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RESEARCH ARTICLE

Coupling phase field and visco-plasticity to study rafting in

Ni-base superalloys

A. Gauberta∗, Y. Le Bouarb and A. Finelb

aOnera, 29 avenue de la Division Leclerc, 92320 Châtillon, France; bLaboratoire d’Etude
des Microstructures, Onera/CNRS, 29 avenue de la Division Leclerc, 92320 Châtillon,

France,

(January 21, 2009)

An elasto-visco-plastic model is developed to study the microstructural evolution during a
creep loading in a model AM1 superalloy. Elastic anisotropy and inhomogeneity, as well as the
description of long range order in the γ′ phase are included in the model. Plastic activity is
introduced using a continuum crystal plasticity framework at mesoscale. A special attention
is paid on the corresponding parameters identification from experiments. Two dimensional
simulations of creep in the [100] direction are performed, and the results are compared to the
predictions of an elastic phase field model, in order to characterize the influence of plastic
activity on the microstructural evolution. In particular, our simulations show that plastic
activity in the γ channels significantly increases the rafting kinetics and allows misalignments
of rafts with respect to cubic directions. The simulation results are critically discussed and
improvements of the model are proposed.

Keywords: Nickel-base superalloys, rafting, phase field, visco-plasticity

1. Introduction

Nickel-base superalloys are widely used in aero-engine industries for turbine blades
designing because of their outstanding mechanical behavior at high temperatures.
They owe these properties to their typical microstructure consisting of cuboids of
γ′ precipitates surrounded by thin channels of γ matrix. Indeed, the γ′ phase is
ordered (in a L12 Ni3Al type structure) and its dispersion in the γ (face-centered
cubic nickel-rich disordered phase) matrix reduces dislocations motion. However,
when loaded at high temperature, the microstructure undergo the so-called rafting
phenomenon. During a 〈001〉 oriented creep test, the precipitates coarsen in an
anisotropic way to form platelets [1–4].

A great number of models has been developed in order to predict rafts orienta-
tion, first in an elastic framework [5] and more recently adding the plastic strains
influence [6–9]. These models have pointed out driving forces on rafting such as
the lattice misfit, the external loading and its direction with respect to the mi-
crostructure orientation and the difference in elastic constants between the two
phases. In the mean time, the plastic activity in γ channels is also pointed out as
an important parameter on directional coalescence of γ′ precipitates. This point
has been illustrated experimentally in [10] where the AM1 superalloy is loaded at a
temperature too low to observe rafting and then submitted to a higher temperature
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without applied stress. This test shows that rafting occurs at high temperature due
to the dislocations created at the lower temperature. Other authors [11, 12] have
carried out similar experiments showing that without plasticity rafting is too slow
to be observed. Dislocations partially relax coherency stresses in the horizontal
matrix channels and increase them in others, so that it affects the driving forces
on diffusion [13]. They also provide fast diffusion paths [14].

As it has been said, several models have been developed in order to predict
basic features of the coarsened microstructure such as the raft orientation depen-
dence on driving forces. However, the prediction of the rafting kinetics and of the
microstructural evolution (e.g. shape and size of the rafts) is more difficult. The
phase field method, which is appropriate to reproduce microstructural evolution
on large length and time scales, is particularly suited to tackle this problem. The
phase field method has been thoroughly used to study microstructural evolution
inherited from solid-solid phase transformations when elastic stresses are generated
in the microstructure (e.g. [15–17]). The microstructural evolution under applied
load has also been studied using phase field models by several authors [18, 19].
However, a phase field model developed for studying rafting in superalloys should
include, not only the driving forces originating from the elastic fields, but also the
driving forces resulting from the plastic strain fields. What we propose here is to
develop such a phase field model by explicitly introducing the plastic strains fields
in the model.

In one hand, plastic activity in phase field has already been treated by modeling
the dislocations [20, 21] and their dynamics [22–25]. Dislocations are represented
by their plastic eigenstrains and act individually through the elastic field they gen-
erate. Large scale simulations taking into account the mutual interaction between
all the glide systems and the evolving γ/γ′ microstructure is computationally very
intensive. Indeed, in this phase field approach of plasticity, the dislocation core size
is equal to several times the grid spacing. Consequently, the description of a realis-
tic dislocation core size, which is important for the short range interaction between
dislocations, requires a subnanometer grid size. This limit in the simulation grid
size does not allow simulations at the micron scale. However this method has been
recently used to show that plasticity plays a dominant role in the rafting process
compared to elastic misfit [25].

On the other hand, plastic activity can also be added to the phase field model
by introducing a plastic strain field defined at mesoscale. A crude version of this
approach was proposed in [26] where a decrease in the lattice misfit accounts for the
consequences of plastic activity. A precipitates disorientation for long creep time,
as it can be seen in experiments, has been obtained [26]. Another version of this
approach has been recently proposed in [9] where the plastic strain is related to the
inter dislocations distance, the later beeing assumed equal in all matrix channels
of the microstructure.

The present contribution aims at developing a more physical method, but not too
intensive in order to be able to simulate realistic systems. The phenomenological
visco-plasticity framework seems to be a good solution as it has been shown in a
recent study of Ni base superalloys under creep loading [27]. Few other attempts
have been proposed in that way, but applied to different alloys. [28] have studied
mechanical behavior of tin-lead solder during the evolution of the microstructure.
However, in this paper, the influence of plasticity on the microstructure evolution
is not taken into account. More complete coupling has been proposed very recently
[29, 30], respectively for grain growth and hydride precipitation in zirconium.

As explained above, the aim of the present paper is to study the microstructural
evolution in the AM1 superalloy during creep. The paper is organized as follows.
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In section 2, we detail the phase field model that we have used to predict the
microstructural evolution when plastic activity can be neglected. We show the
ability of this model, which takes into account elastic inhomogeneity, to predict
the microstructure evolution in the AM1 superalloy during an annealing at 950◦C.
In section 3, the framework of phenomenological visco-plasticity is presented and
we show how to determine visco-plastic parameters which are relevant for the γ
and γ′ phases in the AM1 superalloy. In section 4 we develop a new model able
to describe the microstructure evolution in the presence of plastic activity. This
is achieved by coupling the phase field model with the visco-plastic equations. In
section 5, the microstructural evolution during creep is considered and our model is
used to illustrate the influence of plastic activity. In the last section, the simulation
results are critically discussed and improvements of the model are proposed.

In this work, a denotes a vector of the Euclidean space, A∼ a second-rank Eu-
clidean tensor and A∼∼ a fourth-rank Euclidean tensor.

2. The phase field model

The phase field model developed in this section is devoted to the microstructural
evolution in Ni-base superalloys. The model is based on a description of the mi-
crostructure at mesoscale by a set of concentration and long range order fields.

The first field is the concentration field c(r, t), defined as the local Al atomic con-
centration. Other concentration fields are in principle necessary to fully describe
a multicomponent superalloy such as the AM1 [31]. However, assuming that the
minority elements added to Ni and Al, do not qualitatively modify the physical
mechanisms responsible for the microstructural evolution, the multicomponent su-
peralloy can be modeled as an effective binary superalloy. In that case, the only
difference between a binary and a multicomponent superalloy is the values of the
physical parameters used for the calibration of the model, such as the diffusion
coefficient, the onset of plastic activity, the viscosity parameters, etc..

In the case of the γ → γ′ phase ordering involved in the precipitation process,
three order parameter fields have to be introduced to account for the degeneracy
of the low temperature γ′ phase. These order parameters, related to symmetry
reduction of the ordering process, are classically defined using the concentration
wave formalism [32]. The four translational variants of the γ′ phase (with the stoe-
chiometry Ni3Al) are then obtained for the following long-range order parameters:
{η1, η2, η3} = η0{1, 1, 1}, η0{1̄, 1̄, 1}, η0{1̄, 1, 1̄}, η0{1, 1̄, 1̄}. Note that the degener-
acy of the γ′ phase plays an important role in the coarsening regime of AM1 alloys
where the volume fraction is very high (about 68% [33])

The main ingredient of the phase field modeling is a mesoscopic free energy func-
tional F that makes a link between a microstructure, i.e. the concentration and
order parameter fields, and and its total free energy. The free energy functional
F accounts for the bulk free energy, the surface energies as well as for the elastic
energy. These contributions are detailed in the next subsections. The evolution of
each field is obtained by solving a kinetic equation that is governed by a corre-
sponding driving force, related to the functional derivative of the total free energy
with respect to the field. Assuming that the field evolution is linear with respect to
the driving force, we obtain the Cahn-Hilliard equation for the concentration field,
which is a conserved field, and the Allen-Cahn equation for the order parameter
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fields which are not conserved

∂c

∂t
= M∇2 δF

δc
(1)

∂ηi

∂t
= −L

δF

δηi
(2)

where the kinetic coefficient L and the mobility coefficient M are assumed constant.
Gaussian distributed noise terms are classically added to the right hand side of 1
and 2 to reproduce thermal fluctuations (e.g. [16]). The correlation properties of
the noise terms are usually selected to meet the requirements of the fluctuation-
dissipation theorem which ensures that the equilibrium fluctuations are correctly
reproduced. Note however that it does not imply that the model is relevant to
quantitatively describe the first stages of the precipitation process, especially when
the precipitation starts by a nucleation mechanism [34].

2.1. The Ginzburg-Landau free energy

This subsection details the choice of the chemical part of the free energy FGL which
is suited for a γ + γ′ mixture.

2.1.1. Free energy density of an homogeneous microstructure

The free energy density fhomo(c, {ηi}) of an homogeneous system characterized
by the concentration c and the order parameters ηi should be invariant with re-
spect to the symmetry operation of the high temperature structure. As usual, we
approximate fhomo(c, {ηi}) using a polynomial expansion with respect to the order
parameters. Following [26], we stop the polynomial expansion to the lowest possible
order and we assume a very simple concentration dependance for the coefficients
of the expansion

fhomo(c, {ηi}) = ∆f


1

2
(c− cγ)2 +

B
6

(c2 − c)
∑

i=1,3

η2
i −

C
3
η1η2η3 +

D
12

∑

i=1,3

η4
i




(3)
∆f is the energy density scale of the model and c2 is an arbitrary concentration
chosen between the equilibrium concentrations cγ and cγ′ of the coexisting phases.
B, C and D are constants related to c2, cγ , cγ′ and to the equilibrium long-range
order parameter η0 through

B =
2
η2
0

(cγ′ − cγ)

C =
6
η3
0

(cγ′ − cγ)(c2 − cγ) (4)

D =
6
η4
0

(cγ′ − cγ)(cγ′ + 2c2 − 3cγ)

This choice of the homogeneous free energy density leads to an horizontal common
tangent between cγ and cγ′ .
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2.1.2. The Ginzburg-Landau free energy

The non equilibrium ”chemical” free energy of the stress free crystal may be
approximated by a standard Ginzburg-Landau functional

FGL =
∫

V

[
fhomo(c, {ηi}) +

λ

2
|∇c|2 +

β

2

3∑

i=1

|∇ηi|2
]

dV (5)

where the gradient coefficients λ and β are assumed constant. In the above ex-
pression, we have used isotropic gradient terms, which implies isotropic interfacial
energies. The specific choice of λ and β, and their relation with the relevant inter-
facial energies of the system are discussed in a forthcoming subsection.

2.2. The elastic energy

Elasticity is a key point to understand mesoscale morphological patterns in coherent
phase transformations. The elastic energy of a coherent microstructure reads

Eel =
1
2

∫

V
σ∼ : ε∼

el dV (6)

where σ∼ is the stress tensor and ε∼
el the elastic strain tensor. In the case of a

coherent phase transformation, the elastic strain is related to the total strain ε∼
through

ε∼
el(r) = ε∼(r)− ε∼

0(r) (7)

where ε∼
0(r) is the stress-free strain tensor. Assuming a Vegard’s law, the stress-free

strain tensor can be expressed using the concentration field

ε∼
0(r) = ε∼

T ∆c(r) (8)

where ∆c(r) = c(r) − c̄, c̄ being the average concentration. The transformation
strain tensor ε∼

T associated to the γ → γ′ phase transformation is diagonal (εT
ij =

εT δij) and its components are given by

εT =
δ

cγ′ − cγ

where δ is the misfit defined as

δ = 2
aγ′ − aγ

aγ′ + aγ
(9)

During diffusive phase transformations, as it is the case in Ni base superalloys,
the elastic energy equilibrates much faster than the characteristic diffusion time.
When studying the microstructural evolution, it is therefore possible to assume
that mechanical equilibrium is always fulfilled. In the case of a microstructural
evolution under an applied stress σ∼

a, we have

{
div σ∼ = 0

σ̄∼ = σ∼
a

(10)
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In the homogeneous modulus case approximation, the mechanical equilibrium
can be solved analytically [32]. However, a key point when modeling rafting is
the inhomogeneity in elastic properties between the two phases. When the elastic
constants of the precipitate and matrix differ, the mechanical equilibrium has to
be solved numerically. In the following lines, we detail the fixed point algorithm
that we have used. This approach is similar to the ones described in [19, 35, 36].

A periodic media is employed, and the strain tensor is decomposed into a mean
value ε̄∼ and periodic field δε∼(r) (such that 〈δε∼〉 = 0). In the small perturbations
framework, the heterogeneous displacement field u is linked to the periodic part of
the strain tensor

δε∼ =
1
2

(∇u + (∇u)T
)

(11)

Hooke’s law relates the strain tensor to the stress tensor : σ∼ = λ∼∼
: ε∼

el, where λ∼∼
denotes the local modulus tensor. As explained above, the value of this tensor at
point r tensor depends on the structure at point r. In a field approach, this is
obtained by making the tensor λ∼∼

dependent on the local value of the fields

λ∼∼
(c(r)) = λ̄∼∼

+ λ∼∼
′∆c(r) (12)

The average modulus tensor λ̄∼∼
and the heterogeneous modulus tensor λ∼∼

′ are given
by





λ̄∼∼
= τγ λ∼∼

γ + τγ′ λ∼∼
γ′

λ∼∼
′ =

λ∼∼
γ′ − λ∼∼

γ

cγ′ − cγ

where λ∼∼
γ andλ∼∼

γ′ are the modulus tensors of the γ and γ′ equilibrium phases re-
spectively, and where τγ = (cγ′ − c̄)/(cγ′ − cγ) and τγ′ = 1 − τγ are the γ and γ′
volume fractions expected at incoherent equilibrium.

Using 8 and 12, the following expression can be written for the average stress
tensor

σ̄∼(r) = λ̄∼∼
: (ε̄∼ −

〈
ε∼

0
〉
) + λ∼∼

′ :
[〈∆c(r) δε∼(r)〉 −

〈
∆c(r) ε∼

0(r)
〉]

Using this equation, the boundary condition in 10 can be rewritten as a condition
on the average strain

ε̄∼ =
〈
ε∼

0
〉

+ S̄∼∼ :
[
λ∼∼
′ :

(〈
∆c(r) ε∼

0(r)
〉− 〈∆c(r) δε∼(r)〉

)
+ σ∼

a
]

(13)

where S̄∼∼ = λ̄∼∼
−1 is the compliance tensor.

Then, mechanical equilibrium given in 10 is expressed using the heterogeneous
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displacement field

λ̄ijkl
∂2

∂rjrl
uk =

− ∂

∂rj

[
{λ̄ijkl + λ′ijkl∆c(r)} [

ε̄kl(r)− ε0
kl(r)

]
+ {λ′ijkl∆c(r)} ∂

∂rl
δεkl(r)

]
(14)

It is convenient to introduce a new symmetric tensor h∼ and a new vector f defined
as

h∼(r) = {λ̄∼∼ + λ∼∼
′∆c(r)} :

[
ε̄∼(r)− ε∼

0(r)
]
+ {λ∼∼

′∆c(r)} : δε∼(r) (15)

f(r) = ∇ · h∼(r) (16)

In Fourier space, the mechanical equilibrium 14 becomes

u(q) = Ḡ∼ (q) · f∼(q) (17)

where the Green operator Ḡ∼ associated with the mean modulus tensor is

G−1
ij (q) = λ̄ikjl qk ql (18)

In the homogeneous modulus case (i.e. λ′
∼ = 0) f(r) does not depend on the het-

erogeneous displacement field u(r) and (17) is the analytical solution for the het-
erogeneous displacement field. In the inhomogeneous modulus case, (17) is only
a differential equation because u and its derivatives appear on both sides of the
equation.

The set of equations 13 and 17 is equivalent to the initial mechanical problem
10. As mentioned above, the average strain tensor ε̄∼ and the heterogeneous dis-
placement fields u that are the solution of mechanical equilibrium (13)+(17) are
computed numerically using a fixed point algorithm.

Knowing u(n)(q) and ε̄∼
(n) at the (n)th step, we first compute successively δε∼(q)

and δε∼(r). Using (15), we obtain h∼(r). Then going to Fourier space we obtain
h∼(q) and compute f(q) using (16). Finally, the values of u(n+1)(q) and ε̄∼

(n+1) are
deduced from 17 and 13.

Iterations of the fixed point algorithm are repeated until convergence is reached.
The convergence test that we use is

max
q

∣∣∣u(n+1)(q)− u(n)(q)
∣∣∣ < υ d εT

∑

i,j

∣∣∣ε̄(n+1)
i,j − ε̄

(n)
i,j

∣∣∣ < υ εT

where d is the lattice spacing of the numerical grid, and υ is a convergence param-
eter set to 10−5.

During the first time step of the simulation (t = 0), u(0)(q) and ε̄∼
(0) are initialized

using the homogeneous case solution. For the other time steps (t>0), the first
iteration of the mechanical equilibrium algorithm is initialized from the t− 1 time
step. Ni-base superalloys are known to exhibit small differences in elastic constants
between the two phases. Consequently, few iterations are needed for this algorithm
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to converge. Typically, 2 iterations are needed to reach convergence for the first
time step, and only one iteration is needed afterwards.

2.3. Numerical implementation

Kinetic equations of the model are discretized on a regular mesh of grid spac-
ing d and are solved in Fourier space. As usual, equations are first written in a
dimensionless form. The dimensionless homogeneous free energy density reads

f̃ =
fhomo

∆f
(19)

and the dimensionless stiffness coefficients

λ̃ =
λ

∆fd2
, β̃ =

β

∆fd2
(20)

λ̃ and β̃ are chosen large enough to ensure smooth interfaces at the scale of the grid
spacing. Then, using a one dimensional (stress free) simulation, we compute the
numerical interfacial energy σ̃. The latter is related to the experimental interfacial
energy σ through

σ = ∆f d σ̃ (21)

Elastic energy densities are written in C44(εT )2 unit and the competition between
elastic and chemical energies is controlled by the dimensionless coefficient χ

χ =
C44(εT )2

∆f
(22)

2.4. Control of the coherent equilibrium concentrations

The common tangent constructution based on the stress-free homogeneous free en-
ergy density fhomo gives the concentrations of the coexisting phases at incoherent
equilibrium. When considering coherent microstructures, concentrations of the co-
existing phases may deviate from the ones of incoherent equilibrium [37, 38]. The
deviation is stronger when elastic effects are stronger or when the curvature of the
free energy minima of fhomo is smaller. Therefore, in our phase field model, the pa-
rameter that controls this deviation is the dimensionless coefficient χ defined in 22.
Using 21, it is clear that χ increases linearly with the grid spacing d. Consequently,
when simulating microstructures with a large grid spacing, the concentration inside
the coexisting phases may deviate too much from the incoherent values, leading
to unphysical values for the concentrations and the volume fraction at coherent
equilibrium.

A way to circumvent this problem is to control the concentrations at coherent
equilibrium. This can be done by modifying the homogeneous energy density fhomo

so that the model leads to prescribed concentrations at coherent equilibrium [26].
To do so, we have followed the procedure proposed in [26] and recalled in the next
paragraph.

In the case of homogeneous elasticity, the elastic energy has an analytical ex-
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pression with respect to the fields [32]

Eel =
1
2

∫ ∗

q

dq
(2π)3

B(q) |c(q)|2 (23)

where the star denotes the principal value of the integral,

B(q) = σ∼
0(q) : [ε∼

0(q)]∗ − q · σ∼0(q) ·G∼ (q) · [σ∼0(q)]∗ · q (24)

and σ∼
0(q) = λ∼∼

: ε∼
0(q). Coherent equilibrium concentrations are obtained when

elastic energy is at a minimum, which corresponds to an infinite platelet microstruc-
ture parallel to the elastic soft directions, i.e. to the directions which minimize B(q).
Assuming that the platelets are far enough to neglect their mutual interactions,
the corresponding energy writes

Emin
el =

Bmin

2

∫ ∗

q

dq
(2π)3

|c(q)|2 =
∫

r

Bmin

2
(c− c̄)2 (25)

where Bmin is the minimum of B(q) defined in 24.
To ensure that the coherent equilibrium concentration are given by the common

tangent construction based on fhomo, it is sufficient to replace fhomo by

f ′homo(c, {ηi}) = fhomo(c, {ηi})− Bmin

2
(c− c̄)2 (26)

This method is in principle exact in the case of homogeneous elasticity. When
elastic constants slightly differ between precipitates and matrix, as it is the case
in Ni base superalloys, we have found that this approach is still an efficient way to
control concentrations at coherent equilibrium.

2.5. Numerical inputs

This section details the physical parameters that are used to calibrate the model.

2.5.1. Homogeneous free energy density

In the numerical solution of the model at 950◦C, we have used the equilibrium
concentrations cγ=0.15 and cγ′=0.23 given in [39]. Moreover we choose c2=0.18
and for simplicity the value of the equilibrium long-range order parameter η0 is set
to 1.

2.5.2. Elastic energy

The experimental quantities needed to compute the elastic energy are the misfit
δ and the elastic constants of the γ and γ′ phases. Accurate measurements of these
quantities are difficult in a multicomponent alloy, mainly because homogeneous
samples of the γ and γ′ phases with the required composition are not available.

There are many papers dealing with elastic constants of both phases in Ni-base
superalloys, in particular for the γ phase (see [40–42] for example).They show that
elastic inhomogeneity is about 10% in these materials. The elastic constants that
we have used for the phase field simulations at 950◦C are presented in table 1.
Elastic constants of the γ matrix are deduced from Ref. [40, 41] and average elastic
constants of the AM1 superalloy are obtained from [33, 43]. Then, we have followed

Page 9 of 26

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

January 21, 2009 8:41 Philosophical Magazine article

10 A. Gaubert, Y. Le Bouar and A. Finel

Table 1. Elastic constants of γ and γ′

phases used in the simulations at 950◦C.

Coefficient [MPa] C11 C12 C44

γ 197 144 90
γ′ 193 131 97
AM1 196 137 95

the homogenization approach proposed in [40] to compute the elastic constants of
the γ′ phase, assuming a volume fraction of the γ′ precpitates equal to 68% [33].

We have used the misfit parameter δ = −0.1% for AM1 at 950◦C, estimated
using in situ X-ray diffraction [44].

2.5.3. Interface energy

Accurate determinations of the γ/γ′ interface energy are difficult to reach ex-
perimentally. Indeed, interface energies are usually deduced from coarsening ex-
periments using approximate LSW-type models [45]. In addition, very low values
are obtained. For exemple, in a binary Ni-Al superalloy, a γ/γ′ energy of 4mJ.m−2

at 700◦C has been recently reported [45]. An alternate approach consists in per-
forming atomic simulations and several attempts have been made to compute the
γ/γ′ interface energy. However, because the expected energy is low, a very accurate
potential is needed to predict a reliable interfacial energy. In addition, a special at-
tention has to be paid to the definition of an interfacial energy between two phases
differing in lattice parameters, especially when the energy is to be used in a phase
field model [46].

In the present case, we need the value of γ/γ′ interface energy in the multi-
component AM1 superalloy at 950◦C. Because this value is not known, we have
chosen to calibrate this parameter on the critical length `3D which characterize the
shape transition from spherical to cuboidal precipitates. This critical length can be
readily measured on a micrograph and is found close to 50 nm in AM1 superalloys
[47]. Then, an analytical link between the critical length `3D and the interfacial
energy can be estimated in the homogeneous elasticity framework [32, 46]. Using
the formula given in [46] with the misfit δ = −0.1%, we obtain σ3D ≈ 0.6mJ.m−2.

However, we have only performed here 2D simulations. Therefore, in our sim-
ulations, the shape transition corresponds to a circle to square transition. This
transition appears when the size of the γ′ domains reach the typical size `2D. As
shown in [46], `2D differs from `3D, and using the elastic parameters of the γ phase
we have lc2D/lc3D ≈ 0.125. Consequently, to reproduce the 3D cross-over length in
our 2D simulations, we have used an interfacial energy σ2D=5mJ.m−2 which is
about eight times larger than σ3D.

2.5.4. Diffusion coefficients

Using a linearization of 1 near cγ , the mobility coefficient is related to the inter-
diffusion coefficient by

M = D(cγ)/∆f (27)

where D(cγ) = D0 exp(−∆U/kT ) is the interdiffusion coefficient. Numerical values
for D0 and ∆U are taken from [48] (D0=1.45 10−4m2s−1, ∆U=2.8 eV). Note
that this value for the interdifffusion coefficient reflects the effective diffusivity in
a multicomponent superalloy. Its consistency for the AM1 superalloy need to be
established. The relaxation parameter L in 2 is taken equal to Md2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Generation of the cuboidal γ/γ′ microstructure, concentration field for (a) t=0, (b) t=1h
(c) t=61h and (d) t=180h, order parameters fields for the same times (e) to (h). The simulation
box is 10µmx10µm.

2.6. Generation of the cuboidal microstructure in elasticity

The aim of the present paper is to study the rafting of the initially cuboidal pre-
cipitates observed during a creep loading in a AM1-type superalloy. In this sec-
tion, we present the results of the phase field model leading to the initial cuboidal
microstructure, which will be later used as a starting configuration for the elasto-
visco-plastic simulations. Note that the formation of the cuboidal microstructure
using phase field models has already been addressed in the litterature, mainly us-
ing homogeneous elasticity [49–51], but also in situations where elastic constants
of precipitates and matrix strongly differ [36, 52]. In superalloys, the elastic con-
stants of the γ and γ′ phases only differ by about 10%, and the influence of elastic
inhomogeneity on the microstructural evolution in stress-free condition is expected
to be small.

A 2D regular mesh containing 512x512 points has been employed to generate
a γ/γ′ cuboidal microstructure from a disordered state with stress-free boundary
conditions. Since lattice misfit is elastically relaxed in superalloys at 950◦C, the
generation of the microstructure is performed in the elastic framework. Figure 1
shows the simulated microstructure evolution for an equilibrium volume fraction
of 72%. The microstructure development is visualized by shades of gray in accor-
dance with the value of the local composition c(r, t) (figures 1 a-d) and using a
color scheme based on the value of local order parameters ηi(r, t), where the four
translational variants of the γ′ phase and the γ matrix appear as different colors
(figures 1 e-h). The microstructural evolution starts with the formation of numer-
ous γ′ domains (of the four possible translation variants) whose shape is not well
defined. During annealing, the mean precipitate size increases, and their shape
evolves to reach, after 180 hours, the expected microstructure in Ni-base superal-
loys, made of cuboidal γ′ precipitates aligned along the cubic directions. In this
microstructure, γ′ are always surrounded by the γ phase, which is consistent with
an antiphase boundary energy in the γ′ phase which is higher than twice the γ/γ′
energy (e.g. [53, 54])

Figure 2 displays a magnified part of the microstructure obtained after 61 hours
(figure 1c) containing large cuboidal precipitates and small rather spherical pre-
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Figure 2. Zoom on the 1(c) picture, size 170nmx170nm.

cipitates. This observation can be used to estimate the critical size `2D, defined
in subsection 2.5.3. The precipitate labeled 1, whose size is 82x55nm, is clearly
cuboidal whereas the precipitate labeled 2, whose diameter is 35nm, is close to be
spherical. Therefore the critical size for the sphere to cube transition is close to
50nm, as it is the case in AM1 superalloys. This validates our choice of the value
of the interfacial energy.

Note that the microstructure presented in figure 1d displays a rather large par-
ticle size distribution when compared to the microstructure observed in AM1 su-
peralloys (see e.g. [44, 47]). As shown in [36, 52], a narrow size distribution of
precipitates is obtained in phase field simulations (with negative anisotropy) when
the elastic inhomogeneity is very strong. However, according to the microstructure
presented in [36, 52], elastic constants of the precipitate phase should be about
twice bigger than the ones of the matrix to obtain a microstructure similar to the
one observed in the AM1 superalloy. Such a strong elastic inhomogeneity is in dis-
agreement with all experimental determination of elastic constants in superalloys
([40, 41]). Further investigations are underway to clarify this point.

3. Phenomenological Viscoplasticity

In this section, we present the framework of phenomenological elasto-visco-
plasticity which will be later coupled to the phase field equations. A continuum me-
chanics approach is used within the small perturbations approximation, assuming
isothermal conditions. In this context, the total strain tensor ε∼ can be decomposed
into an elastic and a plastic part

ε∼(r) = ε∼
el(r) + ε∼

p(r) (28)

A great number of models have been developed to identify, in a phenomenological
way, the plastic strain tensor from macroscopic experiments. Generally speaking,
the mechanical approach to plasticity assume the existence of thermodynamic state
variables which describe the material. Consequently, a free energy density per unit
volume fvp which links state and internal variables can be defined. Denoting Mk

a state variable and mk its dual internal variable, the following relations can be
written

mk =
∂fvp

∂Mk
(29)

(30)

For a complete review we refer to [55].
Single crystals of superalloys have an anisotropic macroscopic behavior. At high

temperature, they also exhibit a loading rate dependent (visco-plastic) behavior
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[56]. The following section describes the model developed for this kind of materials.

3.1. The crystal plasticity framework

This model has been proposed by Cailletaud et al. [56, 57]. Plastic deformation in
single crystals occurs due to slip on crystallographic systems. In the small pertur-
bations framework, the plastic deformation tensor reads as the sum of the shear
strain γs over all slip systems s

ε∼
p =

∑
s

γsm∼
s (31)

where m∼
s = 1

2 (ls ⊗ ns + ns ⊗ ls) is the orientation tensor for the system s. ns

denotes the normal of the slip plane and ls the slip direction. The plastic shear γs

on each slip system is determined from a constitutive model based on the Schmid
criterion which states that plastic slip occurs when the resolved shear stress on
a slip system reaches a critical value r0. The resolved shear stress for the s slip
system reads

τ s = σ∼ : m∼
s (32)

A Norton’s type flow rule is used for the shear strain rate on each system

γ̇s =
〈 |τ s − xs| − rs − r0

s

k

〉n

sign (τ s − xs) (33)

In 33 〈a〉 is the positive part of a. n and k are the Norton’s law coefficients and rs
0

the initial thereshold. rs and xs refer respectively to isotropic and kinematic hard-
ening on the s slip system. Isotropic hardening is employed to described hardening
generated by the dislocation forests. Kinematic hardening traduces a translation of
the elastic domain in stress space. For the AM1 superalloy, isotropic hardening is
negligible [58]. A non-linear evolution law is adopted for the kinematic hardening

xs = csαs with α̇s = γ̇s − ds|γ̇s|αs (34)

In 34, αs denotes the kinematic hardening state variable, and cs are ds phenomeno-
logical coefficients.

These considerations leads to the following hardening free energy

fvp =
1
2

∑
s

cs(αs)2 (35)

Single crystal superalloys deform via slip in the octahedral planes due to their
crystallography. Each of the 12 octahedral systems is described by its slip direc-
tion 〈011〉 and the slip plane normal {111}. However, for 〈111〉 oriented loading,
the macroscopic slip occurs via cubic systems. Authors [59] have shown that this
macroscopic cubic slip is due, at microscale, to octahedral slip in zig-zag due to
confinement of dislocations in matrix channels. But at macroscale, everything hap-
pens as if we can write a Schmid law for cubic systems. This is the reason why
cubic slip systems are usually added to the octahedral systems when modeling the
macroscopic plastic behavior of superalloys [56, 58]. The incorporation of cubic
systems in a macroscopic model is important to reproduce the anisotropy of the
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plastic behavior with respect to the loading axis. In our simulations, we have in-
troduced both octahedral and cubic slip systems, even if cubic slip systems are not
important when considering a 〈001〉 loading axis.

3.2. Fitting the visco-plasticity parameters

This subsection details the method that we have used to select the visco-plastic
parameters for both phases.

Two problems are faced when identifying visco-plastic parameters for γ and γ′
phases. First, their mechanical behavior in the superalloy is not clearly known. In
[33, 60, 61], idealized γ bulk materials has been processed and mechanically tested.
However, these experiments are not relevant to identify the matrix behavior in the
superalloy. The reason is that the dislocations behavior in the narrow channels of
the γ matrix differs from the plastic behavior of the bulk γ phase. More generally,
dramatic length scale effects are encountered in the superalloys mechanical behav-
ior [62]. This is a well known metallurgical fact that the wider the γ channels, the
softer the macroscopic behavior of the superalloy. Because of the lack of experi-
mental data on the behavior of γ and γ′ phases at mesoscale in the superalloy,
visco-plastic parameters for both phases have to be identified from the effective
macroscopic behavior of the superalloy. Nevertheless, an asumption can be made
to reduce the number of parameters to be identified. It is known from experimental
data on the critical resolved shear stress of both phases [63, 64] and TEM obser-
vations that the γ phase accomodates the main part of the plastic deformation
(e.g. [65]). This is true for primary and secondary creep stage at high temperature
[66, 67] and monotonic or cyclic loadings at low stress levels and high temperature
[68]. In conclusion, in the present model the γ′ phase is considered elastic.

The second difficulty is related to the microstructural evolution observed partic-
ularly during creep experiments. Indeed, it is possible to deduce the mechanical
behavior of the channels of γ phase using macroscopic experiments on the AM1
superalloy, only if the microstructure of the alloy does not evolve during the experi-
ment. Consequently, we have chosen to identify material parameters on monotonic
and cyclic tests performed on the AM1 superalloy at different orientations and
strain rates [58] for which no microstructural evolution is reported.

The strategy developed here to identify the complete set of material parameters
of the γ phase is based on an backwards procedure. We search iteratively a set
of parameters that reproduces the effective macroscopic behavior of AM1. The
finite elements method is used here to simulate the behavior of the γ/γ′ material.
The microstructure is supposed to be periodic and homogenization methods are
employed to calculate the macroscopic behavior of the superalloy [69].

Octahedral sets of parameters are identified on 〈001〉 monotonic and cyclic tests
assuming that cubic systems do not activate to much. The cubic ones are identified
on 〈111〉 tests. Figure 3 presents examples of simulated behavior for AM1 compared
to experiments for two different values of the strain rate (10−5 s−1 and 10−3 s−1).
For the 〈001〉 orientation, and for an applied strain amplitude ∆ε = 1.6%, simula-
tions are in agreement with experiments for both values of the strain rate whereas
for the 〈111〉 oriented tests, the agreement is not as good. For both orientations,
the simulated AM1 behavior is too hard in comparison with experiments. Similar
results are obtained when simulating superalloys behavior at the phases-scale with
elastic precipitates [33]. In [33], it is shown that the accordance between simula-
tions and experiments is significantly improved when accounting for the shearing
of precipitates. However, considering the aim of the present model, which is the
simulation of creep loadings (i.e. with no significant γ′ shearing), the proposed
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(a) (b)

Figure 3. Comparison between experiments[58] and finite elements simulations during cyclic tests
with strain rates equal to 10−5 s−1 and 10−3 s−1 : (a) 〈001〉 orientation ; (b) 〈111〉 orientation.

Table 2. γ phase visco-plastic parameters (evp1) identified from macro-

scopic experiments on AM1 at 950◦C. The width of the γ channels is ap-

proximately 50nm.

Coefficient rs
0 [MPa] n k [MPa.s1/n] cs [MPa] ds

Octa. systems 35 5 750 2.105 2500
Cubic systems 20 5 200 5.105 1000

parameters identification is adapted. Finally, table 2 gives the visco-plastic param-
eters identified for the γ phase. Due to length scale effects mentionned previously,
this set of parameters is only relevant for matrix channels width of approximatively
50nm reported for the AM1 superalloy in the cuboidal microstructure [47]. This
set of parameters will be referred to as the evp1 set of parameters in the following.

3.3. A second set of visco-plastic parameters for the γ phase

A consequence of the two difficulties faced during parameters identification de-
tailled in the previous paragraph (length scale effects and microstructural evolu-
tion) is that the γ phase mechanical behavior evolve during creep owing that matrix
channel width is reported to increase. The induced softening of the superalloys can
be evaluated thanks to the Orowan equation which states that the effective critical
resolved shear stress (crss) is proportional to the inverse of the channel width [70].
Based on experiments from [47, 71], the initial channel width of 50nm increases to
reach 150nm in the secondary creep regime. From Orowan equation, we can deduce
that the crss decreases by a factor of three during this microstructural evolution.

This softening of the γ channels can not be directly introduced in the present
modeling because no length scale appear in the visco-plastic equations. In order to
account for the softening of matrix behavior during creep, a second set of visco-
plastic parameters, hereafter labeled evp2, corresponding to the γ phase in the
rafted situation is proposed in table 3. The kinematic hardening parameter cs and
the initial threshold rs

0 for octahedral slip systems have been divided by a factor
three without modification of the viscosity parameters in order to reproduce the
estimated decrease in the flow stress during rafting. The comparison between the
simulated γ mechanical behavior in the cuboidal and rafted situations are presented
in figure 4 for the strain rates 10−5 s−1 and 10−3 s−1.

The two visco-plastic parameters sets proposed here can be seen as two limit
cases when simulating creep. The evp1 set is well adapted to the very beginning of
creep when the microstructure has not evolve too much from the cube situation.
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Table 3. Second set of visco-plastic parameters (evp2) identified for the γ

phase in the rafted microstructure at 950◦C. The width of the γ channels is

approximately 150nm.

Coefficient rs
0 (MPa) n k (MPa.s1/n) cs (MPa) ds

Octa. systems 12 5 750 7.104 2500

Figure 4. Mechanical behavior of the γ phase for the material parameters set evp1 and evp2. Stress-strain
curves are presented for the strain rates 10−5 s−1 and 10−3 s−1.

The evp2 set represents the matrix behavior once the stable rafted microstructure
is reached.

4. Coupling between the phase field model and visco-plasticity

In this part we discuss the construction of a phase field model which takes into
account plastic activity. This is realized by coupling the elastic phase field model
detailed in section 2 to the visco-plastic model presented in section 3. In this new
model, the description of the microstructure is given by four types of fields : the
concentration field c(r), the order parameters fields ηi(r), the total strain ε∼(r) and
the plastic state variables αs(r). The total free energy of the system now reads

F = FGL + Eel + Fvp (36)

The dependence of each part of the free energy is to be detailed in order to derive the
driving forces. The functional FGL(c, {ηi}) is still given by 5. The elastic energy is
now dependant on c(r), ε∼(r) and on state variables αs(r) through the introduction
of the plastic strain tensor ε∼

p(r) defined by (28)

Eel(c, {αs}, ε∼) =
1
2

∫

V
λ∼∼

: (ε∼ − ε∼
0 − ε∼

p) : (ε∼ − ε∼
0 − ε∼

p)dV (37)

The hardening free energy Fvp(c, {αs}) is the integral over the sample of the harden-
ing free-energy density 35. Fvp(c, {αs}) depends on the hardening state variables,
but also on the concentration field because the parameters of the visco-plastic
model will be made concentration dependent to account for the difference in plas-
tic behavior between the γ and γ′ phases.

An important point is that the relaxation of the elastic degrees of freedom is much
faster thant the characteristic evolution time of the fields c(r) and η(r) (whose
evolution is limited by the diffusion equation 1) but also much faster than the
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characteristic evolution time of plasticity (which is limited by viscosity). Therefore,
in our kinetic model, it is relevant to assume that elastic equilibrium is always
fulfilled.

4.1. Visco-plasticity parameters in phase field

The definition of the visco-plastic parameters identified in section 3.2 for pure γ and
γ′ phases has to be extended to an inhomogeneous situation. In that case, the local
value of the visco-plastic parameters at point r should depend on the structure
present at that point. In a phase field approach, this is realized by making the
the visco-plastic parameter dependent on the local concentration. Therefore, an
interpolation scheme similar to the one used for elastic constants is employed for
visco-plastic parameters. However, a tanh interpolation has to be employed instead
of a linear dependence on the concentration field to avoid numerical divergence,
the tanh function being bounded. Denoting X one of the visco-plastic parameter,
its dependence on the concentration reads

X(r) = X̄ + X ′tanh
(

θ
c(r)− c̄

cγ′ − cγ

)
(38)

with




X̄ =
Xγ + Xγ′

2

X ′ =
Xγ −Xγ′

2

(39)

θ controls the evolution of the parameter X through the γ/γ′ interface. The value
θ=-5 has been chosen to ensure X(cγ) = Xγ and X(cγ′) = Xγ′ with a precision of
2%.

One can note that a different approach could be adopted for the treatment of
plastic activity inhomogeneity. The mechanical state variables themselves could
be homogenized in the interface instead of material parameters [29]. Lets recall
that the width of the interface is much larger in phase field simulations larger its
physical width. Consequently the plastic deformation in the phase field interface
has no clear physical meaning. It is why we think that none of these methods is
more justified than the other.

As explained above, we consider a visco-plastic behavior for the γ phase but only
an elastic behavior for the γ′ phase. Within the elasto-visco-plastic framework, a
simple way to ensure an elastic behavior for the γ′ phase is to set the initial
threshold r0γ′ to a very high value for all slip systems. Taking r0γ′=1000MPa
ensures that γ′ will remain elastic for low stress level creep simulations. The other
visco-plastic parameters (n, k, cs, ds) of the γ′ phase are chosen equal to the ones
of the γ phase, and will therefore be homogeneous. Using this choice, the only
parameters that has to be interpolated using the scheme 38 are the threshold rs

0(r)
for octahedral and cubic slip systems.

4.2. Elastic and visco-plastic driving forces

In the new model, the temporal evolution of the concentration field c(r) and of the
order parameter fields ηi(r) are still given by the usual kinetic equations 1 and 2,
but the total free energy is now given by 36.
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Figure 5. Numerical procedure employed for the resolution of the elasto-visco-plastic phase field model.

The expression of the driving force for the evolution of the order parameter fields
δF
δηi

originates only from chemical free energy FGL. On the contrary, the driving force
for the evolution of the concentration field δF

δc has three contributions: the usual
chemical driving force δFGL

δc , an elastic driving force and an hardening driving force.
The elastic driving force is obtained by deriving the elastic energy 37 with respect

to the concentration field, assuming mechanical equilibrium

δEel

δc
=

1
2
λ∼∼
′ : ε∼

el : ε∼
el −

[
λ̄∼∼

+ λ∼∼
′∆c

]
: ε∼

T : ε∼
el (40)

with ε∼
el = ε̄∼ + δε∼ − ε∼

T ∆c− ε∼
p.

The hardening drive force on the concentration field is δFvp

δc . Fvp depends in
principle on the concentration field. However, with the specific choice of materials
parameters presented in the previous subsection, cs is equal in the γ and γ′ phases,
and therefore Fvp becomes independent of the concentration field. As a conclusion,
the hardening driving force on the concentration vanishes.

Note that in this model, the coupling between plastic activity and microstructure
arises only through the elastic driving force.

4.3. Numerical resolution of the coupled model

The procedure used for the numerical integration of the new model is summarized
in 5.

At each time step, we first solve the mechanical equilibrium, assuming that the
stress free strain ε∼

0(r) and the plastic strain ε∼
p(r) are fixed quantities. This is

realized using the fixed point algorithm detailed in section 2.2, but where the
stress free strain tensor ε∼

0(r) appearing in 13 and 15 is replaced by ε∼
0(r) + ε∼

p(r).
At the end of the mechanical equilibrium step, we end up with the updated value
of the total strain tensor ε∼(r) and of the stress tensor σ∼(r).

The second step is of the procedure is to solve the visco-plastic kinetic equations.
To do so, we compute the resolved shear stress on each slip system τ s(r) using the
stress tensor σ∼(r). Then, the new values of the state variables αs(r) are computed,
with an Euler scheme, using the kinetic equations 33 and 34. The new value of the
plastic strain ε∼

p(r) is obtained using 28.
Finally, the last step of the procedure is to compute the evolution of the con-

centration field c(q) and of the order parameter fields ηi(q), with a semi-implicit
scheme, using the usual kinetic equations 1 and 2 in Fourier space.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Top: simulated microstructure evolution obtained with the elastic phase field model (a)
t=5h (b) t=10h (c) t=20h and (d) t=40h. Middle and bottom: simulation results obtained with the
elasto-visco-plastic model at the same times, (e-h) evp1 set of viscoplastic parameters, (i-l) evp2
set.

5. Simulations of rafting

The microstructure evolution during a creep loading of 300MPa at 950◦C is sim-
ulated with both elastic and elasto-visco-plastic models. Two dimensional simu-
lations are performed using a 512x512 uniform grid. The initial condition is the
cuboidal microstructure obtained after 180h annealing in stress free condition (fig-
ure 1d).

The microstructure evolutions are presented in figure 6, the tensile axis being
horizontal. Top row pictures are the predicted microstructure evolution using the
elastic phase field model. The middle and bottom rows are the results of the elasto-
visco-plastic phase field model, with evp1 and evp2 sets of parameters respectively.
From figure 6, it is clear that rafting of precipitates is observed in the three simula-
tions. The rafts orientation is perpendicular to the tensile axis, in agreement with
experimental observations (e.g. [1]).

The comparison of the predictions of the elastic and elasto-visco-plastic models
shows that plasticity is active during the creep loading, as it is observed experimen-
tally (e.g. [72]). As detailed below, plastic activity influences both the microstruc-
ture evolution and its kinetics.

Because the onset of plasticity is lower with the evp2 set of parameters than with
the evp1 set, the plastic activity is less important with the evp1 set than with the
evp2 set. This is consistent with the observation that the microstructure evolution
obtained with the evp1 set only slightly differs from the predictions of the elastic
phase field model, whereas the evolution obtained with the evp2 set is strongly
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(a) (b)

Figure 7. Elastic and evp2 rafted microstructures from 6(d)
and (k) respectivelly, showing influence of plastic activity on
precipitates morphology.

different.
Plastic activity changes the global shape of the rafts. Whereas elastic rafts are

quite straight and well-aligned with cubic directions, they are more irregular and
with a wavy shape in the simulations using the evp2 set. As shown by the arrow
in figure 7, in the presence of a strong plastic activity, the direction of the rafts
can substantially deviate from the cubic directions. Inside the rafts, the shape of
the γ′ precipitates is also clearly modified in the presence of plastic activity, as it
is pointed out by the five rectangular regions in figure 7.

Another obvious difference between elastic and visco-plastic simulation results is
the evolution of the γ′ volume fraction τγ′ . In the initial cuboidal microstructure, τγ′

is close to 0.72. During creep, this volume fraction decreases, both with the elastic
model (τγ′ ≈ 0.62) and with the elasto-visco-plastic models (τγ′ ≈ 0.53 for the
evp1 set and 0.33 for the evp2 set). This trend is in agreement with experimental
observations in the CMSX-4 superalloy [73]. However, from a quantitative point
of view, the decrease of the γ′ volume fraction is too large in our elasto-visco-
plastic models because the experimental decrease of the volume fraction under
a creep loading is only close to 10% [73]. The volume fraction changes originate
from the modification of the γ and γ′ concentrations between the initial coherent
microstructure and the rafted microstructure where coherency stresses are partially
relaxed by plasticity. In the phase field model, a smaller evolution of the volume
fraction could be obtained by increasing the curvature of the homogeneous free
energy density around the minima corresponding to the γ and γ′ phases. Further
work is underway to improve the model on this point.

The rafted microstructure is made of γ′ domains aligned perpendicular to the
tensile loading axis. During creep, our simulations predict that, inside a raft, the
γ′ domains get closer to each other. This effect is more pronounced when plastic
activity is taken into account. Note that, in most cases, the neighboring γ′ domains
are in antiphase relationship and will thus never coalesce to form a single domain.
However, in experiments, two γ′ domains initially in antiphase relationship may
coalesce in the presence of plastic activity [74]. Indeed, when a dislocation of the
matrix (whose Burgers vector b is of the type 1/2[110]) crosses the channel delim-
ited by the two γ′ domains, the relative position of the two γ′ domains is shifted
by b. Therefore, the antiphase relationship between the γ′ domains changes and
may vanish, leading to a possible coalescence of the γ′ domains. In a phase field
model, this phenomenon could be accounted for by introducing a coupling between
the order parameter fields and the plastic activity.

Another consequence of the plastic activity is the speed-up of the morphological
changes leading to the rafted structure. This point is illustrated after 5h of creep
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by the three caracteristic areas presented in figures 6a-e-i. Area labeled 1 shows
that two γ′ domains, which are in antiphase relationship and which come close to
each other to form a raft, are still quite far away from each other in the elastic
simulation after 5h, whereas they are already in contact in the in elasto-visco-plastic
simulation with the evp2 set. In the area labeled 2, two γ′ domains of the same
variant coalesce to form a raft. After 5 hours, the domains are still well separated
in the elastic simulation, while they have already coalesced in the evp2 simulation.
Finally, rafting proceeds not only by directional coalescence of precipitates, but
also by splitting of large precipitates leading to the creation of vertical channel
of γ structure. This microstructural evolution can be seen inside the area labeled
3. Comparison of figures 6a-e-i reveals that the splitting of precipitates is also
much faster when plastic activity is introduced in the model. As a conclusion, our
simulations predict that plastic activity significantly increases the rafting kinetics.
Similar trends are shown in [9].

In figure 8, the time evolution of the average plastic strain is plotted and com-
pared to experimental data measured on the AM1 superalloy [47]. The lower creep
curve corresponds to the simulation results based on the evp1 set of visco-plastic
parameters, which were computed using the initial microstructure. As explained in
subsection 3.3, the evp1 set of parameters is expected to well reproduce the plastic
activity in the beginning of primary creep, and to underestimate it in the next
stages of the microstructure evolution. As shown in figure 8, this prediction is in
good agreement with experimental measurements at the very beginning of creep.
The upper creep curve in figure 8 is the simulation result obtained with the evp2
set of parameters, where the onset of plasticity was reduced to account for the
increase of the γ channel width during the primary creep stage. As expected, this
set of parameters overestimates the plastic activity during the first moments of the
creep experiment. However the difference in plastic strain between this simulation
and experimental data is also a result of the decrease in the γ′ volume fraction.
This result illustrates difficulties related to material parameters identification for
continuous plasticity models and pointed out in section 3.2. The situation is quite
complex in the present case where microstructure is evolving and for which it is
difficult to decouple plastic strain and plastic strain rate resulting of hardening
and viscosity of the widening matrix, morphological evolution of precipitates and
decrease in γ′ volume fraction. For viscosity, we want to recall that, as explained
in section 3.2, viscoplasticity parameters have been identified on monotonic and
cyclic tests performed at 10−5 s−1 and 10−3 s−1. During creep, the strain rate is
approximatively 5.10−5 s−1 [47] in the secondary stage of creep in the present con-
ditions. This rate allows plasticity recovery mechanisms as modeled in [75]. In the
viscoplasticity framework, sinus hyperbolic type flow rules and static recovery po-
tential are commonly used to improve the description of creep [55]. Such recovery
mecanisms are not accounted for in the proposed model.

Moreover, after some 25h of creep, the experimental curve shows a strong in-
crease in the plastic strain rate corresponding to the tertiary creep stage which is
not observed in simulations. As reported in the literature (e.g. [67]), the onset of
tertiary creep is associated with shearing of the precipitates and internal crack ini-
tiation from porosity. Theses phenomena are not currently included in the present
model. The plastic activity of the γ′ phase could be added in the model formulation
presented in section 3, but damage mechanics should be employed to account for
cracks initiation [67].

A better understanding of the microstructural evolution is obtained by analyzing
mechanical fields. The stress component σ11(r), the total strain component ε11(r),
and the plastic strain component εp

11(r) at t=10h are presented in figures 9, 10

Page 21 of 26

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

January 21, 2009 8:41 Philosophical Magazine article

22 A. Gaubert, Y. Le Bouar and A. Finel

Figure 8. Evolution of the simulated plastic strain with respect to time and comparison with experimental
data on AM1 (creep 950◦C, 300MPa) [47].

and 11 respectively. These fields show clearly that the mechanical behavior of the
vertical and horizontal channels is very different. Plastic activity is mainly present
in channel perpundicular to the tensile axis as reported in the literature (e. g. [65]).

In horizontal γ channels, the total strain component ε11(r) is almost equal to
that of the neighboring γ′ domains, so that the horizontal channels are hardly
visible in figure 10. This point is observed in the elastic model but also in the
elasto-visco-plastic models. This behavior can be easily understood by analogy
with the problem of the thin plate inclusion, the thin horizontal γ channel being
the inclusion embedded in a γ′ matrix. As shown in [32], the equilibrium state of
a thin plate-like inclusion is realized when the total strain is homogeneous in the
whole sample and equal to that of the matrix in the absence of inclusion. This
result, derived within the elastic framework, explains the mechanical behavior of
the horizontal γ channel in the elastic model (figure 10a). Moreover, as it can be
seen in figure 11, the plastic strain is negligible in the thin horizontal γ channels.
Therefore, the plate-like inclusion analogy used within the elastic framework to
explain that ε11(r) has the same value in the horizontal γ channel and in the
surrounding γ′ domains, remains valid to analyze the horizontal γ channels in the
elasto-visco-plastic models.

The vertical γ channels behave quite differently. As shown in figure 10, the strain
component ε11(r) is mainly localized inside these channels. This is already true
in the elastic model (figure 10a) because the γ′ precipitates are stiffer than the
matrix. However, the localization is much more pronounced in the elasto-visco-
plastic models because of plasticity which has developed in the γ channels. By
comparing figures 10 and 11, we conclude that, after 10 hours, the value of the
component ε11(r) is mainly due to the elastic strain in the evp1 simulation, whereas
it is mainly due to plastic strain in the evp2 simulation.

Plastic deformation inside vertical γ channels is not homogeneous. As it can be
seen in figure 11b, the values of the plastic strain component εp

11(r) show strong
maxima along directions at 45◦ from the tensile loading axis. These directions
are the directions where Schmid factor is maximal, i.e. where the resolved shear
stress (due to the applied tensile loading) is maximal [70]. A consequence of this
anisotropy of the plastic activity is to allow the formation of rafts with orientations
away from the cubic directions.
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(a) (b) (c)

Figure 9. σ11 field at t=10h (a) elastic simulation, (b) evp1 simulation, (c) evp2 simulation.

(a) (b) (c)

Figure 10. ε11 field at t=10h (a) elastic simulation, (b) evp1 simulation, (c) evp2 simulation.

(a) (b)

Figure 11. εp
11 field at t=10h (a) evp1 simulation, (b) evp2 simulation.

5.1. Discussion

In this paper, we have developed a phase field model coupled to a continuum
crystallographic visco-plastic model. This model has been applied to describe the
microstructural evolution during a creep loading in a model AM1 superalloy. The
results of the model, both concerning the microstruture evolution and the macro-
scopic behavior are in good agreement with experimental observations.

However, several assumptions have been made in the development of the model.
The first one is to assume that a continuum plasticity model is relevant to describe
plastic activity at mesoscale. This approach has already been applied for instance
in [33, 69, 76]. During creep, this assumption is questionable during the first steps
of the microstructural evolution because the γ channels contain only few dislo-
cations, but becomes more realistic during the secondary creep stage when many
dislocations evolve and interact with the microstructure.

Other mesoscale models have been developed to describe plastic behavior of
superalloys, in which plasticity is described using dislocations [24, 25, 77]. These
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approaches have the advantage to introduce the topological defects at the origin of
the plastic behavior, and therefore automatically contain several properties such
as the link between the width of the channels and the critical resolved shear stress
necessary to cross the channels. However, at the present state, these approaches are
not able to reproduce in a quantitative way several phenomena which are important
during a creep experiment at high temperature. This is especially true for thermally
activated phenomena, such as cross-slip and climb of dislocations at γ/γ′ interfaces.
When using a continuum plasticity model, the consequences of these phenomena
are at least partially included in the model, through the adjustment of the viscosity
coefficients.

Results presented in the previous section show that plastic length scale effets have
a key role on the creep behavior. Indeed, the microstructure evolutions obtained
with the evp1 set (channel width ≈ 50nm) and evp2 set of parameters (channel
width ≈ 150nm) strongly differ. Therefore, the softening of the matrix behavior as
channel width is increasing has to be taken into account in oder to obtain realistic
rafts morphologies and realistic plastic strain rate at macroscopic scale. Because
the coupling between the channel width and the softening of the matrix is not taken
into account in the present model, we have only simulated two limiting cases, one
corresponding to the initial width of the channels (evp1), and the other one to the
the channel width observed when the stable rafted microstructure is established. It
is of course highly desirable to improve this aspect of the model and to introduce,
within a continuous plasticity model, a coupling between the channel width and the
plastic behavior of the matrix. This can be done by using a generalized continuum
approach, such as a Cosserat continuum [78], or a strain gradient plasticity model
(e.g. [79, 80]).

Finally, it is important to note that we have only performed here two dimen-
sional simulations. Our simulations are in fact equivalent to three dimensional
simulations, where it is assumed a translational invariance along the [001] cubic
axis. Note however that the model can be straightforwardly used for three dimen-
sional simulations. We are planing to perform 3D simulations in the near future
because 3D effects may have important consequences when considering microstruc-
tural evolution and crystal plasticity.

6. Conclusion

We have developed a phase field model coupled to a continuum crystal plastic-
ity model. This model has been applied to study the microstructural evolution of
a model AM1 superalloy during a creep loading. This model takes into account
many important physical phenomena, such as the long-range order in the γ′ do-
mains, elastic inhomogeneity, plastic activity as well as its anisotropy and viscosity.
A special attention has been paid to the determination of the visco-plastic param-
eters from experiments. Two sets of visco-plastic parameters have been obtained,
dedicated to the description of the plastic behavior of the initial microstructure
and to the one of the rafted microstructure.

Two dimensional simulations have been performed. At first, a typical cuboidal
microstructure has been obtained using an elastic phase field model in stress free
conditions. This microstructure was used as an initial state for the simulations
under creep loading (300MPa at 950◦C). Results of the model, either concerning
the microstructural evolution or the macroscopic plastic strain are in agreement
with experiments.

The framework introduced in the present work has allowed a comparison on the
respective influence of elastic and plastic driving forces on rafting in Ni base su-
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peralloys. In the considered conditions, we show that viscoplasticity allows rafts
misalignement with cube direction as seen in experiments and increases the rafting
kinetics. Moreover, this coupled phase field viscolaplastic model opens new pos-
sibilities in the simulation of microstructural evolution under mechanical loading
when plasticity can not be negleted. In particular, in the domain of superalloys, a
45◦ oriented microstructure is observered under a cyclic alternate loading at high
temperature [81]. The induced softening of the material during microstructural
evolution could be studied within this kind of framework.
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