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SEMICLASSICAL WAVE PACKET DYNAMICS IN

SCHRÖDINGER EQUATIONS WITH PERIODIC POTENTIALS

RÉMI CARLES AND CHRISTOF SPARBER

Abstract. We consider semiclassically scaled Schrödinger equations with an
external potential and a highly oscillatory periodic potential. We construct
asymptotic solutions in the form of semiclassical wave packets. These solu-
tions are concentrated (both, in space and in frequency) around the effec-
tive semiclassical phase-space flow obtained by Peierl’s substitution, and in-
volve a slowly varying envelope whose dynamics is governed by a homogenized
Schrödinger equation with time-dependent effective mass. The corresponding
adiabatic decoupling of the slow and fast degrees of freedom is shown to be
valid up to Ehrenfest time scales.

1. Introduction

1.1. General setting. We consider the following semiclassically scaled Schrödinger
equation:

(1.1)







iε∂tψ
ε +

ε2

2
∆ψε = VΓ

(x

ε

)

ψε + V (x)ψε, (t, x) ∈ R× R
d,

ψε
|t=0 = ψε

0,

with d > 1, the spatial dimension, and ψε = ψε(t, x) ∈ C. Here, we already have
rescaled all physical parameters such that only one semiclassical parameter ε > 0
(i.e. the scaled Planck’s constant) remains. In the following we shall be interested
in the asymptotic description of ψε(t, x) for ε ≪ 1. To this end, the potential
VΓ(y) ∈ R is assumed to be smooth and periodic with respect to some regular

lattice Γ ≃ Zd, generated by a given basis {η1, . . . , ηd}, ηℓ ∈ Rd, i.e.

(1.2) VΓ(y + γ) = VΓ(y), ∀ y ∈ R
d, γ ∈ Γ

where

Γ ≡
{

γ =
d

∑

ℓ=1

γℓηℓ ∈ R
d : γℓ ∈ Z

}

.

In addition, the slowly-varying potential V (x) is assumed to satisfy the following:

Assumption 1.1. The potential V is smooth, real-valued, with at most quadratic

growth at infinity, i.e.

V ∈ C∞(Rd;R) and ∂γV ∈ L∞
(

R
d
)

, ∀|γ| > 2.

Equation 1.1 describes the dynamics of quantum particles in a periodic lattice-
potential VΓ under the influence of an external, slowly varying driving force F =
−∇V (x). A typical application arises in solid state physics where (1.1) describes
the time-evolution of electrons moving in a crystalline lattice (generated by the ionic
cores). The asymptotics of (1.1) as ε→ 0+ is a natural two-scale problem which is
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well-studied in the physics and mathematics literature. Early mathematical results
are based on time-dependent WKB type expansions [3, 14, 33] (see also [6] for
a more recent application in the nonlinear case), which, however, suffer from the
appearance of caustics and are thus only valid for small times. In order to overcome
this problem, other methods based on, e.g., Gaussian beams [9], Wigner measures
[12, 13], or space-adiabatic perturbation theory [21, 35] have been developed. These
approaches yield an asymptotic description for time-scales of order O(1).

On the other hand, it is well known that in the case without periodic potential,
semiclassical approximations which are valid up to Ehrenfest time t ∼ O(ln 1/ε)
can be constructed. These approximations are based on propagating semiclassical

wave packets, or coherent states, i.e. approximate solutions which are sufficiently
concentrated in space and in frequency around the classical Hamiltonian phase-
space flow

(1.3)

{

q̇(t) = p(t), q(0) = q0,

ṗ(t) = −∇xV (q(t)) , p(0) = p0.

The basic idea for this type of asymptotic method can be found in the classical works
of [15, 26] (see also [4, 28] for a broader introduction). It has been developed further
in, e.g., [7, 8, 17, 30, 31, 34] and in addition also proved to be applicable in the
case of weakly nonlinear Schrödinger equations [5]. Interestingly enough, though, it
seems that so far it has not been extended to include also highly oscillatory periodic
potentials VΓ

(

x
ε

)

, and it will be the main task of this work to do so.

To this end, it will be necessary to understand the influence of VΓ
(

x
ε

)

on the
dispersive properties of the solution ψε(t, x). In particular, having in mind the
results quoted above, one expects that in this case the usual kinetic energy of
a particle E = 1

2 |k|2 has to be replaced by Em(k), i.e. the energy of the m-th
Bloch band associated to VΓ. In physics this is known under the name Peierl’s

substitution. We shall show that under the additional influence of a slowly varying
potential V (x), this procedure is in fact asymptotically correct (i.e. for ε ≪ 1) up
to Ehrenfest time, provided the initial data ψε

0 is sufficiently concentrated around
(q0, p0) ∈ R2d.

Remark 1.2. Indeed, we could also allow for time-dependent external potentials
V (t, x) ∈ R measurable in time, smooth in x, and satisfying

∂γxV ∈ L∞
(

Rt × R
d
x

)

, ∀|γ| > 2.

Under this assumptions, it is straightforward to adapt the analysis given below.
For the sake of notation, we shall not do so here, but rather leave the details to the
reader.

1.2. Bloch and semiclassical wave packets. In order to state our result more
precisely, we first recall some well-known results on the spectral theory for periodic
Schrödinger operators, cf. [29, 36]:

Hper := −1

2
∆y + VΓ(y).

Denote by Y ⊂ Γ the (centered) fundamental domain of the lattice Γ and by
Y ∗ ≃ Td the fundamental domain of the corresponding dual lattice (equipped with
periodic boundary conditions). The latter is usually referred to as the Brillouin

zone. Bloch–Floquet theory asserts that Hper admits a fiber-decomposition

Hper =
1

|Y ∗|

∫

Y ∗

HΓ(k) dk,
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where for k ∈ Y ∗, we denote

HΓ(k) =
1

2
(−i∇y + k)2 + VΓ (y) .

It therefore suffices to consider the following spectral problem on Y :

(1.4) HΓ(k)χm(·, k) = Em(k)χm(·, k), k ∈ Y ∗, m ∈ N,

whereEm(k) ∈ R and χm(y, k), respectively, denote them-th eigenvalue/eigenvector
pair of HΓ(k), parametrized by k ∈ Y ∗, the so-called crystal momentum. These
eigenvalues can be ordered increasingly, such that

E1(k) 6 . . . 6 Em(k) 6 Em+1(k) 6 . . . ,

where each eigenvalue is repeated according to its multiplicity (which is known to
be finite). This implies that

specHper =
⋃

m∈N

{Em(k) ; k ∈ Y ∗} ⊂ R,

where {Em(k); k ∈ Y ∗} is called the m-th energy band (or Bloch band). The asso-
ciated eigenfunctions χm(y, k) form, for every fixed k ∈ Y ∗, a complete orthonormal
basis in L2(Y ).

Next, we consider for some m ∈ N the corresponding semi-classical band Hamil-

tonian, obtained by Peierl’s substitution, i.e.

hscm(k, x) = Em(k) + V (x), (k, x) ∈ Y ∗ × R
d,

and denote the semiclassical phase space trajectories associated to hscm by

(1.5)

{

q̇(t) = ∇kEm (p(t)) , q(0) = q0,

ṗ(t) = −∇xV (q(t)) , p(0) = p0.

This system is the analog of (1.3) in the presence of an additional periodic potential.

Example 1.3 (No external potential). In the case V (x) = 0, we simply have

(1.6) p(t) = p0, q(t) = q0 + t∇kEm(p0),

that is, a shift with constant speed ω = ∇Em(p0).

In order to make sure that the system (1.5) is well-defined, we shall from now
on impose the following condition on Em(k).

Assumption 1.4. We assume that Em(p(t)) is a simple eigenvalue, uniformly for

all t ∈ R, i.e. there exists a δ > 0, such that

|Em(p(t))− En(k)| > δ, ∀n 6= m, t ∈ R, k ∈ Y ∗.

It is known that if Em(k) is simple, it is infinitely differentiable and thus the right
hand side of (1.5) is well defined. In addition, we also have that (y, t) 7→ χm(y, p(t))
is smooth and bounded together with all its derivatives.

Example 1.5. By compactness of Y ∗, Assumption 1.4 is satisfied in either of the
following two cases:

(i) If Em(k) is a simple eigenvalue for all k ∈ Y ∗. In particular, in d = 1 it is
known that every Em(k) is simple, except possibly at k = 0 or at the edge
of the Brillouin zone.

(ii) If V (x) = 0 and Em(k) is simple in a neighborhood of k = p0 (which is
sufficient in view of Example 1.3).
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1.3. Main result. With the above definitions at hand, we are now able to state
our main mathematical result. To this end, we first define a semiclassical wave

packet in the m-th Bloch band (satisfying Assumption 1.4) by

(1.7) ϕε(t, x) = ε−d/4u

(

t,
x− q(t)√

ε

)

χm

(x

ε
, p(t)

)

eiφm(t,x)/ε

with q(t), p(t) given by system (1.5) and u(t, z) ∈ C, a smooth slowly varying
envelope which will determined by an envelope equation yet to be derived (see
below). In addition, the ε-oscillatory phase is

(1.8) φm(t, x) = Sm(t) + p(t) · (x− q(t)),

where Sm(t) ∈ R is the (purely time-dependent) semi-classical action

(1.9) Sm(t) =

∫ t

0

Lm(p(s), q(s)) ds,

with Lm denoting the Lagrangian associated to the effective Hamiltonian hscm, i.e.

(1.10)
Lm(p(s), q(s)) = p(s) · q̇(s)− hscm (p(s), q(s))

= p(s) · ∇Em(p(s)) − hscm (p(s), q(s)) ,

in view of (1.5).

Remark 1.6. Note that this is nothing but the Legendre transform of the effective
Hamiltonian hscm. As in classical mechanics, one associates to a given Hamiltonian
H(p, q) a Lagrangian via L(p, q) = p · q̇ −H(p, q).

The function ϕε given by (1.7) generalizes the usual class of semiclassical wave
packets considered in e.g. [15, 26]. Note that in contrast to two-scale WKB ap-
proximation considered in [3, 14, 33], it involves a scale of the order 1/

√
ε, i.e. the

scale of concentration of the amplitude u. Nevertheless, in comparison to the highly
oscillatory Bloch function χm, the amplitude is still slowly varying and thus we can
expect an adiabatic decoupling between the slow and fast scales to hold on (long)
macroscopic time-scales. Indeed, we shall prove the following result:

Theorem 1.7. Let the Assumptions 1.1, 1.4 hold and let the initial data be given

by

ψε
0(x) = ε−d/4u0

(

x− q0√
ε

)

χm

(x

ε
, p0

)

eip0·(x−q0)/ε,

with q0, p0 ∈ Rd and some given profile u0 ∈ S(Rd). Then there exists C > 0 such

that the solution of (1.1) can be approximated by

‖ψε(t)− ϕε(t)‖L2(Rd) 6 C
√
εeCt,

where ϕε is given by (1.7) and u ∈ C(R;S(Rd)) solves the following homogenized

Schrödinger equation

i∂tu+
1

2
divz

(

∇2
kEm (p(t)) · ∇z

)

u =
1

2

〈

z,∇2
xV (q(t)) z

〉

u, u(0, z) = u0(z),

where ∇2 denotes the Hessian matrix. In particular there exist C0 > 0 so that

sup
06t6C0 ln 1

ε

‖ψε(t)− ϕε(t)‖L2(Rd) −→
ε→0

0.

This theorem provides an approximate description of the solution to (1.1) up
to Ehrenfest time and can be seen as the analog of the results given in [15, 26, 7,
8, 17, 30, 31, 34] where the case of slowly varying potentials V (x) is considered.
Note that in contrast to the closely related method of Gaussian beams presented in,
e.g., [9], we do not need to include complex-valued phases and in addition, obtain
an approximation valid for longer times. Indeed, in the special case where the
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initial envelope u0 is a Gaussian, then its evolution u remains Gaussian, and can
be completely characterized; see §4.3.

The homogenized Schrödinger equation given above, features a rather unusual
dispersive behavior described by a time-dependent effective mass tensor M(t) =
∇2

kEm (p(t)), i.e. the Hessian of Em(k) evaluated at k = p(t). To our knowledge,
Theorem 1.7 is the first result in which a Schrödinger type equation with time-

dependent effective mass has been rigorously derived (see also the discussion in
Remark 3.1).

Remark 1.8. Let us also mention that the same class of initial data has been con-
sidered in [1] for a Schrödinger equation with locally periodic potential VΓ(x, y) and
corresponding x-dependent Bloch bands Em(k;x). In this work, the authors derive
a homogenized Schrödinger equation, provided that ψε

0 is concentrated around a
stationary point point x0, p0 of the semiclassical phase space flow, i.e.

∇kEm(p0; q0) = ∇xEm(p0; q0) = 0.

This implies q(t) = q0 and p(t) = p0, for all t ∈ R, which the authors interpret
as a localization phenomena. Clearly, this is a rather particular situation, which is
also included in our result under the condition V (x) = 0 and ∇kEm(k) = 0 (see
Example 1.3).

This work is now organized as follows: In the next section, we shall formally
derive an approximate solution to (1.1) by means of a (formal) multi-scale expan-
sion. This expansion yields a system of three linear equations, which we shall solve
in Section 3. In particular, we shall obtain from it the homogenized Schrödinger
equation. The corresponding Cauchy problem is then analyzed in Section 4, where
we also include a brief discussion on the particularly important case of Gaussian
profiles (yielding a direct connection to [15]). A rigorous stability result for our
approximation, up to Ehrenfest time, is then given in Section 5.

Remark 1.9. We expect that our results can be generalized to the case of (weakly)
nonlinear Schrödinger equations (already considered in [5, 6]). This will be the aim
of a future work.

2. Formal derivation of an approximate solution

2.1. Reduction through exact computations. We seek the solution ψε of (1.1)
in the following form

(2.1) ψε(t, x) = ε−d/4 Uε

(

t,
x− q(t)√

ε
,
x

ε

)

eiφm(t,x)/ε,

where the phase φ(t, x) is given by (1.8), the function Uε = Uε(t, z, y) is assumed
to be smooth, Γ-periodic with respect to y, and admits an asymptotic expansion

(2.2) Uε(t, z, y) ∼
ε→0

∑

j>0

εj/2Uj(t, z, y).

Note that due to the inclusion of the factor ε−d/4 the L2(Rd) norm of the right hand
side of (2.1) is in fact uniformly bounded with respect to ε, whereas the L∞(Rd)
norm in general will grow as ε→ 0. The asymptotic expansion 2.2 therefore has to
be understood in the L2 sense.

Taking into account that in view of (1.8), ∇xφm(t, x) = p(t), we compute:

εd/4e−iφm/εiε∂tψ
ε = iε∂tUε − i

√
εq̇ · ∇zUε − ∂tφmUε,

εd/4e−iφm/εε2∆ψε = ε∆zUε +∆yUε + 2
√
ε (∇y · ∇z)Uε − |p|2Uε

+ 2i
√
εp · ∇zUε + 2ip · ∇yUε,
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where in all of the above expressions, the various functions have to be understood
to be evaluated as follows:

ψε = ψε(t, x) ; Uε = Uε

(

t,
x− q(t)√

ε
,
x

ε

)

.

Thus, ordering equal powers of ε in equation (1.8) we find that

εd/4e−iφm/ε

(

iε∂tψ
ε +

ε2

2
∆ψε − VΓ

(x

ε

)

ψε − V (x)ψε

)

= bε0 +
√
εbε1 + εbε2,

with

bε0 = −∂tφmUε +
1

2
∆yUε − 1

2
|p|2Uε + ip · ∇yUε − VΓ(y)Uε − V (q)Uε,

bε1 = −iq̇ · ∇zUε + (∇y · ∇z)Uε + ip · ∇zUε,

bε2 = i∂tUε +
1

2
∆zUε.

So far, we have neither used the fact that q(t), p(t) are given by the Hamiltonian
flow (1.5), nor the explicit dependence of φm on time. Using these properties, allows
us to rewrite bε0, b

ε
1, b

ε
2 as follows:

bε0 = (hscm(p(t), q(t)) +∇V (q(t)) · (x− q(t)))Uε −HΓ (p(t))Uε − V (q(t))Uε,

bε1 = i (p(t)−∇kEm (p(t))) · ∇zUε + (∇y · ∇z)Uε,

bε2 = i∂tUε +
1

2
∆zUε.

Now, recall that in the above lines, Uε is evaluated at the shifted spatial variable
z = (x− q(t))/√ε. Taking this into account, we notice that the above hierarchy has
to be modified, and we find:

bε0 = hscm(p(t), q(t))Uε −HΓ (p(t))Uε − V
(

q(t) + z
√
ε
)

Uε,

bε1 = i (p(t)−∇kEm (p(t))) · ∇zUε + (∇y · ∇z)Uε + (∇V (q(t)) · z)Uε,

bε2 = i∂tUε +
1

2
∆zUε.

Next, we perform a Taylor expansion of V around the point q(t):

V
(

q(t) + z
√
ε
)

= V (q(t)) +
√
ε∇V (q(t)) · z + ε

2

〈

z,∇2V (q(t)) z
〉

+O
(

ε3/2 〈z〉3
)

,

since V is at most quadratic in view of Assumption 1.1. Recalling that hscm(p, q) =
Em(p)+V (q), the terms involving V (q) cancel out in bε0, the terms involving ∇V (q)
cancel out in bε1, and thus, we finally obtain:

Lemma 2.1. Let the Assumptions 1.1, 1.4 hold and ψε be related to Uε through

(2.1). Then it holds

iε∂tψ
ε +

ε2

2
∆ψε − VΓ

(x

ε

)

ψε − V (x)ψε =

eiφm/ε

εd/4

(

bε0 +
√
εbε1 + εbε2 + ε3/2rε

)

(t, z, y)
∣

∣

∣

(z,y)=
(

x−q(t)
√

ε
, x
ε

),

with

bε0 = (Em (p(t))−HΓ (p(t)))Uε,

bε1 = i (p(t)−∇kEm (p(t))) · ∇zUε + (∇y · ∇z)Uε,

bε2 = i∂tUε +
1

2
∆zUε − 1

2

〈

z,∇2V (q(t)) z
〉

Uε,
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and a remainder rε(t, z, y) satisfying

|rε(t, z, y)| 6 C 〈z〉3 |Uε(t, z, y)|, ∀(t, z, y) ∈ R× R
d × Y,

where the constant C > 0 is independent of t, z, y and ε.

2.2. Introducing the approximate solution. We now expand Uε in powers of
ε, according to (2.2). To this end, we introduce the following (time-dependent)
linear operators

L0 = Em (p(t))−HΓ (p(t)) ,

L1 = i (p(t)−∇kEm (p(t))) · ∇z +∇y · ∇z ,

L2 = i∂t +
1

2
∆z −

1

2

〈

z,∇2V (q(t)) z
〉

.

In order to solve (1.1) up to a sufficiently small error term (in L2), we need to
cancel the first three terms in our asymptotic expansion. This yields, the following
system of equations

(2.3)











L0U0 = 0,

L0U1 + L1U0 = 0,

L0U2 + L1U1 + L2U0 = 0.

Assuming for the moment that we can do so, this means that we (formally) solve
(1.1) up to errors of order ε3/2 (in L2), which is expected to generate a small
perturbation of the exact solution (in view of the ε in front of the time derivative
of ψε in (1.1)).

We consequently define the approximate solution

(2.4) ψε
app(t, x) := ε−d/4

(

U0 +
√
εU1 + εU2

)

(

t,
x− q(t)√

ε
,
x

ε

)

eiφm(t,x)/ε.

In view of Lemma 2.1, we thus have the following result (provided we can solve the
system (2.3) in a unique way):

Lemma 2.2. Let ψε
app given by (2.4), where U0, U1, U2 solve (2.3). Then

(

iε∂t +
ε2

2
∆− VΓ − V

)

ψε
app =

eiφm/ε

εd/4
ε3/2 (rε + rε1 + rε2) (t, z, y)

∣

∣

∣

(z,y)=
(

x−q(t)
√

ε
,x
ε

),

where the remainder terms rε1, r
ε
2 are given by

rε1(t, z, y) = L2U1(t, z, y), rε2(t, z, y) = L1U2(t, z, y),

and rε satisfies

|rε(t, z, y)| 6 C 〈z〉3
∣

∣

(

U0 +
√
εU1 + εU2

)

(t, z, y)
∣

∣ , ∀(t, z, y) ∈ R× R
d × Y,

where the constant C > 0 is independent of t, z, y and ε.

3. Derivation of the homogenized equation

3.1. Some useful algebraic identities. Given the form of L0, the equation
L0U0 = 0 implies

(3.1) U0(t, z, y) = u(t, z)χm (y, p(t)) .

Before studying the other two equations, we shall recall some algebraic formulas
related to the eigenvalues and eigenvectors of HΓ. First, in view of the identity
(1.4), we have

(3.2) ∇k (HΓ − Em)χm + (HΓ − Em)∇kχm = 0.
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Taking the scalar product in L2(Y ) with χm, we infer

∇kEm = 〈χm,∇kHΓχm〉L2(Y ) + 〈χm, (HΓ − Em)∇kχm〉L2(Y ) .

Since HΓ is self-adjoint, the last term is zero, thanks to (1.4). We infer

(3.3) ∇kEm(k) = 〈χm, (−i∇y + k)χm〉L2(Y ) .

Differentiating (3.2) again, we have, for all j, ℓ ∈ {1, . . . , d}:
∂2kjkℓ

(HΓ − Em)χm + ∂kj
(HΓ − Em) ∂kℓ

χm + ∂kℓ
(HΓ − Em) ∂kj

χm

+ (HΓ − Em) ∂2kjkℓ
χm = 0.

Taking the scalar product with χm, we have:

(3.4)
∂2kjkℓ

Em(k) = δjℓ +
〈(

−i∂yj
+ kj

)

∂kℓ
χm + (−i∂yℓ

+ kℓ) ∂kj
χm, χm

〉

L2(Y )

−
〈

∂kℓ
Em∂kj

χm + ∂kj
Em∂kℓ

χm, χm

〉

L2(Y )
.

3.2. Higher order solvability conditions. By Fredholm’s alternative, a neces-
sary and sufficient condition to solve the equation L0U1 + L1U0 = 0, is that L1U0

is orthogonal to kerL0, that is:

(3.5) 〈χm, L1U0〉L2(Y ) = 0.

Given the expression of L1 and the formula (3.1), we compute

L1U0 = i (p(t)−∇kEm (p(t))) · ∇zu(t, z)χm (y, p(t)) +∇yχm (y, p(t)) · ∇zu(t, z).

In view of (3.3), we infer that (3.5) is automatically fulfilled. We thus obtain

U1(t, z, y) = u1(t, z)χm (y, p(t)) + u⊥1 (t, z, y),

where u⊥1 , the part of U1 which is orthogonal to kerL0, is obtained by inverting an
elliptic equation:

u⊥1 = −L−1
0 L1U0.

Note that the formula for L1U0 can also be written as

L1U0 = −i∇k (Em (p(t))−HΓ (p(t)))χm (y, p(t)) · ∇zu(t, z),

thus taking into account (3.2), we simply have:

u⊥1 (t, z, y) = −i∇kχm (y, p(t)) · ∇zu(t, z).

At this stage, we shall, for simplicity choose u1 = 0, in which case U1 becomes
simply a function of u:

(3.6) U1(t, z, y) = −i∇kχm (y, p(t)) · ∇zu(t, z).

As a next step in the formal analysis, we must solve

L0U2 + L1U1 + L2U0 = 0.

By the same argument as before, we require

(3.7) 〈χm, L1U1 + L2U0〉L2(Y ) = 0.

With the expression (3.6), we compute

L1U1 =
d

∑

j,ℓ=1

(

(p(t)−∇kEm (p(t)))j ∂kℓ
χm (y, p(t))− i∂2yjkℓ

χm (y, p(t))
)

∂2zjzℓu,

and we also have

L2U0 =

((

i∂t +
1

2
∆z −

1

2

〈

z,∇2V (q(t)) z
〉

)

u

)

χm (y, p(t))

+ iu ṗ(t) · ∇kχm (y, p(t)) .
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Recalling that ‖χm‖L2(Y ) = 1, we have 〈χm,∇kχm〉L2(Y ) = 0, we find:

〈χm, L1U1 + L2U0〉L2(Y ) =

(

i∂t +
1

2
∆z −

1

2

〈

z,∇2V (q(t)) z
〉

)

u

−
∑

j,ℓ

〈

χm, ∂kj
Em (p(t)) ∂kℓ

χm + i∂2yjkℓ
χm

〉

L2(Y )
∂2zjzℓu

By making the last sum symmetric with respect to j and ℓ, and using (3.4), we
finally obtain the homogenized Schrödinger equation with time-dependent effective
mass:

(3.8) i∂tu+
1

2
divz

(

∇2
kEm (p(t)) · ∇z

)

u =
1

2

〈

z,∇2V (q(t)) z
〉

u.

This is equation models a quantum mechanical time-dependent harmonic oscillator,
in which the time dependence is present both in the differential operator, and in
the potential.

Remark 3.1. In the case where V (x) = 0 and thus p(t) = p0 (in view of Example
1.3), Equation (3.8) simplifies to an equation with a time-independent effective mass
tensor:

i∂tu+
1

2
divz

(

∇2
kEm (p0) · ∇z

)

u = 0.

This equation has been derived in [2], see also [32, 19, 22] for similar results. Note,
however, that in the quoted works the scaling of the original equation (1.1) is
different (i.e. not in semiclassical form).

Assuming for the moment that we can solve (3.8), we can write

U2(t, z, y) = u2(t, z)χm (y, p(t)) + u⊥2 (t, z, y),

where

u⊥2 = −L−1
0 (L1U1 + L2U0) .

Like we did for u1, we shall from now on also impose u2 ≡ 0 and thus U2 = u⊥2 .
For the upcoming analysis, we define the following class of energy spaces

Σk =







f ∈ L2(Rd) ; ‖f‖Σk :=
∑

|α|+|β|6k

∥

∥xα∂βxf
∥

∥

L2(Rd)
<∞; k ∈ N







.

Proposition 3.2. Let Assumption 1.4 hold and let u ∈ C(R; Σk) solve (3.8). Set

U0(t, z, y) = u(t, z)χm (y, p(t)) ,

U1(t, z, y) = −i∇kχm (y, p(t)) · ∇zu(t, z),

U2(t, z, y) = −L−1
0 (L1U1(t, z, y) + L2U0(t, z, y)) .

Then Uj ∈ C(R; Σk−j
z ×W∞,∞(Y )), for j = 0, 1, 2 and (U0, U1, U2) solves (2.3).

4. The envelope equation

We examine the Cauchy problem for (3.8), with special emphasis on the large
time control of u.
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4.1. The general Cauchy problem. Equation 3.8 can be seen as the quantum
mechanical evolutionary problem corresponding to the following time-dependent
Hamiltonian,

(4.1) H(t, z, ζ) =
1

2

〈

ζ,∇2
kEm (p(t)) ζ

〉

+
1

2

〈

z∇2V (q(t)) z
〉

.

Under Assumptions 1.1 and 1.4, this Hamiltonian is self-adjoint, smooth in time,
and quadratic in (z, ζ) (in fact, at most quadratic would be sufficient). Using the
results from [23], inspired by [10, 11] (see also [24]), we directly infer the following
existence result:

Lemma 4.1 (From [23]). For d > 1 and u0 ∈ L2(Rd), consider the equation

(4.2) i∂tu+
1

2

∑

16j,k6d

ajk(t)∂
2
jku =

1

2

∑

16j,k6d

bjk(t)xjxku ; u|t=0 = u0.

If the coefficients ajk and bjk are continuous and real-valued, such that the matrices

(ajk)j,k and (bjk)j,k are symmetric for all time, then (4.2) has a unique solution

u ∈ C(R;L2(Rd)). It satisfies

(4.3) ‖u(t)‖L2(Rd) = ‖u0‖L2(Rd), ∀t ∈ R.

Moreover, if u0 ∈ Σk for some k ∈ N, then u ∈ C(R; Σk).

In particular, if u0 ∈ Σk, then (3.8) has a unique solution u ∈ C(R; Σk) such
that u|t=0 = u0.

Remark 4.2. It may happen that the functions ajk are zero on some non-negligible
set. In this case, (4.2) ceases to be dispersive. Note that the standard harmonic
oscillator is dispersive, locally in time only, since it has eigenvalues. We shall see
that this is not a problem in our analysis though.

4.2. Exponential control of the envelope equation. To prove Theorem 1.7,
we need to control the error present in Lemma 2.2 for large time. In general, i.e.
without extra geometric assumptions on the wave packet, exponential growth in
time must be expected:

Proposition 4.3. Let u0 ∈ Σk, k ∈ N. Then the solution u to (3.8) satisfies

u ∈ C(R; Σk), and there exists C > 0 such that

‖u(t, ·)‖Σk 6 CeCt, t > 0.

Proof. The result can be established by induction on k. The constant C must
actually be expected to depend on k, as shown by the case of

i∂tu+
1

2
∆zu = −|z|2

2
u ; u|t=0 = u0.

There, the fundamental solution is explicit (generalized Mehler formula, see e.g.
[20]), and we check that ‖u(t)‖Σk behaves like ekt.

For k = 0, the result is obvious, since in view of Lemma 4.1, the L2-norm is
conserved. The case k = 1 illustrates the general mechanism of the proof, and
we shall stick to this case for simplicity. The key remark is that even though
the operators z and ∇z (involved in the definition of Σ1) do not commute with
the Hamiltonian (4.1), the commutators yield a closed system of estimates. First,
multiplying (3.8) by z, we find

(i∂t −H) zu = − [H, z]u = ∇2
kEm (p(t))∇zu.



SEMICLASSICAL WAVE PACKETS IN PERIODIC POTENTIALS 11

The L2 estimate (4.3) then yields

‖zu(t)‖L2 6 ‖zu0‖L2 +

∫ t

0

∥

∥∇2
kEm (p(s))∇zu(s)

∥

∥

L2 ds

6 ‖zu0‖L2 + C

∫ t

0

‖∇zu(s)‖L2 ds,

for some C independent of t, since ∇2
kEm is bounded on Y ∗ which is compact.

Similarly,

(i∂t −H)∇zu = − [H,∇z]u = ∇2V (q(t)) zu,

and, in view of Assumption 1.1,

‖∇zu(t)‖L2 6 ‖∇zu0‖L2 + C

∫ t

0

‖zu(s)‖L2 ds.

Summing over the two inequalities and using the conservation of mass, we infer

‖u(t)‖Σ1 6 ‖u0‖Σ1 + C

∫ t

0

‖u(s)‖Σ1 ds,

and Gronwall’s lemma yields the proposition in the case k = 1. By induction,
applying (z,∇z) to (3.8) k times, the defects of commutation always yield the same
sort of estimate, and the proposition follows easily. �

4.3. Gaussian wave packets. In the case where the initial datum in (3.8) is a
Gaussian, we can compute its evolution and show that it remains Gaussian, by
following the same strategy as in [15] (see also [16, 17]). As a matter of fact, the
order in which we have proceeded is different from the one in [15], since we have
isolated the envelope equation (3.8) before considering special initial data. As a
consequence, we have fewer unknowns. Consider (3.8) with initial datum

(4.4) u(0, z) =
1

(detA)1/2
exp

(

−1

2

〈

z,BA−1z
〉

)

,

where the matrices A and B satisfy the following properties:

A and B are invertible;(4.5)

BA−1 is symmetric : BA−1 =M1 + iM2, with Mj real symmetric;(4.6)

ReBA−1 is strictly positive definite;(4.7)
(

ReBA−1
)−1

= AA∗.(4.8)

Proposition 4.4. Let u solve (3.8), with initial datum (4.4), where the matrices

A and B satisfy (4.5)–(4.8). Then for all time, u(t, z) is given by

(4.9) u(t, z) =
1

(detA(t))1/2
exp

(

−1

2

〈

z,B(t)A(t)−1z
〉

)

,

where the matrices A(t) and B(t) evolve according to the differential equations

(4.10)

{

Ȧ(t) = i∇2
kEm (p(t))B(t) ; A(0) = A,

Ḃ(t) = i∇2
xV (q(t))A(t) ; B(0) = B.

In addition, for all time t ∈ R, A(t) and B(t) satisfy (4.5)–(4.8).

Proof. The argument is the same as in [15] (see also [16, 17]): One easily checks that
if A(t) and B(t) evolve according to (4.10), then u given by (4.9) solves (3.8). On the
other hand, it is clear that (4.10) has a global solution. Finally, since ∇2

kEm (p(t))
and ∇2

xV (q(t)) are symmetric matrices, it follows from [15, Lemma 2.1] that for all
time, A(t) and B(t) satisfy (4.5)–(4.8). �
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5. Stability of the approximation up to Ehrenfest time

As a final step we need to show that the derived approximation ψε
app(t) indeed

approximates the exact solution ψε(t) up to Ehrenfest time.

Proposition 5.1. Let Assumptions 1.1 and 1.4 hold and u0 ∈ Σ5. Then there

exists C > 0 such that

‖ψε(t)− ψε
app(t)‖L2(Rd) 6 C

√
εeCt,

where ψε
app(t, x) is given by (2.4) with u(t, z) solving (3.8) with u|t=0 = u0, and U0,

U1, U2 given by Proposition 3.2.

Proof. First, note that ψε and ψε
app do not coincide at time t = 0, since elliptic

inversion has forced us to introduce U1 and U2 which are not zero initially. Setting
wε = ψε − ψε

app, and using (1.1) and Lemma 2.2, we see that the error solves

(

iε∂t +
ε2

2
∆− VΓ − V

)

wε = −e
iφm/ε

εd/4
ε3/2 (rε + rε1 + rε2) (t, z, y)

∣

∣

∣

(z,y)=
(

x−q(t)
√

ε
, x
ε

),

wε(0, x) = ε−d/4
(√
εU1 + εU2

)

(

0,
x− q0√

ε
,
x

ε

)

eiφm(0,x)/ε.

The a-priori L2 estimate yields

‖wε(t)‖L2 6
√
ε‖U1(0)‖L2

zL
∞
y
+ ε‖U2(0)‖L2

zL
∞
y

+
√
ε

∫ t

0

(

‖rε(s)‖L2
zL

∞
y
+ ‖rε1(s)‖L2

zL
∞
y
+ ‖rε2(s)‖L2

zL
∞
y

)

ds.

The assertion then follows from Lemma 2.2 (establishing the needed properties
for the functions rε, rε1 and rε2), Proposition 3.2, and Proposition 4.3. With this
approach, we need to know that rε is in L2

z, so U0, U1 and U2 have three momenta
in L2

z: in view of Proposition 3.2 and Proposition 4.3, this amounts to demanding
u0 ∈ Σ5. �

This asymptotic stability result directly yields the assertion of Theorem 1.7.

End of the proof of Theorem 1.7. To conclude, it suffices to notice that

ϕε(t, x) = ψε
app(t, x) −

(√
εU1 + εU2

)

(t, z, y)
∣

∣

∣

(z,y)=
(

x−q(t)
√

ε
, x
ε

),

so Proposition 3.2 and Proposition 4.3 imply

‖ϕε(t)− ψε
app(t)‖L2 6 C

√
εeCt.

This estimate and Proposition 5.1 yield Theorem 1.7. �

Remark 5.2. The construction of the approximate solution ψε
app has forced us

to introduce non-zero correctors U1 and U2, given by elliptic inversion. Therefore,
we had to consider well-prepared initial data for ψε

app. This aspect is harmless
as long as one is interested only in the leading order behavior of ψε as ε → 0.
As a consequence, our approach would not allow us to construct arbitrary accurate
approximations for ψε (in terms of powers of ε), unless well-prepared initial data are
considered, i.e. data lying in so-called super-adiabatic subspaces, in the terminology
of [27] (after [25]). This is due to the spectral analysis implied by the presence of
the periodic potential VΓ, and shows a sharp contrast with the case VΓ = 0.
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Of course the above given stability result immediately generalizes to situations
where, instead of a single ϕε, a superposition of finitely many semiclassical wave
packets is considered,

ψε
0(x) = ε−d/4

N
∑

n=1

un

(

x− qn√
ε

)

χmn

(x

ε
, pn

)

eipn·(x−qn)/ε.

Since the underlying semiclassical Schrödinger equation (1.1) is linear, each of these
initial wave packets will evolve individually from the rest, as in Theorem 1.7. Up
to some technical modifications, it should be possible to consider even a continuous

superposition of wave packets, yielding a semiclassical approximation known under
the name “frozen Gaussians”, see [18].
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