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a b s t r a c t

A micromechanical model for cohesive materials is derived by considering their underlying microstruc-
ture conceptualized as a collection of grains interacting through pseudo-bonds. The pseudo-bond or the
inter-granular force–displacement relations are formulated taking inspiration from the atomistic-level
particle interactions. These force–displacement relationships are then used to derive the incremental
stiffnesses at the grain-scale, and consequently, obtain the sample-scale stress–strain relationship of a
representative volume of the material. The derived relationship is utilized to study the stress–strain
and failure behavior including the volume change and ‘‘brittle” to ‘‘ductile” transition behavior of cohe-
sive materials under multi-axial loading condition. The model calculations are compared with available
measured data for model validation. Model predictions exhibit both quantitative and qualitative consis-
tency with the observed behavior of cohesive material.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Cohesive materials, such as, ceramics, rocks and cementitious
materials are important due to their wide applications in various
fields of engineering. Accurate numerical models of the stress–strain
behavior are necessary for correctly forecasting the damage and fail-
ure response of these materials. Stress–strain relations for cohesive
materials have been traditionally established through direct phe-
nomenological modeling based upon experimental observations,
such as those done by van Mier and co-workers (1986, 1997), Fer-
retti (2004), Zhou et al. (2004) and many others. The stress–strain
behavior of these materials is, generally, complex and critically de-
pends upon the underlying mechanisms that occur at scales smaller
than the material sample-scale. Therefore, modeling methodologies
that account for the underlying mechanisms and explicitly model
material microstructure are expected to provide better insight to
the material stress–strain behavior. For instance, lattice models of
concrete microstructure have been found useful for describing con-
crete fracture behavior by van Mier (1997). In the lattice models, the
material microstructure is projected on a lattice network and the lat-
tice elements are regarded as beams with appropriate properties. In
addition to the lattice network models, there have been other
numerous micromechanical models modeling cohesive material
by considering mechanisms at different spatial scales. For instance,
Chang and co-workers (Chang and Misra, 1990; Chang and Lun,

1992; Chang and Liao, 1994; Chang and Gao, 1996; Hicher and
Chang, 2005) have derived constitutive relations based on the
microstructure for elastic properties of the granular material. Jeffer-
son et al. (2002) have presented a discrete particle model which pro-
vides an improved estimate for the effective elastic response of
cohesive elastic aggregates undergoing homogeneous deformation.
Furthermore, Bažant and co-workers have presented microplane
model that has been successfully applied to model concrete fracture
and anelasticity (Bažant and Caner, 2005). Granular or discrete
microstructure models of cohesive material damage/failure have
also been considered in the past, such as the virtual internal bond
(VIB) model by Gao and Klein (1998), which, suffers from the limita-
tion of fixed Poisson’s ratio. To address this limitation, the VIB model
has been further developed (cf. Lin and Shu, 2002; Zhang and Ge,
2005, 2006, 2008 among others. Microstructural models have also
been developed to model elasto-plastic and damage behavior of
granular materials with friction and adhesive grain interactions
(Chang and Hicher, 2005; Hicher et al., 2008). Furthermore, Chang
and co-workers (2002) have developed higher-order constitutive
relationships which can successfully model softening behavior of
granular media by relating higher-order stress terms to the high-
er-order strain terms.

In this paper we have utilized a microstructural mechanics ap-
proach used in granular mechanics to model the stress–strain and
failure behavior of cohesive materials. We have considered mono-
lithic materials with microstructure to be divided into grains
whose centroids represent material points. In analogy with atom-
ic-scale interactions, these grains are viewed as interacting with
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each other through pseudo-bonds. In this sense, the model has
similarity with the VIB model (Gao and Klein, 1998), which uses
‘‘cohesive bonds” to represent interactions between material
points. However, since the pseudo-bonds describe the behavior
of collection of atoms, therefore, the interactions represented by
these bonds are quite complex. Consequently, the force-laws that
describe the behavior of pseudo-bonds have to be crafted in a man-
ner that captures the essential features of grain interactions as was
conceptually discussed by Misra et al. (2003). In the present paper,
we have formulated generalized pseudo-bond force-laws that can
describe both the normal and tangential inter-granular behavior.
The overall constitutive law of the material is then obtained by
averaging over the random network formed by the pseudo-bonds.
In general, the averaging process requires the relationships be-
tween local variables (such as inter-granular forces and displace-
ments) and global variables (such as element stress and strains).
For simplicity, the local variables are obtained in terms of the glo-
bal variables by either kinematic assumption or the static assump-
tion. These assumptions have been widely discussed in the
microstructural granular mechanics literature. In the present pa-
per, we have utilized the kinematic assumption. The model we
have presented provides similar advantages that the models of this
genre possess (Chang et al., 2002; Bažant and Caner, 2005). Using
the derived micromechanical model, we can explain the macro-
scale behavior of cohesive material under multi-axial tensile and
compressive loads, even though we have employed relatively sim-
ple descriptions of inter-granular behavior.

In the subsequent discussion, we first describe the overall
methodology including the projection of a physical continuum
model to a discrete granular structure as well as the formulation
of force–displacement relations inspired by the atomic-scale inter-
actions. This is followed by brief description of the constitutive
modeling and the derivation of closed form of constitutive rela-
tionships for the idealized granular system under initial infinitesi-
mal load. The model applicability is then evaluated by comparison
of the calculated stress–strain relations as well as the failure
behavior to the available experimental data under uniaxial, biaxial
and triaxial loading conditions.

2. Continuum idealized as granular system

We consider monolithic materials with microstructure to be di-
vided into grains whose centroids represent material points as de-
picted in Fig. 1. Under an applied load on a sample of such a
material, the conceptual grains may translate or rotate. Consider-
ing each grain to have six degrees of freedom, i.e., three transla-
tional and three rotational degrees of freedom, the relative
displacement, di, between two nearest neighbor grains n and p
(see Fig. 1) is given by Misra and Chang (1993).

di ¼ un
i � up

i þ eijk xn
j rn

k �xp
j rp

k

� �
; ð1Þ

where ui = particle displacement; xj = particle rotation; rk = vector
joining the particle centroid to the contact point; superscripts refer

Fig. 1. Conceptual granular model of a continuum (a) pseudo-granular structure, (b) two-grain kinematics, and (c) idealization of grain interactions.
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to the interacting particles and eijk = permutation symbol. The rela-
tive displacement di between two grains may be decomposed into
two components, one along the pseudo-bond connecting the con-
ceptual grains denoted by, dn, and the other in the tangential direc-
tion of the pseudo-bond denoted by, dW. The relative displacement
in the normal direction is given by, dn = dini, and the relative
displacement in the tangential direction is given by,

dW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdisiÞ2 þ ðditiÞ2

q
, where the vector ni = unit vector along the

line connecting the grain centroids; and nst forms a local Cartesian
coordinate system as shown in Fig. 1, where the vectors si and ti are
arbitrarily chosen and lie on the plane perpendicular to the vector
ni. Thus, upon an increment of deformation, the center-to-center
distance between two granular material points, denoted by L, be-
comes, Lo + dn, where, Lo is the initial center-to-center distance,
and the tangential distortion between the two granular material
points, denoted by w, becomes, dW.

The conceptual granular interactions between materials points
through pseudo-bond may be expressed as potential function,
U(L,w), formulated in terms of the center-to-center distance, L,
and the tangential distortion, w (Misra et al., 2003), although, more
strictly, the particle potential should incorporate the effect of the
neighboring grains. Decomposition of energy in terms of dilata-
tional and deviatoric deformation has also been considered by
Volokh and Gao (2005) in the context of modified VIB model. For
simplicity, the potential function is written as a summation of a
central potential, /(L), dependent upon the center-to-center dis-
tance of two nearest neighbor grains, L, and a non-central poten-
tial, w(w), dependent upon the tangential distortion from the
initial equilibrium position for the two nearest neighbor grains,
w, given by

UðL;w; pÞ ¼ /ðL; pLÞ þ wðw; pwÞ; ð2Þ

where we have neglected the term that cross-links central and non-
central motions and p = {pL,pw} are a set of parameters, including
grain size and shape, that define the potential function. Although
the potential functions are inspired by the atomic-interaction
potentials, the pseudo-bond potential functions represent the inter-
action of grains. The grains can be assumed to be formed of domains
demarcated by natural grain boundaries as depicted in Fig. 1(c).
Thus the grains may be considered as atom aggregations, such that
the inter-granular potential may be viewed in a statistical sense as
representing the behavior of many interacting atoms comprising
the grains. In principle, the inter-granular potentials can be derived
in a manner analogous to that of molecular potential energy func-
tions (Murrell et al., 1984). However such an approach is untenable
for large grains with billions of atoms.

From an empirical viewpoint, we can formulate functions in
which the essential sub-granular scale mechanisms are repre-
sented. The parameters of these functions can then be obtained
by fitting with experimental data. In the spirit of this more practi-

cal approach, we consider the interaction of two grains. Fig. 2(a)
gives a schematic plot of the typical shape of pseudo-bond central
potential function, /(L). When the grains are pulled apart along the
centroidal axis, the pseudo-bond central potential, /(L), can be ex-
pected to decay asymptotically to zero starting from some equilib-
rium value. Phenomenologically, the decay represents an
accumulation of damage caused by sub-granular scale de-cohesion
and void growth (Misra et al., 2007). Similarly, when the grains are
compressed against each other and the center-to-center distance is
decreased; the pseudo-bond potential function is expected to ac-
count for the effects of damage due to sub-granular scale shear
localization or void collapse. Possible mechanism of inter-granular
compressibility in the context of cohesive materials, such as ce-
ments and rocks has been discussed by van Mier (2007). The po-
tential function under grain compression is expected to be
considerably softer and less rapidly varying than the atomic poten-
tials which rapidly approach infinity as the center-to-center dis-
tance is decreased. Inter-particle or polyatomic potential
functions are known to be less steep on the compressive (or repul-
sive) side compared to their inter-atomic counterparts (Murrell
et al., 1984; Israelachvili, 1985). The force resultant from the rela-
tive movement between two adjacent grains can then be obtained
as the derivatives of the inter-granular potential functions. For
convenience, we directly formulate the force functions, which are
given as follows for the force generated by the relative normal mo-
tions of the adjacent grains:

fn ¼ Adne�
dn
Bð Þ for tension; ð3Þ

fn ¼ Adn �
A

2a1
ln½ð1� tanha1dnÞð1þ tanh a1dnÞ�

for compression: ð4Þ

Eq. (3) represents a characteristic damage behavior based upon the
attractive part of the well-known Morse potential function and has
been used previously to represent inter-granular damage (de-cohe-
sion) under tension (Gao and Klein, 1998). Under compression, the
inter-granular force function can take a variety of forms depending
upon the sub-granular structure and composition. For instance, un-
der purely central compression of two-grains, the sub-granular
scale pore compaction or shear localization can result in the force
function reaching an asymptotic value, as opposed to infinitely
increasing. Eq. (4) is a hyperbolic force function formulated to ap-
proach an asymptotic value as the inter-granular center-to-center
distance is decreased. Other formulations of force function under
grain compression are possible and need further investigation.
Fig. 3(a) plots the above force functions with respect to the normal
component of the inter-granular relative displacement.

Similarly sub-granular scale mechanisms need to be accounted
when the grains are deformed in the direction tangential to the
pseudo-bond. For example, greater energy may be required to ini-

Fig. 2. Pseudo-potential functions in (a) normal direction and (b) tangential direction.
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tiate damage in the direction tangential to the pseudo-bond under
compression in contrast to that under tension. Such phenomena
may be caused by the differences in interactions at the grain
boundaries under tensile or compressive conditions. The analysis
of inter-granular behavior undergoing damage in the presence of
many sub-granular scale fractures and flaws at the grain bound-
aries under combined normal and shear loading is highly complex.
However, the indications for the differences in the inter-granular
shear behavior under different normal loading conditions are
available from the pressure dependent behavior shown by single
fractures subjected to shear (Misra, 2002). Hence, under compres-
sion; a deeper potential-well is expected for the non-central poten-
tial, /(w). The pseudo-bond potential functions have to be
formulated accordingly. Fig. 2(b) gives a schematic plot of the
shapes of possible non-central bond potential functions, /(w), for
the case of grains under tension or compression. It is reasonable
to assume that the non-central potential functions resemble the
tensile part of the inter-granular central potential in which the en-
ergy associated with the interaction decay asymptotically to zero
with increasing tangential distortion starting from some equilib-
rium value. In Fig. 2, the point of lowest potential corresponds to
the equilibrium center-to-center distance, L = Lo and the equilib-
rium tangential distortion, w = 0. Again for convenience, we di-
rectly formulate the force functions, which are given as follows
for the force generated by the relative tangential motions of the
adjacent grains:

fw ¼ Cdwe�
dw
Dð Þ for tension; ð5Þ

fw ¼ Cdwe
� dw

a2D

� �
for compression: ð6Þ

For simplicity, Eqs. (5) and (6) are taken to have the same form as
Eq. (3). In addition, as a first step to account for the effect of normal
loading, the force functions are modified to have different parame-
ters under tension and compression. Modifications to these force
functions, that incorporate normal force dependency, such as a fric-
tional law, may also be considered and need further investigations.
These force functions exhibit the non-linear pre-peak and softening
response that can be expected for grain boundaries experiencing
damage under shear loading. Fig. 3(b) plots the above force func-
tions with respect to the tangential component of the inter-granular
relative displacement.

Based upon the above force functions, the incremental inter-
granular force Dfi may be related to the increment of relative dis-
placement Ddj through the stiffness Kij as

Dfi ¼ KijDdj; ð7Þ

where the stiffness Kij can be written in terms of the components in
the normal direction Kn and the tangential direction Kw as

Kij ¼ Knninj þ Kwðsisj þ titjÞ: ð8Þ

The stiffness in the normal direction Kn and that in the tangential
direction Kw are obtained from the force functions in Eqs. (3)–(6)
as follows:

Kn ¼
@fn

@L
¼ �Ae�

dn
Bð Þð�Bþ dnÞ

B
for tension: ð9Þ

Kn ¼
@fn

@L
¼ A½1þ tanhða1dnÞ� for compression: ð10Þ

Kw ¼
@fw

@w
¼ Ce�

dw
Dð ÞðD� dwÞ

D
for tension: ð11Þ

Kw ¼
@fw

@w
¼ Ce

� dw
a2D

� �
ða2D� dwÞ
a2D

for compression: ð12Þ

Fig. 4 presents these stiffnesses with respect to the relative dis-
placements in the normal and tangential directions, respectively.
We note the force functions under tension and compression are for-
mulated in a way that the stiffness is same under initial zero-strain
condition (dn = 0, dw = 0).

3. Constitutive relationship for idealized granular system

The incremental stress tensor of an element of a granular med-
ium containing a number of grains may be expressed as a volume
average of the tensor product of the incremental inter-granular
force, Dfi, and the vector joining the contacting grain centroid,
Lpnp

j , given as (Chang and Liao, 1994):

Drij ¼
1
V

X
p

LpDf p
i np

j ; ð13Þ

where the summation is performed over all the inter-granular
interactions within the representative volume, V. We now utilize
a kinematical assumption that relates the relative displacement be-
tween grains, Ddi, and the overall strain of the sample, Deij, as fol-
lows (Chang et al., 2002)

Ddi ¼ LDeijnj; ð14Þ

where the strain, Deij, is treated as symmetric, given as

Deij ¼
1
2
ðui;j þ uj;iÞ ð15Þ

and as a first approximation, we ignore the micro-polar effects
introduced by grain rotations. The constitutive tensor of the sample
is obtained by combining the inter-granular force–displacement
relationship from Eq. (7) with Eqs. (13) and (14) as follows:

Cijkl ¼
1
V

X
p
Lp2

np
j np

l Kp
ik; ð16Þ

Fig. 3. Force functions in (a) normal direction and (b) tangential direction.
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where the relationship between the incremental stress Drij and
incremental strain Deij is expressed as

Drij ¼ CijklDekl; ð17Þ

For a representative volume containing a large number of grains,
the summation in Eqs. (13) and (16) may be recast into an integral
form as follows (Chang and Misra, 1990)

Drij ¼ LNp

Z
X

niðXÞDfjðXÞnðXÞdX; ð18Þ

Cijkl ¼ L2Np

Z
X

njðXÞKikðXÞnlðXÞnðXÞdX; ð19Þ

where the integration
R

XðÞdX ¼
R 2p

0

R p
0 ðÞ sin cdcdb. In this integra-

tion,c is taken as the polar angle (colatitudinal) from the positive
z-axis with c [0,p], and b is the azimuthal angle (longitudinal) in
the x–y plane from the x-axis with b [0,2p]. In Eqs. (18) and (19),
Np is the pseudo-bond density, namely the inter-granular interac-
tion density, per unit volume and n(X) is a directional density func-
tion which represents the discrete distribution of inter-granular
interactions in a continuum manner, such that the product Np

n(X) dX denotes the inter-granular interaction density in the direc-
tion represented by the interval between solid angles X and X + dX.
In three dimensions, spherical harmonic expansions may be utilized
as the directional density function as discussed in Chang and Misra
(1990). For the simplicity of further derivation, a truncated form of
spherical harmonic expansion is employed and given as

nðc; bÞ ¼ 1
4p

1þ 1
4

a20ð3 cos 2cþ 1Þ þ 3 sin2 cða22 cos 2bþ b22 sin 2bÞ
� �

ð20Þ

where a20, a22 and b22 are fabric parameters determining the isot-
ropy of the material. For instance, if a20 = a22 = b22 = 0, then the
truncated distribution density function is capable of representing
material having isotropic symmetry. The material will have trans-
verse isotropic symmetry when the fabric parameters a22 = b22 = 0.
If we choose the fabric parameters such that a20 – a22 – 0 then it
represents material with orthotropic symmetry.

4. Results and discussion

4.1. Closed form expression for initial moduli

Since, in general the force and stiffness functions depend upon
orientations, closed form integration of Eqs. (18) and (19) may only
be obtained under certain simple loading conditions or under
infinitesimally small strains in which case the stiffnesses, Kn and
Kw, reduce to constant values. Substituting Eq. (8), the stiffness

functions, Kij, and Eq. (20), the directional density function of the
pseudo-bonds, into Eq. (19), closed form solutions for the initial
moduli of the sample may be derived. Taking into account the sym-
metry of the incremental stress and strain tensors, the stress–
strain relationship, equivalent to Eq. (17), can be re-expressed in
Voigt’s notation as follows:

Drm ¼ CmnDen; ð21Þ

or

Drzz

Dryy

Drxx

Drzy

Drzx

Drxy

2
666666664

3
777777775
¼

C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0
Symmetric C55 0

C66

2
666666664

3
777777775

Dezz

Deyy

Dexx

Dezy

Dezx

Dexy;

2
666666664

3
777777775

ð22Þ

The initial moduli, Cmn, are given as

C11 ¼ L2
oNp

1
15
ð3Kn þ 2KwÞ þ

a20

105
ð12Kn þ 2KwÞ

� �
; ð23Þ

C12 ¼ L2
oNp

1
15
ðKn � KwÞ þ

a20

105
ðKn � KwÞ

�

þ a22

35
ð2Kn � 2KwÞ

i
; ð24Þ

C13 ¼ L2
oNp

1
15
ðKn � KwÞ þ

a20

105
ðKn � KwÞ

�

þ a22

35
ð�2Kn þ 2KwÞ

i
; ð25Þ

C16 ¼ L2
oNp

b22

35
ð2Kn � 2KwÞ

� �
; ð26Þ

C22 ¼ L2
oNp

1
15
ð3Kn þ 2KwÞ þ

a20

105
ð�6Kn � KwÞ

�

þ a22

35
ð12Kn þ 2KwÞ

i
; ð27Þ

C23 ¼ L2
oNp

1
15
ðKn � KwÞ þ

a20

105
ð�2Kn þ 2KwÞ

� �
; ð28Þ

C26 ¼ L2
oNp

b22

35
ð6Kn � 6KwÞ

� �
; ð29Þ

C33 ¼ L2
oNp

1
15
ð3Kn þ 2KwÞ þ

a20

105
ð�6Kn � KwÞ

�

þ a22

35
ð�12Kn � 2KwÞ

i
; ð30Þ

C36 ¼ L2
oNp

b22

35
ð6Kn þ 8KwÞ

� �
; ð31Þ

Fig. 4. Stiffness functions in (a) normal direction and (b) tangential direction.
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C44 ¼ L2
oNp

1
15
ðKn þ 4KwÞ þ

a20

105
ðKn þ 13KwÞ

�

þ a22

35
ð2Kn � 2KwÞ

i
; ð32Þ

C45 ¼ L2
oNp

b22

35
ð2Kn � 2KwÞ

� �
; ð33Þ

C55 ¼ L2
oNp

1
15
ðKn þ 4KwÞ þ

a20

105
ðKn þ 13KwÞ

�

þ a22

35
ð�2Kn þ 2KwÞ

i
; ð34Þ

C66 ¼ L2
oNp

1
15
ðKn þ 4KwÞ þ

a20

105
ð�2Kn � 5KwÞ

�

þ a22

5
ð2KwÞ

i
: ð35Þ

The other elements of the constitutive relation, Cmn, are all zero.
By using the above derived constitutive relations and appropriate
bond density parameters, a20, a22, and b22, which are the indica-
tions of the type of material symmetry, material properties such
as Young’s modulus, E, Poisson’s ratio, m, and shear modulus, G,
in different directions corresponding to those bond density param-
eters may be obtained. As an example, we derive the material
properties for isotropic material whose bond density parameters,
a20 = a22 = b22 = 0. Further, under infinitesimal initial strain, both
dn ? 0 and dw ? 0, and Eqs. (9)–(11) reduce to Kn = A and Kw = C.
Thus, the initial Young’s modulus, E, and Poisson’s ratio, m, fo an
isotropic material are obtained as

E ¼ L2
oNp

Að2Aþ 3CÞ
3ð4Aþ CÞ ; ð36Þ

m ¼ A� C
4Aþ C

: ð37Þ

For positive values of parameters A and C, Eq. (37) predicts a Pois-
son’s ratio in the range of �1–0.25, which conforms to the well-
known bounds for isotropic elastic materials. For most bulk cohe-
sive materials, Poisson’s ratio is positive, however, auxetic cohesive
materials with negative Poisson’s ratios are possible as well. By
applying similar operations, material properties for various types
of materials such as transversely isotropic and orthotropic material
etc. can be expressed in terms of normal and tangential force laws
as well as bond density parameters.

4.2. Model parameters

There are six model parameters that determine the force–dis-
placement functions and stiffness functions, namely A, B, C, D, a1

and a2. In addition, there are two micro-structural parameters gi-
ven in terms of the bond length, L0, and the number of bonds per
unit volume (bond density), Np. The determination of these param-
eters is imperative in order to subsequently calculate the stress–
strain relationships of a material. Parameters A, B and a1 determine

the normal inter-granular force functions, and C, D and a2 deter-
mine the tangential inter-granular force functions. Parameter A,
is the normal stiffness at the zero-strain condition; parameter B,
defines the deformation corresponding to the peak tensile force;
and parameter a1 determines the deformation corresponding to
the maximum curvature of the compressive force–deformation
curve. Similarly, parameter C, is the shear stiffness at the zero-
strain condition; parameter D, defines the deformation corre-
sponding to the peak tangential force; and parameter a2 modifies
the deformation corresponding to the peak tangential force when
the grains are under the compression. These parameters are related
to the grain characteristics, including its size, composition, and
sub-granular structure. Ideally, the model parameters may be ob-
tained by averaging over the configurational space of grain micro-
scopic constituents simulated using appropriate methods, such as
particle or atomistic simulation approaches. Alternatively, these
parameters can be correlated to the grain-scale characteristics,
by fitting to measured properties obtained from physical experi-
ments for materials whose constituent properties are known.

A systematic parametric study may be conducted to obtain the
admissible ranges of force-law and bond density parameters. For
an isotropic material, parameters A and C may be derived from
measured Young’s modulus and Poisson’s ratio as follows using
Eqs. (36) and (37):

A ¼ 3E

ð1� 2vÞL2
oNP

; ð38Þ

C ¼ 3Eð1� 4vÞ
ð1� 2vÞðv þ 1ÞL2

oNP

: ð39Þ

For the pseudo-bond model, the product L2
0Np can be conveniently

incorporated into modified parameters denoted by, A1 and C1, as
follows:

A1 ¼ AL2
oNP; ð40Þ

C1 ¼ CL2
oNP : ð41Þ

The relationships of parameters A1 and C1 with positive Poisson’s
ratio for three values of Young’s modulus E are plotted in Fig. 5(a)
and (b), respectively. Clearly, we do not need to explicitly know
the numerical values of either the bond length or the bond density
for performing model calculations. On the other hand, if the micro-
scale length parameters and bond density can be identified from the
experimental measurements of material constituents, the intrinsic
model parameters with clear physical meaning can be obtained.

The other model parameters, B, D, a1, and a2, can be numerically
obtained by considering the measured peak state of stress–strain
curve under the uniaxial tensile and compressive loading. Parame-
ters B and D are closely related to the peak stress and correspond-
ing strain measured in a uniaxial tension test. Similarly, parameter
a1 and a2 have a close relationship to the failure stress and the cor-
responding strain in a uniaxial compression test. To determine the

Fig. 5. (a) Parameter A1 vs Poisson’s Ratio (b) Parameter C1 vs Poisson’s Ratio.
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feasible range of these parameters, a parametric study maybe per-
formed by varying one of the parameter while keeping the others
constant. In Fig. 6, we show example results of a parametric study
performed by varying parameters B and D. Based upon these para-
metric studies, charts (such as Fig. 6(b)) can be developed that re-
late the parameters to the peak/failure stress and strain of uniaxial
tension and compression tests.

4.3. Stress–strain behavior under multi-axial loading conditions

To evaluate the model capability, we present selected results for
stress–strain behavior under monotonic uniaxial, biaxial and triax-
ial tension and compression and compare them with available
experimental measurements. For these loading conditions, the
stress–strain relationship is obtained by numerically integrating
Eq. (17) or Eq. (18) to obtain the incremental stresses Drij or the
incremental strains Deij or their combination under the applied
loading conditions.

4.3.1. Uniaxial tension and compression
For simulating uniaxial stress test, we specify axial strain incre-

ments De11 – 0 and the non-axial components of stress increments
Drij = 0 and we compute the axial stress increments Dr11 and the
non-axial components of strain increments Deij. For our example
calculations, we have used the following values of the model
parameters: A1 = 0.7, B = 3.4 � 10�7, C1 = 0.2, D = 1.3 � 10�4, a1 =
2 � 105 and a2 = 7. These parameters were calculated to fit the
measured uniaxial tension stress–strain curve for portland cement
concrete plate (Gopalaratnam and Shah, 1985). Fig. 7 shows the
measured and calculated stress–strain curve under uniaxial tension.
The measured data, shown by symbols, was obtained from uniaxial
tension test done with symmetrically notched plates (Gopalaratnam
and Shah, 1985). The strain measurements were made using 10 mm
long strain gages mounted along the centerline joining the notches.
The calculated stress–strain curve using the derived model, shown

as solid line in Fig. 7, provides an excellent match to the measured
data indicating the models ability to replicate the behavior. The
measured strains were also obtained from the overall displacement
of the sample over a gage length of 83 mm. Gopalaratnam and Shah
(1985) found that the strains measured by the 10 mm long strain
gage increased rapidly in the post peak in contrast to the strain ob-
tained from the overall displacements. This phenomenon is attrib-
uted to the strain localization along the centerline joining the
notches during the post peak regime accompanied by unloading in
regions away from the localization zones.

Fig. 8, plots the stress–strain relationship under uniaxial com-
pressive loading obtained from the calculation. Although there is
no experimental observation for the same material tested under
uniaxial compression, the curve exhibits a reasonable result as
the stress and strain at the peak condition are approximately ten
times higher than that under tensile loading which is widely ob-
served for this type of cementitious materials.

4.3.2. Biaxial tension and compression
In Figs. 9 and 10 we compare the predicted stress–strain curves

with the measured data for two sets of biaxial tests. The measured

Fig. 6. (a) Uniaxial tension stress–strain curves obtained by varying parameter B while the other parameters are kept constant (b) peak stress vs parameter B for different
values of parameter D obtained for stress–strain curves similar to (a).

Fig. 7. Measured (Gopalaratnam and Shah, 1985) and calculated stress–strain curve under uniaxial tension.

Fig. 8. Predicted stress–strain behavior under uniaxial compression.
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data are also for portland cement concrete plates although these
are from experiments performed by different researchers (Kupfer,
1973 as reported by van Mier, 1997; Yin et al., 1989) and represent
concrete samples whose mix proportions (compositions) are also

different. Nevertheless, we have used the same model parameters
as those used for uniaxial test calculation in order to assess if the
model predictions capture the behavior exhibited by these materi-
als. For simulating these tests we specify stress increments Drij

Fig. 9. Measured (Kupfer, 1973 as reported by van Mier, 1997) and calculated stress–strain curves under biaxial loading path.

Fig. 10. Measured (Yin et al., 1989) and calculated stress–strain curves under biaxial loading path.
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such that the ratio r22/r11 = constant and r33 = 0, and we compute
the strain increments Deij. In both Figs. 9 and 10, the four biaxial
test measurements are for the condition in which the non-zero
stresses, r11 and r22, are under compression. The stress–strain
curves are shown by plotting the largest normal stress, typically
r22, denoted as the ‘‘axial stress” against all the normal strain com-
ponents. In Fig. 9(a) and Fig. 10(a), since the stress component
r11 = 0, the stress condition is uniaxial, consequently the strain
components e11 = e33. In Fig. 9(b) and (c), and Fig. 10(b) and (c),
the three normal strain components are distinct. In Fig. 9(d) and
Fig. 10(d), since the stress component r11 = r22, the strain compo-
nents e22 = e11. The predicted data shown in Figs. 9 and 10 replicate
the observed trends reasonably well and in some cases show close
quantitative agreement. These predictions are rather encouraging
since we have used the same model parameters in our calculations
although the mix proportions for both these data sets are different
from those used by Gopalaratnam and Shah (1985). Clearly closer

quantitative agreement between measured stress–strain curves
and predictions can be obtained by adjusting the model parame-
ters. We have further compared the predicted failure behavior un-
der these biaxial loading paths with that obtained from the
measurements. Failure is identified from the predicted stress–
strain curves in a manner identical to that for experimentally mea-
sured stress–strain curves at either the peak or asymptotic major
principal stress value. As seen from Fig. 11, the predicted failure
behavior not only matches the measured data by Yin et al.
(1989) but replicates the biaxial failure envelope shape widely re-
ported in the literature for concrete and hardened cement paste.

4.3.3. Triaxial tension and compression
In Figs. 12–14 we show the stress–strain behavior predicted by

the derived constitutive relationships under various triaxial ten-
sion and compression loading paths. Figs. 12 and 13 give the
stress–strain and volume change behavior under axisymmetric tri-
axial loading path in which a compressive constant confining stress
given by r22 = r33 = constant is applied while the axial stress, r11,

Fig. 11. Calculated failure envelope under biaxial loading for r33 = 0 showing
comparison with measured data (Yin et al., 1989).

Fig. 12. Axisymmetric triaxial stress–strain relationship for (a) tension and (b) compression.

Fig. 13. Axisymmetric triaxial volumetric strain relationship for (a) tension and (b) compression.

Fig. 14. Predicted stress–strain curves under true triaxial loading that replicate the
test conditions reported by van Mier (1984) for tests on concrete cubes.
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is increased either in tension or in compression. Clearly, the confin-
ing stress has a significant effect upon the stress–strain and
volume change behavior under tension as well as under compres-
sion. Both the failure stress and the corresponding strain increase
with increasing confining pressures. Similar behavior has been ob-
served in experiments on concrete samples subjected to triaxial
compression (Xie et al., 1995; Balmer, 1949). The volume change
predictions show that under tension the behavior is always dila-
tive, while under compression, the volume compresses and, subse-
quently dilates. Such volume change behavior is suspected for all
brittle cohesive materials, although experimental measurements
are not always widely available.

For the case of tensile loading, the failure is primarily governed
by a combination of two mechanisms: (1) inter-granular failure in
the normal direction under tension described by Eq. (3) and (2)
inter-granular failure in the shear direction under compression
described by Eq. (6). The other two mechanisms described by
Eqs. (4) and (5), have a smaller contribution under this type of
loading condition. As the axial tensile stress is increased, the in-
ter-granular orientations that reach peak tensile force under ten-
sion have to first overcome the compressive forces induced by
the confining stress. In addition, the inter-granular orientations
that reach peak shear force do so under a compressive loading con-
dition. For either failure mechanism, the resultant peak force val-
ues and inter-granular motion are larger under greater
confinement. Furthermore, for tensile axial loading, the dilative
volume change behavior shown in Fig. 13(a) indicates that the fail-
ure is dominated by the normal tensile mechanism, although, the
reduced volume dilation indicates that the deformation and failure
have increasing contribution from the shear mechanism under
increasing confinement. For the case of compressive loading, the
failure is governed by a combination of all four inter-granular
interaction mechanisms. Under uniaxial compressive stress
(r22 = r33 = 0), the normal tensile mechanism has the greatest con-
tribution as indicated by the dilative volume change behavior
shown in Fig. 13(b). As the confining stress in increased, the shear
mechanisms become important. Finally, at very high confining
stresses, the inter-granular failure in the normal direction under
compression is the dominant mechanism. We also note that there
is a relatively large increase in the failure stress and the corre-
sponding strain for the case of tensile loading as opposed to the
compressive loading for the same increase in the confining stress.
These differences are likely due to the different mechanisms that
govern the behavior under the two set of loading conditions. For
instance, under tensile loading the normal tensile mechanism
dominates in which the compressive forces that need to be over-
come are proportional to the applied confining stress.

Furthermore, we note that the stress–strain behavior for both
set of loading conditions transitions from ‘‘brittle” (characterized
by a peak stress and post peak softening) to ‘‘ductile” (character-
ized by gradual yielding and post-yield hardening) with increasing
confining stress. Experiments on concrete samples subjected to tri-
axial compression loading have shown similar brittle to ductile
transformation under increasing confinement (Xie et al., 1995; Bal-
mer, 1949). The transition is a manifestation of the change affected
by the confining stress on the load–displacement states of the four
inter-granular interactions (given by Eqs. (3)–(6)) in different in-
ter-granular orientations. The result is that the contributions of
these four mechanisms to the overall behavior at different stages
of loading vary with confinement similar to variations in the in-
ter-granular deformation mechanisms observed in nano-indenta-
tion simulations (Szlufarska et al., 2005). For instance, as the
confining stress is increased for tensile axial loading case, the in-
ter-granular softening response in both normal and shear direc-
tions are achieved for fewer and fewer orientations and other
stiffer and stronger mechanism have a greater contribution. Thus,

the overall response acquires a hardening nature with increasing
confinement. The precise contributions of the different mecha-
nisms on the deformation and failure response needs further sys-
tematic investigation and will be a subject of future publication.

In Fig. 14, we have plotted the predicted stress–strain behavior
under true triaxial loading paths that replicate the test conditions re-
ported by van Mier (1984) for tests on concrete cubes. Three loading
paths were considered in which the samples were subjected to com-
pressive loads that were increased such that the principal stress ra-
tios r22/r11 and r33/r11 remained constant during the test. For case
1 the ratio r22/r11 = 0, for case 2 the ratio r22/r11 = 0.1, and for case 3
the ratio r22/r11 = 0.33. For all the three cases the ratio r33/r11 was
maintained at 0.05. No attempt was made to obtain a quantitative
match and the same set of parameters were used as those for the uni-
axial and biaxial predictions, although the concrete mix composi-
tions were likely to be different. The predicted curves captured the
trends observed in the measurements.

Finally, we have studied the ability of our model to predict the
failure behavior under various triaxial loading conditions. The pre-
dicted maximum strength curve under axisymmetric triaxial load-
ing at different confining stresses is shown in Fig. 15 which gives a
plot of peak axial stress versus the confining stress normalized by
the strength under uniaxial stress conditions. The predicted curve
compares well with the data widely reported in the literature for
concrete and rocks which are characterized by the nonlinear
behavior with increasing confining stress (van Mier, 1997; Jaeger
et al., 2007). We have also studied failure behavior under true tri-
axial stress conditions by performing calculations for loading paths
in which r22 /r11 = constant and r33 = constant. The predicted
failure behavior is shown in Fig. 16, which plots the failure enve-

Fig. 15. Predicted maximum strength curves under axisymmetric triaxial loading
paths (ra=axial stress, rr=confining stress, f 0c=uniaxial compressive strength).

Fig. 16. Predicted failure envelopes under true triaxial loading calculated for
varying r33.
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lopes for various values of r33, as the material is subjected to a r22/
r11 = constant stress-path. As the stress r33 is increased from a
tensile value of 2 MPa to a compressive value of �35 MPa, the fail-
ure envelope progressively becomes larger. We note that the fail-
ure envelopes for compressive stresses �30 and �35 MPa are
almost coincident indicating that the material is close to its triaxial
compressive strength limit.

5. Summary and conclusion

We have presented a methodology for obtaining the constitu-
tive relationships for cohesive materials based upon a microstruc-
tural mechanics approach used in granular mechanics. The stress–
strain relationships were derived by considering the material to be
composed of grains, whose interactions are governed by force–dis-
placement relations inspired by the atomistic-level particle inter-
actions. We find that the microstructural granular mechanics
approach is versatile and can be applied to granular assemblies
with diverse inter-granular behavior. Since these inter-granular
pseudo-bonds considered here model the behavior of collection
of atoms, the force-laws that describe their behavior were crafted
in a manner that captures the effect of sub-granular damage for
both the normal and tangential interactions. The overall constitu-
tive law of the material was then obtained by averaging over the
random network formed by the pseudo-bonds.

The developed methodology was used to derive closed form of
stress–strain relationships under initial infinitesimal load. The
closed form relationships provide us with a means to relate
two of the six model parameters to the measured elastic behavior
of cohesive materials. The other four model parameters can be
calibrated to the measured peak stress and corresponding strain
from uniaxial tension and compression tests. Further research is
necessary to obtain feasible range of parameters for different
cohesive material systems. The model applicability was then
evaluated by comparison of the calculated stress–strain relations
as well as the failure behavior to the available experimental data
under uniaxial, biaxial and triaxial loading conditions. We found
that when uniaxial test data was available for parameter calibra-
tion, the model provided an excellent prediction of the overall
behavior under multi-axial loading paths. From the variety of
comparisons between predicted results and experimental obser-
vations, we can conclude that the model is able to capture sev-
eral stress–strain phenomena under various loading conditions.
The model versatility can be attributed to the interaction of in-
ter-granular behavior in various orientations that provide com-
peting deformation mechanisms. It is encouraging that using
the derived micromechanical model, we can explain volume
change, transition from ‘‘brittle” to ‘‘ductile” and failure behavior
of cohesive materials under multi-axial loading, even though we
have utilized relatively simple descriptions of inter-granular
behavior. How the different inter-granular mechanisms contrib-
ute to the overall deformation and failure response needs further
exploration and is part of our on-going investigation with this
model. In addition, our future work will comprise of model per-
formance evaluation under loading paths that incorporate shear
stresses and extending the model to include the effect of unload-
ing as well as cyclic loading.
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