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Complex grain-boundary structures, such as the 1-2 nm thick intergranular glassy films (IGF), play a prominent role in the failure behavior of nano-phased ceramics. The IGF plays the role of an imperfection and serves as the location of strain localization and failure. We have recently performed "theoretical" mechanical loading experiments on very large atomic models of IGF in silicon nitride using ab initio simulation to obtain their failure behavior. The ab initio simulations yield characteristic post-peak softening accompanied by strain localization zone. In this paper a micro-structural granular mechanics based higher-order continuum theory is applied to model the failure behavior of these types of material systems. The results obtained from the ab initio simulations are compared with those predicted by the higher order continuum theory.

Introduction

Nano-phased ceramics are attracting wide attention in structural and electronics applications as a class of materials with extraordinary mechanical properties [START_REF] Zhu | Mechanics of ultra-strength materials[END_REF][START_REF] Koch | Structural Nanocrystalline Materials: Fundamentals and Applications[END_REF]. By reducing the grain-sizes to nano-scale and manipulating materials at atomic scales, ceramics are being sought that can attain theoretical strengths predicted for single defect-free crystals. However, the understanding of the mechanical properties of these materials at their atomic scales remains insufficient. A unique feature of nano-phased ceramics is the existence of thin glassy films between crystallites with a narrowly distributed width of about 1-2 nm [START_REF] Luo | Stabilization of nanoscale quasi-liquid interfacial films in inorganic materials: A review and critical assessment[END_REF][START_REF] Subramaniam | Intergranular glassy films: An overview[END_REF]. Although these thin intergranular glassy films (IGF) occupy only a very small fraction of the overall composition and volume, they have a profound effect on the physical and mechanical properties of the bulk materials. For example, small amounts of rare earth doping which usually reside at or near the IGF results in significantly higher strength for bulk material [START_REF] Shibata | Observations of rare-earth segregation in silicon nitride ceramics at subnanometer dimensions[END_REF][START_REF] Ziegler | Interface structure and atomic bonding characteristics in silicon nitride ceramics[END_REF]).

The role that microstructures, such as crystal defects and grain boundaries, play in determining the mechanical behavior of materials has been widely recognized and continue to be researched vigorously [START_REF] Phillips | Finite element analysis of deformation of strain-softening materials[END_REF][START_REF] Sutton | On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models[END_REF][START_REF] Koch | Structural Nanocrystalline Materials: Fundamentals and Applications[END_REF][START_REF] Ovid"ko | Review on the fracture processes in nanocrystalline materials[END_REF]. Among the various microstructures, IGF characterize many nano-phased ceramics irrespective of their synthesis process [START_REF] Luo | Stabilization of nanoscale quasi-liquid interfacial films in inorganic materials: A review and critical assessment[END_REF][START_REF] Pan | Atomistic Structure of Silicon Nitride/Silicate Glass Interfaces[END_REF]. The mechanics of these larger complex microstructures, such as IGF, have been rarely investigated. In addition, as these new nano-phased ceramics are developed and the devices based upon them miniaturized, there has been an increasing interest in understanding their deformation and failure behavior from the viewpoint of atomic-scale mechanisms (see Huang and Van Swygenhoven 2009 and papers therein). At the fundamental-level, the deformation and failure mechanics of these materials can be traced to the electronic structure and the bonding between atoms. This is particularly true for covalently bonded solids, such as the ceramic materials. The thin size of the IGF and a strong 3-dimensional nature of grain-interactions make it extremely difficult to study their mechanical behavior using high-resolution experimental techniques.

The IGF and its interface with crystals is composed of a variety of defective structures as they are typically formed of under or over-coordinated atoms with bond-length and bond-angle distortions. In many cases, the IGF offer a more favorable failure mechanism in real systems as opposed to crystal defects or crystal grain boundaries. Since the IGF atomic structures are varied and complex, simulations that are based upon fundamental methods can best reveal the true nature of deformation and failure mechanism. We have recently performed ab initio simulation of deformation and failure using very large atomic models of IGF in silicon nitride [START_REF] Ching | Ab initio tensile experiment on a model of intergranular glassy film in β-Si 3 N 4 with prismatic surfaces[END_REF][START_REF] Ching | A theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si 3 N 4[END_REF][START_REF] Misra | Ab initio calculations of strain fields and failure patterns in silicon nitride intergranular glassy films[END_REF][START_REF] Chen | Complex nonlinear deformation of nanometer intergranular glassy films in β-Si 3 N 4[END_REF]. Silicon nitride is among the class of lightweight, hard nano-phased ceramics being actively sought for applications as advanced structural and electronic material. Using the results from these highly accurate ab initio calculations, we have explored deformation and failure of systems that have glassy materials interfacing crystalline structures. These ab initio results show that failure initiates within the IGF or its interface with the crystal and develops into a failure band of finite thickness. The failure is accompanied by strain softening similar to that observed at macro-scales for brittle materials.

Ab initio solutions for such complex structures cannot be obtained routinely even with the currently available unprecedented computational resources and such simulations are only possible for relatively small atomic systems. Clearly, such ab initio simulations of macro (meso)-scale mechanical behavior are not feasible for nano-phased materials that are suffused with IGF type structures. Appropriate continuum models are needed that can greatly reduce the computational needs and provide accurate simulations. However, traditional continuum approaches, including gradient theories, suffer from a variety of drawbacks including numerical instability, mesh sensitivity, and ambiguous material constants such as the length scale parameter or the higher order moduli. The objective of this paper is to address the deficiencies of the current approaches by developing micro-structural granular mechanics based higher-order continuum theory. In this paper, we present a micro-structural granular mechanics approach for obtaining the constitutive coefficients such that the internal length scale parameter reflects the natural granularity of the underlying microstructure. In contrast to most conventional gradient approaches, the present higher order theory includes strain gradients and their conjugate higher-order stress. We derive the required constitutive relationships, the governing equations and its weak form for this higher-order theory. An Element-free Galerkin (EFG) formulation is then applied for the discretization of the system governing equations. The derived method is applied to simulate the fracture process of the IGF model and the results are compared to those obtained from ab initio simulations.

Higher-order stress/strain model

There is a wide recognition that numerical solutions of materials that exhibit strain softening pose significant challenges. For example, finite-element solutions suffer from numerical instabilities and severe mesh sensitivity (see among others Pietruszczak and Mroz 1981;[START_REF] Bažant | Continuum theory for strain-softening[END_REF][START_REF] Sandler | Strain softening for static and dynamic problems[END_REF][START_REF] Frantziskonis | Analysis of a strain softening constitutive model[END_REF][START_REF] De Borst | Fundamental issues in finite element analyses of localization of deformation[END_REF][START_REF] Chen | Regularization of material instabilities by meshfree approximations with intrinsic length scales[END_REF] and lead to physically unrealistic results with increasing mesh refinement [START_REF] Bažant | Instability, ductility, and size effect in strain-softening concrete[END_REF][START_REF] Nemes | Use of a rate-dependent continuum damage model to describe strain-softening in laminated composites[END_REF]. A number of approaches have been proposed to address these numerical challenges. These include the various forms of micropolar, non-local, viscoplastic and gradient theories [START_REF] Mindlin | Microstructure in linear elasticity[END_REF][START_REF] Chang | Modeling of discrete granulates as micropolar continua[END_REF][START_REF] Fleck | Strain gradient plasticity[END_REF]Hutchinson 1993, Steinmann 1994;[START_REF] Sandler | Strain softening for static and dynamic problems[END_REF][START_REF] Wu | Deformation trapping due to thermoplastic instability in one dimensional wave propagation[END_REF][START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Sluys | Wave-propagation and localization in a rate-dependent cracked medium model formulation and one-dimensional examples[END_REF][START_REF] Nemes | Use of a rate-dependent continuum damage model to describe strain-softening in laminated composites[END_REF][START_REF] Bažant | Continuum theory for strain-softening[END_REF][START_REF] Belytschko | Strain-softening materials and finite-element solutions[END_REF][START_REF] Bažant | Nonlocal continuum damage, localization instability and convergence[END_REF][START_REF] Valanis | A global damage theory and the hyperbolicity of the wave problem[END_REF]Murakami et al. 1993;[START_REF] De Vree | Comparison of nonlocal approaches in continuum damage mechanics[END_REF][START_REF] Chen | Regularization of material instabilities by meshfree approximations with intrinsic length scales[END_REF].

Among the various approaches proposed for modeling strain softening behavior, gradient theories have emerged as a viable method. The attractions of the gradient methods are its simplicity as no rotational degree of freedom or time effects are required, nor is there any dependence on unknown "weak zones" within the solid, and the difficult to determine influence functions for the convolution integrals appearing in the classical non-local models are avoided (Triantafyllidis and Bardenhagen 1993). In addition, this approach follows strict locality in a mathematical sense [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF] and incorporates an inherent characteristic length scale that determines the size of the localization zone. Gradient models have been widely used for modeling softening failure behavior [START_REF] De Borst | Gradient-dependent plasticity: Formulation and algorithmic aspects[END_REF][START_REF] Pamin | Gradient-dependent plasticity in numerical simulation of localization phenomena[END_REF][START_REF] De Borst | On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials[END_REF][START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF][START_REF] Altan | On some aspects in the special theory of gradient elasticity[END_REF][START_REF] Chang | Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture[END_REF][START_REF] Sluys | Wave propagation, localization and dispersion in softening solids[END_REF][START_REF] Sluys | Wave propagation, localization and dispersion in a gradient-dependent medium[END_REF][START_REF] Chang | Wave propagation in granular rod using high-gradient theory[END_REF][START_REF] Chang | High-gradient modeling for love wave propagation in geological materials[END_REF]Suiker et al. 2001a, b).

In contrast to most currently used gradient theories, the approach developed in this paper considers both the higher-order strain and the higher-order stress terms [START_REF] Germain | The method of virtual power in continuum mechanics. Part 2: Microstructure[END_REF]. This type of model appears to unconditionally maintain the stability and, therefore, offers a more robust approach [START_REF] Chang | Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture[END_REF]. However, this approach has been rarely employed mainly because of its numerical complexity and ambiguous material constants. In this paper, we focus upon the derivation of a first-order theory that includes the usual Cauchy stresses and strains termed as zeroth-order tensors in constitutive model, and the first-order gradient of strain and its conjugated first-order stress. We derive the higher-order constitutive laws on the basis of a microstructural granular mechanics approach [START_REF] Chang | Second-gradient constitutive theory for granular material with random packing structure[END_REF][START_REF] Mühlhaus | Dispersion and wave propagation in discrete and continuous models for granular materials[END_REF]Suiker et al. 2001a, b). The macroscopic material model of this pseudo-granular material is obtained in terms of the microscopic material properties. As a result, first-order gradient damage constitutive models are derived such that a so-called internal length scale, i.e. the particle radius, is incorporated directly into the model to reflect the granularity of the underlying microstructure. We then derive the governing equations and their weak form for this first-order gradient theory.

Higher-order constitutive law using microstructural granular mechanics

A macroscopic continuum is postulated to have a granular microstructure consisting of a set of interacting particles whose centroids represent material points as depicted in Fig. 1. Under an applied load on a sample of such a material, the conceptual grains may undergo translation or rotation. The relative displacement, δ i , between two nearest neighbor particles n and p (Chang and[START_REF] Chang | Packing structure and mechanical properties of granulates[END_REF]Yang 2010) is given by (ω ω )

n p n n p p i i i ijk j k j k δ u u e r r     (1)
where u i =particle displacement; ω j =particle rotation; r k = vector joining the centroid of particle to the contact point; superscripts refer to the interacting particles; e ijk =the permutation symbols. Note that all subscripts follow the summation convention of tensor.

The contact force c i f between two particles may be related to the relative displacement

c j  through the contact stiffness c ij K as c c c i ij j fK   (2)
with c ij K written in terms of the stiffness components in the normal direction K n and that in the tangential direction K w as () 
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The strain energy density in a representative volume V of this pseudo-granular material can be written as

1 1 2 N cc ii c Wf V     (5) 
where N refers to the total number of inter-particle contacts. To develop a continuum model for the behavior of a particle assembly, we associate the discrete displacement, u i n , of the nth particle to the displacement of the centroid, x i n , of the nth particle, u i (x i n

). Following the approach by [START_REF] Chang | Constitutive relation for a particulate medium with the effect of particle rotation[END_REF], Taylor series expansions is used for the displacement field. Thus, the displacement at particle n can be estimated using the gradients at a reference point, x 0 , which is defined as the center of the representative volume as follows:

0 0 0 ,, 1 ( ) ( ) ( ) ( ) 2 n i i i j j i jk j k u x u x u x x u x x x    (6) 
where the derivatives of third-and higher-order are neglected. Ignoring the particle rotations and substituting Eq. ( 6) into Eq. ( 1) we get ,, ( ) ( )

c n p c c i i i i j j i jk jk u x u x u L u J      (7) 
where the geometric quantities

c n p j j j L x x  (8a) 1 () 2 c n n p p jk j k j k J x x x x  (8b)
Assuming that the origin of local coordinates is located at the pth particle, and the pseudo-particle radius is uniform denoted by, r, Eqs. (8a)-(8b) are reduced to

2 cc jj L rn  (9a) 1 2 c c c jk j k J L L  (9b)
Now considering the zeroth and the first-order strain measure, ε, as 0 ,,

I ij i j ijk i jk uu   (10)
the conjugate stress measures ζ can be defined as 0 0

I ij ijk I ij ijk WW      (11) 
By combining Eqs. ( 7), ( 9a)-( 11), following set of constitutive equations is obtained:
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which is further simplified as follows for the case of material with central symmetry such that constitutive tensor, B ijqmn =0 [START_REF] Chang | Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture[END_REF]:

00 ij ijkl kl C   (13a) 11 ijq ijqklm klm D   (13b)
Using Eqs ( 5), ( 7)-( 11), the constitutive tensors in Eqs. ( 13a) and ( 13b) can be expressed in terms of the fabric measures and the inter-granular stiffness as
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Considering the symmetry of the higher-order stress and strain tensors, the fourth-rank and sixth-rank constitutive tensors have to satisfy the following symmetries ;

ijkl klij ijkl jikl ijlk C C C C C    (15) 
;
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Since the representative volume consists of a large number of particles, a summation of any quantity over all particle contacts within the volume can be expressed in an integral form by introducing a directional density function, (,) [START_REF] Chang | Packing structure and mechanical properties of granulates[END_REF]. For a suitably large representative volume with a large number of contacts, recalling Eq. ( 9a), the summation in Eqs. ( 14a) and (14b) may be recast into integral forms as 2 2 ( , )
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where the integration 2 00 ( )
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; and N(,)d = the number of contacts in the interval  to +d. For isotropic micro-structure 1 ( , ) 4

     (18)
and closed form expressions for the constitutive coefficients can be derived in terms of the Young"s modulus, Poisson"s ratio and the particle size. Substituting Eqs.( 3), ( 4) and ( 18) into (17a) and integrating we arrive at the zeroth-order constitutive constants, C ijkl , as
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where a = 2r 2 N/V represents the density of the packing structure. In addition, the following identities for zeroth-order elastic moduli hold:

1111 2222 CC  (20a) 1122 2211 CC  (20b) 1212 2121 CC  (20c) 
The constitutive constants results in the following relations between material properties and components of pseudo-bond stiffness [START_REF] Chang | Packing structure and mechanical properties of granulates[END_REF][START_REF] Chang | Second-gradient constitutive theory for granular material with random packing structure[END_REF]:
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Eqs.( 21) and ( 22) can be rearranged to give the pseudo-bond stiffness
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By combing Eqs. ( 3), ( 4), (17b), ( 18), ( 23) and ( 24) and using a similar algebra, the components of first-order constitutive constants D ijqklm can be obtained as
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where the following relations hold 
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The other elements of C ijkl and D ijqklm are all zero. Note that (1) Eqs.( 23) and ( 24) provide a useful method for estimating the high-order constitutive constants directly from the Young"s modulus and Poisson"s ratio without explicitly knowing the numerical values of either the number of contacts N or the representative volume V; and (2) the derived higher-order constitutive coefficients explicitly depend upon the particle radius, r , which functions as a internal length scale parameter.

In a damage context we assume that all constitutive coefficients are pre-multiplied with the same factor (1   ) such that a nonlinear higher-order constitutive damage model can be obtained as: 00 (1 )

iq iqkl kl C     (27) 11 (1 ) ijq ijqklm klm D     ( 28 
)
where ω is the so-called damage scalar quantity ranging from 0 for initial undamaged material to 1 when all material coherence is lost. For the calculations in this paper, the damage state is governed by a linear strain softening damage law through a scalar state variable, k, defined as the overall effective strain. The effective strain, k, is determined by the square root of the summation of principle strains considering damage due to only tensile strains, which, in 2D, is given by the following equation

22 1 2 1 2 ( ) ( ) for , 0 k        (29)
where ε 1 and ε 2 are the principle strain components of strain 
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where k 0 is the threshold of strain at which damage is initiated and k u is the strain level at which all load carrying capacity is exhausted.

Energy functional and weak form

Following the framework for strain-gradient theory (Germain 1973, Fleck and[START_REF] Fleck | Strain gradient plasticity[END_REF], the strain potential energy density with higher-order stress can be expressed as

01 0 0 1 1 iq iq ijq ijq W d d        (31)
To proceed, we substitute the damage constitutive relations from Eqs. ( 27) and ( 28) into Eq. ( 31) and make use of integration by parts for the higher-order term while ignoring the boundary terms such that the final form of the energy functional can be recast as 00 0 20 0 0 0 00 0 0
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where the substitution 
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Pre-multiplying Eq. ( 33) by a test function δu i and integrating over the 2D domain Ω, the weak form governing equation is obtained as (see Yang and Misra 2010 for derivation details) 22 1 10
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According to [START_REF] Reddy | An introduction to finite element method (3 rd Edition)[END_REF], terms corresponding to the test function in the boundary integrals are determined as the essential boundary conditions, while their coefficients form the natural boundary conditions. Thus, the boundary conditions for this higher-order equilibrium system can be stated as Note that though boundary conditions have been identified, the physical significance of the natural boundary conditions resulting from higher-order stresses remains an open question.

Enforcement of essential boundary conditions using penalty method

The natural boundary conditions (or traction boundary conditions) have been included into the weak form equilibrium equation via integration by parts. However, the essential boundary conditions (or displacement boundary conditions) have not yet been treated in the formulation. Moreover, the Moving Least Square (MLS) approximations used latter in EFG discretization do not bear the Kronecker delta function property. Therefore, the essential boundary conditions have to be imposed separately via special techniques, such as the Lagrange multiplier method and the penalty method. Penalty method offers an efficient way to impose the essential boundary conditions provided an appropriate large penalty coefficient is utilized. The constrained higher-order Galerkin weak form (Eq. ( 34)) using penalty method is posed as follows (see also [START_REF] Liu | An Introduction to Meshfree Methods and Their Programming[END_REF]:
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)
where i u is the prescribed displacement vector; α is the penalty coefficient which is often a large positive number and is determined herein by 10 6 times the maximum diagonal element of the global stiffness matrix. In Eq. ( 36), the higher-order essential boundary conditions are ignored for the sake of simplicity, though it could be included in an obvious and straightforward manner. Considering that
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Eq.( 36) can be recast as 22 1 10
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Element-free Galerkin Formulation

Meshfree methods, such as the Element-free Galerkin (EFG) methods, have been used as an alternative to eliminate the mesh-subjectivity. EFG method, which requires a much looser topological discretization structure compared to the finite element method, has been demonstrated to be quite successful in solving many challenging problems in solid mechanics, for instance, static and dynamic crack growth modeling [START_REF] Krysl | Propagation of 3D cracks by the element free Galerkin method[END_REF][START_REF] Belytschko | Dynamic fracture using element-free Galerkin methods[END_REF]Belytschko et al. 1994Belytschko et al. , 1995;;Belytschko et al. 1995;Belytschko et al. 1994;[START_REF] Lu | Element-free Galerkin methods for wave propagation and dynamic fracture[END_REF]). However, there have been only few attempts to apply the EFG method to gradient-enhanced continua with strain softening [START_REF] Askes | Dispersion analysis and element-free Galerkin solutions of second-and fourth-order gradient enhanced damage models[END_REF][START_REF] Chang | Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture[END_REF] or in the context of plasticity [START_REF] Pamin | Gradient regularization and EFG discretization of the plastic flow theory[END_REF][START_REF] Pamin | Two gradient plasticity theories discretized with the element-free Galerkin method[END_REF]. [START_REF] Jirásek | Element-free Galerkin method applied to strain-softening materials[END_REF] has investigated the applicability of EFG method to strain softening problems and confirmed that for regularized localization problems, EFG method behaves in a manner superior to finite element (FE) method in the description of continuous fields. From the viewpoint of gradient-enhanced continuum theory developed in this paper, the EFG method has an important advantage over classical FE method that the approximation functions with high order of continuity needed for proper representation of the higher-order derivatives can be readily incorporated into the formulation without increasing the problem size [START_REF] Askes | Dispersion analysis and element-free Galerkin solutions of second-and fourth-order gradient enhanced damage models[END_REF][START_REF] Pamin | Two gradient plasticity theories discretized with the element-free Galerkin method[END_REF].

The essential idea for the EFG method is that MLS interpolants are used for the trail and test functions with a variational principle. To use MLS, it is only necessary to construct a set of nodes in the problem domain without any elements. The connectivity between field nodes is satisfied via the overlapping of the domain of influence of sampling node in which its shape function is nonzero. The domain of influence of each field node is controlled by a weight function. The weight and MLS shape functions used in this work are given in Appendix A. Using the MLS approximation, the trial function and test function are discretized according to:

i ip p i ip p u u u u      (39)
where  ip is the MLS shape function and p u is the nodal parameter of displacement field for all nodes in the influence domain. Substituting Eq. ( 39) into the weak form Eq. ( 38) and canceling out (1 ) (1 )
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In order to obtain the incremental form of system Eq. ( 40), we define a residual force p R as the difference between internal force ()

ps ps s K K u  
and external force pp FF  

. Taylor series expansion of the residual force is then utilized to perform the linearization given by
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where () r u  is the increment and superscripts within parentheses refer to the iteration step. Thus the solution of Eq. ( 40) at the rth iteration can be written in terms of the solution for the (r-1)th iteration as follows

( ) ( 1) ( ) r r r u u u     (46) 
When second-order derivatives and higher in Eq. ( 45) are neglected, we obtain
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Defining tangent stiffness as
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Inserting Eq. ( 41) and Eq. ( 42) into Eq. ( 48), the resultant tangent stiffness tensor is obtained as
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Finally, the incremental system equilibrium equation becomes
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IGF Failure -Comparison of Ab initio and Continuum Simulations

We apply the derived theory to simulate failure of an IGF model in which a glassy film is embedded between two crystallites.

Atomic model and ab initio failure simulation

A fully relaxed 907-atom initial periodic super-cell atomic model of nanometer sized IGF sandwiched between -Si 3 N 4 crystals was generated and, subsequently subjected to uniaxial extension. The details of model construction and the tensile simulation are given in [START_REF] Ching | A theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si 3 N 4[END_REF]. Here we provide information relevant for comparison with continuum modeling and needed for completeness. The initial IGF model was constructed using classical molecular dynamics followed by full ab initio relaxation using the VASP (Vienna ab-initio Simulation Package). VASP is a popular electronic structure code based on density functional theory (Kresse andFurthmuller 1996a, b, Hafner 2008) with plane wave expansion within the pseudopotential formulism.

We used Vanderbilt ultrasoft pseudopotential with LDA for exchange-correlation potential and a relatively high energy cutoff of 500 eV [START_REF] Ching | A theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si 3 N 4[END_REF]. A criterion of 10 -5 eV for electronic convergence and 10 -2 eV/A for force convergence were adopted. The stress level for the equilibrium structure is below 0.1GPa. The initial model has a dimension of 14.533 Å x 15.225 Å x 47.420 Å and an IGF width of approximately 1.64 nm. From this initial model, uniaxial extension was applied in small incremental steps by stretching the supercell model. The y-and z-dimensions of the model were kept constant while the x-dimension is increased such that the strain components were  xx 0, while  yy = zz =0. At each strain-level (referred to the entire periodic model), all atoms in the model were fully relaxed using the same criteria as in the initial model until the desired convergence is achieved. During ab initio simulations under uniaxial loading, small changes in atomic positions can result in large unbalanced forces. Therefore, it is necessary to apply stringent convergence criterion. The convergence in the total energy and the atomic strain level were carefully monitored to ensure sufficient accuracy without consuming a prohibitive amount of computing resources. The relaxed model at a given strain serves as the starting position for the next increment of strain before the model is fully relaxed again. Depending on the stress level, relaxation run could take several hundred ionic steps to reach the desired convergence. This process is carried on until the total energy and the stress data show that the "sample" is fully fractured or reached the deformation limit. The data for the atomic structure of the IGF model are collected as a function of strain for further analysis.

Continuum model and failure simulation with higher order theory

For assessing the ability of the higher-order continuum approach in replicating the behavior predicted by ab initio simulations, we constructed a 2D IGF model cell of dimension 50Å×15 Å. Since ab initio simulations were under a uniaxial extension, 2D model was considered sufficient. The model was subjected to uniaxial tension via an incrementally imposed displacement du=0.2Å at the right end while the left end are fixed at both x and y direction and the upper and lower boundaries are fixed at the y-direction as shown in Figure 2. For simplicity, a 10Å wide imperfection zone, shown as the hatched area in Figure 2, is considered along the center section of the domain to represent the IGF. The elastic modulus of the crystal region is taken as E=350GPa [START_REF] Ching | A theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si 3 N 4[END_REF]. The elastic modulus of the IGF layer is specified to be 56GPa. The IGF modulus is obtained from the mixture rules of compliances based upon the average slope of the ab initio stress-strain curve estimated as 170 GPa and the crystal modulus given above. Poisson"s ratio was taken as ν=0.22, and the damage evolution parameters are given as k 0 =0.18 and k u =0.6 for glassy film; k 0 =0.2 and k u =0.6 for crystal. A 51×11 uniform nodal layout is used for obtaining the solutions for this problem. In addition, 40×12 rectangular background cells with four-point integration rule are used to integrate the stiffness coefficient. Since the unit cell of -Si 3 N 4 has a tetrahedral structure; we chose the side length of the tetrahedra as the representative length scale parameter r. Based upon a Si-N bond length of 1.7 Å, the length scale parameter r was specified as 2.94Å. The incremental displacement was imposed in twenty two stages until the IGF model completely fractured.

Results and Discussion

Figure 3 gives the comparison of the stress-strain curves obtained from ab initio simulations and the continuum modeling. The agreement between the curves obtained from the two methods is encouraging considering that the continuum model is based upon (1) a linear elastic law with a linear softening damage law, and (2) an idealized IGF geometry with homogeneous properties.

Figure 4 gives the ball-stick view at selected strain-levels of how the atomic positions and bonding evolve under the uniaxial extension-loading. We define the atomic bonds between Si-N and Si-O upon the basis of atomic distances for the purposes of depicting the evolution of bonding in the ball-stick view. In crystals, the Si-O and Si-N bond lengths are 1.61 Å in -SiO 2 and 1.66-1.70 Å in various oxynitride crystals, respectively [START_REF] Ching | Electronic structure and bonding of all crystalline phases in the SiO 2 -Y 2 O 3 -Si 3 N 4 phase equilibrium diagram[END_REF], Ching et al. 2004). In our ball-stick diagrams, the bond is deemed broken when the atomic distances exceed the sum of the covalent radii. In Figure 4, the strain-level of 0.069 represents a point in the pre-peak on-linear portion of the stress-strain curve, the strain-level of 0.088 is the peak stress point and the strain-level of 0.108 is a point past peak stress in the softening regime of the stress-strain curve. At the strain-level of 0.069, the ball-stick diagram shows minimal change in the structure. Upon further extension, at the strain-level of 0.088, a considerable number of bonds at the IGF/crystal interface are broken, although the atomic structure shows a seemingly small change both in the crystal layers and within the IGF. At the strain-level of 0.108, the IGF experiences large stretch while the adjoining crystal layers rebound or unload. At this stage, void spaces and "nano-fractures" appear within the IGF. In comparison, laboratory tests on silicon nitride under uniaxial stress loading show a failure strain of ~2.5% [START_REF] Edwards | Comparison of tensile and bulge tests for thin-film silicon nitride[END_REF]). We note here that the supercell considered in this study is not a representative of the lab sample. In addition, the failure of a laboratory sample is through a more complex process under multi-axial local strains and highly defective structures, including larger scale defects.

To compare the local deformation behavior obtained from the two methods, we computed the local strain field of the atomic system by fitting the atomic displacements obtained from the ab initio simulations. The super-cell was divided into a 51x11x11 grid. A linear fit was defined for local groups of atoms contained within a sphere of radius R o centered at the n th grid point, such that the displacement of p th atom within this group, is given as:

np n n p i i ij j u = a + d X (51)
where, u i np is the fitted displacement for the p th atom, X j p is the position of the p th atom in the unstressed configuration, the coefficients a i n denote the rigid body displacement, and the coefficients d ij n represent the local displacement gradient. Local strain associated with the n th grid point was taken as the symmetric part of the displacement gradient. In our analysis, R o is chosen to be 5.0 Å based upon two considerations: (1) to ensure a minimal local volume that guarantees the existence of solutions to the fitting process used to obtain the local displacement gradient; and (2) to obtain a maximum resolution for the strain field in the IGF region as a too large a R o will average out the local variations of the strain field. The strain components were averaged over the z-direction for comparing with the 2D continuum simulations.

Figures 5 through 7 show the computed contours of strain ε 11 in the horizontal direction (x direction), strain ε 22 in the vertical direction (y direction) and shear strain ε 12 at three stages, namely, pre-peak, peak and post-peak failure stages from the continuum and ab initio simulations, respectively. The three stages for the continuum simulation correspond to the overall strains of (a) 0.067, (b) 0.071 and (c) 0.086, while that for atomistic simulation correspond to the values in Figure 4. The agreements between the continuum and ab initio simulation results are encouraging. We see from Figure 5 that the continuum result replicates the horizontal direction strain, ε 11 , localization in the IGF and the post-peak rebound of the crystal region. We further see from Figure 6 that vertical strain, ε 22 , also concentrate in the IGF and form a pattern of alternate compressive and tensile strain band. Similarly, from Figure 7 we observe that shear strains form a cross pattern in the vicinity of the IGF. The strain localization zone in the continuum model is observed to be narrower than the ab initio simulation, since the lower estimate of imperfection width was chosen. Wider localization zone would be obtained if the initial imperfection width was assumed to be larger. We also note that the continuum model directly provides the predictions of the local strain while for the ab initio results the local strain has to be interpreted through a fitting process.

Figure 8 further illustrates the evolution of damage and strain localization predicted by the continuum model by plotting the damage function, ω, and axial strain, ε 11 , along the horizontal central axis for all the loading steps. We observe that as the damage initiates, a localized strain zone begins to emerge within the IGF. This localized zone grows till we reach the peak stress. Beyond peak stress the localization zone is confined to an unchanging narrow band and the crystal region experiences unloading as shown in Fig. 8(b).

Figure 9 plots the contours of the higher-order strains ε 111 and ε 222 corresponding to the gradients of the horizontal strain ε 11 and vertical strain ε 22 at the peak and post-peak failure stages. As the strains localize within the IGF, strain gradients develop in their proximity. At peak axial stress stage, two strain gradient bands with mirror symmetry form on the either side of the imperfection as shown in Figure 9(a). At failure, shown in Figure 9(b), bands of large strain gradients are present in the immediate neighborhood of the rupture while the rest of the material experiences zero strain gradients which are consistent with the strain profiles shown in Figures 56.

Summary and Conclusion

This paper has presented a micro-structural granular mechanics based higher order stress-strain theory for fracture simulation of strain softening materials. In this approach, the constitutive coefficients are derived by considering the underlying physical configuration such that the internal length scale parameter reflects the natural granularity of the underlying microstructure. The resultant higher order theory includes both strain gradients and their conjugate higher-order stress, which is different from other gradient theories. The constitutive relationships, the governing equations and its weak form have been derived for this higher-order theory in this paper. An Element-free Galerkin (EFG) formulation in combination with the penalty method for the enforcement of essential boundary conditions is then applied for the discretization of the system governing equations followed by the linearization using Talyor series expansions. The derived formulation is used to simulate the fracture process of glassy inter-granular films (IGF) sandwiched between crystal layers. The results predicted by the higher order continuum model are compared to those obtained from ab initio atomistic simulations. The similarity between the continuum and ab initio simulation results are encouraging considering that the continuum model ( 1) is based upon a linear elastic law with a linear softening damage law, (2) uses an idealized IGF geometry with homogeneous properties, and (3) directly provides the predictions of the local strain while for the ab initio results the local strain has to be interpreted through a fitting process. In addition, the internal length parameter utilized in this approach not only serves as a localization limiter but also rationally reflects the micro-structural characteristics of the IGF model which enables this higher-order continuum theory to simulate the fracture process of nano-scale complex materials accurately from numerical viewpoint without losing their physical significance. We also note that even with the currently available unprecedented computational resources ab initio solutions cannot be obtained routinely for such complex structures with ~1000 atoms let alone for macro-scale mechanical behavior of nano-phased materials that are suffused with IGF type structures. The micro-structural granular mechanics based higher order continuum approach developed in this paper offers a viable method that can greatly reduce the computational needs and provide realistic simulations. In our future studies, we will extend the 2D continuum simulations to 3D, and apply anisotropic micro-structure to further refine this higher-order continuum theory. 0.5 1
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where s U is the vector collecting the nodal parameters of displacement field for all the nodes within the influence domain;

() T x  is the vector of MLS shape functions corresponding to n nodes in the influence domain of the sampling x , written as
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where the polynomial base vector p takes the quadratic form as 
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  used. Minimization of the potential energy results in the following nonlinear equilibrium equation in terms of displacement gradients:

  A(x) and vector B(x) are given as 1
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Appendix A. MLS approximation

For a 2D case considered in this work, the weight function w i (x) is obtained as the product of standard 1D weight functions in x and y directions given as ( ) ( ) ( )

In this study, a cubic spline is used as the weight function and the domain of influence is set to be rectangular with dimension d sx and d sy which are determined by a dimensionless parameter β and the nodal spacing d cx and d cy in each direction respectively. For instance, the weight function in x direction takes the following form