ε of a mutant is of order:

(39)
1
2

(
1−

log
(

1
N

)
log
(

2
N

)) ∼ 1
logN

.
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If x > 1
2 , P (τx,1−ε < τx,ε) ∼

ε→0

1
2

(
1 +

log( x
1−x )

− log ε

)
which is slightly greater than 1/2.

Using the Green function

g(ε) (x, y) = 2
(ϕε (x)− ϕε (ε)) (ϕε (1− ε)− ϕε (y))

(g2ϕ′ε) (y)
if ε < x < y < 1− ε

g(ε) (x, y) = 2
(ϕε (1− ε)− ϕε (x)) (ϕε (y)− ϕε (ε))

(g2ϕ′ε) (y)
if 1− ε > x > y > ε

the expected exit time of Iε is obtained as

E (τx,Iε
) =

2
ρ

∫ x

ε

log ((1− y) /y)
y (1− y)

dy

=
1
ρ

(
log (((1− ε) /ε))2 − (log ((1− x) /x))2

)
∼

ε→0

1
ρ

[log (ε)]2 .

Thus this expected time diverges like [log (ε)]2, somehow quantifying how inacces-
sible the natural boundaries are. Note that E (τx,Iε) is a decreasing function of ρ.

• Empirical average measure of heterozygosity. As noted above, the realizations of
xt oscillate back and forth between the boundaries, infinitely often. We therefore
expect that the empirical average of heterozygosity should be close to 0, as result
of xt spending a substantial amount of time in the neighborhood of the boundaries.
Let us quantify this intuition.

Let a and b be two functions which are integrable with respect to the speed measure
m (x) dx, with, from (36) with γ = 0

m (x) =
1

ρx (1− x)
.

Then, by the ergodic Chacon-Ornstein ratio theorem for null-recurrent processes∫ t

0
a (xs) ds∫ t

0
b (xs) ds

=
t−1

∫ t

0
a (xs) ds

t−1
∫ t

0
b (xs) ds

→
t→∞

∫ 1

0
a (x)m (x) dx∫ 1

0
b (x)m (x) dx

.

Let ε > 0 be small. Let us choose a (x) = 2x (1− x) 1x∈(ε,1−ε) and b (x) =
1x∈(ε,1−ε), in such a way that the above ratio represents the conditional empiri-
cal average of heterozygosity of the process xt given it keeps remaining within the
interval (ε, 1− ε) . Would the process spend most of the time close to 0 and 1 where
the heterozygosity vanishes, one would expect the empirical average of heterozy-
gosity to tend to 0 as ε→ 0. By the ergodic Chacon-Ornstein ratio theorem

(40)
t−1

∫ t

0
2xs (1− xs) 1xs∈(ε,1−ε)ds

t−1
∫ t

0
1xs∈(ε,1−ε)ds

→
t→∞

2
∫ 1−ε

ε
dx∫ 1−ε

ε
1

x(1−x)dx
∼

ε→0

1
− log (ε)

which indeed tends to 0 when ε→ 0, independently of ρ.

• If the particle spends a substantial amount of time near the boundaries, this is
also because the time to move from ε to 1− ε is large. Let us quantify this point.
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Consider (34) with x < y and γ = 0 . Let

gλ (x, y) =
∫ ∞

0

e−λtp (x; t, y) dt

be the Green potential function of the neutral Kimura model.

With δ2 := 1
ρ

[
log
(

y(1−x)
x(1−y)

)]2
, we have

gλ (x, y) =
1√
2πρ

1
y (1− y)

∫ ∞

0

t−
1
2 e−

1
2 (2λt+

δ2
t )dt

=
2√
2πρ

1
y (1− y)

K 1
2

(√
2λδ2

)( δ2
2λ

)1/4

where K 1
2

(x) =
√

π
2xe

−x is a particular modified Bessel function of the third kind

Kα (x) =
1
2

∫ ∞

0

tα−1e−x(t+1/t)dt,

with index α = 1/2. Hence

gλ (x, y) =
1

y (1− y)
1

(2ρλ)1/2
e−

√
2λδ2 .

Assume x = y and let us compute gλ (y, y) =
∫∞
0
e−λtp (y; t, y) dt. We get

gλ (y, y) =
1√
2πρ

1
y (1− y)

∫ ∞

0

t−
1
2 e−λtdt

=
1√
2ρλ

1
y (1− y)

.

Note that g0 (x, y) = g0 (y, y) = ∞ (the process under study is recurrent): the
expected local time at y starting from x is ∞. This suggests that for all x < y
(x > y), the expected value of τx,y should be

∫ y

0
g0 (x, z) dz = ∞ (respectively∫ 1

y
g0 (x, z) dz = ∞).

Indeed, with τx,y the first time xs hits y starting from x

(41) E
(
e−λτx,y

)
=

gλ (x, y)
gλ (y, y)

= e−
√

2δ2λ

showing that τx,y
d= bS1/2 where S1/2 is a standard random variable with stable

law of index 1/2 and b is the scale parameter b = 2δ2 = 2
ρ

[
log
(

y(1−x)
x(1−y)

)]2
. The

probability of the event τx,y < ∞ is 1. When x = ε and y = 1 − ε, the scale
parameter is

b =
23

ρ

[
log
(

1− ε

ε

)]2
∼

ε→0

23

ρ
[log (1/ε)]2 →∞.

It takes a long time to move from ε to 1 − ε and back, but this move occurs with
probability 1. We have

ρ

23 [log (1/ε)]2
τε,1−ε

d→
ε→0

S1/2.

Proceeding similarly
ρ

25ε2
τ 1

2±ε, 1
2

d→
ε→0

S1/2.
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quantifying how small the first return time to x = 1/2 is.

5. Karlin versus Kimura models

Consider the Karlin diffusion model (1), in the sense of Itô, therefore with volatility
and drift (32)

g (x) =
√
ρx (1− x) ; f (x) = x (1− x)

[
γ + ρ

(
1
2
− x

)]
.

It has the equivalent Stratonovitch form

(42) dxt =
[
f (xt)−

1
2
gg′ (xt)

]
dt+ g (xt) ◦ dwt, x0 = x

where
∫ t

0
g (xs) ◦ dws is now to be understood as a Stratonovitch integral [33]. The

equivalent Stratonovitch form of (32) therefore is (see [36])

(43) dxt = γxt (1− xt) dt+
√
ρxt (1− xt) ◦ dwt, x0 = x.

Kimura considered the related model ([21], [22], [4])

(44) dxt = γxt (1− xt) dt+
√
ρxt (1− xt) dwt, x0 = x.

where the latter diffusion is now understood in the classical sense of Itô. This
model was also viewed by Kimura as a WF model under fluctuating selection. It
can be interpreted as follows (See also [20], page 361-362). Consider the continuous-
time deterministic evolution equation for the gene frequency of allele A1, driven by
fitness σ:

dxt = σxt (1− xt) dt.

Assume that the selection differential σdt is random and that it can be modelled by
some random Gaussian differential dw̃t satisfying E (dw̃t) = γdt and σ2 (dw̃t) = ρdt.
Then we obtain (44).

Clearly however, the Kimura model (44) is of a very different nature than its Karlin
counterpart defined in (32) and we wish to analyze this discrepancy.

Remark. Historically, the first model to describe WF diffusion in uncorrelated
random environment is Kimura’s model in its Itô’s version (44). Looking at (44) in
the sense of Stratonovitch as in (43) and taking its equivalent Itô version, brings
one back to the Karlin model. The discrepancy between SDEs interpreted in the
sense of Itô and Stratonovitch is not new. Similar observations were made in [27]
in the context of random population growth models. One could ask which model to
use in practise? Although some authors like [29] argue that, for practical purposes,
Stratonovitch models like in (43) (and therefore Karlin model) are best-suited for
physical-world models, this non-uniqueness problem is not completely and satis-
factorily solved, to the best of the author’s knowledge. Still, in our context, one
argument pleading in favor of Karlin’s model is the fact that it arises as a proper
scaling limit of the discrete space-time construction briefly sketched at the begin-
ning of Subsection 4.1. �
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Curiously, the Kimura model is more tricky than the Karlin one. For instance,
when dealing with (44), we could first think of applying the change of variable

yt =
∫ xt

0

1
z (1− z)

dz = log
(

xt

1− xt

)
,

following the path already used in the context of Karlin’s model. The new process
yt then obeys the Langevin equation

(45) dyt =
(
γ +

ρ

2
tanh

(yt

2

))
dt+

√
ρdwt, y0 = log

(
x0

1− x0

)
with state-independent volatility but with a non-linear drift that will make it diffi-
cult to handle.

6. The Kimura model

In this last Section, we deal with the Kimura model itself, applying to it similar
techniques than the ones used for the Karlin model and drawing the appropriate
conclusions.

6.1. The symmetric case (Kimura martingale). We start with the easier case
when γ = 0. The obtained diffusion (44) reduces to the Kimura martingale dxt =√
ρxt (1− xt) dwt. It is also of a very different nature than (37). As we will show

next, it has again two natural inaccessible boundaries; the process is still null-
recurrent. For the driftless model (44), using an elegant change of variable bringing
the problem into the heat equation, the solution to the associated KFE was obtained
by ([21]) 2 as

(46) p̃ (x; t, y) =
1√
2πρt

(x (1− x))1/2

(y (1− y))3/2
e
−
(

ρt
8 + 1

2ρt [log( y(1−x)
x(1−y) )]

2)
.

The density (46) converges more rapidly than its Karlin version (34) to the quasi-
absorption states {0, 1}. Its mean and variance satisfy (see [21]):∫ 1

0

yp̃ (x; t, y) dy = x∫ 1

0

(y − x)2 p̃ (x; t, y) dy →
t→∞

x (1− x) ,

in accordance with the fact

p̃ (x; t, y) dy →
t→∞

(1− x) δ0 + xδ1.

Note that this is not absorption because the absorption time is ∞ with probability
one, rather it is quasi-absorption. Would the initial condition be chosen random
with mean 1/2, the limiting law would be symmetric with mass 1/2 at both end-
points (like in the neutral Karlin model with γ = 0). Based on this solution (46),
Kimura [21] and Tuckwell [36] also argued that

P (xt ∈ (0, ε) | x0 = x) →
t→∞

1− x

P (xt ∈ (1− ε, 1) | x0 = x) →
t→∞

x

2With p̃ obeying the corresponding KFE equation ∂tp̃ = ρ/2∂2
y

(
y2

(
1− y2

)
p̃
)
, putting φ =

1/2e(ρt)/8y3/2 (1− y)3/2 φ and z = log (y/ (1− y)), φ obeys the heat equation ∂tφ = ρ/2∂2
z (φ) .
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where the limiting quantities now depend on the initial condition. The approach of
the limiting measure occurs with the exponential rate ρt

8 in the sense for instance
that

P (xt ∈ (0, ε) | x0 = x) = 1− x+O

(
e−

ρt
8

√
2πρt

)
.

The scale function associated to the Kimura diffusion is the identity ϕ (x) = x. Its
speed measure density is m (x) = 1

ρx2(1−x)2
which is not integrable at the bound-

aries. Because ϕ′ (y)
∫ y

m (x) dx is not integrable neither at y = 0 nor at y = 1,
both boundaries are natural.

Let x ∈ Iε. Let τx,Iε
= τx,ε ∧ τx,1−ε be the first exit time of Iε. We wish now to

estimate the probability P (τx,1−ε < τx,ε) as ε→ 0, together with E (τx,Iε
), for the

Kimura martingale model.

Defining a normalized scale function ϕε (x) = ϕ(x)−ϕ(ε)
ϕ(1−ε)−ϕ(ε) (with ϕ (x) = x), satis-

fying ϕε (ε) = 0 and ϕε (1− ε) = 1, we easily get

(47) P (τx,1−ε < τx,ε) = ϕε (x) =
x− ε

1− 2ε
,

independently of ρ. The result is thus very different from the one displayed in
(38) which was close to 1/2. The origin of this difference is to be searched in the
presence of an attracting drift to 1/2 in the Karlin model (37), which is not present
in the driftless Kimura martingale. If ε = 1/ (2N) and x = 1/N , the quasi-fixation
probability at 1− ε of a mutant is now of order 1/ (2N), much smaller than in the
Karlin case (39).

• Let α (x) = E (τx,Iε
) be the expected exit time of Iε. It solves −Gα (x) = 1 where

G = ρ
2x

2 (1− x)2 ∂2
x and α (ε) = α (1− ε) = 0. Thus

∂2
xα (x) = − 2

ρx2 (1− x)2
= −2

ρ

[
1
x2

+
1

(1− x)2
+

2
x

+
2

1− x

]
.

Integrating twice and plugging in the boundary conditions, we find

(48) α (x) = E (τx,Iε
) =

2
ρ

(h (ε)− h (x))

where

(49) h (x) = 2x log x+ 2 (1− x) log (1− x)− log (x (1− x)) .

Thus this expected time diverges like − 2
ρ log (ε), which is smaller than 1

ρ [log (ε)]2

obtained previously for its Karlin counterpart. The Kimura model hits therefore
the boundaries of Iε in a shorter time. Note that E (τx,Iε

) is again a decreasing
function of ρ.

• The empirical average measure of heterozygosity for the Kimura martingale xt

as in (44) with γ = 0. Again the realizations of xt also oscillate back and forth
between the boundaries. We therefore also expect that the empirical average of
heterozygosity should also be close to 0, as result of xt spending a substantial
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amount of time in the neighborhood of the boundaries. For this process indeed, the
speed measure is

m (x) =
1

ρx2 (1− x)2
.

By the ergodic Chacon-Ornstein ratio theorem

(50)
t−1

∫ t

0
2xs (1− xs) 1xs∈(ε,1−ε)ds

t−1
∫ t

0
1xs∈(ε,1−ε)ds

→
t→∞

2
∫ 1−ε

ε
1

x(1−x)dx∫ 1−ε

ε
1

x2(1−x)2
dx

∼
ε→0

−2ε log ε

which also tends to 0 when ε → 0, but much faster than in (40). Therefore, the
Kimura martingale spends much more time close to the boundaries than the Karlin
process defined in (36) with γ = 0, presenting a stabilizing drift.

• The time to move from ε to 1− ε. Consider now (46) with x < y. Let

gλ (x, y) =
∫ ∞

0

e−λtp̃ (x; t, y) dt

be the Green function of the driftless Kimura model.

With δ1 := ρ
4 and δ2 := 1

ρ

[
log
(

y(1−x)
x(1−y)

)]2
, we have

gλ (x, y) =
1√
2πρ

(x (1− x))1/2

(y (1− y))3/2

∫ ∞

0

t−
1
2 e−

1
2 ((2λ+δ1)t+

δ2
t )dt

=
2√
2πρ

(x (1− x))1/2

(y (1− y))3/2
K 1

2

(√
(2λ+ δ1) δ2

)( δ2
2λ+ δ1

)1/4

where K 1
2

(x) =
√

π
2xe

−x. Hence

gλ (x, y) =
1
√
ρ

(x (1− x))1/2

(y (1− y))3/2

1

(2λ+ δ1)
1/2

e−
√

(2λ+δ1)δ2 .

Assume x = y and let us compute gλ (y, y) =
∫∞
0
e−λtp̃ (y; t, y) dt. We get

gλ (y, y) =
1√
2πρ

1
y (1− y)

∫ ∞

0

t−
1
2 e−

1
2 (2λ+δ1)tdt

=
1√
2πρ

1
y (1− y)

√
π√

1
2 (2λ+ δ1)

=
1
√
ρ

1
y (1− y)

1

(2λ+ δ1)
1/2

.

Thus

E
(
e−λτx,y

)
=

gλ (x, y)
gλ (y, y)

=
(
x (1− x)
y (1− y)

)1/2

e−
√

(2λ+δ1)δ2

(51) =
(
x

y

) 1
2

(
1+
√

1+ 8λ
ρ

)(
1− x

1− y

) 1
2

(
1−
√

1+ 8λ
ρ

)

=
x

y
·

[(
x (1− y)
y (1− x)

)1/2
]√1+ 8λ

ρ −1
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recalling δ1δ2 = 1
4

[
log
(

y(1−x)
x(1−y)

)]2
. Compare with (41). Thus τx,y < ∞ with

probability x
y ∈ (0, 1) and given τx,y <∞, the LST of the law of τx,y is the one of

an exponentially damped 1
2−stable law with scale parameter b = 2

ρ

[
log
(

x(1−y)
y(1−x)

)]2
and exponential damping parameter a = ρ

8 and finite mean 1
2

√
b
a

3. If x = ε < 1/2
and y = 1− ε, the probability that a move from ε to 1− ε occurs in finite time is
π = ε

1−ε ∼
ε→0

ε. We have

E
(
e−λτε,1−ε

)
= π · e−(− log π)

(√
1+ 8λ

ρ −1
)
.

Whenever the Kimura martingale approaches a boundary closely, its probability
not to move back to the opposite boundary increases and approaches 1 accordingly.
This opportunity does not exist when dealing with its Karlin counterpart (37).
Given the switch from ε to 1− ε occurs, the expected waiting time is seen to be of
order

1
2

√
b

a
∼ −4

ρ
log (ε) →

ε→0
∞,

decreasing with ρ.

6.2. The non-symmetric Kimura model with a drift. Consider the full Kimura
model (44) with γ 6= 0.

Natural boundaries. Let us first check that the boundaries are natural. We have

−2f (x)
g2 (x)

= −2γ
ρ

1
x (1− x)

= −2γ
ρ

(
1
x

+
1

1− x

)
.

Thus

(52) ϕ′ (y) = e
−2
∫ y f(z)

g2(z)
dz = y−

2γ
ρ (1− y)

2γ
ρ .

The speed measure density reads

(53) m (x) =
1

(g2ϕ′) (x)
=

1
ρ
x

2γ
ρ −2 (1− x)−

2γ
ρ −2

.

We have:

ϕ′ (y)
∫ y

m (x) dx ∼
y→0

y−1 /∈ L1 (0) if γ 6= ρ/2

ϕ′ (y)
∫ y

m (x) dx ∼
y→1

(1− y)−1
/∈ L1 (1) if γ 6= −ρ/2

and

m ∈ L1 (0) ⇔ γ > ρ/2
m ∈ L1 (1) ⇔ γ < −ρ/2

3Let φ (λ) = exp
[
−
√

bλ
]

be the LST of a stable law with scale parameter b and index

1/2. Then, with a > 0 φ (λ + a) /φ (a) = exp
[
−
√

ab
(√

1 + λ/a− 1
)]

is the LST of a damped

1
2
−stable law, with scale parameter b and exponential damping parameter a. Such distributions

possess a finite mean, namely 1
2

√
b
a
.
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and

ϕ′ ∈ L1 (0) ⇔ γ < ρ/2
ϕ′ ∈ L1 (1) ⇔ γ > −ρ/2.

When γ < ρ/2, m /∈ L1 (0) and ϕ′ (y)
∫ y

m (x) dx /∈ L1 (0) . Thus {0} is a natural
boundary. When γ > ρ/2, m ∈ L1 (0) , ϕ′ /∈ L1 (0) and mϕ /∈ L1 (0) . Thus {0} is
again a natural boundary.

When γ = ρ/2, m ∼
y→0

y−1 /∈ L1 (0) and ϕ′ (y)
∫ y

m (x) dx ∼
y→0

y−1 log y /∈ L1 (0) .

Thus {0} is a natural boundary.

When γ > −ρ/2, m /∈ L1 (1) and ϕ′ (y)
∫ y

m (x) dx /∈ L1 (1) . Thus {1} is a natural
boundary. When γ < −ρ/2, m ∈ L1 (1) , ϕ′ /∈ L1 (1) and mϕ /∈ L1 (1) . Thus {1} is
again a natural boundary.

When γ = −ρ/2, we have m ∼
y→1

(1− y)−1
/∈ L1 (0) and ϕ′ (y)

∫ y
m (x) dx ∼

y→0

− (1− y)−1 log (1− y) /∈ L1 (0) . Thus {1} is a natural boundary.

We conclude that {0, 1} are always natural boundaries for the Kimura model with
a drift although for different reasons (Feller criteria) when γ passes through the
values −ρ/2 and ρ/2.

When γ 6= 0, to the best of the author knowledge, there is, up to now, no known
solution of the transition probability density of (1) associated to (44), [see [22], page
37]. However, for the Kimura model with a drift, Tuckwell [36] argues that

P (xt ∈ (0, ε) | x0 = x) →
t→∞(

1 if γ < −ρ/2; 1−x
2 if γ = −ρ/2; 1− x if ρ/2 > γ > −ρ/2 and 0 if γ > ρ/2

)
and

P (xt ∈ (1− ε, 1) | x0 = x) →
t→∞(

1 if γ > ρ/2; x
2 if γ = ρ/2; x if ρ/2 > γ > −ρ/2 and 0 if γ < −ρ/2

)
,

suggesting that the limiting law of the Kimura process with drift is

δ1 if γ > ρ/2
(1− x) δ0 + xδ1 if |γ| < ρ/2

1− x

2
δ0 +

1 + x

2
δ1 if γ = ρ/2(

1− x

2

)
δ0 +

x

2
δ1 if γ = −ρ/2

δ0 if γ < −ρ/2.

For the nonneutral Kimura model therefore, there is a non-null probability that an
allele gets quasi-fixed (quasi-extinct) even if its selective differential γ is negative
(positive), depending on the initial allele frequency. This differential simply needs
to be larger (smaller) than −ρ/2 (respectively ρ/2). Both preliminary arguments
suggest that something special should occur when |γ| = ρ/2.

From Karlin to Kimura model using an appropriate Doob transform.
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We shall use here the ideas on Doob-transforms developed in Subsection 2.6. Con-
sider the Karlin model (1) with (32):

g (x) =
√
ρx (1− x) ; f (x) = x (1− x)

[
γ + ρ

(
1
2
− x

)]
.

Let α (x) = g (x)−1/2 = ρ−1/4 (x (1− x))−1/2
. With G = f∂x + 1

2g
2∂2

x, we have

Gα =
1
2
f
g′

g
− 3

8
g′2 +

1
4
gg′′.

We wish to study a transformed version of the Karlin diffusion model (32) using
the additive functional α (x) . By doing so, we move from G to

G (·) = α−1G (α·) = G̃ (·) +
Gα

α
·

This choice of α is because, using the preliminaries of Section 2, the drift of the
transformed process becomes

f̃ (x) = f (x) +
α′ (x)
α (x)

g2 (x) = f (x)− 1
2
gg′ (x) ,

as required to switch from the Karlin model (32) to the Kimura one. Indeed, the
drift of the transformed process is

f̃ (x) = x (1− x)
[
γ + ρ

(
1
2
− x

)]
− 1

2
ρx (1− x) (1− 2x) = γx (1− x) ,

which is the one appearing in (44) for the Kimura model. In this transformation
of paths process, we additionally get the affine creating-annihilating paths rate
function

(54) λ (x) =
Gα

α
(x) = −1

2

(
γ − ρ

4

)
+ γx.

The birth and death rate λ is bounded above. It may be put into the canonical
form λ (x) = λ∗ (µ (x)− 1) where λ∗ = ρ

8 + |γ|
2 > 0 and

µ (x) = 2− 2 |γ|
|γ|+ ρ

4

(
1− x1(γ≥0) (1− x)1(γ<0)

)
which is > 0 for all x ∈ (0, 1) . Therefore, the transformed process accounts for a
branching diffusion (BD) where a diffusing Kimura mother particle (started in x)
lives a random exponential time with constant rate λ∗. When the mother particle
dies, it gives birth to a spatially dependent random number M (x) of particles
(with mean µ (x)). If M (x) 6= 0, M (x) independent daughter particles are started
afresh where their mother particle died; they move along a Kimura diffusion and
reproduce, independently and so on for the subsequent generation particles. If
M (x) = 0, the process stops in the first generation.

We note that µ (x) ≥ 1 for all x ∈ (0, 1) if and only if |γ| ≤ ρ/4 and that µ (x) is
largest equal to 2 when γ = 0. So we actually get a BD with binary scission whose
random offspring number satisfies

M (x) = 0 w.p. p0 = 1− µ (x) /2

M (x) = 1 w.p. p1 = 0
M (x) = 2 w.p. p2 = µ (x) /2,

with p2 (x) ≥ p0 (x) for all x if and only if |γ| ≤ ρ/4.



34 THIERRY HUILLET

While modifying the Karlin model xt using α (x) = g (x)−1/2, the law p (x; t, y) of
xt is transformed into

p (x; t, y) =
α (y)
α (x)

p (x; t, y) ,

and so is explicitly known because so is p from (34). The transformed process is
therefore a BD where individual particles diffuse according to the Kimura model
and branch at rate λ (y) = λ∗ (p2 (y)− p0 (y)). However, this BD model does not fit
into the framework of [1] and [2] for positively regular branching diffusions, leading
to global population growth.

Suppose it does and let us see what should be expected. Integrating over y, ρt(x) :=∫
◦
I
p (x; t, y) dy would be the global expected number E(Nt (x)) of Kimura particles

alive at time t in
◦
I, and we would have

∂tρt (x) = G(ρt (x)) = λ (x) ρt (x) + G̃(ρt (x)), ρ0 (x) = 1(0,1) (x) .

Using (34) and performing the change of variable z = log
(

y
1−y

)
, we are led to

evaluate integrals with respect to the Gaussian kernel. We easily find 4

ρt (x) = xet(γ/2+ρ/8) + (1− x) e−t(γ/2−ρ/8),

with

−1
t

log ρt (x) →
t→∞

λ1 := −
(
|γ|
2

+
ρ

8

)
= −λ∗ < 0.

This suggests that −λ1 should be the global Malthus exponential rate of growth
of the global expected number of particles within the whole system. Defining then
the conditional probability presence density q (x; t, y) := p (x; t, y) /ρt (x), now with
total mass 1, with q (x; 0, y) = δy (x) , we would get

∂tq = −∂tρt (x) /ρt (x) · q +G
∗
(q)

=
(
dt (x) + λ (y)

)
· q + G̃∗(q).

The term dt (x) = −∂tρt (x) /ρt (x) < 0 is the rate at which mass should be removed

to compensate the creation of mass of the BD process
((

x̃
(n)
t

)Nt(x)

n=1
; t ≥ 0

)
arising

from splitting. In other words,

q (x; t, y) =
E
(∑Nt(x)

n=1 p(n) (x; t, y)
)

E(Nt (x))

where p(n) (x; t, y) would be the density at (t, y) of the nth alive particle in the
system, descending from the ancestral one, started at x. Thus q (x; t, y) would be
the average presence density at (t, y) of the branching system of Kimura particles.

We have dt (x) → λ1 where λ1 should then be the largest negative eigenvalue of
−G and therefore, putting ∂tq = 0 in the latter evolution equation, we would get
that, independently of the initial condition x

q (x; t, y) →
t→∞

q∞ (y) ,

4When γ = 0, ρt (x) = e(ρt)/8, as required from the neutral theory.
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where q∞ (y) is the solution to

−G̃∗(q∞) = (λ1 + λ (y)) · q∞, or

−G∗ (q∞) = λ1 · q∞.

This solution could exist because the Kimura diffusion (with generator G̃ with
smooth drift and local variance) being recurrent on a bounded domain and the
birth and death rate λ being bounded above, the operator G (·) + λ1· (and its
adjoint) could be critical 5 (in the sense that it is critical for some λc which could
be λ1, see Th. 3.2 of [31], Chapter 4). λ1 would then be called the generalized
principal eigenvalue for G (or G

∗
).

From the construction of G, one would expect (proceeding like in (13-15)) that
q∞ (y) should be of the product form

(55) q∞ (y) = α (y) v1 (y) /
∫ 1

0

α (y) v1 (y) dy,

would v1 be the eigenfunction of −G∗ associated to λ1 < 0. This results directly
from the fact that G

∗
(·) = α (y)G∗(·/α (y)). As a result, the infinitesimal generator

−G∗ of the nonneutral Karlin diffusion with natural boundaries should itself pos-
sess a unique (up to multiplicative constant) eigenvector associated to λ1 = −λ∗.
Similarly, −G also should have an eigenvector associated to λ1 = −λ∗ which is
u1 (x) = v1 (x) /m (x) , where m (x) is the speed measure density of the Kar-
lin diffusion, (36). Furthermore, we would hope the product criticality property∫
(0,1)

u1 (x) · v1 (x) dx < ∞. As a result, the Karlin operator G∗ (·) + λ1· and its
adjoint would themselves be critical and product critical.

Note that there also should exist φ∞ (x) such that −G
(
φ∞
)

= λ1φ∞ and that
φ∞ (x) = u1 (x) /α (x). All this would make sense if the product criticality property∫

(0,1)

φ∞ (x) · q∞ (x) dx =
∫

(0,1)

u1 (x) · v1 (x) dx <∞

would hold, in which case we could choose∫
(0,1)

φ∞ (x) · q∞ (x) dx = 1 and
∫

(0,1)

q∞ (x) dx = 1,

(See [31], Subsection 4.9).

Would all this be the case, eλ1t
∑Nt(x)

n=1 φ∞

(
x̃

(n)
t

)
would be a martingale converging

a.s. to a nondegenerate random variable W (x) satisfying E (W (x)) = φ∞ (x), (see
[1]). For any a.e. continuous bounded measurable function ψ on I

eλ1t

Nt(x)∑
n=1

ψ
(
x̃

(n)
t

)
a.s.→

t→∞
W (x)

∫
(0,1)

ψ (x) · q∞ (x) dx∫
(0,1)

q∞ (x) dx
.

In particular,
eλ1tNt (x) a.s.→

t→∞
W (x) ,

5G (·)+λc· (G
∗

(·)+λc·) is said to be critical if there exists some function φ∞ ∈ C2 (respectively

q∞ ∈ C2), strictly positive in (0, 1) , such that: G
(
φ∞

)
+ λcφ∞ = 0 (respectively G

∗
(q∞) +

λcq∞ = 0).
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making more precise how fast the global expected number of particles would grow
within the whole system.

But all this global picture does not hold simply because one can check that there is
no positive (u1 (x) ; v1 (y)) satisfying −G (u1) = λ1u1 and −G∗ (v1) = λ1v1 for λ1 =
−
(
|γ|
2 + ρ

8

)
. In fact, these eigenvectors exist but for some alternative eigenvalue

λc > λ1 that we will give below (actually, because there can be only one critical
value, see [31], Th. 3.2 on p. 146, this rules out de facto λ1). So criticality of
G (·) + λ1· is not valid and the above global approach fails. However the criticality
of G (·) + λc· indeed holds and we will rather need to focus on a local approach.
Let us first introduce

(56) λc = −ρ
8

(
1− 4

(
γ

ρ

)2
)
> λ1 = −ρ

8

(
1 + 4

|γ|
ρ

)
,

with λc < 0 if and only if |γ| < ρ/2.

It turns out that G (·) + λc· and G
∗
(·) + λc· are indeed critical with respective

ground states φ∞ (x) > 0 and q∞ (y) > 0 satisfying
∫
(0,1)

φ∞ (x) q∞ (x) dx = ∞.

So λc is the effective generalized principal eigenvalue. Let us check this point first
and compute φ∞ (x) and q∞ (y).

We have −G (u1) = λcu1, −G∗ (v1) = λcv1 with u1 (x) = v1 (x) /m (x) and m (x)
given again by (36) and a straightforward computation shows that

u1 (x) = x−
γ
ρ−

1
2 (1− x)

γ
ρ−

1
2

v1 (y) = m (y)u1 (y) = y
2γ
ρ −1 (1− y)−

2γ
ρ −1

u1 (y)

= y
γ
ρ−

3
2 (1− y)−

γ
ρ−

3
2 .

Therefore, following the arguments leading to (55), up to a multiplicative constant,

we get the positive ground states solutions on
◦
I = (0, 1) as

(57) φ∞ (x) =
1

α (x)
u1 (x) = x−

γ
ρ (1− x)

γ
ρ

(58) q∞ (y) = α (y) v1 (y) = y
γ
ρ−2 (1− y)−

γ
ρ−2

with∫
(0,1)

u1 (x) · v1 (x) dx =
∫

(0,1)

φ∞ (x) q∞ (x) dx =
∫

(0,1)

x−2 (1− x)−2
dx = ∞.

So again, the product criticality property does not hold but this is not so disturbing
because the growth property under concern is only local in the following sense.

Let B be any Borel subset of
◦
I with closure B ⊂

◦
I [A suitable choice of B could

typically be the interior of Iε]. Let Nt (x,B) =
∑Nt(x)

n=1 1B

(
x̃

(n)
t

)
count the local

number of Kimura particles within B at time t given Eve started at x. Let φ
B

∞ (x)
and qB

∞ (y) denote the above functions where the multiplicative constants were ad-
justed in such a way that

∫
B
φ

B

∞ (x) · qB
∞ (x) dx =

∫
B
qB
∞ (x) dx = 1. Then, we have

the local version of the Asmussen-Hering result:
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Local supercriticality (growth). Suppose λc < 0 or |γ| < ρ/2.

In our case study, for each B, eλct
∑Nt(x)

n=1 φ
B

∞

(
x̃

(n)
t

)
1B

(
x̃

(n)
t

)
is a martingale

converging a.s. to a nondegenerate random variableWB (x) satisfying E (WB (x)) =
φ

B

∞ (x) (see [8], p. 84).

For any a.e. continuous bounded measurable function ψ on I,

(59) eλct

Nt(x)∑
n=1

ψ
(
x̃

(n)
t

)
1B

(
x̃

(n)
t

)
a.s.→

t→∞
WB (x)

∫
B
ψ (x) · qB

∞ (x) dx∫
B
qB
∞ (x) dx

.

In particular (ψ ≡ 1),

(60) eλctNt (x,B) a.s.→
t→∞

WB (x) ,

making more precise how fast the expected number of particles grows locally within
each B of the open interval.

Note that −λc > 0 is the local Malthus growth parameter of Nt (x,B). As conven-
tional wisdom suggests, it is smaller than the global one −λ1.

Local subcriticality (extinction). Suppose λc > 0 or |γ| > ρ/2.

For each B :

(i)

(61) P (Nt (x,B) = 0) →
t→∞

1,

uniformly in x.

(ii) Suppose x ∈ B. There exists a constant γB > 0 such that:

(62) eλct [1−P (Nt (x,B) = 0)] →
t→∞

γBφ
B

∞ (x) ,

uniformly in x.

(iii) For all bounded measurable function ψ on I :

(63) E

Nt(x)∑
n=1

ψ
(
x̃

(n)
t

)
1B

(
x̃

(n)
t

)
| Nt (x,B) > 0

 →
t→∞

γ−1
B

∫
B

ψ (y) qB
∞ (y) dy.

From (i), it is clear that, under the assumption |γ| > ρ/2, the process gets ulti-
mately extinct with probability 1, locally for each B. In this subcritical regime,
the drift is so strong (and the affinity of Kimura particles for the boundaries so
large) that it pushes all the particles very close to either boundaries, all ending up
eventually outside B.

In the statement (ii) , the quantity 1 − P (Nt (x,B) = 0) = P (Nt (x,B) > 0) is
also P (T (x,B) > t) where T (x,B) is the local extinction time in B of the particle
system descending from an Eve particle started at x ∈ B. The number −λc <

0 is the usual local Malthus decay parameter. From (ii) , φ
B

∞ (x) has a natural
interpretation in terms of the propensity of the particle system to survive to its
local extinction fate: the so-called reproductive value in demography.
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(iii) with ψ ≡ 1 reads E [Nt (x,B) | Nt (x,B) > 0] →
t→∞

γ−1
B giving an interpreta-

tion of the constant γB (which may be hard to evaluate in practise).

Thus λc = 0 or |γ| = ρ/2 is a case of local criticality where the process also gets
ultimately locally extinct with probability 1 but at a smaller-1/t speed than in the
subcritical regime.

Remark. The ground states of G + λc and its adjoint are thus
(
φ∞, q∞

)
and

explicit here; see (57) and (58). We note that φ∞ is unbounded and that q∞ is not
integrable on [0, 1] . Nor is the product of the two integrable. It is useful to consider
the process whose infinitesimal generator is given by the Doob-transform

φ
−1

∞
(
G+ λc

) (
φ∞·

)
= φ

−1

∞

(
G̃+ λ+ λc

) (
φ∞·

)
,

because product-criticality is preserved under this transformation. The ground
states associated to this new operator and its adjoint are

(
1, φ∞q∞

)
. Developing

the Doob transform, we obtain a process whose infinitesimal elliptic generator is
G̃+ φ

′
∞

φ∞
g2∂x,with no multiplicative component.

Recalling g2 = ρ
2x

2 (1− x)2, we have G̃ = γx (1− x) ∂x + ρ
2x

2 (1− x)2 ∂2
x and

φ
′
∞

φ∞
= −γ

ρ
1

x(1−x) . Thus

G̃+
φ
′
∞

φ∞
g2∂x =

ρ

2
x2 (1− x)2 ∂2

x

is the driftless infinitesimal generator of the Kimura martingale. The associated
diffusion process is thus null recurrent with a constant harmonic function 1 and
invariant measure φ∞q∞ = u1v1 ∝ x−2 (1− x)−2 which is not integrable. �
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