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The Empirical Likelihood method applied to

Covariance Matrix Estimation

Frederic Pascal, Hugo Harari-Kermadec and Pascal Larzabal

Abstract

This paper presents a new estimation scheme for signal processing problems in
unknown noise field. The Empirical Likelihood has been introduced in the mathe-
matical community, but, surprisingly, it is still unknown in the Signal Processing
community. This estimation method is an alternative to estimate unknown param-
eters without using a model for the Probability Density Function.

The aim of this paper is twofold: first, the Empirical Likelihood theory is presented
and revisited thanks to the Moment Method. Its properties are derived. Secondly,
to emphasize all the potentiality of this method, we address the problem of Toeplitz
matrix estimation: this leads us to obtain improved estimates in comparison to
conventional ones, as shown in simulations.

Key words: Empirical Likelihood, Maximum Likelihood, structured parameters
estimation, non-Gaussian noise, covariance matrix estimation.

1 Introduction

It is often assumed that signals, interferences or noises are Gaussian stochastic
processes. Indeed, this assumption makes sense in many applications. Among
them, we can cite : sources localization in passive sonar, radar detection where
thermal noise and clutter are often modeled as Gaussian processes, digital
communications where the Gaussian hypothesis is widely used for interferences
and noises.

In these contexts, Gaussian models have been thoroughly investigated in the
framework of Statistical Estimation and Detection Theory [1,2,3]. They have
led to attractive algorithms. For instance, we can cite the stochastic Maxi-
mum Likelihood method for sources localization in array processing [4,5], the
matched filter and its adaptive variants in radar detection [6,7] and in digital
communications [8].
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However, such widespread techniques suffer from several drawbacks when the
noise process is a non-Gaussian stochastic process [9]. Therefore, non-Gaussian
noise modeling has gained many interest in the last decades and presently leads
to active researches in the literature. Higher order moment methods [10] have
initiated this research activity while particle filtering [11] is now intensively
investigated. In radar applications, experimental clutter measurements, per-
formed by MIT [12], showed that these data are not correctly described by
Gaussian statistical models. More generally, numerous non-Gaussian models
have been developed in several engineering fields [13,14,15].

Nevertheless, the question of a model choice for previous applications remains
since, most of the time, chosen modeling does not perfectly describe the data
behavior. And in these cases, classical estimation methods like for example
Maximum Likelihood (ML) based on the data Probability Density Function
(pdf) are used, leading as expected to only sub-optimal results. Several non-
parametric techniques are proposed in the literature to estimate this unknown
pdf. We can cite for example wavelet methods which have been widely inves-
tigated. But, most of them are difficult to implement.

An alternative is the Empirical Likelihood (EL) [16]. This method allows to
estimate the unknown parameters without assuming a noise modeling. More-
over, prior informations on the data (known moments, parameter structure,
...) can be integrated in the processing by means of constraints in the optimiza-
tion procedure. However, surprisingly, this estimation scheme is still unused
in the area of Signal Processing estimation. To the best of our knowledge, we
can only cite [17] and [18,19] in the corresponding literature.

The main interest of this method is to estimate unknown parameters of interest
without assumption on the pdf. Furthermore, we will estimate only parameters
of interest but we do not aim in estimating the pdf. This approach differs
from robustness considerations, exposed for example by [20], that lead to M-
estimators and minimax theory. Here, we do not have in mind a specific model,
from which the true pdf could be slightly apart. However, EL will be shown
to be based on a moment equation which links the parameters of interest to
the observed data, like in the method of moments [1]. Moreover, EL relies on
the optimization of a quantity that reminds of a likelihood.

The mathematical properties of EL have already been established in the sta-
tistical literature. The aim of this paper is to introduce the EL method to
the signal processing community, by means of classical estimation problems.
To illustrate the potentiality of the EL method, we analyze the problem
of structured covariance matrix estimation. In particular, we focus on the
persymmetric structure [21] and on the Toeplitz structure which is widely
used [22,23,24,25,26].
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Many applications rely on the covariance matrix estimation such as sources
localization or Doppler frequencies detection. In these cases, performance di-
rectly depends on the accuracy of the covariance matrix estimate, see e.g. [27]
for the particular case of detection in non Gaussian noise, or more generally,
[5] in array processing problems. The choice of the covariance matrix estima-
tion method affects dramatically the accuracy of the estimation in practical
settings. In the field of channel identification, [18] compares EL with conven-
tional methods.

The paper is organized as follows. Section 2 presents the estimation problem
of interest while Section 3 gives an original presentation of the EL procedure,
adapted to Signal Processing problems. Sections 3.4 and 4 present two appli-
cations of the EL method, first without constraint and then, the EL method
uses prior informations. In these sections, comparison with the classical ML
method will be analyzed through the problem of covariance matrix estima-
tion under Gaussian assumptions. Then, Section 5 contains simulations which
illustrate theoretical results of Section 4.

2 Problem Formulation

In this section, we introduce the notations used in this paper and the statistical
framework.

2.1 Notations

In the following, H denotes the conjugate transpose operator, > denotes the
transpose operator, ∗ denotes the conjugate operator, EP [f(x)] is the expecta-
tion of the function f(x) when the random variable x is distributed according
to the probability P , E[x|f(x)] means the expectation of x subject to f(x).
Tr(M) is the trace of matrix M and det(M) is the determinant of matrix M.
C (respectively R) denotes the set of complex (resp. real) numbers, while for
any integer p, Cp (resp. Rp) represents the set of p-vectors with complex (resp.
real) elements. For z ∈ C, we write Re(z) and Im(z) its real and imaginary
parts.
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2.2 Statistical Framework

In a lot of signal processing problems, we have to extract the estimator θ̂ of
parameters θ based on some noisy data x. This leads to the functional relation:

θ̂ = T (x). (1)

To obtain a useful estimator T (.) of parameter θ, a mathematical model on
the data has to be introduced. One of the most widespread model, in the area
of signal processing, is the following:

xk = h(θ, k) + nk , for k = 1, . . . , K , (2)

where xk is the kth observation data, nk is an additive noise and h(θ, k) is the
noiseless part of observation which depends on θ and k. Sometimes, one has
the separability property, h(θ, k) = A(θ)sk, where A(θ) is a transfer matrix
and sk is a signal.

Recently, the huge increase of computer capacity has allowed the implementa-
tion of very sophisticated and performing methods. One of the most famous of
them is the ML method which requires, by construction, the knowledge of the
data pdf, up to parameters of interest and possibly, additional nuisance pa-
rameters. If such a pdf is given, ML methods lead to very performing results,
optimal under specific conditions.

The performance of such estimators critically depends on the pdf assumption.
This assumption is chosen to be consistent with the problem, but also to
be mathematically convenient. Therefore, the choice is restricted to a small
number of classical pdf distributions and the real data pdf can apart, at least
slightly, from these families. It would be interesting to develop performing
methods which do not require an assumption on the pdf family. In this paper,
we propose to consider the Empirical Likelihood method, which is not based
on the choice of a model for the pdf.

More precisely, let P0 be the unknown distribution from which data are gen-
erated. In practice, this probability is unknown and a classical approach is to
choose a parametric family for the pdf and to assume that the pdf correspond-
ing to P0 belongs to this family. The expression ”parametric family” means
that the pdf is known up to an element of a finite dimensional parameter space.
For instance, the most currently used family is the set of Gaussian pdf, identi-
fied with two distinct parameters: the expectation and the covariance matrix
(or variance in dimension 1). Notice that assuming a distribution family is a
very restricting assumption since it reduces an infinite dimensional estimation
problem to the estimation of finite dimensional parameters. EL method [16]
has been designed as a means of relaxing the restrictions on the distribution P0
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in comparison to parametric approaches. Indeed, the only assumption is that
the variance is finite. The aim of this method is to prevent from degradations
due to model misspecifications. Therefore, instead of restricting the approach
to the choice of a parametric family to mimic the data and then estimate the
parameters, we look for the bigger flexibility.

3 Empirical likelihood

For a better understanding, this section develops the interest and the aim of
using the Empirical Likelihood (EL) method, keeping in mind signal processing
applications.

3.1 An extended method of moments

The method of moments is a classical method for estimation problems in which
the parameter of interest θ is defined as the solution of an equation involving
the moments of the distribution [1]. This equation can be formulated as follows:

for some regular function m defined by

m :

Rp × Rd −→ Rn

x,θ −→ m(x,θ)
, (3)

θ0, the true value of the parameter, is the solution of

EP0 [m(x,θ0)] = 0 , (4)

where 0 denotes the null vector with appropriate dimension (n here) and
n ≥ d, p is the dimension of the observations x and d the dimension of the
parameter of interest θ. Notice that the expectation is taken under the true
distribution P0.

This kind of equation is called ”moment condition” because it generalizes
the equations giving the moments. Following equations illustrate the case of
first and second moments respectively with unknown expectation µ and/or
unknown covariance matrix Σ

EP0 [x− µ] = 0 and EP0 [(x− µ)(x− µ)H − Σ] = 0 . (5)

The method of moments [1] consists in solving in θ the empirical version of
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the equation (4):
1

K

K∑
k=1

m(xk,θ) = 0 , (6)

and θ̂, the method of moments estimator, will be the solution of equation (6).
Formally, this can be written as follows

EPK
[m(x,θ)] = 0 , (7)

where

PK(x) =
1

K

K∑
k=1

δxk
(x) , (8)

where δx is the Dirac measure at element x.

This very classical procedure gives goods results when the number K of data
is large enough because this method relies on asymptotic considerations. But
when the number of data is too small, the probability PK may be a poor
approximation of the true probability P0, and as a consequence, the method
of moments estimator will be far from the true value θ0 of the parameter. To
fill this gap, it is interesting to introduce the family of multinomial distribution
G supported by the data set, which is defined as

G(x) =
K∑
k=1

qk δxk
(x) , (9)

where 0 < qk < 1 and
K∑
k=1

qk = 1. Notice that this is the identifiable choice of

maximal dimension for a distribution family because it has as many degrees
of freedom as they are observations. By substituting PK by G, the moment
equation (7) becomes

EG[m(x,θ)] = 0, (10)

which rewrites
K∑
k=1

qkm(xk,θ) = 0 , (11)

In the estimation of parameter θ of interest, the weights (q1, . . . , qK), intro-
duced in equation (9) (which are the parameters of the multinomial) are nui-
sance parameters.

To obtain a concentrated criterion in the parameter of interest, we first opti-
mize on G by using the Kullback-Leibler discrepancy K, see Appendix A for
details :

C(θ) = 2K min
G

{
K(G,PK)

∣∣∣EG[m(x,θ)] = 0
}
. (12)

This leads to the following estimator

θ̂ = arg min
θ
{C(θ)} (13)
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In fact, C(θ) is the Empirical Likelihood Ratio (ELR), as we will see in the se-
quel by emphasizing the link between this method and the classical Maximum
Likelihood method.

3.2 Likelihood, Empirical Likelihood and Empirical Likelihood Ratio

In this section, we show how the previous procedure can be understood in
the classical likelihood context and how the criterion C can be interpreted as
a likelihood ratio. We consider the multinomial G as a parametric model for
the data. Notice that this parametric model assumption is only considered to
formally introduce the EL method as a classical likelihood. For that purpose,
we define, for G and θ verifying the moment equation (10), EG[m(x,θ)] = 0,
the pdf corresponding to G as follows

g(θ,q1,...,qK)(x) =

qk if ∃k, x = xk,

0 otherwise
(14)

To simplify the exposition, we suppose that there are no ties in the data.
This issue can be easily handled, see [28], page 11. The likelihood function
corresponding to the pdf g(θ,q1,...,qK), such as the moment equation (10) is
verified, is called Empirical Likelihood and is defined as follows:

EL(θ) = sup
(q1,...,qK)

{
K∏
k=1

g(θ,q1,...,qK)(xk)

∣∣∣∣∣EG[m(x,θ)] = 0

}
(15)

= sup
(q1,...,qK)

{
K∏
k=1

qk

∣∣∣∣∣
K∑
k=1

qkm(xk,θ) = 0,
K∑
k=1

qk = 1

}
. (16)

In a similar way as in the classical ML theory, the log-likelihood ratio corre-
sponding to EL(θ) is defined by:

ELR(θ) = −2 log

(
EL(θ)

maxθ {EL(θ)}

)
. (17)

The following theorem allows to make the link between ELR(θ) and C(θ).

Theorem 3.1 (Connection between the criterion C(θ) and ELR(θ))
If n = d, C(θ), defined by equation (12), is equal to ELR(θ):

C(θ) = ELR(θ). (18)

Proof 3.2.1
For the clarity of the presentation, proof of Theorem 3.1 is postponed to
Appendix B.
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The main result of this Theorem is that the maximization of C(θ) and ELR(θ)
lead to the same estimator for θ. When n 6= d, this result is preserved since
C(θ) and ELR(θ) are not any more equal but proportional.

Thus, the estimator θ̂ defined by equation (13) is the Maximum Empirical
Likelihood (MEL) estimator θ̂MEL. The following theorem gives its asymptotic
behavior.

Theorem 3.2 (Maximum Empirical Likelihood (MEL) estimator)
Let x1, . . . ,xK be an i.i.d. sample distributed according to a distribution P0,
such as EP0 [m(xk,θ0)] = 0. If D = EP0 [∂m(xk,θ0)/∂θ] has rank n and
M = EP0 [m(xk,θ0)m(xk,θ0)

>] is definite positive then the MEL estimator,
equivalently given by

θ̂MEL = arg max
θ
{EL(θ)} = arg min

θ
{ELR(θ)} (19)

is an asymptotically normal estimator of θ0:

√
K
(
θ̂MEL − θ0

)
dist.−−−→
K→∞

N
(
0, (D>MD)−1

)
. (20)

Proof 3.2.2
See [29].

Theorem 3.2 gives asymptotic statistical behavior of the MEL estimator in
a general context. The MEL estimator is so defined as the solution of an
optimization equation (see equation (19)), resolved thanks to a Lagrangian
method. It is possible to add some prior information, on the parameter struc-
ture or on known moments of the data, into the optimization equation. This
could be written as follows:

θ̂MEL = arg max
θ
{EL(θ)|θ ∈ E} , (21)

where E is the set of constraints on the parameter θ of interest. Section 4
presents an estimation problem in which some prior informations on the pa-
rameter of interest are gradually integrated in the EL procedure. Notice that
the prior informations may concern the parameter structure, the introduced
parameterization P(θ) and the known moments of the observations.

In several situations, a closed-form expression for the MEL estimator can be
obtained. This is the case when the parameter structure or the parameteri-
zation can be expressed in a linear form. This is the purpose of the following
section.
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3.3 Closed-form expression of MEL

Some particular problems lead to closed-form expressions for the MEL esti-
mator. This subsection presents the case where the moment function m is a
linear function, with n = p. This is the case when the parameter of interest is
an expectation and that some additional prior information is available. The
estimation scheme can take into account this prior information by introducing
an augmented observation vector as proposed in the following. For notational
convenience, this augmented vector will be also denoted x.

x is divided in two parts: y, a first data transformation traducing the param-
eter estimation problem such that EP0 [y] = θ, and z a second data transfor-
mation reflecting the prior information. This procedure leads to

x =

y
z

 , where EP0 [z] = 0. (22)

Therefore, the function m, defined by

m :


(Rp,Rd)→ Rp

(x,θ) =


y
z

 ,θ
 7→

y− θ

z

 , (23)

is such that EP0 [m(x,θ0)] = 0 and this leads to the following theorem.

Theorem 3.3 (Estimation with additional constraints )
Let (x1, . . . ,xK) be an i.i.d. data set in Rp, with common probability P0 and

for n = p. For k = 1, . . . , K, let us set xk =

yk
zk

 ∈ Rd × Rp−d and assume

that the expectation and variance-covariance matrix are

EP0

y

z

 =

θ0

0

 and Var

y

z

 =

Vyy Vyz
Vzy Vzz

 . (24)

Then the Maximal Empirical Likelihood estimator is given by

θ̂MEL = y− VyzV −1zz z . (25)

where y (resp. z) denotes the empirical mean, y =
1

K

K∑
k=1

yk (resp. z =

1

K

K∑
k=1

zk ).
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Proof 3.3.1
This result has been proved in [28], page 52.

In practice, Vyz and Vzz are replaced by their empirical versions that are con-
sistent estimators.

Notice that when there is no additional information, i.e. z = 0, one obtains
the following result:

θ̂MEL = y . (26)

This is also the case when z is uncorrelated with y because Vyz is the null
matrix.

The following simple example illustrates the use of extended data vector. Let
x be a 2-random vector of mean θ and with identity covariance matrix I.
Then, the extended vector x̃ will be:

x̃ =

 x

vec(xxH − I)

 , (27)

such that EP0 [x] = θ and EP0

[
vec(xxH − I)

]
= 0 by definition of the problem.

Thus, equation (25) provides a closed-form expression of the MEL estimator.
This example deals with the prior information the second order moment of
the observation data.

3.4 A simple example: mean estimation in presence of Gaussian noise

This section is devoted to the development of the EL procedure in a sim-
ple case. For that purpose, we first recap classical results obtained with the
ML method under Gaussian assumptions. For that purpose, we focus on the
following particular model:

x = θ0 + n , (28)

where x is the observation data, n is zero-mean and has known covariance
matrix M = E[nnH ] and θ0 is the unknown true value of the parameter of
interest. As said previously, the EL method does not require the additive noise
distribution knowledge but to build the classical likelihood, n will be assumed
to be Gaussian: x ∼ CN (θ0,M).

To estimate the parameter of interest θ, the natural procedure consists to build
the profiled likelihood from an i.i.d. sample (x1, . . . ,xK), defined as follows

L(θ) =
K∏
k=1

φ
(
M−1/2 (xk − θ)

)
(29)
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where φ stands for the standard Gaussian pdf in Rp. This method has been ex-
tensively studied and provides under Gaussian assumptions the ML estimator
θ̂ML, given by

θ̂ML =
1

K

K∑
k=1

xk = x. (30)

Notice that the ML estimator of θ0 defined at equation (30) does not depend
on the true value of the scale parameter.

Let us now turn to the EL method. The natural moment equation correspond-
ing to our example should simply be

E [x− θ] = 0, (31)

and then the moment function corresponding to this problem is

m(x,θ) = x− θ . (32)

As seen previously in subsection 3.3, this implies that the MEL estimator is
defined by

θ̂MEL = x = θ̂ML . (33)

Remark 3.1
The conclusion of this section is that the estimator of the expectation provided
by the MEL theory is the same as the ML estimator built under Gaussian as-
sumptions (and under many classical others). This is an important result since
problems with Gaussian models are extensively studied in Signal Processing
and in this reference case, previous result (equation (33)) ensures that the
MEL estimator performs exactly like the ML estimator.

4 Application to Covariance matrix estimation

In this section, we focus on the noise covariance matrix estimation problem.
Let us set x a complex Gaussian p-vector with zero-mean and covariance
matrix E

[
xxH

]
= τ 2M, denoted x ∼ CN (0, τ 2M). We set Tr(M) = p for

identifiability considerations. For simplicity matters, we set θ = τ 2M. Since θ
is Hermitian, we only need to estimate the upper triangular part of θ, which
is our parameter of interest.

In the following, the problem statement will be modified according to prior in-
formations assumed on the covariance matrix structure. The possible moment
equations will be noted

E[mi(x,θ)] = 0. (34)

In the sequel, di will stand for the number of unknown real parameters, i.e.
the dimension of θ and ni for the dimension of mi. Notice that each moment
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equation i will provide a different estimator. The different situations are the
following:

(1) no prior information,
(2) the first moment is known, x is zero-mean,
(P) θ is Persymmetric,
(3) the structure of θ is Toeplitz,
(4) a prior information on the parameterization, θ is parameterized with two

unknown parameters, θ = P(τ, ρ).

This allows to show the EL procedure development for different prior infor-
mations.

When there is no prior information on the covariance matrix structure, the
moment equation is given by

E[m1(x,θ)] = E
[(
xix

H
j − θij

)
i≤j

]
= 0, (35)

where xi is the ith element of the vector x and xH stands for the conjugate of
element x. We consider here θ as an element of Cp×p, and then, the number
of unknown real parameters is d1 = p2: p for the real valued elements θjj of
the diagonal and 2p(p − 1)/2 for the complex valued elements θij, i < j, of
the strictly upper triangular part. The dimension n1 of m1 is also equal to p2

and then the MEL weights are 1/K (see Appendix B), and the corresponding
estimator is

θ̂EL1 =
1

K

∑
k

xkx
H
k = xxH . (36)

The point of this section is to show how the estimator can be improved in
the direction proposed by [29]: increase the information used by constraining
the likelihood to fit prior knowledge, i.e. increase the dimension n of m, or
conversely decrease the dimension d of the parameter of interest θ.

Remark 4.1
An important property of EL is to easily take into account available prior
information in the estimation process. Notice that in the problem under study
in the current section, one has E[x] = 0 so that it could be possible to use the
more complete moment equation defined as follows

m2(x,θ) =


(
xix

H
j − θij

)
i≤j

x

 , with d2 = p2 and n2 = p(p+ 2) (37)

This would increase the dimension n2 of m2 to n1 + 2p = p(p+ 2) whereas the
number d2 of unknown parameters remains unchanged.
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This estimator writes

θ̂EL2 = arg sup
θ
{EL2(θ)} = arg min

(θ,λ)

{
K∑
k=1

log
(
1 + λ>m2(xk,θ)

)}
. (38)

Unfortunately, it is well known that first and second moment estimators are
independent in the Gaussian case by the Student theorem. Therefore, the new
constraint does not bring any supplementary information on the estimation of
θ (if the data are Gaussian). The effect of the independence in the Gaussian
case can be illustrate through Theorem 3.3: if y and z are asymptotically
uncorrelated, Vyz is null and then the estimator is

θ̂MEL = y− VyzV −1zz z = y. (39)

In the following, this constraint will not be used. However, under non-Gaussian
assumptions, the zero-mean prior information could be useful for the covari-
ance matrix estimation.

4.1 Prior information on the structure: θ is an Hermitian Persymmetric
matrix

Many applications can result in a clutter covariance matrix that exhibits some
particular structure. Such a situation is frequently met in radar systems using
a symmetrically spaced linear array for spatial domain processing, or sym-
metrically spaced pulse train for temporal domain processing [30,31]. In these
systems, the clutter covariance matrix θ has the persymmetric property:

θ = Jm θ∗ Jm , (40)

where Jm is the m-dimensional antidiagonal matrix having 1 as non-zero ele-
ments and ∗ stands here for the conjugate operator.

In this case, the moment equation becomes

E[mP (x,θ)] = E
[(
xix

H
j − θij

)
i≤j≤p+1−i

]
= 0. (41)

The number of unknown real parameters is dP =
p(p+ 1)

2
: for p even: p/2

for the real valued elements θjj of the diagonal, p for the real valued elements
(p/2 complex elements) θj,p+1−j of the anti-diagonal and p(p−2)/2 for the real
valued of the strictly upper corner (i < j < p + 1 − i). The same dimension
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dP is obtained for odd p. The dimension of m is also equal to
p(p+ 1)

2
.

This leads to a new estimator θ̂ELP of θ, which integrates the constraint on
the persymmetric structure of the real covariance matrix M. This writes

θ̂ELP = arg sup
θ
{ELP (θ)} = arg min

(θ,λ)

{
K∑
k=1

log
(
1 + λ>mP (xk,θ)

)}
. (42)

We can rewrite the constraint in terms of expectations in order to obtain an
explicit form of the estimator by means of Theorem 3.3 . For illustration, the
constraints is written for p = 3 and for real covariance matrix. Let us define

y =
(
Re(x1xH1 , x2xH2 , x1xH2 , x1xH3 )

)>
, (43)

z =
(
x1x

H
1 − x3xH3 , x1xH2 − x2xH3 , Im(x1x

H
2 , x1x

H
3 )
)>

. (44)

Then, Theorem 3.3 gives an estimator of θ, thanks to previous quantities:

θ̂ELP = y− VyzV −1zz z (45)

4.2 Prior information on the structure: θ is a Toeplitz matrix

A first step is to assume that θ has real valued elements. The dimension of
the parameter is therefore reduced to p(p + 1)/2. The number of constraints
remains unchanged because the constraints remain complex.

Several problems in Signal Processing assume that the covariance matrix of
the additive noise has a Toeplitz structure [22,23,24,25]. The covariance matrix
(or correlation matrix since EP0 [x] = 0) is often a Toeplitz matrix, since the
data vectors consist of subsequent samples from a single signal or times series.
The Toeplitz matrix are also met in case of stationary random processes.
For instance, because of the stationarity of the input process, the covariance
matrix of the autoregressive (AR) process is a Toeplitz matrix. [26] is a good
tutorial on Toeplitz matrices and contains most of their properties.

Notice that there already exists methods for structured covariance matrix
estimation in which the Toeplitz case is treated in the ML framework, see e.g.
[32,33]. We propose here to extend that to the MEL.

Now, let us assume that M is a Toeplitz matrix with trace p, M can be written
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as follows

∃(a1, . . . , ap−1) ∈ Rp−1,

Mij = a|i−j|, for i 6= j ,

Mii = 1 .
(46)

i.e.

M = I +
p∑
i=2

(
ai−1Ji + aHi−1J

>
i

)
, (47)

where I stands for the identity matrix with appropriate dimension (p×p here)
and Ji is the p×p matrix with 1’s on the ith upper diagonal and 0 everywhere
else.

In this subsection, we take advantage of the Toeplitz structure on M, and as
a consequence on θ = τ 2M. Then, the constraint used in our process is the
following: elements of the main diagonal θii are all equal to τ 2 and elements
on the upper diagonals θij, for i < j, are equal to τ 2 ai.

This changes both the dimension of the problem and the moment condition.
Indeed, the number of unknown real parameters is 1 for each of the p upper
diagonals. Therefore, d3 = p. The moment conditions are modified to take the
structure into account.

m3(x,θ) =


(
xix

H
i+j − τ 2aj

)
1≤i≤p, 1≤j≤p−i

(x2i − τ 2)1≤i≤p

 , with d3 = p and n3 =
p(p+ 1)

2
.

(48)

This leads to a new estimator θ̂EL3 of θ, which integrates the constraint on
the Toeplitz structure of the real covariance matrix M. This writes

θ̂EL3 = arg sup
θ
{EL3(θ)} = arg min

(θ,λ)

{
K∑
k=1

log
(
1 + λ>m3(xk,θ)

)}
. (49)

We can rewrite the constraint in terms of expectations in order to obtain an
explicit form of the estimator by means of Theorem 3.3 . For illustration, the
constraints is written for p = 3. Define

y = Re
(
x1x

H
1 , x1x

H
2 , x1x

H
3

)>
(50)

z =
(
Im

(
x1x

H
2 , x1x

H
3

)
, x1x

H
1 − x2xH2 , x1xH1 − x3xH3 , x1xH2 − x2xH3

)>
(51)

Then, Theorem 3.3 gives estimators for the first line of θ:

(
τ̂ 2, τ̂ 2a1, τ̂ 2a2

)>
= y− VyzV −1zz z (52)
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The estimator θ̂EL3 writes then

θ̂EL3 =


τ̂ 2 τ̂ 2a1 τ̂ 2a2

τ̂ 2a1 τ̂ 2 τ̂ 2a1

τ̂ 2a2 τ̂ 2a1 τ̂ 2

 (53)

4.3 Second prior information: θ is parameterized by τ and ρ

For some applications, a more structured matrix θ(τ, ρ) can be taken into
account. The correlation information contained in the covariance matrix is
assumed to be reduced to only one parameter, the correlation coefficient ρ:

Mij = ρ|i−j| and θij = τ 2 ρ|i−j| , (54)

for 1 ≤ i, j ≤ m and for 0 < ρ < 1 . Notice that the covariance matrix M
is fully defined by the parameter ρ, which characterizes the correlation of the
data.

Then, the unknown parameters of θ are 2 real scalars, ρ and τ . Thus, the
dimension of the problem is d4 = 2, while the moment condition still remains
unchanged, n4 = p(p+1)

2
:

m4(x,θ) =
( (

xix
H
i+j − τ 2ρj

)
1≤i≤p, 0≤j≤p−i

)
, with d4 = 2 and n4 =

p(p+ 1)

2
.

(55)
This leads to the last estimator θ̂EL4 of θ, defined by

θ̂EL4 = arg sup
θ
{EL4(θ)} = arg min

(θ,λ)

{
K∑
k=1

log
(
1 + λ>m4(xk,θ)

)}
. (56)

Remark 4.2
Notice that no closed-form expression of this last estimator is available, be-
cause we have not been able to write the constraints xixi+j − τ 2ρj as expec-
tations in order to use Theorem 3.3. One can give a general expression which
is also valid for the previous estimators:

θ̂ELj =
K∑
k=1

q∗k(j)xkx
H
k , (57)

where the q∗k(j) depends on the constraints (see Appendix B, Lemma B.1). For
example, in the case of no constraint, i.e. θ̂EL1, the q∗k(1) are, for 1 < k < K,

equal to
1

K
. This corresponds to the ML estimator of the covariance matrix

for a Gaussian vector.
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For the other estimators, the q∗k(j) allow to give a weight on the kth data xk in
order to fulfill the a priori conditions. As the consequence, θ̂EL3 has a Toeplitz
structure while θ̂EL4 satisfies the special Toeplitz structure given by ρ.

Notice that adding a priori information that can not be expressed as linear
constraint leads to an increasing of the computational loads. In such a case,
the computational loads and the estimation accuracy are in trade-off.

Remark 4.3
Taking into account linear constraints can also be easy with the conventional
ML method. When using EL, adding a linear constraint leads to a better ac-
curacy for the same computational complexity. The only additional cost is the
simple estimation of the correlation and variance Vyz and Vzz in Theorem 3.3 .
This estimation is accurate to the order O(n−1) and is therefore negligible.

Nevertheless, non linear constraints on θ, such as the one considered in equa-
tion (55), is much more challenging for conventional methods and it requires
each time the derivation of an appropriate algorithm. In opposite, EL is de-
signed to handle any kind of additional constraint without any new investiga-
tion.

These theoretical estimators of θ will be compared in the section 4 thanks to
simulations on their Mean Square Error (MSE) and an expression for each one
will be given.

5 Simulations

In order to enlighten results provided in sections 3.4 and 4, some simulation
results are presented. We focus on the problem of structured covariance matrix
estimation under Gaussian assumptions. Simulations are first performed with
complex Gaussian noise and then with complex non-Gaussian noise. In this
section, we only consider the true value of the parameters. For simplicity of
the notation, the index 0 is omitted.

In order to compare all the previous estimators, we will plot the Mean Square
Error (MSE) against the number K of data in the Gaussian case. The MSE
used in this section is the following criterion:

MSE(M̂,M) = E

‖M̂−M‖
‖M‖

 , (58)

where ‖.‖ stands for the Frobenius norm. Actually, this expectation is replaced
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by its empirical form

MSE =
1

L

L∑
l=1

MSE(l) ,

which converges to the MSE thanks to Strong Law of Large Numbers on the
number L of Monte Carlo trials.

The covariance matrix θ = τM which has to be estimated has a particular
Toeplitz structure and is defined by equation (54).

The size of the data is p = 3, the shape parameter τ is equal to 1. The cor-
relation coefficient ρ is equal to 0.1 or 0.9. This allows to build a covariance
matrix close to the identity matrix (i.e. ρ = 0.1) or a covariance matrix of
very correlated data (i.e. ρ = 0.9). This choice of different ρ allows to test
the robustness of covariance matrix estimation to data correlation. In partic-
ular, Burg’s method [32], based on the inversion of the estimated matrix, is
expected to suffer from the correlation. Therefore, for ρ = 0.9, it is expected
a decrease in estimation performance.

For that purpose, several well-known covariance matrix estimators are com-
pared to those provided by the EL method. This allows to evaluate perfor-
mance of our method in comparison with classical ones. The chosen estimators
of θ are the following:

• The well-known Sample Covariance Matrix (SCM) which corresponds to
the ML estimator of the covariance matrix under Gaussian assumptions
and which is defined as follows

θ̂SCM =
1

K

K∑
k=1

xkx
H
k . (59)

θ̂SCM is used as a benchmark but it is not appropriate to our problem since
it does not take into account the structure of the real covariance matrix.
• To fill this lack, we use an appropriate estimator for persymmetric matrix,

derived from [32]:

θ̂B2 = max
θ̂∈M2

(
− ln[det(θ̂)]− Tr(θ̂

−1
θ̂SCM)

)
, (60)

where M2 denotes the set of persymmetric matrix:
M2 = {A ∈ Cp×p|A = JmA∗ Jm , } , where Jm is the m-dimensional antidi-
agonal matrix having 1 as non-zero elements.
• To fill this lack, we use an appropriate estimator for Toeplitz matrix, first
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introduced in [32] and defined by

θ̂B3 = max
θ̂∈M3

(
− ln[det(θ̂)]− Tr(θ̂

−1
θ̂SCM)

)
, (61)

where M3 denotes the set of Toeplitz matrix:
M3 =

{
A ∈ Cp×p|for i 6= j, Aij = τ 2a|i−j|, and Aii = τ 2

}
.

• Moreover, since the EL estimator uses the third constraint (i.e. when the
only unknown parameter is the correlation coefficient ρ), we also build the
particular Burg estimator defined by

θ̂B4 = max
θ̂∈M4

(
− ln[det(θ̂)]− Tr(θ̂

−1
θ̂SCM)

)
, (62)

where M4 =
{
A ∈ Cp×p|for 0 < ρ < 1, Aij = τ 2ρ|i−j|

}
.

• Finally, EL estimators will be also compared to a recently introduced esti-
mator devoted to non-Gaussian noise, the Fixed Point estimator [34,35,36]
defined as

M̂FP =
m

K

K∑
k=1

xkx
H
k

xHk M̂
−1
FPxk

. (63)

Notice that M̂FP is self-normalized and it does not depend on τ . Thus, it
provides directly an estimator of M. For the other estimators, a normalization
by an estimator of τ 2 has to be made. As Tr(M) = p, one has Tr(θ) = τ 2 p
and thus, for all estimators, except M̂FP , one has

M̂ =
p

Tr(θ̂)
θ̂ . (64)

Concerning the EL method, notations of section 3.4 are still valid: θ̂EL1 (which
is equal to θ̂EL2 and θ̂SCM), θ̂ELP , θ̂EL3 and θ̂EL4.

5.1 Gaussian case

Now we give the mean square errors (MSE) of the corresponding estimation
procedures, for different values of the data set length K and for the seven
estimators of interest when the data are Gaussian p-vector with zero-mean
and the covariance matrix θ = τ 2M, with p = 3 and τ = 1, i.e.

for k = 1, . . . , K , xk ∼ CN




0

0

0

 ,


1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1



 (65)
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5.1.1 ρ = 0.1

Figure B.1 is plotted with a logarithmic scale on both horizontal and vertical
axes.

The curves which correspond to M̂EL1, M̂ELP , M̂EL3 and M̂EL4 are respec-
tively denoted EL1, ELP , EL3 and EL4. As expected, the MSE calculated
for each estimators decreases when K increases. The larger the number of
data K, the better the precision of estimators. For the EL, the MSE decreases
with the difference n − d, i.e. the estimation performance increases with the
number of prior informations. This motivates the use of EL as soon as prior
informations are available. That is why on Figure B.1.a, the MSE of M̂EL4

(resp. M̂EL3, M̂ELP ) is lower than the MSE of M̂EL3 (resp. M̂ELP , M̂EL1).
Moreover, as seen previously, simulations validate that M̂EL1 is equal to the
SCM.

On the other hand, since the FP estimator is not optimal in Gaussian con-
text, its performance are quite poor. This estimator has been introduced in
the literature in cases of non-Gaussian noise models.

Moreover, notice that the MSE of M̂EL4 (resp. M̂EL3) reaches the MSE of
M̂B4 (resp. M̂B3) as soon as the number K of data is large enough: on Fig-
ure B.1.a, it approximatively corresponds to K = 200. The same conclusion
holds for M̂ELP and M̂B2, but for larger K. This can be explained by the
fact that both methods exploit the same hypothesis on the structure of the
covariance matrix M. For smaller values of K, the information contained in
the Gaussian hypothesis plays an effective role which can not be reduced to
the observed data. That is why Burg’s method is sensitively better than the
EL method for small values of K.

Finally, equations (45) and (53) provide closed-form expressions of M̂ELP and
M̂EL3 respectively, in opposite to M̂B2 and M̂B3 which need an optimization
procedure, for the same estimation performance.

This first simulation advocates for the EL method. Despite the fact that it
does not use the Gaussian assumption on the data pdf, the EL method shares
the same estimation performance as Burg’s one, without time consuming for
M̂ELP and M̂EL3 .
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5.1.2 ρ = 0.5 and ρ = 0.8

First comments of Figure B.1.a are still valid for Figure B.1.b and Figure B.1.c.
The main difference is that, for ρ = 0.5 and even more for ρ = 0.8, Burg’s
method suffers from a relative lack of performance, due to the difficulty of the
matrix inversion in its algorithm, for these more correlated situations: indeed,
when ρ increases, M̂B4 deteriorates, in comparison to M̂EL4. The same com-
ment is valid for M̂EL3 and M̂ELP . Figure B.1.c still shows that for ρ = 0.8,
the MSE of M̂B4 is even above the MSE of M̂EL3.

An other important remark is that the distance, in terms of MSE, between
M̂EL4 and M̂EL3 (resp. M̂B4 and M̂B3) seems to be decreasing, i.e. that the
supplementary assumption on the particular structure of the Toeplitz matrix
brings less additional information for the estimation procedure.

Finally, notice that MSE values seem to be smaller as ρ increases: for instance,
for K = 100, the MSE of M̂EL4 is around 0.06 for ρ = 0.1, 0.04 for ρ = 0.5
and 0.02 for ρ = 0.8.

5.1.3 MSE as a function of ρ

To confirm last comment, Figure B.2 presents MSE against ρ for K = 100
and p = 3.

First comment is that all the MSE decrease as ρ increases. This can be par-
tially explained by the fact that the norm of the matrix M, which is the
denominator of the MSE, increases with ρ.

As observed in the previous paragraph, Burg’s estimators have a gain in per-
formance smaller than the EL’s ones when ρ increases. This is also explained
by the fact that Burg’s algorithm relies on the inversion of the covariance
matrix, which is a difficult issue for large values of ρ. This underlines the
robustness of EL. Moreover, M̂EL4, M̂EL3 and M̂ELP (resp. M̂B4, M̂B3 and
M̂B2) approach from each other: this means that the additional information
concerning the particular Toeplitz structure of M (i.e. defined only by ρ),
assumed to build M̂EL4 and M̂B4, does not allow to improve significantly es-
timation performance when ρ tends to 1.
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5.2 Non-Gaussian case: mixture of Gaussian and K-distribution

To compare the different estimators in a non-Gaussian context, we retain
a mixture between the Gaussian distribution and the K-distribution for the
data pdf, with a very small shape parameter ν (10−3) to model very impulsive
noise. Moreover, this pdf is widely used in signal processing, see for example
[13,24,25,36]. The K-distribution is the product of the square root of a random
variable gk which is Gamma distributed, and an independent complex zero-
mean Gaussian vector nk, with covariance matrix S: xk =

√
g
k
nk ; it is

denoted CK (ν,0,S). In order to simulate as better as possible a real situation,
the noise is the sum of two independent noises (weighted by a parameter η
which deals with the impact of each distribution): a Gaussian noise, which
would model thermal noise or interferences, and a K-distribution which would
represent an additive non-Gaussian noise (for instance, the clutter in radar
context).

For k = 1, . . . , K ,

xk ∼
1√

2 (η2 + (1− η2))


1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1


1/2 [

η CN
(
0, I

)
+ (1− η) CK

(
ν,0, I

)]
.

(66)

The set of parameters in this subsection is p = 3, K = 100, ρ = 0.1 and
ν = 10−3, which means that the K-distribution is extremely impulsive . The
value of the correlation coefficient allows to analyze the Burg’s method in a
suitable context. The simulation results are given in Figure B.3.

For all the estimators except the Fixed Point, the MSE decreases as η in-
creases. In other terms, the performance spoil as the data pdf diverges from
the Gaussian one. In the opposite, the Fixed Point performance remains con-
stant as η variates, as it is designed for, see e.g. [36]. Since the FP estimator,
like the SCM and EL1, does not assume any particular structure on the co-
variance matrix M, it makes no sense to compare these estimators to the
others. Therefore, ELP and Burg2 have to be considered together while EL3
and Burg3 (resp. EL4 and Burg4) are considered as a third (resp. fourth) set
of estimators. As expected, the Fixed Point has the smallest MSE (beyond
the three non structured estimators) when the noise is very impulsive, and
deteriorates as η increases, to approach the SCM on Gaussian data. Actually,
performance of the Fixed Point are almost constant while SCM performs bet-
ter when η increases.
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When η is small enough, data are non-Gaussian and EL method provides sig-
nificantly better performance than Burg’s one. Then, when η becomes close
to 1, the noise is approximatively Gaussian and it coincides with results of
Figure B.1.a .

Notice that the ratio between the curves EL3 and EL4 (resp. Burg3 and
Burg4) is constant for each value of η. This ratio corresponds theoretically to
a ratio between the expectation of a χ2(3) (where 3 is the number of unknown
parameters: τ , a1 and a2) and the expectation of a χ2(2) (where 2 is the num-
ber of unknown parameters: τ and ρ). This ratio is equal to 1.5 . This also the
case for example, for ELP and EL3 (ratio of the expectations of a χ2(4) and
a χ2(3)).

5.3 Simulations synthesis

This set of simulations illustrates the use of Empirical Likelihood thanks to
an example, the estimation of a structured covariance matrix of an additive
noise. It appears that in a Gaussian context and when the data correlation
is weak enough, EL competes with the standard method, introduced by Burg
in [32] despite the fact that EL does not exploit the a priori pdf of the data.
Moreover, simulations show that EL method provides even better performance
than the other estimators when the correlation becomes stronger.

Secondly, under non-Gaussian pdf, Burg’s estimators performance seem to de-
teriorate whereas the EL ones remain robust. This is coherent with the fact
that EL is a method designed to handle any data distribution.

6 Conclusions

In this paper, an estimation method in unknown noise field, the Empirical
Likelihood method, has been introduced. This method does not require an
a priori knowledge of the data distribution but it uses different informations
like, for instance, moments or specific structure on the parameter of inter-
est. In the field of Signal Processing, such prior information is encountered in
many estimation problems, in which the data pdf is not available. Moreover,
the theoretical results provided by the EL study shows that under Gaussian
assumptions, and without any supplementary information, the Maximum Em-
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pirical Likelihood estimator is the same as the Maximum Likelihood estimator.

The second part of this paper has been devoted to a classical and generic
example: the estimation of a structured covariance matrix under Gaussian
and non-Gaussian assumptions. Under Gaussian assumptions, the EL method
has been compared to the classical and structured methods introduced by
Burg. It appears that EL performs almost as well as Burg’s method. On the
other hand, in non-Gaussian context, EL presents good performance even
when other considered methods fail.

Moreover, according to prior information used in the EL method, closed-form
expressions have been derived. This improves classical methods which gener-
ally have to solve an optimization procedure in terms of computational com-
plexity, leading to a substantial gain in time and robustness.

A The Kullback-Leibler divergence

First, in order to class the candidate pdfs in regard of the data, one needs a
measure on the pdfs. A natural choice is to use the Kullback-Leibler divergence
which allows to compare a candidate Q with the data generating probability
P0. This choice is motivated by the fact that the Maximum Likelihood theory
is closely connected to the Kullback-Leibler divergence, see [37]. For Q and P
two distinct pdfs, the Kullback-Leibler divergence is defined as follows:

K(Q,P ) =


−
∫

log

(
dQ

dP

)
dP if Q is absolutely continuous with respect to P

+∞ otherwise.

(A.1)

This gives a feasible measure K(Q,PK). At this point, it is interesting to
notice that for any Q which is not absolutely continuous with respect to PK ,
the divergence diverges. Therefore, the only convenient pdfs are those which
are absolutely continuous with respect to PK .
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B Proof of Theorem 3.1

The main technical difficulty, evaluating the empirical likelihood EL(θ) at any
given θ, concerns the constrained problem optimization which is solved here
by a Lagrangian method.

Lemma B.1 (Explicit expression for EL(θ))
If the assumptions of Theorem 3.1 hold, then the supremum appearing in the
definition of EL(θ) is realized and, there exists λ∗ such as the optimal weights
are given by

q∗k =
1

K

(
1 + λ∗>m(xk,θ)

)−1
.

EL(θ) is then given by

EL(θ) = min
λ

{
K∏
k=1

(
K(1 + λ>m(xk,θ))

)−1}

Proof B.0.1
First, note that − log being a decreasing function,

− log (EL(θ)) = − log sup
(q1,...,qK)

{
K∏
k=1

qk

∣∣∣∣∣
K∑
k=1

qkm(xk,θ) = 0,
K∑
k=1

(qk − 1/K) = 0

}
(B.1)

= min
(q1,...,qK)

{
− log

(
K∏
k=1

qk

)∣∣∣∣∣
K∑
k=1

qkm(xk,θ) = 0,
K∑
k=1

(qk − 1/K) = 0

}
(B.2)

= 2 min
(q1,...,qK ,λ,γ)

{
−

K∑
k=1

log(qk) +K λ>
K∑
k=1

qkm(xk,θ)− γ
K∑
k=1

(qk − 1/K)

}
.

(B.3)

The first order condition gives

−1/q∗k +K λ∗>m(xk,θ)− γ∗ = 0.

Multiplying by q∗k and summing over k, one gets γ∗ = −K and then

q∗k =
1

K

(
1 + λ∗>m(xk,θ)

)−1
.

Finally,

EL(θ) = min
λ

{
2

K∑
k=1

log
(
K(1 + λ>m(xk,θ))

)}
.
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Now we can start the proof of Theorem 3.1. In the specific case where n, the
dimension of arrival space of function m is equal to the dimension d of the
parameter of interest and under mild conditions, the optimum is reached at
the θ such as λ∗ = 0. Therefore, the optimal weights are

q̂∗k =
1

K

(
1 + 0>m(xk, θ̂MEL)

)−1
=

1

K
, (B.4)

and thus
sup
θ
{EL(θ)} = K−K . (B.5)

Therefore, the log-likelihood ratio writes:

ELR(θ) = −2 log

(
EL(θ)

supθ {EL(θ)}

)
(B.6)

= −2 log

(
KK sup

(q1,...,qK)

{
K∏
k=1

g(θ,q1,...,qK)(xk)

∣∣∣∣∣EG[m(x,θ)] = 0

})
(B.7)

= 2 min
(q1,...,qK)

{
−

K∑
k=1

log(Kqk)

∣∣∣∣∣EG[m(x,θ)] = 0

}
(B.8)

= 2K min
(q1,...,qK)

{
−

1

K

K∑
k=1

log

(
qk

1/K

)∣∣∣∣∣EG[m(x,θ)] = 0

}
(B.9)

= 2K min
(q1,...,qK)

{
−
∫

log

(
dG

dPK

)
dPK

∣∣∣∣∣EG[m(x,θ)] = 0

}
(B.10)

= C(θ), (B.11)

which concludes the proof.

Now, to derive θ̂MEL, one writes

arg min
θ
{ELR(θ)} = arg min

θ
min
λ

{
2

K∑
k=1

log
(
1 + λ>m(xk,θ)

)}
. (B.12)
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(c) ρ = 0.8

Fig. B.1. Complex Gaussian case: MSE of each estimator against the number Nref
of data, for different correlation coefficient ρ and for p = 3 and τ = 1.
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Fig. B.2. MSE against the correlation coefficient ρ, for K = 100, p = 3 and complex
Gaussian data and for the different estimation procedures.
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Fig. B.3. MSE against η, the shape parameter of the K-Distribution, for the different
estimation procedures and for ρ = 0.1, p = 3 and K = 100.
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