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PARAMETRIC STUDIES OF WAVE PROPAGATION THROUGH 
IMPERFECT INTERFACES USING MICROMECHANICS BASED 
EFFECTIVE STIFFNESS 

Anil Misra and Orestes Marangos 

Department of Civil and Mechanical Engineering, University of Missouri-Kansas 
City, Kansas City, MO 64110 

ABSTRACT. Plane wave propagation through contact between solids has been investigated 
using imperfectly bonded interface model. In this model, the contact behavior is represented 
through effective interface stiffnesses. We have developed a micromechanical methodology for 
determining complex-valued effective normal and shear interface stiffnesses by considering 
asperity contact interactions. The methodology incorporates effects of surface roughness, 
anisotropy, existing stress conditions and rate-dependent asperity contacts. We use the derived 
effective stiffnesses to elucidate wave transmission phenomena exhibited by interfaces. 
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INTRODUCTION 

Plane wave transmission through contact between rough sohds is of significance in 
the development of non-destructive evaluation methods for fractures, welds, and adhesive 
bonds. Imperfectly bonded interface models have been widely used to investigate the 
plane wave propagation through contact between two rough solids [see for example 1-3]. 
The assumption which forms the basis of the wave propagation models based upon the 
concept of imperfectly bonded interfaces is that the wavelength is much larger than the 
asperity contact size and asperity contact separation. Therefore, in these models, the 
contact behavior is represented through effective interface stiffnesses corresponding to 
interface length scales smaller than the size of wavelength should be considered. In these 
cases, the effective interface stiffness may be obtained by averaging asperity contact 
stiffnesses at sub-wavelength scales. Micromechanical approaches that explicitly include 
interface surface topography and incorporate material mechanical properties and intrinsic 
friction may be utilized to obtain the overall interface stiffness. 

The authors have developed a micromechanical methodology for modeling contact 
behavior that incorporates the effects of surface roughness, anisotropy, existing stress 
conditions and rate-dependent asperity contact force laws. This methodology is applied to 
determine complex-valued effective normal and shear stiffnesses of interfaces which are 
explicit functions of surface geometry and stress conditions. The surface roughness for 
example can result in an inherently anisotropic interface. Similarly, rate-dependent 
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asperity force laws result in effective stiffnesses that have complicated frequency-
dependency. These findings have critical implication on the interpretation of wave 
propagation through rough interfaces. We find that the amplitudes of the reflected and 
transmitted waves are significantly influenced by the interface roughness, and anisotropy. 
We also find that the frequency dependence of reflected and transmitted wave amplitudes 
is significantly different for rate-dependent and rate-independent interfaces. The 
micromechanical model may thus be used to elucidate the results of wave transmission 
through rough interfaces. 

In the subsequent discussion, we first briefly describe the imperfectly bonded 
interface model. We then describe the essence of the micromechanical methodology and 
employ this model to study the behavior of wave transmission and reflection. 

IMPERFECTLY BONDED INTERFACE MODEL 

The imperfectly bonded interface model, also known as linear slip or displacement 
discontinuity approach [1-3], has been widely used to investigate wave propagation 
through interfaces between solids. In order to define the appropriate quantities and for 
completeness of our discussion, we give a brief description of the imperfectly bonded 
interface model. For convenience, we choose a coordinate system, such that the direction 
of incident wave propagation is within the 1-3 plane shown in Fig. 1. 

At an imperfect interface between two media, tractions at upper medium A and 
lower medium B are continuous and displacements are discontinuous, which lead to the 
following equations where n=0-3 and n=4-6 are the wave modes in the incident and 
transmitting media, respectively. 

z^,?'-" = i^T^:^^ (1) 
n=0 n=A 

n=A \n=A n=0 y 

We note that the interface overall traction, F,, and the relative motion of the interface, Sj, 
are given as 

Equations (1), (2), and (3) may be combined to obtain the amplitudes of the reflected and 
transmitted P and S waves for the interface as follows 

FIGURE 1. A schematic of wave reflection and transmission at an imperfect interface. 
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[A] 1 m 
(4) 

where the sub-matrices [A], [B], [D] and [E] are a function of elastic constants of upper 
and lower media, and the nonlinear, stress-dependent interface stiffnesses derived from the 
micromechanical model described in the next section. Thus, the solution of (4) generates 
complex valued reflection, {R}=<Rp, Rsv, RSH>, and transmission, {T}=<Tp, Tsv, TSH>, 
coefficients which are related to interface stresses and roughness. 

MICROMECHANICS BASED EFFECTIVE STIFFNESS FOR INTERFACES 

A micromechanical methodology for the determination of the relationship between 
interface stress and deformation has been presented previously in Misra [4-5] by 
considering the force-deformation behavior of the asperities. In the micromechanical 
methodology, the stress-deformation behavior of an interface is obtained by considering 
the force-deformation behavior of the asperity contacts and the statistical description of the 
interface topography. At the asperity contact-level, a local force-deformation relationship 
is defined that accounts for the elastic deformation and inelastic sliding at the contact. As 
schematically depicted in Fig. 2, the stress-deformation relationship for an interface is then 
derived by utilizing: (1) the distribution functions of asperity heights and contact 
orientations, and (2) the overall kinematic constraints and equilibrium conditions. 

The micromechanical methodology developed by the author extends other similar 
models [see 6 for a review] in the following ways by: (1) introducing a directional 
distribution function of asperity contact orientations as an additional measure of surface 
roughness recognizing that the asperity contacts are not equally likely in all directions, (2) 
using rate-dependent asperity force laws, and (3) using kinematic and/or static constraints 
to relate the asperity force/displacement to the overall interface stress/displacement, (4) 
using an iterative procedure to obtain the asperity contact forces/displacement at each load 
increment, recognizing that the asperity contact force distribution is not known a priori, 
and (5) introducing evolution laws for asperity heights and asperity contact orientations 
that account for the change in surface roughness resulting from asperity damage. In this 
paper, we give a derivation for linear rate-dependent interface behavior that can be utilized 
in the imperfect interface model to study wave propagation. 

Rate-Dependent Asperity Contact Behavior 

The asperity contact forces, yj ,̂ are related via the asperity contact stiffnesses, Kjf, 
and asperity contact viscosities, %, to asperity contact displacements and displacement 
rates as follows 

Asperity Contact 
Orientation (normal 
to contact plane) 

Equilibirium 

•^Asperity Contact^^^ Asperity Contact Plane 

FIGURE 2. A schematic of the micromechanical methodology. 
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f^=Kl5^+vl^ (5) 

The asperity contact stiffnesses and viscosities generally depend upon the contact loading 
condition, such as the stiffness given by the Hertzian contact theory. However, for the 
purposes of this paper, we utilize loading independent stiffnesses and viscosities. It is 
convenient to express the asperity stiffness tensor, Kif, in terms of asperity stiffness that 
describes the behavior along the direction of normal and tangent to an asperity contact, 
such that 

where K„ and Ks denote nonlinear asperity stiffness along the normal and tangential 
direction of the asperity. The unit vector n is normal to the asperity contact surface and 
vectors s and t are arbitrarily chosen on the plane tangential to the asperity contact surface, 
such that nst forms a local Cartesian coordinate system. It is noted that the stiffness term 
that cross-link normal and shear behavior are assumed to be negligible in accordance with 
the theories for contact of smooth non-conforming bodies. Similarly, the asperity viscosity 
tensor, 77j, may be written as: 

c c c c , d e c , ^c^c 1 i'n\ 

r?p = r?n"i "j + r?s[^i ^j + h tj) {/) 

Statistical Description of Interface Geometry 

The interface geometry determines the orientations and the number of asperity 
contacts under a given loading condition. The composite topography of contacting 
surfaces, described via statistics of asperity contact heights, orientations, and curvatures, 
may be utilized for this purpose [7-8]. In this paper, the statistical distribution of asperity 
contact heights is described via gamma distributions, and that of asperity contact 
orientation via spherical harmonic expansions. It is usual to define the asperity contact 
height with reference to the highest peak of the composite topography such that, asperity 
height, r, represents the overlap of the interacting surfaces. Surfaces that have smaller 
average asperity height and narrow distributions of asperity heights are considered to be 
relatively smoother. A density function for asperity heights denoted by, H(r), can be used 
to model the height distributions. Thus, for an interface with Â  asperities per unit area, Â  
H(r) dr, denotes that number of asperity contacts in the interval represented by r and r+dr. 
Thus, the total number of asperity contacts, under a given loading condition, is given by 

N, = iNH{r)dr (8) 

where r represents the interface closure under a given loading. The asperity contact 
orientation is defined by considering the inclination of the asperity contact normal with 
respect to that of the interface normal direction. As shown in Fig. 2, the orientation of an 
oblique asperity contact is defined by the azimuthal angle (^ and the meridional angle 0, 
measured with respect to a Cartesian coordinate system in which direction 1 is normal to 
the interface. A 3-dimensional density function utilizing spherical harmonics expansion in 
spherical polar coordinates that describes the concentrations of asperity contact 
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orientations was introduced by [4-5]. For an interface with isotropic geometry, the density 
function, ^(H), of asperity contact orientations distribution in the domain: 0 < 9 < 7r/2a, 0 < 
(p <27r, is given by 

# ( Q ) = ' '^ ' " ' '^ol + -(3cos2a6' + l)+3csin^a6'cos2<i»o ( 0 < 6 ' < — ; Q<d,<27r; a>\) (9) 
iTTimd'! 4 ? 2a 

where angles (p and 9 are defined in Fig. 2, / 3 represents the solid angle formed by (p and 9, 
and parameter a determines the shape of the density function ^(il). Thus, the product 
Nr^(n)dn denotes the number of asperity contacts A^̂  in the interval represented by solid 
angles /3and Q+dQ, that is 

Wn=W,#(QVQ (10) 

The density function in (10) has the ability to model surfaces with varying roughness. As 
discussed in [5], the asperity contacts for smooth interfaces have a greater tendency to 
concentrate in the direction normal to the interface than that for rough interfaces. It is 
noteworthy that, as parameter, a, increases, the contact distribution concentrates towards 
the direction normal to the interface. In particular, the density function, ^(H), behaves like 
a delta function in the limit a^ cc and yields an expectation E[9] =0, which represents a 
concentrated contact orientation, normal to the interface of a perfectly smooth joint. In 
general, the parameter, a, describes the extent of the asperity contacts in the meridional 
direction as well as the mean asperity contact orientation. Parameter, c, on the other hand, 
describes asperity concentration in the azimuthal directions. 

Overall Interface Stiffness 

The overall stiffness of the interface can be derived through two approaches, 
referred here as (1) the kinematic approach, and (2) the static approach. In the kinematic 
approach, we consider the equilibrium of forces. Consequently, the overall traction F, on 
the interface is obtained from the summation of the forces, f,", developed at asperities, 
which for a large number of asperity contacts is written as the following integral: 

F,=N\\f,'^{n)H{r)dildr (11) 
rCi 

where the traction F, is given as force per unit area since N is measured per unit area of an 
interface. Under the kinematic assumption the relative motion at an asperity is same as the 
relative motion of the interface, that is 

5"^= AjimAffj = kj (12) 

the overall traction, F„ may be written as: 

Ft = CtJ^J + mAi (13) 

where interface stiffness and viscosity tensors, denoted by, Cy and riy, respectively, are 
obtained as the following integrals: 
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C^j = Ni i iKfj^{(^,0)sm0d0d(^H{r)dr iind7]p=Ni i ^T^fj ^{(^,0)sm0 d0d(^H{r)dr ( 1 4 ) 

0 0 0 0 0 0 

where i^((^, 6) is the asperity contact orientation distribution given by equation (9), and H(r) 
is asperity height distribution given by equation (8), r=ro+Si, Vo is the initial closure at 
5i=0. The differential form of the stress-deformation relationship given in equation (13) 
may be used to obtain creep and stiffness functions or complex compliances and 
stiffnesses. The complex form of stress-deformation relationship is given as: 

F,{co) = Ry(a>)^J(a>) (15) 

The kinematic approach, typically, yields the following form of complex stiffness tensor: 

Rij=C,j+I(0J]ij ( 1 6 ) 

which is analogous to the Kelvin solid in visco-elasticity. 
In the static approach, the overall interface displacement. A,, is obtained from the 

summation of the displacements, 5/ , developed at asperities, which for a large number of 
asperity contacts is written as the following integral: 

Ai=N \\Si^{Q)H{r)dQdr (17) 

Asperity displacement, 5,'̂ , is obtained in terms of the asperity force, yj'̂ , from the solution 
of the differential form of the asperity force-displacement relationship given in equation 
(5), as follows: 

ft 
1-exp 1 - ^ 1 -exp 1 - ^ 

Kt K-: 
^(,f.j+fffj) 

dt 
ffdt (18) 

Under the static assumption the asperity force, yf, is related to the overall traction of the 
interface, F,, as follows: 

f'• = —F- (19) 

Thus, the overall interface displacement. A,, may be written as: 

A,- = — J,Y — F . d t 
' Nio '•> dt •' 

(20) 

where interface creep function, denoted by, J,j, is obtained as the following integral: 

' .^Jf 
1-exp 1 - ^ 

V n J ,^c c 

1-exp 1 - ^ 

K„ K-; 
^(,f .5 + fff;) ̂ (QJHirJdQdr (21) 
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The creep function given in equation (21) may be used to obtain stiffness functions or 
complex compliances and stiffnesses. The static approach, typically, yields the following 
form of complex stiffness tensor: 

:Ry[m}+IRy[m} (22) 

RESULTS FOR REFLECTION AND TRANSMISSION AT INTERFACES 

To illustrate the capabilities of the micromechanical model in elucidating the wave 
propagation phenomena we present two examples. We first use rate-independent effective 
stiffness derived from kinematic approach since: (1) many interfaces show weak rate 
dependence and (2) kinematic approach gives a reasonable prediction of the effective 
stiffness under quasi-static conditions. We then use rate dependent effective stiffness 
derived from static approach, since rate dependent behavior shown by the kinematic 
approach is a special case of the static approach. 

We investigate the reflection and transmission of normally incident shear wave 
(propagating along 1-axis) to illustrate the effects of inherent anisotropy. In Fig. 3, we 
plot, in polar coordinates, the reflection and transmission coefficients asperity contact 
orientation parameter, c=0, 0.1 and 0.3. The polar plots correspond to the incident shear-
wave's polarization direction given by the azimuthal angle, ^. For instance, (|)=0 
corresponds to the polarization direction along the 3-axis. For c=0, the normally incident 
shear wave does not suffer any mode conversion and the reflected and transmitted waves 
are independent of the incident wave polarization. For non-zero c-values, representing an 
anisotropic distribution of asperity contact orientation, the normally incident shear wave 
suffers mode conversion to transmitted and reflected SH waves. We also observe that the 
reflected and the transmitted of the mode converted waves are equal in amplitude. It is 
noteworthy that the amplitudes of the reflected and transmitted waves are dependent upon 
the direction of polarization of the incident waves. In this example, mode conversion to P-
wave does not occur as the shear and normal stiffnesses are decoupled. However, under a 
small shear load on the interface, these stiffnesses would be coupled and a mode converted 
P-wave will be observed [9]. 

Under normal incidence of a P-wave, the amplitudes of the reflected and 
transmitted wave are given as 

4{Rhico)+R,'M) _ and \R\ 
[4Rfi{a)+a^zl-4aZpRii((o)+4Ri\{(o)j ' ^' 

o/Zi 
{4RII((O) + (O^ZI -4aZpRii{a) + 4Rli{(o)) 

(23) 

IRSHMTSHI c = 0.0 
c=0.1 
c=0.3 

.2 

-.3 
-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 '^-^^ "̂ -̂  -°°^ ° ° ° 5 °-̂  °-1^ 

FIGURE 3. Mode conversion of SV to SH waves under normal incidence and normal closure. 
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FIGURE 4. Effect of frequency upon reflected and transmitted wave amplitudes. 

In Fig. 4 we have plotted the transmitted and reflected wave amplitudes computed 
using equation (23) for specific values of asperity stiffness constants, asperity orientation 
parameter, a=2, such that the mean asperity contact orientation is 29°, and asperity 
viscosity constants such that tn= r|n/Kn =0 and ts= r|s/Ks =0.1. For comparison, we have 
also plotted in Fig. 4, the transmitted and reflected wave amplitudes for a rate-independent 
interface with the same asperity stiffness constants and asperity orientation parameter. 
Significantly different behavior is exhibited by the rate-dependent interface over the same 
frequency range. Clearly, for the same roughness, the attenuation with frequency is much 
higher for rate-independent interface than rate-dependent interfaces. 

SUMMARY AND CONCLUSIONS 

The main findings of this work are summarized as follows: 
1. Effective stiffness of interfaces between two rough solids are known to be affected by 

surface roughness, existing stress conditions and asperity contact elasticity and 
viscosity. 

2. A micromechanical methodology for modeling rate-dependent stress-displacement 
behavior of such interfaces is presented. Complex moduli are derived using kinematic 
and static approaches. The model is then used to investigate plane wave propagation 
behavior through interfaces utilizing the well established imperfectly bonded interface 
model. 

3. We find that the amplitudes of the reflected and transmitted waves are significantly 
influenced by the roughness and rate-dependence. The model may thus be used to 
elucidate the results of wave transmission through rough interfaces 
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