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Abstract 23

Vibrios are Gram-negative rod shaped bacteria that are widespread in the coastal 24

and estuarine environments. Some species, e.g. Vibrio anguillarum and V. tapetis, 25

comprise serious pathogens of aquatic vertebrates or invertebrates.  Other groups,26

including Grimontia (= Vibrio) hollisae, Photobacterium (= Vibrio) damselae 27

subsp. damselae, V. alginolyticus, V. carchariae (= V. harveyi), V. cholerae, V. 28

fluvialis, V. furnissii, V. metschnikovii, V. mimicus, V. parahaemolyticus and V. 29

vulnificus, may cause disease in both aquatic animals and humans.  The human 30

outbreaks, although low in number, typically involve wound infections and gastro-31

intestinal disease often with watery diarrhoea.  In a minority of cases, for example 32

V. vulnificus, there is good evidence to actually associate human infections with 33

diseased animals.  In other cases, the link is certainly feasible but hard evidence is 34

mostly lacking. 35
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1. Introduction 60

The vibrios are Gram-negative rod shaped bacteria that are fermentative, 61

catalase and oxidase positive, motile by polar flagella, are usually sensitive to the 62

vibriostatic agent, O/129, and mostly have a requirement for sodium chloride 63

(Farmer et al., 2005).  Taxonomic improvements have resulted in some vibrios 64

transferred to new genera, e.g. Vibrio hollisae which was re-classified to the newly 65

created genus Grimontia as G. hollisae, or moved to other genera, e.g. V. damsela 66

which was transferred to Photobacterium as P. damselae (Farmer et al., 2005).  67

The organisms are generally widespread in the coastal and estuarine environments; 68

some species, e.g. V. parahaemolyticus, are commonplace in/on aquatic animals, 69

notably invertebrates (Farmer et al., 2005).  Certainly, a steadily increasing 70

number of taxa, e.g. V. anguillarum and V. tapetis, have been associated with 71

diseases of aquatic animals, whereas other species, e.g. V. cholerae, comprise 72

serious pathogens of humans (Farmer et al., 2005; Austin and Austin, 2007).  A 73

comparatively small number of species, e.g. V. parahaemolyticus and V. 74

vulnificus, cause disease in both aquatic animals and humans.  However, there is a 75

dilemma that because an organism occurs in an aquatic animal, it does not 76

necessarily mean that this is the source of human infections.  Indeed, the evidence 77

linking vibrios with zoonoses is at best incomplete and sometimes the subject of 78

conjecture.  Fortunately, the number of cases of human diseases that may be traced 79

to animals is small, although comprehensive official statistics are missing.  The 80

candidates for discussion include G. hollisae, P. damselae subsp. damselae, V. 81

alginolyticus, V. harveyi (= V. carchariae), V. cholerae, V. fluvialis, V. furnissii, 82

V. metschnikovii, V. mimicus, V. parahaemolyticus and V. vulnificus (Table 1).  It 83

should be emphasized that the source of most of the organisms causing human 84
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disease cannot be linked definitively to animals. Indeed, the origin of some of 85

these bacteria may well be the waters in which the aquatic animals are found.  86

Transmission to humans is inevitably via wound or may be food/water borne and 87

involving direct entry into the digestive tract. Certainly, all the taxa included in 88

this review have the potential to cause human disease although the evidence for a 89

definite link between animals and humans is not always proven.  The narrative 90

will be divided into those organisms, e.g. V. vulnificus, for which there is a higher 91

risk and good evidence linking them with zoonoses, and those for which the risk is 92

lower and the data may be more uncertain.93

94

2. Higher risk organisms 95

Three taxa, namely V. cholerae, V. parahaemolyticus and V. vulnificus, have been 96

either repeatedly involved in disease outbreaks or have the potential to do so.97

98

2.1. Vibrio cholerae99

An epizootic, attributed to V. cholerae occurred in a wild population of ayu 100

(Plecoglossus altivelis) in the River Amano, Japan, with disease signs including 101

petechial haemorrhages on the body surface and congestion of the organs (Austin 102

and Austin, 2007).  A similar organism was recovered from septicaemic goldfish 103

in Australia and from sharks (see Austin and Austin, 2007). Also, there is some 104

indication that V. cholerae (non-O1 and O139) may be involved in shrimp disease, 105

specifically of Penaeus monodon (Haldari et al., 2007) and ornamental fish 106

(Swaminathan et al., 2007) in India. Infectivity experiments suggested that V. 107

cholerae was highly virulent to ayu and eels following immersion in 1.26 x 104108

cells ml-1 and 1.26 x 102 cells ml-1, respectively.  Yamanoi et al. (1980) reported 109



6

that with ayu, mortalities began in 2-7 days at water temperatures of 21 and 26oC, 110

but deaths did not occur if the water temperature was at only 16oC.   Only 10% 111

mortalities occurred in eels within 5 days at a water temperature of 21oC, and 30% 112

deaths in 3-7 days at 26oC.  113

114

V. cholerae is the cause of the human pandemics of cholerae, which is caused 115

by cholera-toxin producing strains, and develop into extreme gastro-enteritis with 116

copious quantities of watery diarrhoea leading to dehydration (Morris, 2003). 117

Historically, cholera has been associated with toxigenic serogroup O1 strains, but 118

subsequently there was the emergence of cholera-toxin producing ability in other 119

groups, i.e. serogroup O139/non-O1.  The question of relevance to the current 120

context is whether or not strains from aquatic animals carry the toxin gene?  121

Unfortunately, there is indeed evidence that some of the environmental isolates 122

have been  associated with toxigenicity.  Toxin-gene (ctxA and zot) carrying 123

strains have most certainly been recovered from marine waters off the west coast 124

of USA (Jiang et al., 2003).125

126

The source of some outbreaks has been linked with contaminated shellfish, 127

including raw oysters (Morris, 2003) and crabs (CDC, 1991), and involves non-O1 128

and non-O139 strains (Farama et al., 2008).  An outbreak of cholera in Louisiana, 129

USA in 1978 was associated with shellfish caught in the Gulf of Mexico (Blake et 130

al., 1980).  Crabs, which had been transported from Ecuador to New York in 1991, 131

resulted in three individuals developing cholera.  These people and samples of 132

crab meat revealed the presence of the pathogen (CDC, 1991).  Also, cells have 133

been transferred in the water used to transport ornamental fish from countries in 134
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which cholera occurs (Manfrin et al., 2001).  In one study between 1997 and 1998, 135

34 out of 420 water samples (= 8.09% of the total) revealed the presence of V. 136

cholerae non-O1, and it was considered that their enterotoxins could pose a 137

potential risk of gastro-enteritis in humans especially those operating aquaria or 138

keeping pet fish (Manfrin et al., 2001).139

140

2.2.  Vibrio parahaemolyticus141

The organism has been associated with mortalities in Iberian toothcarp 142

(Aphanius iberus) with the signs centering on external haemorrhages, and tail rot 143

(Austin and Austin, 2007).  Cultures regarded as intermediate between V. 144

alginolyticus and V. parahaemolyticus were recovered from diseased milkfish 145

(Chanos chanos) in the Philippines (Austin and Austin, 2007).  Certainly, V. 146

parahaemolyticus is a well-recognized pathogen of invertebrates, including 147

abalone, Haliotis diversicolor supertexta (e.g. Cai et al., 2007) and shrimp (e.g. 148

Jayasree et al., 2006). Disease signs in abalone include a change in colour to white 149

and a detachment from the diatom films on which they are cultured (Cai et al.,150

2007).  In Penaeus monodon, the organism has been implicated as a cause of red 151

disease in India (Jayasree et al., 2006).  Pathogenicity has been established in tiger 152

prawns with the LD50 dose of 1 x 105 CFU shrimp-1 (Sudheesh and Xu, 2001).  153

The corresponding value in abalone post-larvae was 3.5 x 105 CFU ml-1 with the 154

disease mirroring that of natural infections (Cai et al., 2007).155

156

V. parahaemolyticus may spread into humans orally via contaminated food, 157

particularly molluscs such as oysters (DePaola et al., 2003; Drake et al., 2007) 158

leading to the development of acute gastro-enteritis with diarrhoea (Cho et al.,159
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2008).  In Denmark during 1987-1992, the organism was recovered from 13 160

patients of whom 3 and 10 displayed wound and ear infections, respectively.  With 161

many cases, there was a prior association with the marine environment (Hornstrup 162

and Gahrnhansen, 1993).  A seasonality in diarrhoeal cases, which was not linked 163

to age, was reported in Korea between 2004-2006 (Cho et al., 2008).  Virulence 164

factors centre on proteases, ß-haemolysins, notably the thermostable direct 165

haemolysin (tdh) and the tdh-related haemolysin (trh), adhesins and the expression 166

of V. cholerae virulence genes including the toxR operons (DePaola et al., 2003; 167

Snoussi et al., 2008).,168

169

2.3. Vibrio vulnificus170

The organism was recognized as a serious pathogen of eels in Japan during the 171

1970’s with subsequent cases in Spain and Denmark (Austin and Austin, 2007). In 172

addition, V. vulnificus has been mentioned as a cause of disease in Penaeus 173

monodon in India (Jayasree et al., 2006).  Overall, the disease is characterized by 174

haemorrhaging seen as redness on the body surface, and later as involvement of 175

the gastro-intestinal tract, gills, heart, liver and spleen (Austin and Austin, 2007). 176

In 2005, the pathogen caused substantial mortality in farmed ovate pompano 177

(Trachinotus ovatus) in P.R.C., with signs including external haemorrhaging and 178

ulcers, and haemorrhaging of the gills, intestine and liver (Li et al., 2006). A new 179

serogroup, i.e. V. vulnificus biotype 2 serovar A was recognized in Spain in 2000 180

and Denmark by 2004; the affected eels demonstrated extensive haemorrhaging 181

and necrosis (Fouz et al., 2006).  V. vulnificus has been recovered from fish caught 182

in the US Gulf Coast (DePaola et al., 1994), with minimum and maximum 183

numbers occurring in winter and April to October, respectively DePaola et al.184
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(1994). The highest levels, i.e. 108 bacteria 100 g-1, were associated with the gut 185

contents of bottom-feeding fish, which ate molluscs and crustacea. Lower 186

populations were recovered from plankton-feeding fish, i.e. 105 V. vulnificus cells187

100 g-1.188

189

A vaccine, named Vulnivaccine, which inactivated whole cells, comprises 190

capsular antigens and toxoids of serovar E was administered by immersion for 1 h 191

in three doses at 12 day intervals, and led to good protection in eels (RPS = 60-192

90%) (Esteve-Gassent et al., 2003).  During field trials by prolonged immersion 193

and boostering after 14 and 24-28 days of 9.5 million glass eels in Spain and with 194

parallel work in Denmark, Vulnivaccine led to an RPS of 62-86% (Fouz et al.,195

2001).  With the appearance of a second serotype of V. vulnificus, i.e. A, a bivalent 196

vaccine was formulated, and determined to be protective following oral 197

application, by anal and oral intubation, and by intraperitoneal injection (RPS = 198

80-100%) (Esteve-Gassent et al., 2004).199

200

In human, V. vulnificus has been associated with a small but increasing number 201

of serious life-threatening conditions, many stemming from wound infections 202

which become septicaemic (e.g. Mouzopoulos et al., 2008).  The onset of 203

symptoms is often abrupt, with a rapid progression to septic shock and thus death 204

despite the intervention of antibiotics, typically doxycycline (Haq and Dayal, 205

2005).   In the USA, V. vulnificus has been regarded as being responsible for most 206

of the seafood-related deaths since the first report in 1979 (e.g. Oliver, 2005). 207

Indeed, a regular source of infection with the pathogen is the consumption of 208

contaminated raw seafood, notably molluscs (e.g. Drake et al., 2007).  Specifically 209
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within Louisiana, USA during 1980-2004, 252 cases of V. vulnificus infection 210

were reported of which 116 cases followed consumption of crabs (Barton and 211

Ratard, 2006).  In Japan between 1999 and 2003, 94 cases were reported in June to 212

November but not at all in winter among 1045 hospitals, albeit with a mortality 213

rate of 75% among those with sepsis (Inoue et al., 2008).  With the more serious 214

cases, patients often have underlying problems such as lymphocytic leukaemia and 215

hypogammaglobulinaemia (Barton and Ratard, 2006), immunosuppression, 216

diabetes and kidney disease (Kuo et al., 2007), liver disease (including alcohol 217

related cirrhosis) and secondary skin lesions (cellulitis, oedema and haemorrhagic 218

bulla) (e.g. Miyoshi, 2006). One outcome may be the need for amputation.  Thus 219

in the case of some patients who developed necrotizing fasciitis, which is a soft 220

tissue infection, leg amputation proceeded when the excision of diseased tissue 221

failed to halt the infection (Mouzopoulos et al., 2008).  Another patient developed 222

osteomyelitis after excision of necrotic soft tissue failed (Mouzopoulos et al.,223

2008).  224

225

A link between human infections and fish developed as a result of cases in The 226

Netherlands and Israel.  However, genetic differences have been identified 227

between eel and human isolates (Wang et al., 2008).  In one case in The 228

Netherlands, a 63-year old man was hospitalized with severe pain in his right arm, 229

which became progressively swollen (Veenstra et al., 1992). Also, there were 230

small wounds on his hands.  In hospital, the patient deteriorated with widespread 231

skin and muscle necrosis, leading to surgery, which removed the diseased tissue. 232

V. vulnificus was isolated from the blood, and determined to resemble a culture 233

recovered previously from eels in a Dutch eel farm (Veenstra et al., 1992). 234
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Eventually the patient recovered. Apparently, the day before the onset of 235

symptoms, he had cleaned eels, which had been purchased from a local market. It 236

was thought likely that the man became infected from the eels through open 237

wounds on his hand.  The second example concerns a major outbreak that 238

developed in Israeli fish market workers in 1996, and was considered to reflect 239

possible climate change insofar as the period coincided with the hottest ever 240

recorded summer, temperatures (Paz et al., 2007).  In fact, the outbreak started 25-241

30 days after the hottest temperatures had occurred, and concern was expressed 242

that high water temperatures might have led to the emergence of the disease (Paz 243

et al., 2007).244

245

Because of the serious nature of human disease attributed to V. vulnificus, a 246

great deal of attention has focused on understanding the pathogenicity 247

mechanisms.  It has been determined that isolates produce a range of pathogenicity 248

factors including a polysaccharide capsule, haemolysin, type IV pili and various 249

proteases, principally a serine protease (Wang et al., 2008) and a 45 kDa 250

metalloprotease, which is regulated through quorum sensing more efficiently at 251

25oC rather than 37oC [this protease may therefore be produced mostly in 252

interstitial tissues in the limbs which have lower temperature than the rest of the 253

body], may well be responsible for skin lesions (Shinoda, 2005; Miyoshi, 2006).  254

Purified preparations of the metalloprotease enhance vascular permeability and 255

induces haemorrhaging through digestion of vascular basement membranes 256

(Miyoshi, 2006). The metalloprotease degrades a number of complex 257

macromolecules, including elastin, fibrinogen and plasma proteinase inhibitors of 258

complement (Shinoda, 2005).  Compared to an environmental isolate, a 259
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pathogenic culture led to higher cytotoxicity and a concomitant reduction in the 260

number of macrophages in mice during the early stage of infection (Tsuchiya et 261

al., 2007).262

263

3. Lower risk organisms264

3.1.  Grimontia hollisae265

There is limited information pointing to a role for G. hollisae in fish pathology.  266

Specifically, the organism has been recovered from amberjack (Seriola dumerili) 267

with vibriosis, i.e. haemorrhagic septicaemia  (Ji et al., 2008).  Moreover, the 268

organism is occasionally associated in humans with moderate to severe gastro-269

enteritis linked to the consumption of raw shellfish (Abbott and Janda, 1994). One 270

case led to hypotension and acute kidney failure (Hinestrosa et al., 2007).  An 271

even less common occurrence in humans is sepsis (Abbott and Janda, 1994).  272

There is scant information on the pathogenicity mechanism in humans, with the 273

data emphasizing aerobactin which is produced in response to iron starvation 274

(Suzuki et al., 20060275

276

3.2.  Photobacterium damselae subsp. damselae277

P. damselae subsp. damselae (= V. damsela) was recovered initially from 278

ulcers on the pectoral fin and caudal peduncle of the damselfish, blacksmith 279

(Chromis punctipinnis) (Love et al., 1981).  The fish were caught in the coastal 280

waters of southern California, USA during August to October, and at Ship Rock, 281

Catalina Island during June to October (Love et al., 1981). This suggests a 282

seasonal distribution in the disease, possibly coinciding with warmer water 283

temperatures and lowered resistance resulting from physiological changes in the 284
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host during sexual maturity. The ulcers, which occur particularly in the region of 285

the pectoral fin and caudal peduncle, may reach 5-20 mm in diameter (Love et al.,286

1981). Histopathology points to the presence of granulomatous ulcerative 287

dermatitis.  Subsequently, the organism was recovered from a wide range of other 288

marine animals, including sharks, turbot (Scophthalmus maximus), yellowtail 289

(Seriola quinqueradiata) and red banded sea bream (Pagrus auriga) (see Austin 290

and Austin, 2007). Pathogenicity was confirmed with infectivity experiments 291

using blacksmith in which 4-6 scales were removed, the dermis scarified, and the 292

wound swabbed with 107-108 viable cells of P. damselae subsp. damselae.  At 293

water temperatures of 16.0-16.5oC, the infected fish developed large ulcers within 294

3 days, with death following one day later (Love et al., 1981). In terms of 295

pathogenic mechanisms, a neurotoxic acetylcholinesterase has been described 296

(Pérez et al., 1998). Also, extracellular products (ECPs) with low proteolytic 297

activity have been implicated with cytotoxicity, with the LD50 dose ranging from 298

0.02-0.43 µg of protein g-1 of fish with mortalities occurring 4 and 72 h later (Fouz 299

et al., 1993). In addition, a siderophore-mediated iron sequestering system is 300

thought to be involved in pathogenicity (Fouz et al., 1997).301

302

The role in human disease stems from the recovery of the organism from 303

wound infections (Love et al., 1981).304

305

3.3  Vibrio alginolyticus306

V. alginolyticus is pathogenic to fin- and shellfish.  In finfish, the organism 307

causes septicaemia in sea bream (Sparus aurata), exophthalmia and corneal 308

opaqueness in grouper (Epinephelus malabaricus), ascites, lethargy and melanosis 309
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in cobia (Rachycentrib canadum), and ulcers (see Austin and Austin, 2007).  Also, 310

V. alginolyticus has caused large-scale mortalities in silver sea bream (Sparus 311

sarba) in Hong Kong, gilt-head sea bream (Sparus aurata) in Spain, cultured 312

black sea bream (Mylio macrocephalus) fry in Japan and cobia (se Austin and 313

Austin, 2007). Indeed, Liu et al. (2004) calculated the LD50 as 3.28 x 104 for 314

cobia, and Lee (1995) described an ECP, which was lethal at 0.52 µg g-1 of fish, 315

and contained a 44 kDa toxic protease with a minimum lethal dose of 0.17 µg g-1316

of fish.  ECP, with haemolytic and proteolytic activity, led to an effect on hepatic 317

heat shock protein (Deane et al., 2004). A divalent vaccine containing formalized 318

cells and ECP of V. alginolyticus has been developed (Moriñigo et al., 2002).319

320

V. alginolyticus has been associated with shell disease and white spot in shrimp, 321

Penaeus monodon, in India and Taiwan, with necrosis in Macrobrachium 322

rosenbergii larvae in India, and with mass mortalities in carpet shell clam 323

(Ruditapes decussates) larvae in Spain (e.g. Lee et al., 1996; Selvin and Lipton, 324

2003). With white spot, the diseased shrimp developed a reddish colour and 325

displayed white spots in the cuticle (Selvin and Lipton, 2003).  Isolates have been 326

reported to cause mortalities when administered to shrimp, with the LD50327

calculated variously as 1.13 x 105 g-1 (Lee et al., 1996) and 5 x 106 colony forming 328

units (CFU) animal-1 (Selvin and Lipton, 2003).   329

330

In humans, V. alginolyticus has been implicated with ear, soft tissue and wound 331

infections, of which antibiotic-resistance has been cited as a major issue (Horii et 332

al., 2005).  In Denmark from 1987-1992, V. alginolyticus was recovered from 17 333



15

patients with mild ear infections, all of whom had been exposed previously to 334

seawater (Hornstrup and Gahrnhansen, 1993).335

336

3.4.  Vibrio fluvialis337

V. fluvialis-like bacteria, which were identified biochemically and by pulsed 338

field gel electrophoresis, have been implicated as the cause of limp lobster disease 339

of the American lobster, Homarus americanus (Tall et al., 2003) and pustule 340

disease of abalone (Haliotis discus hannai Ino) in P.R. China (Dalian coast) (Li et 341

al., 1998).  With this condition, several sites and different growth stages of the 342

animals were affected with 50-60% mortalities (Li et al., 1998).  Experimental 343

infectivity experiments pointed to transmission through lesions in the abalone foot 344

with disease developing rapidly after intramuscular injection (Li et al., 1998).  345

346

An outbreak of food poisoning in India leading to gastro-enteritis during 1981 347

has been blamed on V. fluvialis insofar as the stools of 9/14 stool samples revealed 348

the presence of the organism (Thekdi et al., 1990).  Also, the taxon has been 349

reported as a cause of wound infection leading to haemorrhagic cellulitis and 350

cerebritis with the source considered being multiple fire-ant stings and wading in 351

brackish water (Huang and Hsu, 2005).352

353

3.5.  Vibrio furnissii354

V. furnissii has been associated albeit tenuously with eel disease in Spain 355

(Austin and Austin, 2007) and with mortalities in tiger shrimp (Penaeus monodon) 356

(Sung et al., 2001).357

358
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There has been uncertainty about a role for this organism in human disease.  359

Certainly, it has been recovered from stool specimens, and has been implicated 360

with infantile diarrhoea, and diarrhoeal disease from 16 patients in Brazil (e.g. 361

Magalhaes et al., 1993) and during a cholera surveillance programme in Peru 362

during 1994 (Dalsgaard et al., 1997).  The Brazilian isolates were haemolytic and 363

ECPs damaged HeLa cells pointing to the presence of cytolysins (Magalhaes et al.,364

1993).  Phosphomannomutase (PPM) has been linked to significant intestinal 365

damage within 3-days in mice following oral uptake.  In contrast, PPM deficient 366

mutants led to reduced virulence, loss of O-antigen and reduced serum resistance 367

(Kim et al., 2003).368

369

3.6.  Vibrio harveyi (= V. carchariae)370

An organism named as V. carchariae was originally recovered from a dead 371

sandbar shark (Carcharhinus plumbeus) with vasculitis, which died at the National 372

Aquarium in Baltimore, USA, in 1982 (Grimes et al., 1984). Infected animals 373

became lethargic, inappetant, were disorientated, and developed necrotic 374

subdermal cysts.  Postmortem examination revealed encephalitis, meningitis, 375

kidney necrosis, vasculitis, and unspecified liver and spleen damage.  Other 376

isolations were from lemon sharks (Negraprion brevirostris) and from gastro-377

enteritis and heavy mortalities in grouper (Epinephelus coioides). A similar 378

organism was isolated from a chronic skin ulcer on a shark (see Austin and Austin, 379

2007). 380

381

In a separate development, V. harveyi was recovered from opaque white 382

corneas leading to blindness in common snook (Centropomus undecimalis) within 383
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24 h of capture in Florida, USA (Kraxberger-Beatty et al., 1990). In jack crevalle 384

(Caranx hippos), deep dermal lesions but not any internal damage were observed 385

in wild specimens also from Florida (Kraxberger-Beatty et al., 1990).  Meanwhile, 386

Saeed (1995) attributed V. harveyi with mortalities in cultured brown spotted 387

grouper (Epinephelus tauvina) and silvery black porgy (Acanthopagrus cuvieri) in 388

Kuwait.  Then, DNA:DNA hybridization led Ishimaru and Muroga (1997) to 389

realize that pathogenic vibrios recovered from milkfish in Japan were also V. 390

harveyi.  Moreover, the organism was recovered from eye lesions in the short 391

sunfish (Mola mola) in Spain (Hispano et al., 1997), with the reason attributed to 392

the biting behaviour of other fish.  In addition, V. harveyi has been involved with 393

flounder infectious necrotizing enteritis, in which the abdomen becomes distended 394

and filled with opaque fluid.  There was necrosis of the posterior intestine, 395

reddening around the anus, lethargy and inappetance in farmed summer flounder 396

in Rhode Island, USA (Gauger et al., 2006). Also, skin ulcers and haemorrhaging 397

around the mouth and fins was noted in sole (Solea senegalensis) in Spain 398

(Zorrilla et al., 2003). The organism has been linked with infectious gastro-399

enteritis (swollen intestine containing yellow fluid) in cultured red drum 400

(Sciaenops ocelatus) from Taiwan (Liu et al., 2003).  401

402

V. harveyi has developed into a serious pathogen of penaeids, being associated 403

with luminous vibriosis, in which the affected shrimp glow in the dark, and Bolitas 404

negricans involving the blockage of the digestive gland with balls of tissue 405

(Austin and Zhang, 2006).  The organism has been reported to be a factor in loose 406

shell syndrome and white gut disease in Penaeus monodon in India (Jayasree et 407

al., 2006).408



18

409

Pedersen et al. (1998) deduced that V. carchariae was a junior synonym of V. 410

harveyi, which was confirmed by Gauger and Gómez-Chairri (2002) from the 411

results of 16S rDNA sequencing. Moreover, a disease, resembling vibriosis and 412

equated to a new species, i.e. V. trachuri, occurred in Japanese horse mackerel 413

(Trachurus japonicus) especially during summer when the seawater temperature 414

exceeded 25oC (Iwamoto et al., 1995).  Infected fish swam erratically, developed 415

melanosis, and developed bilateral exophthalmia and internal haemorrhages.  416

However, the organism is now recognised as synonym of V. harveyi (Thompson et 417

al., 2002).  418

419

Certainly because of its importance in aquaculture, emphasis has been placed 420

on improving diagnostics.  In this connection, a polymerase chain reaction (PCR) 421

using the toxR gene enabled detection of 4.0 x 103 cells ml-1 (including cells 422

within diseased tissues) in <5 h, but not of other vibrios (Pang et al., 2006).423

424

Prevention of V. harveyi infections by vaccination has met with some success. 425

Thus, a bivalent vaccine (with P. damselae subsp. piscicida) comprising 426

formalized cells and ECP administered by immersion with booster by 427

intraperitoneal injection led to high levels of protection (relative percent protection 428

[RPS] = ~88%) for 4 months (Arijo et al., 2005).429

430

In terms of human disease, V. harveyi (= V. carchariae) has been recovered 431

from wound infections, specifically from a leg wound resulting from a shark bite 432

in South Carolina, USA (Pavia et al., 1989).433
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434

3.7.  Vibrio metschnikovii435

V. metschnikovii is regarded as potentially pathogenic to larval giant clams, 436

Tridacna gigas with infection leading to general disintegration of the tissues and 437

total mortality after exposure to 107 bacteria ml-1 (Sutton and Garrick, 1993). The 438

organism has been recovered from raw fish and shellfish in markets and shops, 439

and is deemed to pose a risk to human health (Buck, 1991) with pathogenic factors 440

reflecting the presence of haemolysins and verotoxins (Matte et al., 2007).  441

442

3.8.  Vibrio mimicus443

V. mimicus has been considered as a secondary invader of red claw crayfish 444

(Cherax quadricarinatus), which were weakened by poor management, 445

overcrowding and/or adverse water quality (Eaves and Ketterer, 1994).  The 446

association with human illness is in connection with food borne infections leading 447

to gastro-enteritis and diarrhoea in which an enterotoxic haemolysin is produced 448

that targets intestinal epithelia cells effecting ion transport (Takahashi et al., 2007; 449

Mizuno et al., 2009).450

451

4. Future perspectives452

New pathogenic Vibrio species are frequently described.  Therefore, the range 453

of zoonotic organisms may well increase.  Diagnosticians need to be vigilant and 454

aware of this possibility.  Certainly, the seriousness of V. vulnificus as a pathogen 455

of both aquatic animals and humans cannot be overstated, and the number of cases 456

of disease attributed to this organism seems likely to grow. The involvement of 457

vibrios with disease has prompted excellent work particularly in the realms of 458
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ecology, pathogenicity and disease control strategies; this trend may be expected 459

to continue.  460
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Table 1  

Differential characteristics of zoonotic vibrios and their association with human and animal diseases (based on Farmer et al., 2005).

Characteristic:
G

. h
ol

li
sa

e

P
. d

am
se

la
e 

su
bs

p.
 

da
m

se
la

e

V
. 

al
gi

no
ly

tic
us

V
. h

ar
ve
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V
. c

ho
le

ra
e

V
. f

lu
vi

al
is

V
. f

ur
ni

ss
ii

V
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m
et

sc
hn

ik
ov

ii .V
. m

im
ic

us

V
. 

pa
ra

ha
em

ol

yt
ic

us

V
. v

ul
ni

fi
cu

s

Oxidase 

production

+ + + + + + + - + + (+)

Arginine 

dihydrolase

- + - - - + + D - - -

Lysine 

decarboxylase

- D + + + - - - + + +

Gas from 

glucose

- + - - - - + - - - -

Indole 

production

+ - + + + D - - + + +

Voges - (+) (+) - + - - + - - -
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Proskauer 

reaction

Utilization of 

cellobiose

- - - + - D D - - - (+)

Growth in 0% 

NaCl

- - - - + + + - + - -

Growth in 

0.3% NaCl

- D - - + + + + + - +

Growth in 

12% NaCl

- - + - - - (-) - - - -

Cause of 

wound 

infections in 

humans

+ + + + +

Cause of 

gastro-

intestinal 

+ + + + + + + +



34

disease in 

humans

Cause of fish 

disease

+ + + + + + + +

Cause of 

invertebrate 

disease

+ + (+) + + + + +

+, - and D correspond to 100%, 0% and 21-79% of positive results, respectively. (+) and (-) correspond to ≥80% and ≤20% of positive results. 


