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Abstract

Three hundred and nineteen extended-spectrum -lactamase-positive 

Enterobacteriaceae clinical isolates were screened for qnr genes. Twelve isolates 

were positive for qnr, including one qnrA1, two qnrB1, three qnrB2, one qnrB4, one 

qnrB6 and four qnrS1. No qnr-positive strains were identified among the isolates 

recovered before 2006. The first qnr-positive Escherichia coli was detected from a 

patient in 2006. qnr genes remained rare in E. coli (6/288; 2.1%), but appeared to be 

more prevalent in Klebsiella pneumoniae (4/25; 16%) and Enterobacter cloacae (2/3; 

66.7%). All qnr-positive isolates were resistant to nalidixic acid while presenting 

varied susceptibilities to fluoroquinolones. Isolates harbouring qnrB4 or qnrB6 were 

highly resistant to all the fluoroquinolones tested. Their high-level resistance is 

associated with multiple chromosomal substitutions in gyrA and parC. Alterations at 

codons Ser-83 and Asp-87 in GyrA and at codons Ser-80 and Glu-84 in ParC were 

observed in these isolates.
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1. Introduction

Quinolone resistance typically arises as a result of chromosomal mutations in genes 

coding for DNA gyrase and topoisomerase IV as well as changes in drug entry and 

efflux [1]. Resistance to quinolones can also be mediated by plasmid-borne genes 

such as qnr, which protects the quinolone targets from inhibition [1,2]. Although Qnr 

by itself produces only low-level resistance, its presence facilitates the selection of 

higher-level resistance mutations, thus contributing to the alarming increase in 

resistance to quinolones [1].

qnrA was the first plasmid-mediated gene that conferred resistance to quinolones,

initially reported in a Klebsiella pneumoniae isolate in the USA in 1994 [3]. 

Subsequently, plasmid-mediated quinolone resistance associated with qnrA, qnrB

and qnrS has been reported among enterobacterial species in Asia, the USA, South 

America and several countries in Europe [2,4–6]. Recently, the qnrC gene was 

identified from a Proteus mirabilis clinical isolate from China [7]. Moreover, it has 

been frequently reported that the qnr genes have been detected among isolates 

producing extended-spectrum -lactamases (ESBLs) [5,8–11].

The present study aimed to investigate the prevalence of qnr determinants in ESBL-

positive Enterobacteriaceae clinical isolates in southern Stockholm, Sweden, as well 

as the relationship between quinolone resistance mechanisms and the degree of 

resistance.
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2. Materials and methods

2.1. Bacterial isolates

The study included 319 non-duplicate ESBL-positive Enterobacteriaceae clinical 

isolates recovered from January 2001 to January 2008 in Karolinska University 

Hospital Huddinge, Sweden, which serves all healthcare centres and hospitals 

located in southern Stockholm. The isolates consisted of 288 Escherichia coli, 25 K. 

pneumoniae, 3 P. mirabilis and 3 Enterobacter cloacae.

2.2. Detection of extended-spectrum -lactamases

The presence of ESBLs was first screened for by cefotaxime, ceftazidime and 

cefpodoxime disks and was then confirmed by the double-disk method as 

recommended by the Clinical and Laboratory Standards Institute (CLSI) [12] or by 

Etest (AB BIODISK, Solna, Sweden). All the isolates were also screened for bla

genes (SHV, TEM, CTX-M or OXA) using a multiplex polymerase chain reaction 

(PCR) assay as described previously [13].

2.3. Identification of qnr genes

The PCR assay for qnr genes (qnrA, qnrB and qnrS) was performed according to 

Robicsek et al. [11]. Positive results for qnr were further confirmed by sequencing of 

PCR products.
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2.4. Analysis of quinolone resistance-determining regions (QRDRs)

Isolates positive for qnr genes were further analysed by QRDR sequencing. QRDRs 

of the gyrA and parC genes were amplified by PCR followed by sequencing with the 

same primers [14].

2.5. Effect of the efflux pump inhibitor Phe-Arg--naphthylamide (PAN)

Synergy experiments were performed using ciprofloxacin and the efflux pump

inhibitor PAN (Sigma-Aldrich, St Louis MO) to investigate the contribution of efflux 

pump overexpression to ciprofloxacin resistance.

2.6. Antimicrobial susceptibility testing

The qnr-positive isolates were subject to susceptibility testing for ciprofloxacin, 

levofloxacin, norfloxacin and moxifloxacin by Etest (AB BIODISK) and for nalidixic 

acid by the disk diffusion method.

3. Results

Of the 319 ESBL-positive clinical isolates investigated, 12 isolates were positive for 

qnr genes, including 1 qnrA1, 2 qnrB1, 3 qnrB2, 1 qnrB4, 1 qnrB6 and 4 qnrS1

isolates (Table 1). No qnr-positive strains were identified among the isolates detected 

before 2006. The first qnr-positive E. coli was recovered from the urine of a 64-year-

old female patient in 2006. Of the 12 qnr-positive isolates detected, 6 were E. coli

(6/288; 2.1%), 4 were K. pneumoniae (4/25; 16%) and 2 were E. cloacae (2/3; 

66.7%).
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Among the 12 qnr-harbouring isolates, blaTEM was present in 10 of the isolates and 

genes coding for CTX-M, SHV and OXA were carried by 6, 8 and 3 of the isolates, 

respectively (Table 1).

All qnr-positive isolates were resistant to nalidixic acid while presenting varied 

susceptibilities to fluoroquinolones. Isolates harbouring qnrB4 or qnrB6 were highly 

resistant to all the fluoroquinolones tested (Table 1).

The high-level resistant isolates possessed multiple mutations in the QRDRs of gyrA

and parC resulting in alterations at codons Ser-83 and Asp-87 in GyrA and codons 

Ser-80 and Glu-84 in ParC (Table 1).

In the presence of the efflux inhibitor PAN, there was a four-fold decrease in the 

ciprofloxacin minimum inhibitory concentration (MIC) for strain E. cloacae 07194. 

However, the effect of the inhibitor was not apparent with other isolates tested.

Regarding strain E. cloacae 07194, in addition to the presence of the qnr gene, a 

single mutation in the GyrA protein and efflux pump overexpression were also 

observed. Nevertheless, these resistance mechanisms are not enough to confer a 

ciprofloxacin-resistant phenotype in this strain.

4. Discussion

In the present study, seven qnrB, four qnrS and one qnrA isolates were identified 

among 319 ESBL-positive Enterobacteriaceae clinical isolates. Genetic diversity was 
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observed in the qnrB allele in which four variants, i.e. qnrB1, qnrB2, qnrB4 and 

qnrB6, were present, whilst only qnrS1 was identified in qnrS-carrying isolates. qnrB2

was spread in various species, i.e. E. coli, K. pneumoniae and E. cloacae. The 

prevalence of qnr genes (3.8%) in ESBL-positive Enterobacteriaceae clinical isolates 

from this study is comparable with that of a Spanish study [5] where 4.9% of 305 

enterobacterial clinical isolates carrying ESBLs were positive for qnr. However, our 

findings differ from those of the Spanish study where qnrA1 was the most prevalent;

only one qnrS but no qnrB were detected. Similar to our findings, mainly qnrB and 

qnrS were present in a Taiwanese study [9] where 2035 E. coli and 1147 K. 

pneumoniae isolates were investigated. Our results regarding qnrS1 prevalence 

(1.3%) are similar to those of a report from France [15] which showed that 1.6% of 

186 ESBL-producing isolates carried qnrS1.

Our study showed that the qnr gene was present in 16.0% of K. pneumoniae

isolates, 2.1% of E. coli isolates and two (66.7%) of three E. cloacae isolates, which 

is in accordance with the findings from the USA by Robicsek et al. [11].

All 12 qnr-positive isolates were resistant to nalidixic acid. Regarding ciprofloxacin, 

four isolates were susceptible, five showed decreased susceptibility, one presented 

low-level resistance (MIC = 6 mg/L) and two exhibited high-level resistance (MIC >

32 mg/L). The high-level fluoroquinolone resistance exhibited by these strains is

presumably due to the associated multiple mutations in the QRDR of gyrA and parC.

These data agree with previous reports demonstrating that qnr determinants confer 

resistance to quinolones, e.g. nalidixic acid, and reduced susceptibility to 
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fluoroquinolones, and that the presence of qnr does not necessarily lead to MICs 

above CLSI breakpoints for resistance to ciprofloxacin [3,8].

In conclusion, the first qnr-positive E. coli in southern Stockholm emerged in 2006, 

and qnr genes remained rare in E. coli but appeared to be more prevalent in K. 

pneumoniae and E. cloacae. Varied qnrB alleles and uniform qnrS, i.e. qnrS1, were 

identified among the strains investigated. High-level fluoroquinolone resistance is 

associated with multiple chromosomal substitutions in gyrA and parC.
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1

Table 1

Characteristics of qnr-positive clinical isolates of Enterobacteriaceae species detected in southern Stockholm, Sweden

Strain Species Source qnr gene -Lactamase gene MIC (mg/L) QRDR mutation(s)

CIP MXF NOR LVX GyrA ParC

06011 Escherichia coli Urine B2 SHV, TEM 0.38 1 1 0.5 – –

07082 Klebsiella pneumoniae Urine S1 SHV, TEM 1.5 2 4 1.5 – –

07111 E. coli Urine S1 TEM, CTX-M 1 1.5 4 1 – –

07139 K. pneumoniae Wound B2 SHV, TEM 1.5 2 4 2 S83T –

07151 E. coli Faeces B1 TEM, CTX-M, OXA 2.5 1.5 4 0.75 – –

07156 E. coli Perineum B6 TEM, CTX-M, OXA >32 >32 >256 >32 S83L, D87N S80I

07159 K. pneumoniae Urine B1 SHV, TEM, CTX-M, OXA 6 2 12 1.5 – –

07169 E. coli Bronchi S1 TEM, CTX-M 0.38 1.5 2 0.75 – –

07194 Enterobacter cloacae Wound B2 SHV, TEM 2 2 4 2 S83Y –

07216 E. coli Urine B4 SHV, TEM, CTX-M >32 >32 >256 >32 S83L, D87N S80I, E84G

07228 K. pneumoniae Faeces S1 SHV 2 2 6 2 – –

08019 E. cloacae Abscess A1 SHV 0.38 1 1 0.75 – –

MIC, minimum inhibitory concentration; CIP, ciprofloxacin; MXF, moxifloxacin; NOR, norfloxacin; LVX, levofloxacin; QRDR, 

quinolone resistance-determining region; –, no alteration.
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