
HAL Id: hal-00556413
https://hal.science/hal-00556413

Submitted on 16 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Toward a Behavioral Decomposition for
Context-awareness and Continuity of Services

Nicolas Ferry, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey, Michel Riveill

To cite this version:
Nicolas Ferry, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey, Michel Riveill. Toward a Behav-
ioral Decomposition for Context-awareness and Continuity of Services. International Symposium on
Ambient Intelligence, Jun 2010, Guimaraes, Portugal. �hal-00556413�

https://hal.science/hal-00556413
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Toward a Behavioral Decomposition for
Context-awareness and Continuity of Services

Nicolas Ferry and Stéphane Lavirotte and Jean-Yves Tigli and Gaëtan Rey and
Michel Riveill

Abstract Many adaptative context-aware middleware exist and most of them rely
on so-called vertical architectures that offer a functional decomposition for context-
awareness. This architecture has a weak point: it does not allow the system handling
both dynamics of the changing environment and applications. To avoid this, we
propose an approach for context-awareness based on a behavioral decomposition,
and because each behavior must complete all functionalities necessary for context-
awareness, we introduce an hybrid decomposition. It consists in a functional decom-
position into a behavioral decomposition. This approach derives benefits from both
decomposition, first allowing to handle environment and application’s dynamics,
second introducing reusability and modularity into behaviors.

1 Introduction

Nowadays, with the miniaturization of computer hardware, many objects with com-
putational capabilities are dissolving in our daily lives. Thus, the idea of personal
computer as the single smart object or as a universal digital assistant is fading away.

Nicolas Ferry
I3S (UNS - CNRS) and CSTB, 290 route des Lucioles - BP209 06904 Sophia-Antipolis France,
e-mail: nicolas.ferry@unice.fr

Stéphane Lavirotte
I3S (UNS - CNRS), 930 Route des Colles - BP 145 06901 Sophia-Antipolis France, e-mail:
stephane.lavirotte@unice.fr

Jean-Yves Tigli
I3S (UNS - CNRS), e-mail: tigli@polytech.unice.fr

Gaëtan Rey
I3S (UNS - CNRS), e-mail: gaetan.rey@unice.fr

Michel Riveill
I3S (UNS - CNRS), e-mail: riveill@unice.fr

1



2 N. Ferry and S. Lavirotte and JY. Tigli and G. Rey and M. Riveill

Ambient systems consist of two categories of entities: (1) living entities, as the
user, and (2) systems with computational capabilities. A system relies on a hardware
infrastructure which can provide a software infrastructure. Under these constraints,
the editable software part of the system allows to implement new functionalities for
new applications.

Ambient systems are characterized by using devices and objects of everyday life,
and can take many forms. The technological heterogeneity of those devices and ob-
jects is still the biggest challenge to overcome in order to enable them to interact
with the system. Moreover, we must consider the semantic heterogeneity of these
entities that can be introduced into ambient system. Another major feature of am-
bient system is the high variability of software infrastructure. These infrastructures
evolve dynamically led by appearances and disappearances of objects or devices.
The topologies of this infrastructure are dynamic due to arbitrary node mobility,
failures or energy saving.

Because environment’s nature is highly variable, even the corresponding soft-
ware infrastructure, pervasive systems have to handle those variations and offer such
dynamicity. These systems have to be able to adapt to their context; they must be
context-aware. And adaptations to these changes have to be done quickly to follow
those variations but not to often to preserve the application’s stability and not to
divert the user.

2 Related works: Context and context-awareness

Generally and specially in the field of ambient computing, the context appears as
the supplement of all editable software entities. So this supplement can be:

• All hardware or software infrastructures,
• The environment,
• All the entities without any computational capabilities like users or raw objects.

2.1 Context-awareness

Classical mechanisms for context-awareness rely on a functional decomposition to
provide reusability and evolution facilities. This decomposition is usually based on
key functionalities [6]. The first stage of sensing is to gather contextual informa-
tion also called observables. These observables are then transformed as symbolic
observables about the state of the environment, for example using ontologies.

Middleware such as the Context Toolkit [9], SOCAM [11], Contextors [14], pro-
viding mechanism to collect, store and sometimes process these observables, have
emerged. They offer some mechanisms to discover heterogeneous entities, but also
for deduction and filtering of data collected using some centralized mechanisms.



Toward a Behavioral Decomposition for Context-awareness and Continuity of Services 3

Fig. 1 Functional decomposition of context-aware mechanism

However, some middleware as COWSAmI [1] or Construct [7] are based on a de-
centralized architecture.

Context observation is a sub-problem of context-awareness. Indeed, as shown in
SAFRAN [8], application’s behavior adaption is also a crosscutting concern and a
part of context-awareness mechanism [3]. Hence, as a result of contextual infor-
mation collection, data will be used during a decision stage, also called situation
identification stage. It will produce an action plan which will be implemented by
the adaptation mechanism also called the control mechanism. Of course, these steps
can be refined as shown in Fig 1.

2.2 Limitations

The functional decomposition often results in the development of so called ”verti-
cal” architecture, consisting in a set of various layered functionalities.

Most of context-aware middleware are based on those architectures. They have a
weak point: the data centralization in at least one of the functionality of the decom-
position. This means that they rely on a common representation or a global model
of context. For example, in Gaia [15], a context-aware middleware, observables are
stored in a single entity: the ”context file system”. We found the same problem with
SOCAM [11] or CARMEN [2]. For example, CARMEN uses a specialized LDAP
containing user profiles for the decision stage. However, centralizing data remains
hardly imaginable in an ambient system where you have to manage a throng of het-
erogeneous entities and data. In fact the environment is not known a priori and is
constantly evolving, so considering the whole environment is similar to considering



4 N. Ferry and S. Lavirotte and JY. Tigli and G. Rey and M. Riveill

the universe, which is not possible. A centralized approach involving potentially a
throng of information then comes with a bottleneck of performance and does not
allow the system to scale.

But these architectures for context-awareness have a central role in an ambi-
ent system since they interact with both environment and applications. Then, they
should respect application and environment’s dynamics. So reactivity is a key con-
cern of ambient computing, both for adaptation triggering and for adaptation time.
But reactivity defined as follows can hardly be proposed by middleware using a
vertical architecture.

We consider that adaptive applications are always in one of the three states pre-
sented in Fig 2. States (1) and (3) are normal execution states of the application,
where it is consistent with its environment. It means that the application’s behavior
is based on what is relevant in its environment and this is the expected behavior for
a particular situation. During the transitional state (2) the application is in its adap-
tation phase and unavailable. It is considered in an inconsistent state because the
application is not in line with its environment.

Fig. 2 The three states of an
adaptive application

Consequently, Adaptation’s dynamic has to be consistent with the dynamic
of the changing environment [10]. In other words, it is essential that:

• The system is not unavailable (2) for too long while adapting, so adaptation has
to be as fast as possible in order to obtain a consistent application (3). Otherwise,
the system could become unstable and may never reach a normal execution state
before new evolutions occur in its environment.

• The system does not stay in the previous state (1) too much time before reacting
to environment changes.

Moreover, adaptation’s dynamic has to be consistent with application and/or
user operation (application’s dynamic). In other words, it is essential that:

• The system does not go too frequently from state (1) to (2) and produce an un-
stable and inconsistent application.

• Too many lag can disrupt and divert the user from the system [12].

Vertical architectures does not allow handling all the dynamics described above.
Indeed system reactions to change in context depend on the reactivity of each part
of treatment (each layer). Changes are all evaluated simultaneously using the same
processed data. This leads to a system with a fixed dynamic.

Therefore, it appears that the complexity of processing and representation of con-
textual information impact the dynamic of the mechanism of context-awareness.
Then it is necessary to study another kind of decomposition to handle these dy-
namics. This line of study is not unlike the general approach to problem solving by



Toward a Behavioral Decomposition for Context-awareness and Continuity of Services 5

a human operator. Indeed the Rasmussen’s model [13] called SSRK defines three
levels of cognitive processes:

• Skill Based: the skill level corresponds to actions that are done automatically.
• Rule Based: the rules’ level corresponds to procedures (algorithmic) imple-

mented by human to define its action.
• Knowledge Based: the level of declarative knowledge implements a process that

requires many cognitive resources and so that take time to make a decision and
implement its action.

We then see that it is a decomposition of various processes with their own dynamic
working separately.

3 Reactivity and behavioral decomposition of context-awareness
mechanism for application’s adaption

Similar architectures exist in the field of robotics, where they are called ”horizontal”
architecture. The aim of this approach is to specialize a generic minimal core of an
application with some specific modules called horizontal layers [16]. These layers
are independent of each other and work in parallel. Each layer is connected to the
world via a set of sensors and can act through actuators. This kind of architecture
introduces a new type of decomposition: the behavioral decomposition.

According to Bryson [5], the behavioral decomposition is an architectural ap-
proach that decomposes the intelligence in terms of behavior such as eating or
walking, rather than generic processes like planning or observing. A behavior corre-
sponds to an horizontal layer and activities may consist of sets of managed behavior.
A major contribution of these approaches is not to see the system as a sequence of
processes and thus functionality, but rather as a parallelization of processes which
can produce a coherent activity. More complex behaviors are achieved with sim-
ple ones like for divide and conquer strategies. These architectures comply to the
following characteristics:

• Each layer captures relevant information from the environment, sensing the sur-
rounding to a degree sufficient to achieve the necessary [4].

• There is no need for a representation of the environment in a decentralized ap-
proach: ”The world is its own best model” [4]. The only accurate environmental
data are obtained immediately by the sensors.

• They are based on many small behaviors of low complexity for the best possible
reactivity.

Horizontal architectures need a coordination mechanism to combine the output
data of each layer in order to obtain a rational and coherent global behavior. A sim-
pler mechanism induces more reactivity.



6 N. Ferry and S. Lavirotte and JY. Tigli and G. Rey and M. Riveill

Fig. 3 The proposed CON-
TINUUM architecture. This
architecture relies on three
levels. Levels closest to the
infrastructure are the most
reactive. These levels are
similar to the three levels of
SSRK. The level N is based
on the mechanisms offered by
the level N-1 and may act on
it.

In the field of context-awareness, this behavioral decomposition relies on au-
tonomous and separated processes of context-awareness. They produce adequate
changes in the application from relevant gathered information in order to provide a
coherent global behavior to the application. We call such processes a basic adaption
to context behavior (BACB).

This kind of architectures enables a better control of environment and applica-
tion’s dynamics. Indeed, treatment directed by a BACB is made only when neces-
sary. Moreover, it is as fast as possible since each BACB computes only what is
relevant to them. In fact, because these BACB are independent of each other, they
have their own dynamic which is not anymore dependent of other treatments. Then
we are able to write BACB with various levels of complexity to best fit the dy-
namics imposed by the environment and the application. Indeed, we will be able
to study for each BACB their dynamics (time of response) and their compatibility
with the evolving environment (not enough or too reactive). On the other hand, we
can also study interactions between these behaviors and their good management.
Each BACB is scheduled with a late manager, it may be a mechanism to resolve
adaptation conflicts.

In the CONTINUUM French national project, we propose a context-aware mech-
anism for continuity of services in ambient systems, see Fig 3. This architecture is
based on a behavioral decomposition. And each level has its own dynamic according
to their priority and the complexity of their process.

4 Towards an hybrid approach

As we saw earlier, a BACB gather some contextual information and act on it in re-
turn. A behavior identifies an action to perform according to a relevant context, so
it must respect the classical steps of the functional decomposition: perception, deci-
sion, and reaction. Such a BACB can then be decomposed into several functionali-
ties. So we introduce an hybrid approach consisting of a functional decomposition
into a behavioral decomposition. A behavior is itself composed of a set of function-
alities that, applied to context-awareness, spreads from perception to reaction.



Toward a Behavioral Decomposition for Context-awareness and Continuity of Services 7

The hybrid approach derives some benefits from both decomposition, first to con-
trol its dynamics and independence thanks to behavioral decomposition, secondly
improving reusability and modularity into behaviors thanks to functional decom-
position. More precisely, hybrid decomposition offers, compared to behavioral de-
composition, modularity into behavior and therefore maintenance facilities and thus
evolving facilities. Moreover it induces a better separation of concerns into behav-
iors. The modularity introduced by functional decomposition could enable adaption
of behaviors. For example, in the CONTINUUM project, a scenario applied to the
hydrant man job defines a set of services to help them. One part of the job is to stop
water valves when necessary. In this project a service of the system indicates, in the
car, the localization of those valves. According to the brightness, these information
are visual or voiced. Moreover, the system help them to manage their intervention
(description, ...) from their car. This is not allowed when the car moves too fast.

In this small part of the scenario, we can define three behaviors: (1) visual or (2)
voiced indications of the valve’s localization, (3) intervention management. We can
see that those three behaviors must respect various dynamics. So, blocking the use
of the help system is critical, it has to be done quickly (environment’s dynamic).
Otherwise changing the kind of interaction with the localization service must be
done more slowly not to pass from an interaction to another incessantly (applica-
tion’s dynamic). Here appears the advantages of the behavioral decomposition. On
the other hand, the perception module of behavior (1) and (2) can be reused, thanks
to the functional decomposition included in the hybrid decomposition.

Then it appears that this approach requires an inversion in design methodology of
mechanisms provided by a middleware. Indeed, it is not to decompose behaviors in
a set of features but to write a set of behavior from reusable features. Thus, the major
stages of designing an hybrid architecture are: (1) identifying behaviors, (2) spec-
ifying their inputs and outputs, (3) identifying features, (4) specifying the feature
chaining, (5) implementation. When creating behavioral architectures, specification
of inputs / outputs is particularly important. Unlike in classical functional decom-
position, aggregation of data is not given as a pre-requisite of the system (hence
the need for data representation in functional approaches) but between behavior’s
outputs.

5 Conclusion

Many context-aware middleware exist and most of them rely on vertical architec-
tures that offer a functional decomposition for context-awareness. This architecture
has a weak point: it does not allow the system to handle both dynamics of the chang-
ing environment and applications. Handling these dynamics is a key concerns in the
field of ambient intelligence since ambient systems must consider a throng of infor-
mations and devices. To avoid this, we proposed in this paper to adapt an approach
from robotics called behavioral decomposition to context-awareness. To do this, we
introduced the concept of basic adaptation to context behavior (BACB). Because



8 N. Ferry and S. Lavirotte and JY. Tigli and G. Rey and M. Riveill

each BACB relies on the classical steps found in the functional decomposition from
perception to reaction, we introduce an hybrid decomposition. It consists in a func-
tional decomposition into a behavioral decomposition. This approach derives ben-
efits from both decomposition, allowing to handle environment and application’s
dynamics, and introducing reusability and modularity into behaviors.

Acknowledgements This work is part of the Continuum Project (French National Research
Agency) ANR-08-VERS-005.

References

1. Athanasopoulos, D., Zarras, A., Issarny, V., Pitoura, E., Vassiliadis, P.: CoWSAMI: Interface-
aware context gathering in ambient intelligence environments. Pervasive and Mobile Com-
puting 4(3), 360–389 (2008)

2. Bellavista, P., Corradi, A., Montanari, R., Stefanelli, C.: Context-aware middleware for re-
source management in the wireless Internet. Software Engineering, IEEE Transactions on
29(12), 1086–1099 (2003)

3. Bottaro, A., Bourcier, J., Escoffier, C., Lalanda, P.: Context-aware service composition in a
home control gateway. International Conference on Pervasive Services 0, 223–231 (2007).
DOI http://doi.ieeecomputersociety.org/10.1109/PERSER.2007.4283920

4. Brooks, R.: Elephants Don’t Play Chess. Designing Autonomous Agents: Theory and Practice
from Biology to Engineering and Back pp. 3–15 (1991)

5. Bryson, J.: Intelligence by design: Principles of modularity and coordination for engineering
complex adaptive agents. Ph.D. thesis (2001)

6. Coutaz, J., Crowley, J., Dobson, S., Garlan, D.: Context is key. Communications of the ACM
48, 49–53 (2005)

7. Coyle, L., Neely, S., Stevenson, G., Sullivan, M., Dobson, S., Nixon, P., Rey, G.: Sensor
fusion-based middleware for smart homes. International Journal of Assistive Robotics and
Mechatronics 8(2), 53–60 (2007)

8. David, P., Ledoux, T.: Towards a framework for self-adaptive component-based applications.
Lecture Notes in Computer Science pp. 1–14 (2003)

9. Dey, A., Salber, D., Futakawa, M., Abowd, G.: An architecture to support context-aware ap-
plications. submitted to UIST (99)

10. Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., Tigli, J.Y., Riveill, M.: Models at Runtime:
Service for Device Composition and Adaptation. In: MRT’09, p. 10 (2009)

11. Gu, T., Pung, H., Zhang, D.: A service-oriented middleware for building context-aware ser-
vices. Journal of Network and Computer Applications 28, 1–18 (2005)

12. MacKenzie, I., Ware, C.: Lag as a determinant of human performance in interactive systems.
In: Proceedings of the INTERACT’93 and CHI’93 conference on Human factors in computing
systems, pp. 488–493. ACM New York, NY, USA (1993)

13. Rasmussen, J.: Information processing and human-machine interaction: An approach to cog-
nitive engineering. Elsevier Science Inc.,NY, USA (1986)

14. Rey, G., Coutaz, J.: The Contextor Infrastructure for Context-Aware Computing. In: ECOOP
04, Workshop on Component-Oriented Approach to Context-Aware Systems. Citeseer (2004)

15. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R., Nahrstedt, K.: Gaia: a
middleware platform for active spaces. ACM SIGMOBILE Mobile Computing and Commu-
nications Review (2002)

16. Zhang, C., Jacobsen, H.: Resolving feature convolution in middleware systems. ACM SIG-
PLAN Notices (2004)


