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APPLICATION OF UNIFORM STRAIN THEORY
TO HETEROGENEOUS GRANULAR SOLIDS

By Ching S. Chang,' Member, ASCE, and Anil Misra,’
Student Member, ASCE

ABSTRACT: The micro- and the macro-mechanical measures of heterogeneous
granular solids are investigated using two methods, namely a computer simulation
method, and a micro-structural continuum method. The micro-structural continuum
method used in this study is based on a uniform strain assumption. The applica-
bility of the uniform strain assumption is evaluated by comparing the results from
the micro-structural continuum method to those from the computer simulation method.
Two types of granular solids, viz. with linear bonded contacts and with nonlinear
frictional contacts, are studied to investigate the influence of contact behavior on
the heterogeneity of the strain field. It is observed that packings with bonded con-
tacts have a reasonably homogeneous strain field, implying that the uniform strain
assumption is applicabie for this condition. Packings with frictional contacts have
a heterogeneous strain field, except at low levels of deviatoric stress. The natures
of inhomogeneity for the particle rotation, stress, and contact force fields in gran-
ular solids are also discussed.

INTRODUCTION

The overall stress-strain behavior of a granular material is significantly
influenced by the micro-scale interactions between the granules. Therefore,
to characterize accurately stress and strain in granulates, one needs to for-
mulate them in terms of the micro-scale measures of forces and deforma-
tions. A number of investigators have addressed various aspects of these
fundamental problems—for example: packing structure measures, such as
the spatial distribution of branch vectors (the vectors joining centroids of
particles in contact) and of normal vectors at the inter-particle contacts, have
been introduced (Oda 1972a; Oda et al. 1980); and the definitions of stress
for granular materials in terms of inter-particle contact forces have been dis-
cussed by Christoffersen et al. (1981), Drescher and DeJong (1972), and a
number of papers in Cowin and Satake (1978), Jenkins and Satake (1982),
and Satake and Jenkins (1988).

Along this line of approach, efforts have been made to relate the stress
and strain of granular media (Digby 1981; Walton 1987; Jenkins 1987, Chang
1987; Bathurst and Rothenburg 1988). Digby (1981) studied the effective
elastic moduli of porous rocks by considering them to be composed of spher-
ical particles bonded at particle contacts assuming that no shear force exists
at the contact. Walton (1987) studied the moduli of isotropic packings of
equal spheres under axisymmetrical loading considering both normal and shear
compliances at the contact. Along the same lines, Jenkins (1987) investi-
gated the volume change behavior of packings of equal spheres under small-
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strain axisymmetrical deformation, Bathurst and Rothenburg (1988) studied
the behavior of disk packings with linear contact interactions, and Chang
(1987) developed stress-strain relationships for regular and random packings
of spheres. Results from these models have been reported to give encour-
aging agreement with experimental results on the moduli of regular packings
and random packings of disks (Chang and Misra 1989a; Xue 1988) and vol-
umetric strain of random packings of glass beads (Jenkins 1987). These com-
parisons have been conducted in the range of small strains only. However,
because of some simplifying assumptions on the kinematics of the media,
the aforementioned models are not expected to perform well at large strain
levels. The three assumptions made in the aforementioned models are as
follows: (1) The evolution of packing parameters with the loading process
is neglected; (2) the particle centroids move in accordance with a uniform
strain field; and (3) the particles’ rotations are neglected (except in Chang
1987). Although the three factors are considered to be directly related to
large strain problems, studies conducted by including the evolution of pack-
ing parameters and particle rotations show that the micro-structural model
with a uniform strain assumption still gives a poor agreement at large strain
levels (Chang and Misra 1989b). This implies that heterogeneity of the strain
field is a significant factor influencing the stress-strain behavior of granular
materials. At stress levels near failure, qualitative evidence of inhomogeneity
in the strain field has also been observed from experiments on sands (Roscoe
1970) and rod assemblies (Oda 1972b). Therefore, it is desirable to evaluate
the applicability of the uniform strain assumption in predicting the micro-
and the macro-mechanical behavior of granular solids.

Due to the difficulty of measuring the movement of each particle during
a deformation process, the micro-mechanical behavior of granular materials
cannot be investigated using experimental methods. On the other hand, the
computer simulation method (Cundall and Strack 1979) offers a viable way
to study quantitatively the micro-mechanical behavior (e.g., the strain field,
the stress field, particle rotations, and contact forces) of the granular ma-
terials. In this study, the computer simulation method is employed to sim-
ulate the stress-strain behavior of granular packings and to investigate the
micro-mechanical behavior. The objective of this study is twofold: (1) To
obtain the applicability range of the uniform strain assumption; and (2) to
offer insight for further improvement of the micro-structural continuum model
for near failure conditions. In this work, we compare the stress-strain be-
havior of packings obtained from the micro-structural continuum method (with
uniform strain assumption) and that obtained from the computer simulation
at various levels of deviatoric stress up to the failure conditions. We then
discuss the uniformity of the strain field, the particle rotations field, and the
stress field.

The comparisons are made for two types of contact interactions, namely
bonded contacts with linear properties, and frictional contacts with nonlinear
force-dependent properties. The bonded contacts do not include sliding or
separation at the contacts, while the nonlinear contact allows for sliding as
well as separation. Results show the strain field to be fairly uniform for
packings with bonded contacts. For packings with frictional contacts, the
strain field is found to be uniform at low levels of deviatoric stress but be-
come increasingly heterogeneous at high levels of deviatoric stress. This has
an implication for the applicability of the micro-structural continuum model
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presented here for problems of packings with bonded granules and packings
with frictional granules at low levels of deviatoric stresses.

DESCRIPTION OF GRANULAR SYSTEM

The granular system is envisioned to be composed of rigid particles con-
nected to each other at the particle contacts by deformable springs that ac-
count for the particle deformation at the inter-particle contacts. The defor-
mation is assumed to be rate-independent and occurring under quasi-static
conditions. Thus the forces and deformations originating from particle mo-
mentum and velocity are neglected in the analysis. The assembly defor-
mation under an increment of load causes the particles in the assembly to
move relative to each other. Considering each particle to have six degrees
of freedom, namely three translational and three rotational degrees of free-
dom, the relative displacement A, at the contact of any two particles m and
n is given by

AY; = Aul — Aul + ejAw]ry — AWJFY) L €))
and the relative rotation A®, at the contact is given by
AD; = A — AW, o e )

where Au; = the particle displacement; Aw, = the particle rotation; r; = the
vector joining the centroid of a particle to the contact point; superscripts refer
to the particles; and e; = the permutation symbol.

This relative movement between particles is resisted by, in general, stretch
springs and rotational springs at the contact. While the stretch springs resist
the relative displacement between the two particles in contact, the rotational
springs resist the relative rotation between contacts. The incremental relative
displacement at the contact A9, is related to the incremental contact force
Af; as follows:

Af, = K;A3; (= Xy Yy 2) oot e 3)

where K; = the tangent contact stiffness tensor. Considering a simple case
where the shear forces are uncoupled from the normal displacements and
vice versa, Eq. 3 can be simplified to

Ky =Konin + K(5;8;, + t5) oo @

where K, and K, = the tangent contact stiffnesses along the normal and
tangential direction of the contact surface, respectively. The unit vector n is
normal to the contact surface and vectors s and t are arbitrarily chosen such
that nst forms a local Cartesian coordinate system. This simplified contact
stiffness tensor is fairly reasonable for two elastic nonconforming bodies in
contact (Mindlin and Deresiewicz 1953). The tangent contact stiffnesses K,
and K, based on the Hertz-Mindlin theory of frictional contacts for: (1) A
two-disk system; and (2) a two-sphere system are given in Appendix I. In
a similar way, the incremental relative rotation at the contact A6, is related
to the incremental contact couple Ap, as follows:

Ap; = G;A8; (s J = X, Y, 2 e e e (5
where G; = the rotational stiffness tensor. Again, considering the three com-
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ponents of the rotation to be uncoupled, Eq. 5 is simplified to
Gy =G + GAsis; T LL) .o o e ©)

where G, = the torsional stiffness at the contact; and G, = the rolling stiff-
ness. The micro-structural continuum model and the computer simulation
method used in this work are based on this conceptual model of granular
systems.

CoNsTITUTIVE LAW FOR GRANULAR SoLID BASED ON UNIFORM
STRAIN THEORY

Based on the micro-structural continuum model with the uniform strain
assumption, the relationship between incremental stress and the incremental
overall strain for a granular material with a given packing structure can be
written as (Chang 1987)

AO’,-j = C,-jk,Aek, .................................................. (7)
where

1
C"f"’zﬁg;“ K L e (®)

where V = the volume of the packing; and /[ = X" — X] = the branch
vector joining the centroids of particles n and m in contact.

Strain
In Eq. 7, the incremental strain Ae,, is defined as
AEk[ = Au[,k + elk,,,Au),,, ............................................ (9)

where Au,, = the incremental displacement gradient; and Aw,, = the average
incremental rotation of the particles in the packing. The usual strain incre-
ment tensor of conventional continuum mechanics is recovered by taking the
symmetric part of the incremental strain tensor Aey, given as

1
Ai(/d) = Au(,'k) = 5 (Au,lk + Auk,,) .................................. (10)

However, the skew-symmetric part does not equal the rigid body rotation as
in the conventional definition. The skew-symmetric part of the incremental
strain tensor A€y, given by

1
AE[k[] = Au[”‘] + e,k,,,A(n,,, = 5 (Au,.k - Auk‘[) + E,kmAOJm ................ (11)

represents the particle rotations in excess of the rigid body rotation Ay
Based on this definition of the incremental strain field Ae;, the incremental
relative displacement A3;™ at the contact is defined in terms of the branch
vector as

AT = A€l (12)
The incremental strain field is assumed to be uniform within the sample; that

2313




is, the incremental relative displacements at all contacts are assumed to be
compatible with a uniform overall incremental strain. Substituting Eq. 9 into
Eq. 12 and comparing it to Eq. 1, it is seen that this definition of the in-
cremental strain tensor Ae; implies that an incremental load at a given instant
will cause the particles in the assembly to displace and rotate in accordance
with a linear incremental displacement field and a uniform incremental ro-
tation field, respectively.

Stress
The incremental stress, Aoy, is taken to be the volume average of the
tensor product of the incremental contact force Af;” and the branch vector

i

1
Aoy = — D LA (13)

The incremental contact force Af]™ is determined from the incremental rel-
ative displacement A" at the contact based on the local constitutive law
defined in Eq. 3.

Evolution

The incremental formulation of the stress-strain relationship discussed here
is valid only for the case of infinitesimal deformations. During a loading
process, however, it is necessary to account for the nonlinearity of the con-
tact stiffness, and include the effect of evolution of the branch vector /; and
the packing volume V at end of each load increment.

The nonlinear Hertz-Mindlin contact stiffness (given in Appendix I) is
governed by the contact forces. For this nonlinear contact interaction, the
evolution of contact forces is governed by the following equation:

fi= KAyl + £ oo (14)

where f7 = the contact force at the instant of loading. To account fully for
the nonlinearity of the contact stiffness K;, an iterative procedure is em-
ployed within each increment until Eq. 14 is satisfied. During the loading
process, when the normal force at a contact relaxes (i.e., f, = 0) the contact
becomes inactive; that is, the normal and the tangential contact stiffnesses
vanish. At an active contact (i.e., f, > 0), Coulomb’s frictional law is as-
sumed such that for tangential force at a contact f, > f, tan ¢, sliding occurs
and the contact does not carry any additional tangential force. During each
loading step, any excess tangential force is converted to an unbalanced stress
using Eq. 13 and applied back to the system. For the linear bonded contacts,
Eq. 14 becomes exact and the mechanisms of inactivating contacts and con-
tact sliding are not applied.

The evolution equation governing the change of the branch vector I, over
an increment of load is given by

L= (A€ + 8 o (15)

where [] = the branch vector at the instant of the incremental loading; and
o, = the Kronecker delta. The particle rotation Aw, can be obtained from
the rigid body rotation, Auj;, and the skew-symmetric part of incremental
strain, Ae;;,. The evolution equation of the change of volume of the packing
is written as
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V= (Aekk + I)VU ............................................... (16)

where V° = the volume at the instant of the loading.

COMPARISON OF MICRO-STRUCTURAL CONTINUUM MODEL
AND COMPUTER SIMULATION

Packing and Loading Conditions

To evaluate the micro-structural continuum model based on uniform strain
theory, we study the stress-strain behavior of random packings of disks and
spheres and compare the results to those obtained from the computer sim-
ulation method. The computer simulation method employed in this work is
briefly discussed in Appendix 1. The two-dimensional (2-d) packings of disks
and three-dimensional (3-d) packings of spheres used in the study are shown
in Figs. 1(a—c), respectively. The particle size and number of particles, the
total number of contacts, the coordination number, the area (for 2-d pack-
ings) or volume (for 3-d packings), and the void ratio of the three packings
are given in Table 1. The total number of contacts N is obtained as 3,C,,
where C, is the number of contacts for the nth particle and the summation
is carried over all the particles.

Two types of contact interactions are used in this study: (1) Frictional
contacts with nonlinear properties obtained from the Hertz-Mindlin contact
theory (given in Appendix I); and (2) bonded contacts with linear properties.
The frictional contact has force-dependent properties and allows for sliding
as well as separation of the contact. The bonded contact, on the other hand,
is independent of the contact forces and does not consider particle slip or

FIG. 1. Packings: (a) One-Size Disks (Packing A); (b) Two-Size Disks (Packing
B); and (c) Spheres (Packing C)
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TABLE 1. Packing Parameters for Three Packings
Parameter Packing A Packing B Packing C
(1) ] 3) (4)

Particle diameter 12.7 mm (276) 12.7 mm (278) 0.6 mm (25)

(number of particles) 6.35 mm (127) 0.3 mm (70)
Number of contacts 1,414 2,094 490
Coordination number 5.12 5.17 5.16
Area/volume 3.61 X 107* m® 3.8 X 107 m? 5.83 x 107° m’
Void ratio 0.117 0.108 0.5

separation. For packings with bonded contacts, the contact stiffness is as-
sumed to be the same for all the contacts in the packing. The particle shear
modulus G,, particle Poisson’s ratio v,, and inter-particle friction angle ¢,
used for obtaining the stiffnesses K, and K, for the frictional contacts are
given in Table 2. For the bonded contacts, the values of the stiffnesses K,
and K, are also given in Table 2. It is noted that, for Hertz-Mindlin contact,
the value of K| is within the range of 0.66K, to K, when the contact shear
force is absent. For the bonded contact, K, is chosen to be 0.5K, for the
examples in Table 2. Other values of K| ranging from 0.5K,, to K, have been
used and found to give similar results. Since only circular particles are con-
sidered, the area of contact between two particles is very small. Thus, the
rotational stiffness G, is small and is neglected in this analysis.

The deformation behavior of the 2-d and 3-d packings are studied under
biaxial compression and triaxial compression loading paths, respectively. For
the 2-d case, the loading path is such that Ac,, > 0 and Ao, = Ao, = Ao,
= 0. For the 3-d case, the loading path is such that Ag,, > O and the in-
crements of the other stress components are zero. The packings are first
loaded to an initial isotropic stress state (17.25 kPa for 2-d packings and 69
kPa for 3-d packings) prior to the compression loading.

Stress-Strain Curves

The stress-strain curves of the 2-d packings A and B with bonded contacts
and with frictional contacts are shown in Fig. 2(a). The stress-strain curve
for the 3-d packing is shown in Fig. 2(b). In Figs. 2(a and b) the curves
with no symbols are obtained from the micro-structural continuum model
and the curves with symbols are obtained from the computer simulation method.

For packings with bonded contacts, the difference of the results from the
micro-structural continuum and the computer simulation methods is within
10% at all levels of deviatoric stress. This discrepancy is expected to be due

TABLE 2. Parameters for Contact Stiffness

Frictional Contact Bonded Contact
Packing G, v, b, K, K
1) ] B | @4 (5) (6)
A 2.1 X 10° kPa 0.1 15° 17.5 X 10° N/m 8.8 X 10° N/m
B 2.1 x 10° kPa 0.1 15° 17.5 x 10° N/m 8.8 x 10° N/m
C 29 x 10° kPa 0.2 15° 17.5 X 10° N/m 8.8 x 10° N/m
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FIG. 2. Stress-Strain Behavior: (a) Packings A and B for Bonded and Frictional
Contacts (Symbols = Uniform Strain Theory, Solid Line = Computer Simulation);
and (b) Packing C tor Bonded and Frictional Contacts (Symbols = Uniform Strain
Theory, Solid Line = Computer Simulation)

to the inhomogeneity of the strain field introduced by the inhomogencous
nature of the packing structure. However, the close agreement of_ the resul}s
implies that the influence of packing structure on the inhomogeneity of strain
field is small.

For packings with frictional contacts, the stress-strain curves obtained from
the two methods match closely at low stress levels. For example, the initial
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TABLE 3. Initial Moduli for 3-d Packing C

Moduli Uniform strain method Computer simulation
M (2 (3)

E. 5.49 x 10° kPa 5.14 x 10° kPa
E, 5.39 X 10° kPa 5.63 x 10° kPa
E.. 5.21 x 10° kPa 5.44 x 10° kPa
G, 2.68 x 10° kPa 2.59 x 10° kPa

moduli for the 3-d packing computed under the initial confining pressure
based on the two methods are within 10% of each other, as shown in Table
3. However, at higher stress levels the stress-curves obtained from the two
methods deviate rapidly. Note that the micro-structural continuum model used
here incorporates the effect of packing evolution and particle rotations.
Therefore, the major source of discrepancy is expected to be due to the
heterogeneity of the field variables. At high stress levels, due to the increas-
ing number of contacts experiencing sliding and separation, the strain field
is expected to be highly heterogeneous. In contrast, at low stress levels with
small amounts of sliding contacts, the strain field is expected to be uniform.
Fig. 3(a) shows the fraction contacts sliding and lost for packing A with an
increase of the deviatoric stresses. For the stress ratio of about 1.5, the num-
ber of contacts sliding are within 5% of the total contacts while no contact
has been lost. As the stress ratio increases, the percentages of both contacts
sliding and contacts lost increase. The directional distribution of the contacts

(a)

PACKING A — NON—LINEAR CONTACT

0.40 o CONTACTS SLIDING

FRACTION CONTACTS

-0.20 T

3 ‘
STRESS RATIO ¢,/0,

(b)

>

STAGE 1 STAGE ¢

FIG. 3. Contacts: (a) Contacts Sliding and Lost for Packing A with Increasing
Stress Ratio; and (b) Contact Normal Distributions for Packing A at Stages 1 and
4 of Stress-Strain Curve in Fig. 2
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lost is seen from contact normal distribution of packing A at stages 1 and
4 of the stress-strain curve plotted in Fig. 3(b). With the increase of the
deviatoric loading, the contacts along the minor principal direction contin-
ually disappear.

These comparisons imply that, although the packing structure is hetero-
geneous in nature, the micro-structural continuum model with a uniform strain
assumption is applicable to predicting the stress-strain behavior for packings
with bonded linear contacts. It also gives good agreement for packings with
nonlinear frictional contacts at low stress levels (stress ratio ~1.5).

VARIATION OF MicRO-MECHANICAL QUANTITIES IN PACKING

We next investigate the applicability of the micro-structural continuum
model with a uniform strain assumption in predicting the various micro-me-
chanical quantities and their variation in the packing. We study the heter-
ogeneity of the particle displacement, the particle rotation, the stress, and
the contact force fields, at four loading stages marked in Fig. 2(a). The four
stages are chosen to correspond to the initial isotropic loading (stage 1), the
stress ratio at dilation (stage 3), the stress ratio intermediate between stage
1 and 3 (stage 2), and the stress ratio at failure (stage 4). The subsequent
results are discussed for packing A only; however, similar behavior was
found for the other packings as well.

Displacement Field in Packing

In order to study the nonlinearity of the incremental displacement field,
the displacements of particle centroids obtained from the computer simula-
tion, at each increment of the loading, are approximated by continuous linear
functions using the least-squares method. The linear functions used are of
the following form:

BuX,Y) = a; + bX + G oo 17

where Au(X,Y) = the displacement; a;, b;, and ¢; = the coefficients; and
X, Y = the coordinates. The deviation of the actual displacement field from
the linear least-squares approximation represents its relative nonlinearity. As
a measure of this deviation, we define, for each particle in the packing, a
coefficient { to be the normalized difference of the magnitude of displace-
ment obtained from computer simulation |Auf|, and that given by the linear
least-squares fit [Au,(X",Y")|, such that for the nth particle

oo 1201 [Bwx 1)

= St P 18
g 30 (18)
where
1 ElAuﬂ 2
AU = — Adl — S—— | 19
ALK (19)

n

where |Au| refers to the magnitude of Aw; and N = the total number of
particles in the packing. Since { is a measure of the difference of the actual
displacement field and its linear least-squares approximation, the average of
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FIG. 4. Actual Displacement Fields and Linear Least-Square (LS) Approximation
of Displacement Fields at Loading Stages 2, 3, and 4

{ over all the particles is expected to be close to zero. The standard deviation
of { over all the particles represents the relative disagreement of the actual
displacement field with the linear least-squares approximation.

The displacement fields obtained from the computer simulation method
for packing A with frictional contacts are shown in Fig. 4(a) at stages 2, 3,
and 4. Since the displacements at stage 4 are large, the displacement fields
ip Fig. 4(a) are drawn at different scales. Fig. 4(b) shows the corresponding
linear least-squares approximations of the displacement fields shown in Fig.
4(a). While in stage 2 (see Figs. 4(a) and (b)] the least-squares approximation
agrees quite well with the displacement field from computer simulation, the
agreement increasingly deteriorates for stages 3 and 4. To illustrate this de-
viation quantitatively, we plot in Fig. 5 the frequency distribution of coef-
ficient { versus percentage of particles at four stages of loading [correspond-
ing to 1-2-3-4 in Fig. 2(b)]. As the loading progresses, the distribution in
Fig. 5 indicates an increase of standard deviation of coefficient {. The in-
creasing standard deviation of { with the stress ratio signifies that uniform
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FIG. 5. Frequency Distribution of Displacement Variation Coefficient { at Load-
ing Stages 1, 2, 3, and 4

strain is a poor representation at high stress ratios. In contrast, the displace-
ment field obtained for the packings with bonded contacts is found to be
fairly linear at all stress levels (Sharma 1989).

Particle Rotations

To show the heterogeneity of the particle rotation field, we plot in Fig. 6
the frequency distribution of particle rotations with percent-particles at stages
1 and 4 of the stress-strain curve for packing A with frictional contacts. From
Fig. 6 it can be seen that the mean particle rotation is almost zero at the all
stages of loading. This result is expected, because the stress axis coincides
with the material axis, as can be seen from the contact normal distribution
shown in Fig. 3. However, from Fig. 6 it is seen that the standard deviation
of the particle rotations increases slightly with stress level. The increase in
the standard deviation indicates an increase in the heterogeneity of the ro-
tation field with stress level.

For packing A with bonded contacts under the same loading condition,
the mean particle rotation is found, as expected, to be negligibly small from
computer simulation and micro-structural continuum methods. Bathurst and
Rothenburg (1988) have suggested that the contribution of rotation is rela-
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FIG. 6. Frequency Distribution of Particle Rotations » at Loading Stages 1
and 4
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tively small for dense packings (coordination number in range of 4 to 6)
with linear contact interactions. The coordination number of the packing A
is 5.1.

Stress in Packing

To investigate the heterogeneity of the stress field, we study the deviation
of the stress for each particle. The stress associated with each particle can
be computed from the contact forces as

1
Agl = ——— A 20
Ty v:(1+e)zr /i 20)

c

where V, = the area of the particle; e = the void ratio of the packing; r; =

i

the vector joining the centroid of a particle to the contact ¢; and Af; = the
force acting at that contact. It can be easily shown that the mean stress
defined in Eq. 13 is same as the average of particle stresses given by

1
bo, = D VAL A ©ACT . oo @
We define Aj to be the deviation of the particle stress Ao, from the mean
stress Aoy, that is
Aoy — Aoy

Ac,,,

no_
i =

In Fig. 7, the frequency distribution of three components of Aj (for the
2-d case), are plotted with the percentage of particles for loading steps 1
and 4 for packing A with frictional contacts. The spread in the distribution
indicates the inhomogeneity of the stress field. As expected, the stress field
becomes increasingly heterogeneous with loading. Thus, though the mean
stress may provide a good estimate of the overall stress in packing, higher
moments of stress may be needed to capture the inhomogeneity accurately.
Another interesting observation from this result is the presence of shear stresses
at particles even though the mean shear stress is zero. Moreover, the mag-
nitude of particle shear stresses increases with the loading.

Contact Forces
To illustrate the heterogeneity of the contact forces in the packing, we

introduce coefficient p as the ratio of shear force to the Coulomb friction
strength at the contact, where

S

p_f,,ta.ncbu

(for frictional contacts);

and p= é (for bonded contacts)

n

where f; and f, = the shear and normal force at the contact respectively; and
¢, = the contact friction angle. The ratio p will take a positive or negative
sign based on the orientation of the contact normal and the choice of the
local coordinate system. The sign convention chosen here is illustrated sche-
matically in Fig. 8. The local coordinate system is chosen to consist of two
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FIG. 7. Frequency Distribution of Stress Variation Coefficients A, A, and A,
at Loading Stages 1 and 4

orthogonal vectors n and s, where n is the outward normal vector at the
contact and the direction of s is chosen to follow the right-hand rule. Shear
force in positive s-direction is taken to be positive. For example, for a con-
tact normal in the first quadrant of the global coordinate system (particles
m and n on the right side of Fig. 8) and for compressive loading in the Y-
direction, the relative movement between the particles will be such that shear
force is negative.

When the contact shear force equals the Coulomb friction strength, the

3 n

b

o

FIG. 8. Schematic Diagram to Hlustrate Sign Convention of Contact Force Ratio
p in Figs. 9 and 10
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STAGE 3 STAGE 4

FIG. 9. Distribution of Contact Force Ratio p at Loading Stages 1, 2, 3, and 4 for
Packing A with Frictional Contacts

ratio p takes the value of +1 or —1. The outer circle in Fig. 9 represents
tl.xe va!ue of p = +1 and the inner circle takes the value of p = —1. The
circle in the center represents contacts with zero shear force. Fig. 9 shows
the plot of spatial distribution of p for the loading stages 1-4 for packing
A .w1th. frictional contacts. The distribution obtained from computer simu-
latlop is shown by symbols and the distribution from the micro-structural
continuum model is shown by a continuous line. The general trend of dis-

FiG. 10. Distribution of Contact Force Ratio p at Loading Stages 3 for Pack
(
A with Bonded Contacts o s e
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tribution of p is similar for both methods; however, large scatter is observed
in the computer simulation method. The micro-structural continuum model
does not capture the variation in the local behavior. The results show the
presence of distinct ranges of orientations along which the contacts are slid-
ing.

For packing A with bonded contact, the contact force ratio p defined in
Eq. 23 can be greater than 1. In the case of bonded contacts, it is found
that the scatter of the contact force ratio is lower than that of the frictional
contacts as shown in Fig. 10 for the stage 3 of the stress-strain curve.

CONCLUSIONS

The results of computer simulation on packing of disks shows that the
type of contact interaction significantly affects the homogeneity of the var-
ious micro- and macro-mechanical measures in heterogeneous granular sol-
ids. For granular solids with bonded contacts, the strain field is found to be
relatively homogeneous. For granular solids with frictional contacts, the re-
sults show that the strain field is homogeneous at low stress levels but be-
comes increasingly heterogeneous at high stress levels. This implies that the
micro-structural continuum model based on uniform strain theory is appli-
cable to packings with bonded contacts, such as for obtaining the moduli of
cemented sands and sintered materials. The model is also applicable to pack-
ings with frictional contacts at low stress levels, such as for obtaining the
initial moduli in low-amplitude vibration problems in granular soils.

However, the micro-structural continuum model gives a large discrepancy
for packings with nonlinear frictional contacts at high stress levels even with
the incorporation of packing evolution and particle rotation. This discrepancy
is primarily due to the heterogeneity of the strain field. To model behavior
of frictional granular media based on a micro-structural continuum approach
at high levels of deviatoric stress, such as near failure, it is necessary to
account for the heterogeneity in the strain field.

APPENDIX |. CONTACT STIFFNESS AND GOVERNING EQUATIONS
FOR COMPUTER SIMULATION

The normal and the tangential stiffness at contacts are based on the Hertz-
Mindlin theory of frictional contacts (Mindlin 1949) considering partial slip
at the contacts.

Two-Disk System
The normal and tangential contact stiffness are given by

1-v, [ (2r) ]
K, = 2In =) = | 24)
76, A

f 1/2
K, = CZK,,<1 ~ ————) ..................................... (25)
fatan &,
where
2 _ 172
A= [Mf—] ........................................... 26)
=G,




l_l<l+1
el 27)

where r, and r, = the radii of the contiguous disks; f, = the magnitude of
the normal force at the contact; f; = the resultant tangential force at the
contact; G, and v, = the shear modulus and Poisson’s ratio of the particle;
C, = a material constant; and ¢, = particle-to-particle friction angle.

Two Sphere System
The normal and tangential contact stiffness are given by

Ky = o (28)
1/3
)
KS - C Kn e
z ( Fmgy) e (29)
where
C = [ 3rG§ "
T o] (30)
211 —v,)
C, = g
R R R RN ERRRNEEE (31)
and a = 1/3.

Several methods of computer simulation of granular materials have been
used (Cund.all and Strack 1979; Serrano and Rodriguez-Ortiz 1973; Kishino
1987).'thle the method by Cundall and Strack treats the problem as a
dynamlcal one, the other two methods approach it from a statical point of
view. In t.hIS work, since the focus is on a small deformation problem under
quasi-static conditions, we use an approach analogous to that by Serrano and
Rodriguez-Ortiz.

Con§1dering the equilibrium condition for the mth particle in the packing
and using Eqs. 1, 2, 3, and 5, we obtain the following governing equations
for the computer simulation:

AFT = 2 K7 [Au] — Auj + ep(Awlr!™ — Awiri™)] = Eff"" .......... (32)
and

(28]

m = m
AM! 2 en K TAUE — Aug + ey (Awy'ry® — Awlri™)r!™
. -

+ GPAW] = ATT= D e f T W (33)

where m and n = the particles in contact at the ath contact; AF = the
force; AMT = the moment acting at the centroid of the mth paﬂiclé’ =
the force; and ;" = the moment acting on the ath contact of the n;th' par-
tlc,}'e. For those particles on which no external load is acting, F = 0 and
M7 = 0. Eqgs. 32 and 33 represent 6M equations in terms of 3M particle
forcqs, 3M particle moments, 3M particle displacements, and 3M particle
rotations for an assembly of M particles. If 3M of the variables are known
the system is determinate and the equations can be solved simultaneously t(;
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obtain the unknowns. The unknowns can either be the particle movements
or the particle forces or a mixture of the two. To account for the nonlinear
contact, the computations are carried out incrementally with iterations within
each increment in the same manner as those in the initial stress algorithms
of finite element methods for nonlinear material behavior (Zienkiewicz 1977).
Within each increment, the sliding at the contact and the separation between
particles are checked and accounted. The coordinates of the disk centers are
updated at the end of each increment.
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AppPENDIX Hl. NoTaTION

The following symbols are used in this paper:

Cyu = constitutive tensor;
€; = permutation symbol;
Af; = contact force;
G; = contact rotational stiffness;
K; = contact stiffness;
I; = branch vector;
Aw; = particle displacement;
V= volume of the packing;
A3, = relative displacement between particles;
Ae; = strain tensor;
Ap; = contact moment;
Aw; = particle rotation;
Ao; = stress tensor; and
A8, = relative rotation between particles.
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