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Statistical Analysis of the Covariance Matrix

MLE in K-Distributed Clutter

Frederic Pascal, Alexandre Renaux

Abstract

In the context of radar detection, the clutter covariance matrix estimation is an im-
portant point to design optimal detectors. While the Gaussian clutter case has been
extensively studied, the new advances in radar technology show that non-Gaussian
clutter models have to be considered. Among these models, the Spherically In-
variant Random Vector modelling is particularly interesting since it includes the
K-distributed clutter model, known to fit very well with experimental data. This
is why recent results in the literature focus on this distribution. More precisely,
the maximum likelihood estimator of a K-distributed clutter covariance matrix has
already been derived. This paper proposes a complete statistical performance anal-
ysis of this estimator through its consistency and its unbiasedness at finite number
of samples. Moreover, the closed-form expression of the true Cramér-Rao bound is
derived for the K-distribution covariance matrix and the efficiency of the maximum
likelihood estimator is emphasized by simulations.

Key words: Covariance matrix estimation, Cramér-Rao bound, maximum
likelihood, K-distribution, spherically invariant random vector.

Notations

The notational convention adopted is as follows: italic indicates a scalar quan-
tity, as in A; lower case boldface indicates a vector quantity, as in a; upper
case boldface indicates a matrix quantity, as in A.Re {A} and Im {A} are the
real and the imaginary parts of A, respectively. The complex conjugation, the
matrix transpose operator and the conjugate transpose operator are indicated
by ∗, T ,and H , respectively. The jth element of a vector a is denoted a(j). The
nth row and mth column element of the matrix A will be denoted by An,m. |A|
and Tr(A) are the determinant and the trace of the matrix A, respectively. ⊗
denotes the Kronecker product. ‖.‖ denotes any matrix norm. The operator
vec(A) stacks the columns of the matrix A one under another into a single
column vector. The operator vech(A) , where A is a symmetric matrix, does
the same things as vec(A) with the upper triangular portion excluded. The
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operator veck(A) of a skew-symmetric matrix (i.e. AT = −A) does the same
thing as vech(A) by omitting the diagonal elements. The identity matrix, with
appropriate dimensions, is denoted I and the zero matrix is denoted 0. E [.]
denotes the expectation operator.

a.s.−−→ stands for the almost sure convergence

and
Pr−→ stands for the convergence in probability. A zero-mean complex cir-

cular Gaussian distribution with covariance matrix A is denoted CN (0,A).
A Gamma distribution with shape parameter k and scale parameter θ is de-
noted G (k, θ) . A complex m-variate K-distribution with parameters k, θ, and
covariance matrix A is denoted Km (k, θ,A). A central Chi-square distribu-
tion with k degrees of freedom is denoted χ2 (k). A uniform distribution with
boundaries a and b is denoted U[a,b].

1 Introduction

The Gaussian assumption makes sense in many applications, e.g., sources lo-
calization in passive sonar, radar detection where thermal noise and clutter are
generally modelled as Gaussian processes. In these contexts, Gaussian models
have been thoroughly investigated in the framework of statistical estimation
and detection theory (see, e.g., [1,2] and [3]). They have led to attractive al-
gorithms such as the stochastic maximum likelihood method [4,5] or Bayesian
estimators.

However, the assumption of Gaussian noise is not always valid. For instance,
due to the recent evolution of radar technology, one can cite the area of Space
Time Adaptive Processing-High Resolution (STAP-HR) where the resolution
is such that the central limit theorem cannot be applied anymore since the
number of backscatters is too small. Equivalently, it is known that reflected
signals can be very impulsive when they are collected by a low grazing angle
radar [6,7]. This is why, in the last decades, the radar community has been
very interested in problems dealing with non-Gaussian clutter modelling (see,
e.g., [8,9,10] and [11]).

One of the most general non-Gaussian noise model is provided by Spherically
Invariant Random Vectors (SIRV) which are a compound processes [12,13,14].
More precisely, a SIRV is the product of a Gaussian random vector (the so-
called speckle) with the square root of a non-negative random scalar vari-
able (the so-called texture). In other words, a noise modelled as a SIRV is a
non-homogeneous Gaussian process with random power. Thus, these kind of
processes are fully characterized by the texture and the unknown covariance
matrix of the speckle. One of the major challenging difficulties in SIRV mod-
elling is to estimate these two unknown quantities [15]. These problems have
been investigated in [16] for the texture estimation while [17] and [18] have
proposed different estimation procedures for the covariance matrix. Moreover,
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the knowledge of these estimates accuracy is essential in radar detection since
the covariance matrix and the texture are required to design the different
detection schemes.

In this context, this paper focuses on parameters estimation performance
where the clutter is modelled by a K-distribution. A K-distribution is a SIRV,
with a Gamma distributed texture depending on two real positive parameters
α and β. Consequently, a K-distribution depends on α, β and on the covariance
matrix M. This model choice is justified by the fact that a lot of operational
data experimentations have shown the good agreement between real data and
the K-distribution model (see [7,19,20,21,22] and references herein).

This K-distribution model has been extensively studied in the literature. First,
concerning the parameters estimation problem, [23] and [24] have estimated
the Gamma distribution parameters assuming that M is equal to the identity
matrix, [17] has proposed a recursive algorithm for the covariance matrix M
estimation assuming α and β known and [25] has used a Parameter-Expanded
Expectation-Maximization (PX-EM) algorithm for the covariance matrix M
estimation and for a parameter ν assuming ν = α = 1/β. Note also that
estimation schemes in K-distribution context can be found in [26,27] and ref-
erences herein. Second, concerning the statistical performance of these esti-
mators, it has been proved in [28] that the recursive scheme proposed by [17]
converges and has a unique solution which is the Maximum Likelihood (ML)
estimator. Consequently, this estimator has become very attractive. In order
to evaluate the ultimate performance in terms of mean square error, [23] has
derived the true Cramér-Rao Bound (CRB) for the parameters of the Gamma
texture (namely, α and β) assuming M equal to the identity matrix. [29] has
derived the modified CRB on the one-lag correlation coefficient of M where
the parameters of the Gamma texture are assumed to be nuisance parameters.
Concerning the covariance matrix M, a first approach for the true CRB study,
which is known to be tighter than the modified one, has been proposed in [25]
whatever the texture distribution. However, note that, for the particular case
of a Gamma distributed texture, the analysis of [25] involves several numer-
ical integrations and no useful information concerning the structure of the
Fisher Information Matrix (FIM) is given. Finally, classical covariance matrix
estimators are compared in [30] in the more general context of SIRV.

The knowledge of an accurate covariance matrix estimate is of the utmost
interest in context of radar detection since this matrix is always involved in
the detector expression [30]. Therefore, the goal of this contribution is twofold.
First, the covariance matrix ML estimate statistical analysis is provided in
terms of consistency and bias. Second, the closed-form expression of the true
CRB for the covariance matrix M is given and is analyzed. Finally, through a
discussion and simulation results, classical estimation procedures in Gaussian
and SIRV contexts are compared.
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The paper is organized as follows. Section 2 presents the problem formulation
while Sections 3 and 4 contain the main results of this paper: the ML estimate
statistical performance in terms of consistency and bias and the derivation of
the true CRB. Finally, Section 5 gives simulations which validate theoretical
results.

2 Problem Formulation

In radar detection, the basic problem consists in detecting if a known signal
corrupted by an additive clutter is present or not. In order to estimate the
clutter parameters before detection, it is generally assumed that K signal-
free independent measurements, traditionally called the secondary data ck,
k = 1, . . . , K are available.

As stated in the introduction, one considers a clutter modelled thanks to a
K-distribution denoted

ck ∼ Km
(
α, (2/β)2 ,M

)
. (1)

From the SIRV definition, ck can be written as

ck =
√
τ k xk, (2)

where τ k is Gamma distributed with parameters α and (2/β)2, i.e., τ k ∼
G
(
α, (2/β)2

)
and, where xk is a complex circular zero-mean m-dimensional

Gaussian vector with covariance matrix E[xkx
H
k ] = M independent of τ k.

For identifiability considerations, M is normalized according to Tr(M) = m
(see [17]). Note that the parameter α represents the spikiness of the clutter.
Indeed, when α is high the clutter tends to be Gaussian and, when α is small,
the tail of the clutter becomes heavy.

The Probability Density Function (PDF) of a random variable τ k distributed

according to G
(
α, (2/β)2

)
is given by

p(τ k) =

(
β2

4

)α
τα−1k

Γ(α)
exp

(
−
β2

4
τ k

)
, (3)

where Γ(α) is the Gamma function defined by

Γ(α) =
∫ +∞

0
xα−1 exp(−x)dx. (4)
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From Eqn. (2), the PDF of ck can be written

p(ck; M, α, β) =
∫ +∞

0

1

τmk π
m|M|

exp

(
−

cHk M−1ck

τ k

)
p(τ k)dτ k, (5)

which is equal to

p(ck; M, α, β) =
βα+m

(
cHk M−1ck

)α−m
2

2α+m−1πm|M|Γ(α)
Km−α

(
β
√

cHk M−1ck

)
, (6)

where Kν (.) is the modified Bessel function of the second kind of order ν [31].

Gini et. al. have derived the ML estimator as the solution of the following
equation [17]:

M̂ML =
1

K

K∑
k=1

cm

(
cHk M̂

−1
MLck

)
ckc

H
k , (7)

where the function cm(q) is defined as

cm(q) =
β

2
√
q

Kα−m−1
(
β
√
q
)

Kα−m
(
β
√
q
) . (8)

Note that the ML estimate M̂ML has to be normalized as M: Tr(M̂ML) = m.
Finally, it has been shown in [28] that the solution of Eqn. (7) exists and is
unique for the aforementioned normalization.

3 Statistical Analysis of M̂ML

This section is devoted to the statistical analysis of M̂ML in terms of consis-
tency and bias.

3.1 Consistency

An estimator M̂ of M is said to be consistent if

‖M̂−M‖ Pr−−−−→
K→+∞

0,

where K is the number of secondary data ck’s used to estimate M.

Theorem 3.1 (M̂ML consistency)
M̂ML is a consistent estimate of M .
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Proof. In the sequel, M̂ML will be denoted M̂(K) to show explicitly the
dependence between M̂ML and the number K of x′ks. Let us define the function
f
K,M such that

f
K,M :


D −→ D,

A −→
1

K

K∑
k=1

cm
(
cHk A−1ck

)
ckc

H
k .

(9)

where cm(.) is defined by Eqn. (8), where D = {A ∈ Mm(C)|AH = A ,A
positive definite matrix} withMm(C) = {m×mmatrices with elements in C} ,
and where C is the set of complex scalar. As M̂(K) is a fixed point of function
f
K,M, it is the unique zero, which respects the constraint Tr(M̂(K)) = m, of

the following function gK

gK :

D −→ D,A −→ gK(A) = A − f
K,M(A).

To prove the consistency of M̂(K), Theorem 5.9 pp. 46 of [32] will be used.
First, the Strong Law of Large Numbers (SLLN) gives

∀A ∈ D , gK(A)
a.s.−−−−→

K→+∞
g(A) ,

where

∀A ∈ D , g(A) = A− E
[
cm
(
cHA−1c

)
c cH

]
, (10)

for c ∼ Km
(
α, (2/β)2 ,M

)
.

Let us now apply the change of variable y = A−1/2 c. We obtain

y ∼ Km
(
α, (2/β)2 ,A−1/2MA−1/2

)
,

and

∀A ∈ D , g(A) = A1/2
(
I− E

[
cm
(
yHy

)
yyH

])
A1/2,

and

∀A ∈ D , gK(A) = A1/2

(
I−

1

K

K∑
k=1

cm
(
yHk yk

)
yky

H
k

)
A1/2.

Let us verify the hypothesis of Theorem 5.9 pp. 46 of [32]. We have to prove
that for every ε > 0 ,
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(H1) : sup
A∈D

{‖gK(A)− g(A)‖} Pr−−−−→
K→+∞

0 ,

(H2) : inf
A:‖A−M‖≥ε

{‖g(A)‖} > 0 = g(M).

For every A ∈ D, we have

‖gK(A)− g(A)‖ = ‖A‖
∥∥∥∥∥ 1

K

K∑
k=1

(
cm
(
yHk yk

)
yky

H
k − E

[
cm
(
yHy

)
yyH

])∥∥∥∥∥ .

Since E
[
cm
(
yHy

)
yyH

]
< +∞, one can apply the SLLN to the K i.i.d.

variables cm
(
yHk yk

)
yky

H
k , with same first order moment. This ensures (H1).

Moreover, the function cm
(
cHA−1c

)
is strictly decreasing w.r.t. A. Conse-

quently, E
[
cm
(
cHA−1c

)
c cH

]
too. This implies thatE

[
cm
(
cHA−1c

)
c cH

]
6=

A, except for A = M. This ensures (H2).

Finally, Theorem 5.9 pp. 46 of [32] concludes the proof and M̂ML
Pr−−−−→

K→+∞
M.

3.2 Bias

This subsection provides an analysis of the bias B defined by B(M̂ML) =

E
[
M̂ML

]
−M .

Theorem 3.2 (Unbiasedness of M̂ML)
M̂ML is an unbiased estimate of M at finite distance ( i.e. at finite number
K).

Proof. For the sake of simplicity, M̂ML will be denoted M̂ in this part. By
applying the following change of variable, yk = M−1/2 ck to Eqn. (7), one has

M̂ =
1

K

K∑
k=1

cm

(
yHk T̂

−1
yk

)
M1/2 yk yHk M1/2,

where
T̂ = M−1/2M̂M−1/2.

Therefore,

T̂ =
1

K

K∑
k=1

cm

(
yHk T̂

−1
yk

)
yk yHk .
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T̂ is thus the unique estimate (see Theorem III.1 of [28]) of the identity matrix,
with Tr(T̂) = m. Its statistic is clearly independent of M since the yk’s are
i.i.d. SIRVs with a Gamma distributed texture and identity matrix for the
Gaussian covariance matrix. In other words, yk ∼ Km

(
α, (2/β)2 , I

)
.

Moreover, for any unitary matrix U,

U T̂ UH =
1

K

K∑
k=1

cm

(
zHk

(
U T̂ UH

)−1
zk

)
zk zHk ,

where zk = U yk are also i.i.d. and distributed asKm
(
α, (2/β)2 , I

)
and U T̂ UH

has the same distribution as T̂. Consequently,

E
[
T̂
]

= UE
[
T̂
]
UH , for any unitary matrix U .

Since E
[
T̂
]

is different from 0, Lemma A.1 of [30] ensures that E
[
T̂
]

= γI

for γ ∈ R. Remind that T̂ = M−1/2M̂M−1/2 , then E
[
M̂
]

= γM.Moreover,

since Tr(M̂) =Tr(M) = m, one has

m = E(Tr(M̂)) = Tr(E(M̂)) = γTr(M) = γ m, (11)

which implies that γ = 1.

In conclusion, M̂ is an unbiased estimate of M, for any number K of secondary
data.

3.3 Comments

Theorems 3.1 and 3.2 show the attractiveness of the estimator (7) in terms
of statistical properties, i.e., consistency and unbiasedness. Note also that
this estimator is robust since the unbiasedness property is at finite number
of samples. In the next section, the Cramér-Rao bound is derived for the
observation model (2).

4 Cramér-Rao bound

In this Section, the Cramér-Rao bound w.r.t. M is derived. The CRB gives the
best variance that an unbiased estimator can achieve. The proposed bound will
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be compared to the mean square error of the previously studied ML estimator
(Eqn. (7)) in the next section.

The CRB for a parameter vector θ is given by

CRBθ =

(
−E

[
∂2 ln p (c1, . . . , cK ;θ)

∂θ∂θT

])−1
, (12)

where p (c1, . . . , cK ;θ) is the likelihood function of the observations ck, k =
1 . . . K. Concerning our model, the parameter vector is

θ =
(
vechT (Re {M}) veckT (Im {M})

)T
, m2 × 1 (13)

With the parametrization of Eqn.(13), the structure of the CRB becomes

CRBθ =

F1,1 F1,2

F2,1 F2,2


−1

, (14)

where the Fi,j’s are the elements of the FIM given by

F1,1 =−E
[

∂2 ln p (c1, . . . , cK ;θ)

∂vech (Re {M}) ∂vechT (Re {M})

]
, (15)

m (m+ 1)

2
× m (m+ 1)

2
, (16)

F1,2 = FT
2,1 = −E

[
∂2 ln p (c1, . . . , cK ;θ)

∂vech (Re {M}) ∂veckT (Im {M})

]
, (17)

m (m+ 1)

2
× m (m− 1)

2
, (18)

F2,2 =−E
[

∂2 ln p (c1, . . . , cK ;θ)

∂veck (Im {M}) ∂veckT (Im {M})

]
, (19)

m (m− 1)

2
× m (m− 1)

2
. (20)

Since the ck’s are i.i.d. random vectors, one have from Eqn. (6),

p(c1, . . . , cK ;θ) =
K∏
k=1

βα+m
(
cHk M−1ck

)α−m
2

2α+m−1πm|M|Γ(α)
Km−α

(
β
√

cHk M−1ck

)
. (21)

Consequently, the log-likelihood function can be written
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ln p (c1, . . . , cK |θ) =K ln

(
βα+m

2α+m−1πmΓ (α)

)
−K ln (|M|)

+
K∑
k=1

ln
((

cHk M−1ck
)α−m

2 Km−α

(
β
√

cHk M−1ck

))
, (22)

4.1 Result

The next sub-sections will show that the CRB w.r.t. θ, in this context, is given
by

CRBθ =
1

K


(
HTFH

)−1
0

0
(
KTFK

)−1
 , (23)

where the matrices H and K are constant transformation matrices filled with
ones and zeros such that vec(A) = Hvech(A) and vec(A) = Kveck(A) , with
A a skew-symmetric matrix, and where

F =
(
MT ⊗M

)−1
−(

2 (α + 1)

m+ 1
− ϕ (α,m)

8

)(
MT ⊗M

)−1/2 (
I + vec (I) vecT (I)

) (
MT ⊗M

)−1/2
(24)

where ϕ (α,m) is given by Eqn. (F.3).

Remarks:

• ϕ (α,m) is a constant which does not depend on β since β2τ k′ ∼ G (α, 4)
(see Eqn. (F.3)).
• The first term of the right hand side of Eqn. (24) is the Gaussian FIM (i.e.,

when τ k = 1 ∀k). Indeed, using Eqn. (27), (52) and (33) 1 , the Gaussian
CRB, denoted GCRBθ, is straightforwardly obtained

GCRBθ =
1

K


(
HT

(
MT ⊗M

)−1
H
)−1

0

0
(
KT

(
MT ⊗M

)−1
K
)−1

 .
(25)

By identification with Eqn.(24), it means that lim
α→∞

(
2(α+1)
m+1

− γ
8

)
= 0. Conse-

quently, due to the structure of I+vec(I)vecT (I), the FIM for K-distributed
observations is given by the Gaussian FIM minus a sparse matrix depending
on α, M and m.

1 With β2 = 1, z = cHk M
−1ck which is the term to be derived w.r.t. θ in the

exponential term of the multivariate Gaussian distribution.
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4.2 Outline of the proof

To make the reading easier, only the outline of the CRB derivation is given
below. All the details are reported into the different appendices.

4.2.1 Analysis of F1,1

With Eqn. (22) one has

∂2 ln p (c1, . . . , cK ;θ)

∂vech (Re {M}) ∂vechT (Re {M})
= −K ∂2 ln (|M|)

∂vech (Re {M}) ∂vechT (Re {M})

+
K∑
k=1

∂2 ln
((

cHk M−1ck
)α−m

2 Km−α

(
β
√

cHk M−1ck

))
∂vech (Re {M}) ∂vechT (Re {M})

. (26)

The first part of the right hand-side of Eqn. (26) is given by

−K ∂2 ln (|M|)
∂vech (Re {M}) ∂vechT (Re {M})

= KHT
(
MT⊗M

)−1
H, (27)

thanks to Appendix A, Eqn. (A.3), and thanks to the fact that

∂veckT (Im {M})
∂vech (Re {M})

= 0, (28)

and
∂vechT (Re {M})
∂vech (Re {M})

= I. (29)

Through the remain of the paper, let us set z = β2cHk M−1ck and f (z) =

ln
((

z
β2

)α−m
2 Km−α (

√
z)
)

. The second term (inside the sum) of the right-hand

side of Eqn. (26) is given by

∂2 ln
((

cHk M−1ck
)α−m

2 Km−α

(
β
√

cHk M−1ck

))
∂vech (Re {M}) ∂vechT (Re {M})

=
∂2f (z)

∂vech (Re {M}) ∂vechT (Re {M})
, (30)

Note that
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∂2f (z) =
∂

∂z

(
∂f (z)

∂z
∂z

)
∂z

=
∂2f (z)

∂z2
∂z∂z +

∂f (z)

∂z
∂2z, (31)

with (details are given in Appendix B)

∂z=−β2∂vechT (Re {M}) HT
(
MT ⊗M

)−1
vec

(
ckc

H
k

)
+iβ2∂veckT (Im {M}) KT

(
MT ⊗M

)−1
vec

(
ckc

H
k

)
, (32)

and

∂2z =

2β2∂vechT (Re {M}) HT
((

M−Tc∗kc
T
kM−T

)
⊗M−1

)
H∂vech (Re {M})

+ 2β2∂veckT (Im {M}) KT
((

M−Tc∗kc
T
kM−T

)
⊗M−1

)
K∂veck (Im {M}) ,

(33)

and (details are given in Appendix C)

d1 (z) =
∂f (z)

∂z
= − 1

2
√
z

Km−α+1 (
√
z)

Km−α (
√
z)

, (34)

and

d2 (z) =
∂2f (z)

∂z2
=

1

4z

(
1 +

Km−α+1 (
√
z)

Km−α (
√
z)

(
2√
z
− Km−α−1 (

√
z)

Km−α (
√
z)

))
. (35)

Consequently, the structure of Eqn. (31) becomes

∂2f (z) = 2β2d1 (z) ∂vechT (Re {M}) HTP1H∂vech (Re {M})
+2β2d1 (z) ∂veckT (Im {M}) KTP1K∂veck (Im {M})
+β4d2 (z) ∂vechT (Re {M}) HTP2H∂vech (Re {M})
+β4d2 (z) ∂veckT (Im {M}) KTP2K∂veck (Im {M}) , (36)

where

P1 =
(
M−Tc∗kc

T
kM−T

)
⊗M−1, (37)

P2 =
(
MT ⊗M

)−1
vec

(
ckc

H
k

)
vecH

(
ckc

H
k

) (
MT ⊗M

)−1
. (38)

Therefore, Eqn. (30) is given by

12



∂2f (z)

∂vech (Re {M}) ∂vechT (Re {M})
= 2β2d1 (z) HTP1H+β4d2 (z) HTP2H

(39)
due to Eqn. (28) and Eqn. (29).

Using Eqn. (26), Eqn. (27), and Eqn. (39), F1,1 is given by

F1,1 = −KHT
((

MT⊗M
)−1

+ 2β2E [d1 (z) P1] + β4E [d2 (z) P2]
)

H, (40)

where d1 (z) and d2 (z) are defined by Eqn. (34) and Eqn. (35), respectively.

The two expectation operators involved in the previous equation can be de-
tailed as follows:

E [d1 (z) P1] = −1

2

(
M−TΓM−T

)
⊗M−1, (41)

and

E [d2 (z) P2] =
1

4

(
MT ⊗M

)−1
(Ψ + Ξ−Υ)

(
MT ⊗M

)−1
, (42)

where 

Γ = E
[

1√
z

Km−α+1(
√
z)

Km−α(
√
z)

c∗kc
T
k

]
,

Ψ = E
[
1
z
vec

(
ckc

H
k

)
vecH

(
ckc

H
k

)]
,

Ξ = E
[

2

z
3
2

Km−α+1(
√
z)

Km−α(
√
z)

vec
(
ckc

H
k

)
vecH

(
ckc

H
k

)]
,

Υ = E
[
1
z

Km−α−1(
√
z)Km−α+1(

√
z)

K2
m−α(

√
z)

vec
(
ckc

H
k

)
vecH

(
ckc

H
k

)]
.

(43)

After some calculus detailed in Appendix D, one finds

Γ =
2

β2MT . (44)

Concerning Ψ, one has

Ψ =
1

β2E

vec
(
ckc

H
k

)
vecH

(
ckc

H
k

)
cHk M−1ck

 , (45)

where the expectation is taken under a complex K-distributionKm
(
α, (2/β)2 ,M

)
.
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Concerning Ξ, one has

Ξ =
1

(α− 1) β2E

vec
(
ckc

H
k

)
vecH

(
ckc

H
k

)
cHk M−1ck

 , (46)

where the expectation is taken under a complex K-distributionKm
(
α− 1, (2/β)2 ,M

)
.

Concerning Υ, one has

Υ =
1

β2E

Km−α−1 (
√
z)Km−α+1 (

√
z)

K2
m−α (

√
z)

vec
(
ckc

H
k

)
vecH

(
ckc

H
k

)
cHk M−1ck

 , (47)

where the expectation is taken under a complex K-distributionKm
(
α, (2/β)2 ,M

)
.

The closed-form expression of E
[
vec(ckcHk )vecH(ckcHk )

cH
k
M−1ck

]
under a complex K-

distribution is given in Appendix E. One finds

Ψ =
8

β4

α

m+ 1

(
MT/2 ⊗M1/2

) (
I + vec (I) vecT (I)

) (
MT/2 ⊗M1/2

)
, (48)

and

Ξ =
8

β4

1

m+ 1

(
MT/2 ⊗M1/2

) (
I + vec (I) vecT (I)

) (
MT/2 ⊗M1/2

)
. (49)

The structure of Υ is analyzed in Appendix F.

Consequently, Eqn. (40) is reduced to

F1,1 = KHT
((

MT ⊗M
)−1
−(

2 (α + 1)

m+ 1
− ϕ (α,m)

8

)(
MT ⊗M

)−1/2 (
I + vec (I) vecT (I)

) (
MT ⊗M

)−1/2)
H,

(50)

where ϕ (α,m) is given by Eqn. (F.3).

4.2.2 Analysis of F2,2

The analysis of F2,2 is similar to the one used for F1,1. Indeed, one has to
calculate

∂2 ln p (c1, . . . , cK ;θ)

∂veck (Im {M}) ∂veckT (Im {M})
= −K ∂2 ln (|M|)

∂veck (Im {M}) ∂veckT (Im {M})
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+
K∑
k=1

∂2 ln
((

cHk M−1ck
)α−m

2 Km−α

(
β
√

cHk M−1ck

))
∂veck (Im {M}) ∂veckT (Im {M})

. (51)

Using Eqn. (A.3), one has

−K ∂2 ln (|M|)
∂veck (Im {M}) ∂veckT (Im {M})

= KKT
(
MT ⊗M

)−1
K, (52)

due to Eqn. (28) and due to

∂veck (Im {M})
∂veckT (Im {M})

= I. (53)

By using the same notation as for the derivation of F1,1 and by using Eqn.
(36), one obtains for the second term on the right hand side of Eqn. (51)

∂2 ln
((

cHk M−1ck
)α−m

2 Km−α

(
β
√

cHk M−1ck

))
∂veck (Im {M}) ∂veckT (Im {M})

= 2β2d1 (z) KTP1K+β4d2 (z) KTP2K, (54)

where P1, P2, d1 (z) and d2 (z) are defined by Eqn. (37), Eqn. (38), Eqn. (34),
and Eqn. (35), respectively. Therefore, the structure of F2,2 is the same as the
structure of F1,1 except that one replaces the matrix H by the matrix K.

4.2.3 Analysis of F1,2 = FT
2,1

Due to the structure of Eqn. (A.3) and Eqn. (36), and since the derivation is
w.r.t. ∂vech(Re {M}) and ∂veckT (Im {M}) , it is clear that

F1,2 = FT
2,1 = 0, (55)

by using Eqn. (28).

This concludes the proof of the CRB derivation.

5 Simulation results

In this section, some simulations are provided in order to illustrate the pro-
posed previous results in terms of consistency, bias, and variance analysis
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(throughout the CRB). While no mathematical proof is given in other Sec-
tions, we show the efficiency of the MLE meaning that the CRB is achieved
by the variance of the MLE.

The results presented are obtained for complex K-distributed clutter with
covariance matrix M randomly chosen.

All the results are presented different values of parameter α and β = 2
√
α

following the scenario of [17]. The size of each vector ck is m = 3. Remember
that the parameter α represents the spikiness of the clutter (when α is high
the clutter tends to be Gaussian and, when α is small, the tail of the clutter
becomes heavy). The norm used for consitency and bias is the L2 norm.

5.1 Consistency

Figure 1 presents results of MLE consistency for 1000 Monte Carlo runs per
each value of K. For that purpose, a plot of D

(
M̂, K

)
=
∥∥∥M̂−M

∥∥∥ versus
the number K of ck’s is presented for each estimate. It can be noticed that the
above criterion D

(
M̂, K

)
tends to 0 when K tends to ∞ for each estimate.

Moreover, note that the parameter α has very few influence on the convergence
speed which highlights the robustness of the MLE.

5.2 Bias

Figure 2 shows the bias of each estimate for the different values of α. The
number of Monte Carlo runs is given in the legend of the figure. For that

purpose, a plot of the criterion C
(
M̂, K

)
=
∥∥∥∥M̂−M

∥∥∥∥ versus the number K

of ck’s is presented for each estimate. M̂ is defined as the empirical mean of
the quantities M̂ (i) obtained from I Monte Carlo runs. For each iteration i,
a new set of K secondary data ck is generated to compute M̂ (i). It can be
noticed that, as enlightened by the previous theoretical analysis, the bias of
M̂ tends to 0 whatever the value of K. Furthermore, one sees again the weak
influence of the parameter α on the unbiasedness of the MLE.

5.3 CRB and MSE

The CRB and empirical variance of the MLE for 10000 Monte Carlo runs are
plotted in Figure 3 . For comparison, we also plot the Gaussian CRB (i.e.,
when τ k = 1 ∀k) given by Eqn. (25). Although it is not mathematically proved

16



102 103
10−2

10−1

Number of secondary data

D
(M

,K
)

K−distribution with ! = 0.1
K−distribution with ! = 1
K−distribution with ! = 10

Fig. 1. D
(
M̂,K

)
versus the number of secondary data for different values of α.
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Fig. 2. C
(
M̂,K

)
versus the number of secondary data for different values of α.

in this paper, one observes, in Figure 3, the efficiency of the MLE even for
impulsive noise (α small).
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Fig. 3. GCRB, CRB and empirical variance of the MLE for different values of α.

6 Conclusion

In this paper, a statistical analysis of the maximum likelihood estimator of the
covariance matrix of a complex multivariate K-distributed process has been
proposed. More particularly, the consistency and the unbiasedness (at finite
number of samples) have been proved. In order to analyze the variance of the
estimator, the Cramér-Rao lower bound is derived. The Fisher information
matrix in this case is simply the Fisher information matrix of the Gaussian
case plus a term depending on the tail of the K-distribution. Simulation results
have been proposed to illustrate these theoretical analyses. These results have
shown the efficiency of the estimator and the weak influence of the spikiness
parameter in terms of concistency and bias.

A Derivation of ∂2 ln {|M|}

To find this term and several other, we will use the following results [33]

∂Tr (X) = Tr (∂X) , (A.1a)

∂vec (X) = vec (∂X) , (A.1b)

∂A−1 =−A−1∂AA−1, (A.1c)

∂ |A|= |A|Tr
(
A−1∂A

)
, (A.1d)
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∂ (A & B) = ∂ (A) & B + A & ∂ (B) , where & = × or ⊗ (A.1e)

∂ ln (|M|) = Tr
(
M−1∂M

)
, (A.1f)

∂ (∂M) = 0, (A.1g)

Tr (AB) = Tr (BA) (A.1h)

M−1 ⊗M−1 = (M⊗M)−1 , (A.1i)

Tr
(
AHB

)
= vecH (A) vec (B) , (A.1j)

vec (ABC) =
(
CT ⊗A

)
vec (B) , (A.1k)

By using these properties, one has

∂ ln (|M|) = Tr
(
M−1 (∂M)

)
from (A.1f)

∂2 ln (|M|) =−Tr
(
M−1 (∂M) M−1∂M

)
from (A.1a)(A.1e)(A.1g)(A.1c)

=−vecH
(
M−1 (∂M) M−1

)
vec (∂M) from (A.1j)

=−vecH (∂M)
(
M−T ⊗M−1

)H
vec (∂M) from (A.1k)

=−∂vecH (M)
(
MT ⊗M

)−1
∂vec (M) from (A.1b)(A.1i).

By letting M = Re {M}+ iIm {M} in Eqn.(A.3), one has

∂2 ln (|M|) =−∂vecH (Re {M}+ iIm {M})
(
MT ⊗M

)−1
∂vec (Re {M}+ iIm {M})

=−∂vecH (Re {M})
(
MT ⊗M

)−1
∂vec (Re {M})

−∂vecH (iIm {M})
(
MT ⊗M

)−1
∂vec (Re {M})

−∂vecH (Re {M})
(
MT ⊗M

)−1
∂vec (iIm {M})

−∂vecH (iIm {M})
(
MT ⊗M

)−1
∂vec (iIm {M}) . (A.2)

Since vecH (iIm {M}) = −ivecT (Im {M}) and vecH (Re {M}) =vecT (Re {M}) ,
∂2 ln (|M|) is reduced to

∂2 ln (|M|) =−∂vecT (Re {M})
(
MT ⊗M

)−1
∂vec (Re {M})

−∂vecT (Im {M})
(
MT ⊗M

)−1
∂vec (Im {M})

=−∂vechT (Re {M}) HT
(
MT ⊗M

)−1
H∂vech (Re {M})

−∂veckT (Im {M}) KT
(
MT ⊗M

)−1
K∂veck (Im {M}) ,(A.3)
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where the matrix H and K are constant transformation matrices filled with
ones and zeros such that vec(A) = Hvech(A) and vec(A) = Kveck(A).

B Derivation of ∂z and ∂2z

By using the properties from Eqn.(A.1a) to Eqn.(A.1k), one has for ∂z

∂z= β2∂
(
cHk M−1ck

)
= β2∂Tr

(
cHk M−1ck

)
= β2Tr

(
cHk ∂

(
M−1

)
ck
)

from (A.1a)

=−β2Tr
(
cHk M−1∂MM−1ck

)
from (A.1c)

=−β2Tr
(
∂MM−1ckc

H
k M−1

)
from (A.1h)

=−β2vecH (∂M) vec
(
M−1ckc

H
k M−1

)
from (A.1j)

=−β2∂vecH (M)
(
MT ⊗M

)−1
vec

(
ckc

H
k

)
from (A.1b)(A.1k)(A.1i).

By letting M = Re {M}+ iIm {M}, one obtains

∂z=−β2∂vecT (Re {M})
(
MT ⊗M

)−1
vec

(
ckc

H
k

)
+iβ2∂vecT (Im {M})

(
MT ⊗M

)−1
vec

(
ckc

H
k

)
=−β2∂vechT (Re {M}) HT

(
MT ⊗M

)−1
vec

(
ckc

H
k

)
+iβ2∂veckT (Im {M}) KT

(
MT ⊗M

)−1
vec

(
ckc

H
k

)
. (B.1)

Concerning ∂2z, one has

∂z=−β2Tr
(
cHk M−1∂MM−1ck

)
(B.2)

∂2z=−β2Tr
(
cHk ∂

(
M−1∂MM−1

)
ck
)

from (A.1a)

=−β2Tr
(
cHk ∂

(
M−1

)
∂MM−1ck+cHk M−1∂M∂

(
M−1

)
ck
)

from (A.1e)(A.1g)

= 2β2Tr
(
∂MM−1∂MM−1ckc

H
k M−1

)
from (A.1c)(A.1h)

= 2β2∂vecH (M)
((

M−Tc∗kc
T
kM−T

)
⊗M−1

)
∂vec (M) from (A.1j)(A.1k)(A.1b)
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By letting M = Re {M}+ iIm {M}, one obtains

∂2z = 2β2∂vechT (Re {M}) HT
((

M−Tc∗kc
T
kM−T

)
⊗M−1

)
H∂vech (Re {M})

+ 2β2∂veckT (Im {M}) KT
((

M−Tc∗kc
T
kM−T

)
⊗M−1

)
K∂veck (Im {M}) .

(B.3)

C Derivation of ∂f(z)
∂z

and ∂2f(z)
∂z2

Concerning the first derivative of f (z) , one has

∂f (z)

∂z
=

∂

∂z
ln
((
z/β2

)α−m
2 Km−α

(√
z
))

=
α−m

2z
+

1

Km−α (
√
z)

∂Km−α (
√
z)

∂z
. (C.1)

Since ∂Kν(y)
∂y

= −Kν+1 (y) + ν
y
Kν (y) [34]. It follows that

∂Km−α (
√
z)

∂z
= − 1

2
√
z
Km−α+1

(√
z
)

+
m− α

2z
Km−α

(√
z
)
. (C.2)

Plugging Eqn. (C.2) in Eqn. (C.1), one obtains

∂f (z)

∂z
= − 1

2
√
z

Km−α+1 (
√
z)

Km−α (
√
z)

. (C.3)

Concerning the second derivative of f (z) , one has

∂2f (z)

∂z2
=−1

2

∂

∂z

(
1√
z

Km−α+1 (
√
z)

Km−α (
√
z)

)

=
1

4z3/2
Km−α+1 (

√
z)

Km−α (
√
z)
− 1

4z

 ∂

∂y

Km−α+1 (y)

Km−α (y)

∣∣∣∣∣
y=
√
z

 , (C.4)

Since ∂Kν(y)
∂y

= −Kν−1 (y)− ν
y
Kν (y) [34]. It follows that

∂

∂y

Km−α+1 (y)

Km−α (y)

∣∣∣∣∣
y=
√
z

= −

(
Km−α (

√
z) + m−α+1√

z
Km−α+1 (

√
z)
)
Km−α (

√
z)

K2
m−α (

√
z)
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+
Km−α+1 (

√
z)
(
Km−α−1 (

√
z) + m−α√

z
Km−α (

√
z)
)

K2
m−α (

√
z)

. (C.5)

Plugging Eqn. (C.5) in Eqn. (C.4), one obtains

∂2f (z)

∂z2
=

1

4z
+

1

2z3/2
Km−α+1 (

√
z)

Km−α (
√
z)
− 1

4z

Km−α+1 (
√
z)Km−α−1 (

√
z)

K2
m−α (

√
z)

. (C.6)

D Derivation of matrix Γ

The matrix Γ is given by

Γ =E

[
1√
z

Km−α+1 (
√
z)

Km−α (
√
z)

c∗kc
T
k

]

=
Γ (α− 1)

2Γ (α)
ET

[
ckc

H
k

]
, (D.1)

where the last expectation is taken under the distribution

p (ck) =
βα+m−1 |M|−1

2α+m−2πmΓ (α− 1)

(
cHk M−1ck

)α−m−1
2 Km−α+1

(
β
√

cHk M−1ck

)
,

(D.2)

which is a complex K-distribution Km
(
α− 1, (2/β)2 ,M

)
. Then

Γ =
1

2 (α− 1)
ET

[
ckc

H
k

]
=

1

2 (α− 1)
ET

[
τ kxkx

H
k

]
=

1

2 (α− 1)
E [τ k]E

T
[
xkx

H
k

]
,

(D.3)

where E [τ k] = (α− 1)
(
2
β

)2
since τ k follows a Gamma distribution G

(
α− 1, (2/β)2

)
and ET

[
xkx

H
k

]
= MT since xk is a complex normal random vector (in-

dependent of τ k) with zero mean and covariance matrix M. Consequently,
Γ = 2

β2 MT .

E Derivation of E
[
vec(ckcHk )vecH(ckcHk )

cH
k
M−1ck

]

In this Appendix, we derive the expression of E
[
vec(ckcHk )vecH(ckcHk )

cH
k
M−1ck

]
where

ck ∼ Km
(
α, (2/β)2 ,M

)
. The case where ck ∼ Km

(
α− 1, (2/β)2 ,M

)
will
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be, of course, straightforward. Let us set the following change of variable:
ck = M1/2yk. One obtains from Eqn. (A.1k)

E

vec
(
ckc

H
k

)
vecH

(
ckc

H
k

)
cHk M−1ck


=
(
MT/2 ⊗M1/2

)
E

vec
(
yky

H
k

)
vecH

(
yky

H
k

)
yHk yk

 (MT/2 ⊗M1/2
)
, (E.1)

where yk ∼ Km
(
α, (2/β)2 , I

)
. Since yk =

√
τ kxk, where τ k ∼ G

(
α, (2/β)2

)
is independent of xk ∼ CN (0, I) , one has

E

vec
(
ckc

H
k

)
vecH

(
ckc

H
k

)
cHk M−1ck

 =
(
MT/2 ⊗M1/2

)
E [τ k] R

(
MT/2 ⊗M1/2

)
,

(E.2)

where E [τ k] = α
(
2
β

)2
and where

R = E

vec
(
xkx

H
k

)
vecH

(
xkx

H
k

)
xHk xk

 . (E.3)

Let us set x
(j)
k =

√
ρ2j exp (iθj) for j = 1, . . . ,m. Note that ρ2j ∼ χ2 (2) is

independent of θj ∼ U[0,2π]. Consequently, the elements of the matrix R can
be rewritten as

Rk,l = E


√
ρ2pρ

2
qρ

2
p′ρ

2
q′

m∑
j=1
ρ2j

E [exp (i (θp − θp′ + θq′ − θq))] , (E.4)

since

xHk xk =
m∑
j=1

ρ2j and
[
vec

(
xkx

H
k

)]
n

=
√
ρ2pρ

2
p′ exp (i (θp − θp′)) . (E.5)

Note that E [exp (i (θp − θp′ + θq′ − θq))] 6= 0 if and only if

(1) p = p′ = q = q′, i.e., l = k = p+m (p− 1) ,
(2) p = p′, q = q′ and p 6= q, i.e., l = k = p+m (q − 1) ,
(3) p = q, p′ = q′ and p 6= p′, i.e., l = p′ +m (p′ − 1) and k = p+m (p− 1) .

Consequently, the non-zero elements of Rk,l are given by
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(1) Rp+m(p−1),p+m(p−1) = E

(ρ2p)
2

m∑
j=1

ρ2j

 = 4
m+1

,

(2) Rp+m(q−1),p+m(q−1) = E

 ρ2pρ2p′m∑
j=1

ρ2j

 = 2
m+1

,

(3) Rp+m(p−1),p′+m(p′−1) = E

 ρ2pρ
2
q

m∑
j=1

ρ2j

 = 2
m+1

,

and the matrix E
[
vec(ckcHk )vecH(ckcHk )

cH
k
M−1ck

]
can be written

E

vec
(
ckc

H
k

)
vecH

(
ckc

H
k

)
cHk M−1ck


=

2α

m+ 1

(
2

β

)2 (
MT/2 ⊗M1/2

) (
I + vec (I) vecT (I)

) (
MT/2 ⊗M1/2

)
. (E.6)

In the same way, the expression of E
[
vec(ckcHk )vecH(ckcHk )

cH
k
M−1ck

]
where ck ∼ Km

(
α− 1, (2/β)2 ,M

)
is given by

E

vec
(
ckc

H
k

)
vecH

(
ckc

H
k

)
cHk M−1ck


=

2 (α− 1)

m+ 1

(
2

β

)2 (
MT/2 ⊗M1/2

) (
I + vec (I) vecT (I)

) (
MT/2 ⊗M1/2

)
.

(E.7)

F Analysis of Υ

Let us set the following change of variable: ck = M1/2√τ kxk, where τ k ∼
G
(
α, (2/β)2

)
is independent of xk ∼ CN (0, I) , one has

Υ =
1

β2

(
MT/2 ⊗M1/2

)
Υ̃
(
MT/2 ⊗M1/2

)
,
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where

Υ̃ = E

τ kKm−α−1

(
β
√
τ kxHk xk

)
Km−α+1

(
β
√
τ kxHk xk

)
K2
m−α

(
β
√
τ kxHk xk

) vec
(
xkx

H
k

)
vecH

(
xkx

H
k

)
xHk xk

 .
(F.1)

Let us set x
(j)
k =

√
ρ2j exp (iθj) for j = 1, . . . ,m. ρ2j ∼ χ2 (2) is independent of

θj ∼ U[0,2π]. Consequently, due to Eqn. (E.5), the elements of the matrix Υ̃
can be rewritten as

Υ̃k,l =E

τ k′
Km−α−1

(
β

√
τ k′

m∑
j=1
ρ2j

)
Km−α+1

(
β

√
τ k′

m∑
j=1
ρ2j

)

K2
m−α

(
β

√
τ k′

m∑
j=1
ρ2j

)
√
ρ2pρ

2
qρ

2
p′ρ

2
q′

m∑
j=1
ρ2j


×E [exp (i (θp − θp′ + θq′ − θq))] . (F.2)

As before, E [exp (i (θp − θp′ + θq′ − θq))] 6= 0 if and only if

(1) p = p′ = q = q′, i.e., l = k = p+m (p− 1) ,
(2) p = p′, q = q′ and p 6= q, i.e., l = k = p+m (q − 1) ,
(3) p = q, p′ = q′ and p 6= p′, i.e., l = p′ +m (p′ − 1) and k = p+m (p− 1) .

Consequently, the non-zero elements of Υ̃k,l are given by

(1) Υ̃p+m(p−1),p+m(p−1) = E

τ k′
Km−α−1

(
β

√
τk′

m∑
j=1

ρ2j

)
Km−α+1

(
β

√
τk′

m∑
j=1

ρ2j

)

K2
m−α

(
β

√
τk′

m∑
j=1

ρ2j

) (ρ2p)
2

m∑
j=1

ρ2j

 ,

(2) Υ̃p+m(q−1),p+m(q−1) = E

τ k′
Km−α−1

(
β

√
τk′

m∑
j=1

ρ2j

)
Km−α+1

(
β

√
τk′

m∑
j=1

ρ2j

)

K2
m−α

(
β

√
τk′

m∑
j=1

ρ2j

) ρ2pρ
2
p′

m∑
j=1

ρ2j

 ,

(3) Υ̃p+m(p−1),p′+m(p′−1) = E

τ k′
Km−α−1

(
β

√
τk′

m∑
j=1

ρ2j

)
Km−α+1

(
β

√
τk′

m∑
j=1

ρ2j

)

K2
m−α

(
β

√
τk′

m∑
j=1

ρ2j

) ρ2pρ
2
q

m∑
j=1

ρ2j

 .

Note that Υ̃p+m(q−1),p+m(q−1) = Υ̃p+m(p−1),p′+m(p′−1) = 1
2
Υ̃p+m(p−1),p+m(p−1) ∀p

25



∀p′ ∀q ∀q′. Consequently, only

ϕ (α,m) = β2E

τ k′
Km−α−1

(
β

√
τ k′

m∑
j=1
ρ2j

)
Km−α+1

(
β

√
τ k′

m∑
j=1
ρ2j

)

K2
m−α

(
β

√
τ k′

m∑
j=1
ρ2j

)
(
ρ2p
)2

m∑
j=1
ρ2j

 ,
(F.3)

has to be computed and the matrix Υ can be written

Υ =
ϕ (α,m)

2β4

(
MT/2 ⊗M1/2

) (
I + vec (I) vecT (I)

) (
MT/2 ⊗M1/2

)
. (F.4)

Note that ϕ (α,m) is independent of β since, β2τ k′ ∼ G (α, 4) .
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