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ABSTRACT

Hospital-adapted Enterococcus faecium differ from their colonising variants in 

humans and animals by additional genomic content. Molecular typing based on 

multilocus sequence typing (MLST) allows allocation of isolates to specific clonal 

complexes (CCs), such as CC17 for hospital-adapted strains. Acquired ampicillin 

resistance is a specific feature of these hospital isolates, especially in Europe. A few 

recent reports have described acquired high-level ciprofloxacin resistance as a 

supposed feature of hospital-adapted E. faecium strains. In the present retrospective 

analysis, ciprofloxacin minimum inhibitory concentrations (MICs) of 609 clinical 

isolates from German hospital patients (1997–2007) were determined and a 

breakpoint for high-level resistance was deduced (>16 mg/L). Acquired high-level 

ciprofloxacin resistance was distributed among isolates of 26 different MLST types 

(all CC17), indicating a wide prevalence of this acquired resistance trait among the 

hospital-adapted E. faecium population. High-level ciprofloxacin resistance was

linked to gyrA and parC mutations in 98 investigated isolates. Eleven different allele 

types or combinations thereof were identified. Their allocation to specific MLST and 

pulsed-field gel electrophoresis (PFGE) types revealed differences in the emergence

and spread of corresponding mutations and strains.



Page 3 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

1. Introduction

Isolates of Enterococcus faecium are considered facultative pathogens that appear 

as infectious agents only under specific predispositions and in patients with severe 

underlying diseases or disorders. Results from recent molecular typing and 

characterisation experiments, including microarray-based genome comparisons, 

revealed insights into the population structure within E. faecium. Epidemic isolates 

from hospital patients belong to a specific clonal group [clonal complex (CC) 17]. 

Among representatives of that group, distinct markers appear to be enriched or 

exclusively distributed, such as the collagen-adhesin genes acm [1–3] and scm [4], 

genes encoding other matrix-binding or pili-associated proteins [4–7], a gene 

encoding an enterococcal surface protein esp [8], a putative hyaluronidase hylEfm [9] 

and genomic islands of unknown functions [10,11]. Ampicillin resistance appears as 

a resistance marker for hospital E. faecium, at least in Europe [12–16], and high-level 

ciprofloxacin resistance appears to be increasingly distributed among hospital 

isolates of E. faecium and Enterococcus faecalis [17–20].

Isolates of the enterococcal species E. faecalis and E. faecium show generally low 

susceptibilities to ciprofloxacin and modern fluoroquinolones. The Clinical and 

Laboratory Standards Institute defines ciprofloxacin resistance in enterococci as a 

minimum inhibitory concentration (MIC) of ≥4 mg/L [21]. Other international bodies 

such as the European Committee on Antimicrobial Susceptibility Testing (EUCAST; 

http://www.escmid.org/research_projects/eucast/) do not specify a breakpoint for the 

combination of fluoroquinolones and enterococci. However, certain epidemic strains 

of E. faecium and E. faecalis infecting hospital patients may show increased MICs to 

ciprofloxacin (acquired ‘high-level resistance’) [17,18,22–25]. Colonisation often 
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precedes subsequent infection by facultative pathogenic bacteria such as 

multiresistant and vancomycin-resistant isolates of E. faecium and E. faecalis, and 

treatment of patients with fluoroquinolones, an antibiotic class increasingly used 

among hospital patients [26,27], appears as an independent risk factor for acquisition 

of these strains [28–30]. Increased non-susceptibility to ciprofloxacin and modern 

fluoroquinolones in hospital-adapted enterococcal strains may actively facilitate 

colonisation and subsequent infection or may simply reflect the antibiotic pressure 

exerted among the nosocomial setting in general.

The targets of fluoroquinolones are topoisomerases II and IV, and mutational 

changes among genes encoding mainly subunits A and to a lesser extent also 

subunits B are associated with increased MICs to ciprofloxacin and other 

fluoroquinolones [31,32]. Topoisomerase II (DNA gyrase) appears to be the primary 

target in Gram-negative bacteria and topoisomerase IV is the primary target in Gram-

positive bacteria. Corresponding in vitro selection models were also described for 

enterococci; however, results are somehow conflicting regarding the primary target in 

Enterococcus spp. and the necessity of specific mutations in one or both A subunit 

genes to confer what is specified as high-level fluoroquinolone resistance [33–37].

Only a few studies exist where ciprofloxacin resistance mutations in E. faecium have 

been investigated to a greater extent and were linked to specific clonal types and 

strains [17,19]. In these studies, a breakpoint of high-level ciprofloxacin resistance is 

suggested of >16 mg/L [19] or ≥64 mg/L (worldwide collection of strains) [17], which 

was confirmed by molecular analysis of mutations in gyr and par subunit genes.
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In the present study, we investigated a representative collection of 609 clinical strains 

of E. faecium from German hospital patients representing individual infections or 

outbreaks collected between 1997 and 2007. The breakpoint for high-level 

ciprofloxacin resistance was specified and the annual changes in the MIC50 and 

MIC90 values (MICs at which 50% and 90% of all tested isolates were inhibited, 

respectively) within the test period were determined. In addition, the corresponding 

resistance phenotype was linked to mutations in gyrA and parC genes in a subset of 

98 invasive isolates. The clonal background of the considered isolates was resolved 

by multilocus sequence typing (MLST) and partly by pulsed-field gel electrophoresis 

(PFGE), suggesting different routes of emergence and spread of high-level 

ciprofloxacin resistance among these hospital-adapted E. faecium isolates.

2. Materials and methods

2.1. Bacterial strains

Our ‘Nosocomial Infections’ unit (Robert Koch Institute, Germany) hosts the German 

National Reference Centre for Staphylococci and serves in addition as a Focal 

Laboratory for Enterococci. In general, enterococcal isolates sent to us are pre-

selected for being vancomycin-resistant and multiresistant or with the suspicion of 

clonal spread (outbreak). Our strain collection includes more than 8000 enterococcal 

isolates from the early 1990s until now, the majority of which are clinical strains. The 

subset of strains investigated here includes clinical E. faecium isolated from 1997 to 

2007. They were chosen as being representative by originating from different clinical 

laboratories or university medical centres from all over Germany. Only one isolate 

per hospital at a time was allowed (excluding copy isolates). Based on these criteria, 

approximately 55 E. faecium isolates per year were included summing to a total of 
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609 isolates. A subset of 156 isolates was MLST typed, originating exclusively from 

invasive infections/blood cultures. Mutations in the genes gyrA and parC were 

resolved for 98 of the 156 MLST typed isolates. For the purpose of comparison, 

altogether 74 commensal E. faecium isolates originating from two independent 

prevalence studies among healthy persons from the community in two German 

federal states in 2002 and 2004 were included [38,39].

2.2. Antibiotic susceptibility testing

Susceptibility to 19 antibiotics was routinely determined by microbroth dilution using 

IsoSensitest (until 2006) or Mueller–Hinton broth (from 2007 onwards, according to 

the German standard DIN58940; data not presented). MICs for ciprofloxacin were 

determined in a separate dilution (1–1024 mg/L) using Mueller–Hinton broth to 

determine high-level resistance. MIC50 and MIC90 values were defined as the MICs at 

which 50 and 90% of the investigated isolates were inhibited, respectively.

2.3. DNA isolation

Genomic DNA was prepared using a DNA extraction kit (DNeasy Tissue Kit; Qiagen, 

Hilden, Germany) according to the manufacturer’s instructions. An initial cell wall 

lysis step was added dissolving the cell pellet in TES buffer [10 mM Tris, 0.5 mM 

ethylene diamine tetra-acetic acid (EDTA), 10% sucrose (pH 8.0)] plus 10 mg/mL 

lysozyme (Roche Applied Science, Mannheim, Germany) followed by incubation at 

37 C for 30 min.
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2.4. Polymerase chain reaction (PCR)

PCR was performed with Ready-To-GoTM PCR Beads (GE Healthcare, Freiburg, 

Germany) according to the manufacturer’s instructions. Approximately 0.5 L of 

isolated genomic DNA (ca. 10 ng) and primers (200 nM each) were added. The 

presence of the resistance genes vanA and vanB was tested in a multiplex PCR [40]. 

Primers and PCR conditions to amplify fragments of the corresponding subunits A 

(gyrA, parC) and B (gyrB, parE) were chosen as described recently [17] and were as 

follows: gyrA-F, 5’-CGGGATGAACGAATTGGGTGTGA; gyrA-R, 5’-

AATTTTACTCATACGTGCTTCGG; gyrB-F, 5’-TGAAATTCTTGCTGGAAAAC; gyrB-

R: 5’-CAACAATAGGACGCATGTAAC; parC-F, 5’-

TTCCCGTGCATTTCGATCAGTACTTC; parC-R, 5’-

CGTATGACAAAGGATTCSGTAAATC; parE-F, 5’-GTCCGTAAAGCAATCAAAG; and 

parE-R, 5’-CTTTATATAAAGGCGGTAACG. These primers cover the so-called 

‘quinolone resistance-determining region’ (QRDR).

2.5. Pulsed-field gel electrophoresis typing

Genomic DNA for PFGE analysis was isolated, digested with restriction 

endonuclease SmaI and treated as described recently [40]. A 1% agarose gel 

concentration and a CHEF-DR III apparatus (Bio-Rad Laboratories, Hercules, CA) 

were used for PFGE. The ramped pulsed times were as follows: 1–11 s for 15 h and 

11–30 s for 14 h at 14 C. SmaI-digested Staphylococcus aureus NCTC 8325 was 

used as a size marker on all PFGE gels. Composite trees were generated using a 

band-based similarity coefficient (Dice) and unweighted pair group method with 

arithmetic mean (UPGMA) clustering (BioNumerics v. 5.1; Applied Maths, Sint-
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Martens-Latem, Belgium). Definition of clusters and subgroups was according to 

Morrison et al. [41], based on an 82% similarity of pattern.

2.6. DNA sequencing

Sequencing reactions were performed according to the manufacturer’s 

recommendations for cycle sequencing of PCR products (Applied Biosystems, 

Darmstadt, Germany). Sequence files were read, evaluated, aligned and compared 

with the reference set of alleles using DNASTAR’s Lasergene 8.0 software (SeqMan 

8.0; MegAlign 8.0, EditSeq 8.0).

2.7. Multilocus sequence typing

PCRs amplifying the seven loci used for MLST were done according to the reference 

MLST database (http://efaecium.mlst.net/). Sequencing reactions were performed 

according to the manufacturer’s recommendations for cycle sequencing of PCR 

products (Applied Biosystems). Sequence files were read, evaluated, aligned and 

compared with the reference set of alleles using sequencing software Lasergene 8.0 

from DNASTAR (SeqMan 8.0; EditSeq 8.0), TraceEditPro v. 1.1.1 from Ridom 

(http://www.ridom.de) and via the official MLST webpage (http://efaecium.mlst.net/).

2.8. Multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA)

VNTRs were amplified according to Top et al. [42] using modifications given at the 

corresponding website of the University of Utrecht, The Netherlands 

(http://www.mlva.umcutrecht.nl). MLVA profiles were assigned using the 

corresponding tool at the webpage (see above).
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2.9. Statistics

Mathematical calculations and basic statistical analyses were performed with 

software package EpiCompare 1.0 (Ridom).

3. Results

3.1. Distribution of ciprofloxacin minimum inhibitory concentrations

The strain collection of E. faecium sampled between 1997 and 2007 consisted of 

3303 mostly hospital isolates from 179 clinical or university microbiological 

laboratories from all over Germany. A representative subset of 609 E. faecium

isolates from this collection (median 53/year, excluding copy isolates) was chosen for 

further analysis to determine MICs for ciprofloxacin. After plotting MIC values against 

the number of tested strains at that MIC, a bimodal distribution was observed, 

suggesting a breakpoint of >16 mg/L for defining high-level ciprofloxacin resistance 

(Fig. 1). When MIC50 and MIC90 data were displayed, an almost constant annual 

increase was observed (Table 1), with the number of isolates belonging to the group 

of supposed high-level ciprofloxacin-resistant isolates also increasing annually (Table 

1). For the collection of isolates from 2003 onwards, the MIC50 and MIC90 values 

were constantly above the suggested breakpoint for high-level ciprofloxacin 

resistance, illustrating the high prevalence of this feature among clinical isolates of E. 

faecium from this time onwards. A subset of 156 blood culture isolates was typed 

using MLST. The data showed the distribution of high-level ciprofloxacin resistance 

(MIC > 16 mg/L) among 26 MLST types (Table 2), all of which were allocated to 

CC17 using eBURST (not shown). This finding indicates that high-level ciprofloxacin 
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resistance did not emerge and disseminate among a limited number of a few MLST 

types but is rather distributed among the general hospital-adapted E. faecium

population (CC17). In particular, early representatives (isolated before 2002) of major 

MLST types such as sequence type ST17 were not high-level ciprofloxacin resistant, 

whereas later isolates expressed higher MICs (Fig. 2a). In line with that, isolates of 

ST192 that were highly prevalent among German hospitals only during recent years 

were all high-level ciprofloxacin-resistant (n = 27, from 10 different diagnostic 

laboratories, isolated 2004–2007; see below). For the purpose of comparison, 

altogether 74 E. faecium isolates from two prevalence studies among non-

hospitalised persons were investigated. All commensal isolates displayed MICs 

below the suggested breakpoint for acquired high-level ciprofloxacin resistance

(MICs ≤ 8 mg/L; see also Table 1).

3.2. Screening for gyrA/B and parC/E mutations

A subset of 98 MLST-typed invasive E. faecium isolates was selected for molecular 

analysis of gyrA/B and parC/E mutations. Tested isolates spanned a range of 

ciprofloxacin MICs from ≤1 mg/L to 512 mg/L, with the vast majority of isolates 

considered as high-level ciprofloxacin-resistant (n = 77 with MICs of >16 mg/L). 

Supposed mutations in the QRDR of gyrA and parC alleles were determined (Table 

3). Isolates possessing MICs of <16 mg/L did not possess any mutational changes in 

gyrA or parC. The most frequent mutations in isolates with ciprofloxacin MICs of ≥16 

mg/L appeared at a position in gyrA encoding for Ser-83 and a position in parC

encoding for Ser-80 (E. coli numbering) (Table 3). Occasionally, a position in gyrA

encoding for Glu-87 was modified (4 of 98 isolates). Mutations at a position in parC

encoding Glu-84 or any of the other described modifications [17,19,20,33] were not 
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identified in the present set of strains. If mutations appeared, both targets gyrA and 

parC were always affected; no clinical isolate possessed single mutations in either 

gyrA or parC. Corresponding fragments of subunits B (parE/gyrB) were investigated 

from a subset of 33 isolates, including 26 isolates with ciprofloxacin MICs of ≥16 

mg/L. It was known from previous studies in enterococci that both targets were not 

affected; we also did not identify any relevant mutation in gyrB or parE genes.

3.3. Pulsed-field gel electrophoresis

The most prevalent MLST types in our collection of 98 strains were ST17 (n = 28; 

29%), ST192 (n = 27; 28%) and ST18 (n = 20; 20%). A different prevalence of 

ciprofloxacin MICs and QRDR mutations among isolates of identical MLST types 

prompted us to type isolates from selected STs with a highly discriminative method 

such as SmaI macrorestriction PFGE. Isolates of ST17 and ST192 were compared. 

The collection of 28 ST17 isolates consisted of strains isolated between 1999 and 

2007 with ciprofloxacin MICs between ≤1 mg/L and 512 mg/L (Fig. 2a). High-level 

ciprofloxacin-resistant isolates harboured various mutations at positions encoding 

Ser-83 in gyrA or Ser-80 in parC (Fig. 2a; Table 3). Individual mutations as well as 

combinations of gyrA and parC allele types were very diverse, suggesting an 

independent development of high-level ciprofloxacin resistance among various ST17 

clones. Isolates of ST192 were only prevalent during recent years. All the 27 high-

level ciprofloxacin-resistant ST192 E. faecium isolates were epidemiologically 

unlinked and originated from 10 microbiological laboratories; however, all showed 

similar characteristics such as a combination of identical gyrA (Ser-83 [AGT] to Ile-83 

[ATT]) and parC (Ser-80 [AGC] to Arg-80 [CGC]) mutations (Fig. 2b). In addition, all 

ST192 isolates possessed a silent/synonymous mutation in parC encoding His-75 
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(CAT to CAC), which appeared almost exclusively among isolates of that MLST type 

and was found only once in a non-ST192 isolate in our collection (isolate UW6918, 

ST17). PFGE typing and subsequent fragment analysis using the criteria of Morrison 

et al. [41] (82% similarity cut-off) revealed 17 clusters among the 28 ST17 isolates 

[discriminatory index (DI) 0.952; 95% confidence interval (CI) 0.914–0.99] and 11 

clusters among the 27 ST192 isolates (DI 0.815; 95% CI 0.689–0.94).

4. Discussion

High-level ciprofloxacin resistance in isolates of E. faecium and/or E. faecalis was 

analysed and described in a few recent papers. However, the respective strain 

collections were mostly limited or restricted in terms of time, geographical coverage 

or any homogeneity, thus not allowing any specific epidemiological conclusions 

[20,33,34]. Here, based on a comprehensive collection of clinical E. faecium isolated 

from German hospital patients between 1997 and 2007, we showed a permanent 

increase in the MICs for ciprofloxacin (Table 1). Based on a bimodal distribution of 

ciprofloxacin MICs of the 609 representative isolates from that time span, an MIC of 

>16 mg/L could be deduced as the microbiological breakpoint (Fig. 1) for defining 

high-level ciprofloxacin resistance in E. faecium. This is in agreement with previous 

reports suggesting a breakpoint of >16 mg/L [19] or ≥64 mg/L [17] and is also 

confirmed here by sequence determination of the QRDR in gyrA and parC. All (n = 

77) but three isolates possessing MICs of >16 mg/L harboured modifications within 

the genes gyrA and parC that have been shown to be linked with ciprofloxacin 

resistance. Of the eight isolates having an MIC of 16 mg/L, three showed wild-type 

alleles and five had acquired different mutations in gyrA and parC.
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In our collection of clinical strains, wild-type alleles of gyrA/B and parC/E were 

detectable in isolates of different MLST types and with MICs ranging from ≤1 mg/L to 

16 mg/L and also exceptionally with higher MICs of 32 mg/L or 64 mg/L (n = 3; Table 

3). Isolates with acquired high-level ciprofloxacin resistance possessed mutations in 

both gyrA and parC, but MICs differed by several dilutions in isolates harbouring 

identical gyr/par mutations (Table 3). This indicates alternative resistance 

mechanisms or upregulation and downregulation of genes other than those 

investigated here but involved in higher expression of fluoroquinolone non-

susceptibility, such as efflux pumps or topoisomerase protection genes [36,43–45]. 

Several authors have also reported double mutations in parC and gyrA prevalent 

among high-level ciprofloxacin-resistant clinical isolates of E. faecium [19,20,34], 

whereas other reports demonstrated single parC mutations as sufficient to confer 

elevated ciprofloxacin MICs in natural isolates [17,33]. In some of the previous 

studies, sequential mutations were introduced by challenging test strains with 

growing concentrations of fluoroquinolones in vitro [36,37]. Differences in the in vitro 

selective potential were discussed as being drug-related (due to different 

fluoroquinolones used), or species- and even strain-dependent [35–37]. Based on 

our collection of isolates, we could not confirm special features associated with 

ciprofloxacin resistance in Gram-positive bacteria in general, such as a more 

susceptible target in genes encoding topoisomerase IV (parC/E), and combined with 

that a sequential accumulation of specific mutations in different targets increasing 

step by step the MICs for ciprofloxacin [31,36,37].

Taking the data already published and that from the present study together, it 

appears unambiguous that acquired high-level ciprofloxacin resistance is, in addition 

to acquired ampicillin resistance, increasingly prevalent among hospital strains of E. 
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faecium. The absence of acquired high-level ciprofloxacin resistance among 

commensal E. faecium isolates from two outpatient prevalence studies performed 

during the study period supports this model (Table 1). Screening for high-level 

ciprofloxacin resistance for all of the enterococcal strains sent to the German Focal 

Laboratory for Enterococci was introduced in October 2007. From this time until 

December 2008, in total 376 clinical E. faecium isolates were received (from 45 

microbiological laboratories representing more than 60 different German hospitals), 

364 (97%) of which expressed MICs of >16 mg/L, showing that high-level 

ciprofloxacin resistance is highly prevalent among clinical E. faecium among German 

hospital patients (>99% were ampicillin-resistant).

The prevalence of QRDR mutations among isolates from various MLST types 

differed. The supposed clonal divergence based on different QRDR mutations in 

gyrA and parC, for instance, among ST17 isolates could be confirmed by PFGE and 

subsequent cluster analysis (Fig. 2a). In contrast, all ST192 isolates possessed 

identical gyrA and parC mutations and results of PFGE analysis revealed a 

recognisable fragment pattern and a distinct level of clonal relatedness according to 

the set criteria (Fig. 2b) [41]. Combination of all data for the ST192 isolates suggests 

a model where high-level ciprofloxacin resistance once emerged among a specific 

ST192 clone that later on disseminated among several hospitals in different cities 

and federal states in Germany, before the occasional horizontal acquisition of 

vancomycin resistance genes (vanA/B) (Fig. 2b).

Between 1995 and 1999, a specific vanA-type E. faecium clone spread country-wide 

[46,47]. These isolates possessed a specific PFGE and plasmid pattern, were MLST 

type ST117 and MLVA type MT12, and demonstrated a characteristic marker gene 
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pattern (esp+, hylEfm–). None of the ST117 isolates investigated (n = 5) showed any 

gyrA or parC mutation despite reaching MICs of up to 64 mg/L (Table 3). Therefore, if 

and to what extend acquired high-level resistance to ciprofloxacin indeed supports 

the successful dissemination of isolates among the nosocomial setting is still 

debatable and must be resolved in further studies. The rapid spread of this 

resistance trait within recent years and among various clonal types and only among 

hospital-adapted isolates (CC17) suggests an obvious benefit for the bacterium in 

this specific setting. The increased prevalence of high-level ciprofloxacin resistance 

in clinical E. faecium isolates in recent years coincides with an increasing prevalence 

of vancomycin resistance in E. faecium since 2003 in Germany, accumulating in a 

wider prevalence of a various number of multiresistant and vancomycin-resistant 

clinical E. faecium clones [15,48,49].
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Fig. 1. Bimodal distribution of ciprofloxacin minimum inhibitory concentrations (MICs) 

for the 609 Enterococcus faecium clinical isolates from German hospital patients 

(1997–2007).

Fig. 2. Similarity dendrogram [unweighted pair group method with arithmetic mean 

(UPGMA)] of SmaI macrorestriction analyses resolved by pulsed-field gel 

electrophoresis (PFGE) of epidemic Enterococcus faecium from multilocus sequence 

type (MLST) (a) ST17 and (b) ST192. An 82% similarity cut-off value has been 

delineated for reasons of comparison based on the criteria of Morrison et al. [41]. 

Origin, town from which the isolate originated (please consider that an identical ‘town’ 

could represent isolates from different hospitals); year, year of isolation; MIC CIP, 

minimum inhibitory concentration of ciprofloxacin (mg/L); esp and hyl, results of 

polymerase chain reaction (PCR) screenings for fragments of the esp or hylEfm

genes; vanA/B, presence of vanA or vanB by PCR. * Ciprofloxacin MIC of UW6930 

(ST192) was 4 mg/L in Mueller–Hinton broth owing to weak growth in Mueller–Hinton 

in general; the MIC was 32 mg/L in brain–heart infusion broth.
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Table 1 

Annual development of minimum inhibitory concentrations (MICs) for ciprofloxacin 

among 609 clinical Enterococcus faecium isolates from 1997–2007 (I) and 74 

commensal E. faecium isolates from two outpatient prevalence studies performed in 

2002 and 2004 (II) 

Collection Year No. of 

isolates 

MIC50 

(mg/L) 

MIC90 

(mg/L) 

% of isolates 

with MIC ≤ 16 

mg/L 

% of isolates 

with MIC > 16 

mg/L 

I 1997 51 2 4 100 0 

 1998 52 2 16 94 6 

 1999 61 4 64 85 15 

 2000 51 4 256 61 39 

 2001 55 32 256 47 53 

 2002 35 4 256 54 46 

 2003 51 64 256 33 67 

 2004 58 128 256 16 84 

 2005 53 256 256 4 96 

 2006 72 256 256 8 92 

 2007 70 128 256 13 87 

II 2002 20 1 4 100 0 

 2004 54 2 4 100 0 

MIC50/90, MICs at which 50% and 90% of all tested isolates were inhibited, 

respectively. 

Edited Table 1
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Table 2 

High-level ciprofloxacin resistance (MIC > 16 mg/L) according to multilocus sequence 

type (MLST) 

MLST No. of isolates Town a MIC (mg/L) 

16 2 2 32/256 

17 28 b 16 ≤1–512 

18 20 b 14 ≤1–512 

65 2 1 128/256 

78 11 b 11 16–256 

80 2 1 32 

81 4 b 2 ≤1–256 

117 14 b 9 4–256 

125 1 1 256 

132 1 1 128 

192 27 b 12 16–512 c 

202 8 b 5 ≤1–256 

203 5 5 64–128 

208 1 1 128 

252 2 2 128/256 

275 1 1 256 

279 1 1 64 

282 1 1 128 

294 1 1 256 

306 1 1 256 

371 1 1 128 

375 1 1 256 

376 1 1 256 

377 1 1 256 

378 3 2 256 

485 1 1 128 

MIC, minimum inhibitory concentration. 

a Town from where isolates originated (hospital laboratory/microbiological laboratory). 

b Also contains isolates with ciprofloxacin MICs of ≤16 mg/L. 

Edited Table 2
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c The ciprofloxacin MIC of UW6930 (ST192) was 4 mg/L in Mueller–Hinton broth 

owing to weak growth in Mueller–Hinton in general; the MIC was 32 mg/L in brain–

heart infusion broth. 
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 1 

Table 3 

Mutations leading to nucleotide substitutions in the genes gyrA and parC correlated with their corresponding ciprofloxacin minimum 

inhibitory concentrations (MICs) 

gyrA parC Total (n 

= 98) 

MLST Ciprofloxacin MIC ( mg/L) 

Ser-83 

(AGT) 

Glu-87 

(GAG) 

His-75 

(CAT) 

Ser-80 

(AGC) 

Glu-84 

(GAA) 

≤1 2 4 8 16 32 64 128 256 512 

+ + + + + 19 16,17,18,19,81,117,202 6 2 4 1 3 2 a 1 

a 

   

+ Lys 

(AAG) 

+ Ile 

(ATC) 

+ 3 16,81,252     2    1  

Arg 

(AGA) 

+ + Arg 

(CGC) 

+ 1 282        1   

Arg 

(AGG) 

+ + Ile 

(ATC) 

+ 2 17         2  

Arg 

(AGG) 

+ + Arg 

(AGA) 

+ 4 17      2   2  

Arg 

(CGT) 

+ + Ile 

(ATC) 

+ 10 17,18,371     1 1 1 3 4  

Ile (ATT) +  Arg 

(AGA) 

+ 1 78         1  

Edited Table 3
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 2 

Ile (ATT) + + Arg 

(CGC) 

+ 1 17     1      

Ile (ATT) + His 

(CAC) b 

Arg 

(CGC) 

+ 28 17,192 c     1 13 

d 

8 1 5  

Ile (ATT) + + Ile 

(ATC) 

+ 4 17,202         4  

Tyr 

(TAT) 

+ + Ile 

(ATC) 

+ 24 17,18,80,117      2   19 3 

Tyr 

(TAT) 

Gly 

(GGG) 

+ Ile 

(ATC) 

+ 1 78         1  

MLST, multilocus sequence type. 

+, wild-type allele. 

a MIC results were confirmed in repeated experiments. 

b Synonymous/silent mutation. 

c Altogether one ST17 and 27 ST192 isolates. 

d One isolate (UW6930, ST192) grew weakly in general in Mueller–Hinton broth with a ciprofloxacin MIC of 4 mg/L; in brain–heart 

infusion broth its ciprofloxacin MIC was 32 mg/L. 
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Fig. 1.
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strain   origin          year    MIC   gyrA    parC    esp     hyl    vanA/B

CIP   Ser83   Ser80

UW2493   Munich          1999     4      +       +      - - -

UW6991   Karlsruhe       2006    256    Arg     Ile     +       - -

UW6942   Greifswald      2006    256    Ile     Ile     +       - -

UW3698   Berlin          2002    256    Arg     Ile     +       - -

UW6713   Berlin          2006    128    Arg     Ile     +       - -

UW6203   Schwerin        2005    256    Arg     Ile     +       - vanA   

UW6881   Berlin          2006    256    Arg     Ile     +       - -

UW6449   Wolfsburg       2006    128    Arg     Ile     +       - vanB   

UW5662   Berlin          2004    256    Arg     Ile     +       - vanB   

UW6947   Greifswald      2006    256    Ile     Ile     +       +        -

UW2806   Essen           1999     32     +       +      - - vanB   

UW6918   Berlin          2007     64    Ile     Arg     - +       vanB   

UW2687   Berlin          1999     4      +       +      - - vanA   

UW3311   Leipzig         2001     32    Arg     Arg     +       - vanA   

UW4194   Leipzig         2003     32    Arg     Arg     +       - vanB   

UW4672   Leipzig         2003    256    Arg     Arg     +       - vanA   

UW6695   Mönchengladbach 2006    256    Ile     Ile     - - vanA   

UW3132   Schwerin        2000     32    Arg     Ile     +       - vanB   

UW5274   Göttingen       2004    256    Arg     Arg     +       - -

UW6151   Cologne         2005    256    Tyr     Ile     - +       vanA

UW6917   Berlin          2007    512    Tyr     Ile     - +        -

UW3544   Kiel            2002     2      +       +      - - vanA   

UW2490   Heidelberg      1999     ≤1     +       +      - - vanA   

UW6589   Würzburg        2004     4      +       +      - - vanA   

UW2460   Köln            1999     16    Arg     Ile     +       +       vanA   

UW5352   Hanau           2004     16    Ile     Arg     +       +       vanB   

UW6900   Hanover         2006    256    Tyr     Ile     - - vanA   

UW6950   Kiel            2006    512    Tyr     Ile     - - -

Fig. 2a

Dice (Opt:0.50%) (Tol 1.0%-1.0%) (H>0.0% S>0.0%) [0.0%-100.0%]

Edited Figure 2
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Fig. 2b

Dice (Opt:0.50%) (Tol 1.0%-1.0%) (H>0.0% S>0.0%) [0.0%-100.0%]

Strain  Origin        year   MIC   gyrA    parC    parC    esp     hyl    vanA/B

CIP   Ser83   Ser80   His75

UW6951   Kiel         2006    64    Ile     Arg    (CAC)    +       +       -

UW6954   Kiel         2006    64    Ile     Arg    (CAC)    +       +       -

UW6919   Berlin       2007    32    Ile     Arg    (CAC)    +       +       -

UW6929   Ulm          2006    32    Ile     Arg    (CAC)    +       +       -

UW6896   Hanover      2006    32    Ile     Arg    (CAC)    +       +       -

UW6893   Hanover      2006   256    Ile     Arg    (CAC)    +       +       -

UW6933   Ulm          2006    64    Ile     Arg    (CAC)    +       +       -

UW6943   Greifswald   2006    64    Ile     Arg    (CAC)    +       +       -

UW6715   Berlin       2006    32    Ile     Arg    (CAC)    +       +       -

UW6941   Greifswald   2006    64    Ile     Arg    (CAC)    +       +       -

UW5267   Cologne      2004    32    Ile     Arg    (CAC)    +       +      vanB                    

UW6894   Hanover      2006    32    Ile     Arg    (CAC)    +       +       -

UW6699   Murnau       2006    32    Ile     Arg    (CAC)    +       +      vanB                    

UW6720   Berlin       2006   512    Ile     Arg    (CAC)    +       +       -

UW6884   Berlin       2006   256    Ile     Arg    (CAC)    +       +       -

UW6711   Berlin       2006   256    Ile     Arg    (CAC)    +       +       -

UW6982   Jena         2006   128    Ile     Arg    (CAC)    +       +       -

UW6718   Berlin       2006    16    Ile     Arg    (CAC)    +       +       -

UW6993   Karlsruhe    2006    32    Ile     Arg    (CAC)    +       +       -

UW6696   Ulm          2006    32    Ile     Arg    (CAC)    +       +       -

UW5909   Freiburg     2004    32    Ile     Arg    (CAC)    +       +      vanA                    

UW6373   Ulm          2005    32    Ile     Arg    (CAC)    +       +      vanB                    

UW6986   Jena         2006    32    Ile     Arg    (CAC)    +       +       -

UW6995   Karlsruhe    2006   256    Ile     Arg    (CAC)    +       +       -

UW6915   Berlin       2007    64    Ile     Arg    (CAC)    +       +       -

UW6930   Ulm          2006    32*   Ile     Arg    (CAC)    +       +       -

UW5913   Freiburg     2004    64    Ile     Arg    (CAC)    +       +      vanA                    


