

Evaluation of a new screening assay for HTLV-1 and -2 antibodies for large-scale use.

Kerstin Malm, Torbjörn Hans Kjerstadius, Sören Andersson

► To cite this version:

Kerstin Malm, Torbjörn Hans Kjerstadius, Sören Andersson. Evaluation of a new screening assay for HTLV-1 and -2 antibodies for large-scale use.. Journal of Medical Virology, 2010, 82 (9), pp.1606. 10.1002/jmv.21867 . hal-00556039

HAL Id: hal-00556039 https://hal.science/hal-00556039

Submitted on 15 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal of Medical Virology

Evaluation of a new screening assay for HTLV-1 and -2 antibodies for large-scale use.

Journal:	Journal of Medical Virology
Manuscript ID:	JMV-09-1694.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	06-May-2010
Complete List of Authors:	Malm, Kerstin; Örebro University Hospital, Dept of Laboratory Medicine Kjerstadius, Torbjörn; Karlstad Central Hospital, Dept of Clinical Microbiology Andersson, Sören; Swedish Institute for Infectious Disease Control, Dept of Virology
Keywords:	HTLV-1/2, Assay evaluation, Sensitivity, Specificity

Table 1. Dilution series of two HTLV-positive specimens

Dilution	RPR207-09 HTLV-1 Signal/cut-off	RPR207-08 HTLV-2 Signal/cut-off
	ratio	ratio
1/1	149.60	113.53
1/10	115.26	83.09
1/100	74.82	32.47
1/1000	34.06	5.88
1/10,000	7.74	1.40
1/100,000	2.65	0.63 ^a
1/1,000,000	1.03	0.67 ^a

a) Samples with s/co < 1.0 are rated as non-reactive

Table 2. Sensitivity and specificity for the Abbott ARCHITECT rHTLV assay

a)	Sensitivity
----	-------------

Sample population	n	Number reactive	Sensitivity (95% CI)
HTLV-1 positive	74	74	100% (94.95–100)
HTLV-2 positive	28	28	100% (86.83-100)
Quality control samples, HTLV positive	26 (18 HTLV-1, 7 HTLV-2,	26	100% (85.81–100)
Commercial panel PRP207	14 (7 HTLV-1, 7 HTLV-2)	14	100% (73.65-100)
Overall sensitivity	142	142	100% (97.38-100)
b) Specificity			Specificity (95%CI)
Blood donors, HTLV-	504	0	100% (99.27–100)
negative			
Serum samples with	36	0	100% (89.75–100)
rheumatoid factor			
Serum samples with	37	0	100% (90.03-100)
autoimmune antibodies			
Serum samples with	30	0	100% (87.70–100)
antibodies to viral infections ^a			
meetions			
Previously "false-	16	4	75% (53.80–96.20)
Overall specificity	623	4	99.36% (98.35-99.83)
Samples from routine	1412	0	100% (99.74–100)
diagnostics analysed on			
Overall specificity	2035	4	99.80% (99.50–99.95)
including samples from			
routine diagnostics			

a) HBV n=10, HCV n=10, CMV n=5, EBV n=5; b) Reactive by the Murex HTLV I/II assay, 12 negative and 4 indeterminate by confirmatory testing; c) Samples analysed between 8 Dec. 2008 and 1 Oct. 2009 at USÖ (analysed fresh).

1	
2	
3	
4	
5	
6	
7	
2 2	
0	
9	2
10	1
1	
1	2
1;	3
14	4
1	5
10	6
1	7
18	В
19	9
20	C
2	1
2	2
2:	3
2	4
2	т 5
2	2
20	7
2	/
20	5
2	9
30)
3	1
32	2
3	3
34	4
3	5
30	6
3	7
38	В
39	9
4	n
4	1
	2
1	2
4	5 1
44	4
4:	C C
40	0
4	1
48	B
49	9
50	C
5	1
52	2
5	3
54	4
5	5
5	6
5	7
<u> </u>	

Table 3. Previously false-reactive samples, results when tested with the rHTLV I/II

assay.

		rHTLV s/co	Murex s/co	
Nr	Sample origin	ratio	ratio	Confirmatory result
1	New blood donor	0.21	2.08	Negative
2	New blood donor	0.25	1.03	Negative
3	New blood donor	0.57	1.9	Negative
4	Regular blood donor	0.25	1.1	Negative
5	New blood donor	0.19	1.48	Negative
6	New blood donor	8.75	3.95	Indeterminate
7	New blood donor	44.51	11.47	Indeterminate
8	Unknown	0.82	1.63	Negative
9	New blood donor	1.47	4.10	Negative
10	New blood donor	0.26	1.32	Negative
11	Breast milk donor	0.23	2.48	Negative
12	New blood donor	0.25	1.39	Indeterminate ^a
13	New blood donor	0.23	10.43	Negative
14	New blood donor	0.37	1.05	Negative
15	New blood donor	1.17	1.28	Indeterminate
16	New blood donor	0.67	2.45	Negative

Bold letters indicate reactive result.

^{a)} This sample had weak reactivities for p24 and gp21 in western blot. A follow up sample one year later had only a weak p24 band. The samples were considered non-infected, but with indeterminate reactivities

Figure 1. Distribution of signal/cut-off values for 504 negative samples from blood donors

Samples with s/co < 1.0 are rated as negative.

2 3 4	1	Evaluation of a new screening assay for HTLV-1 and -2 antibodies for large-scale use
5 6	2	
7 8 9	3	Kerstin Malm ¹ , Torbjörn Kjerstadius ² , Sören Andersson ³
10 11	4	
12 13 14	5	¹ Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro,
15 16	6	Sweden;
17 18	7	² Department of Clinical Microbiology, Karlstad Central Hospital, Karlstad, Sweden;
19 20 21	8	³ Departement of Virology, Swedish Institute for Infectious Disease Control, Solna Sweden
22 23	9	
24 25	10	Running title: HTLV-1/2 antibody assay evaluation
26 27 28	11	
29 30	12	
31 32 22	13	
33 34 35	14	Key words: HTLV-1/2, assay evaluation, sensitivity, specificity
36 37	15	
38 39 40	16	
41 42	17	
43 44	18	
45 46 47	19	
48 49	20	Correspondence to: Kerstin Malm, Department of Laboratory Medicine, Microbiology,
50 51	21	Örebro University Hospital, 701 85 Örebro, Sweden
52 53 54	22	E-mail: Kerstin.malm@orebroll.se
55 56	23	Telephone: +46 19 602 11 34
57 58	24	Fax: +46 19 12 74 16
59 60	25	

26 Abstrac	t
------------	---

Laboratory testing for Human T-lymphotropic Virus type 1 and 2 (HTLV-1 and-2) infections has become routine in blood transfusion, tissue transplantation and clinical diagnoses in many countries worldwide. Screening is usually based on the detection of antibodies to HTLV-1 and/or -2. The number of commercially available assays is limited, and among them, ELISA tests based on microtiter format are most commonly used. Recently, the new rHTLV-I/II assay (Abbott Laboratories, Abbott Park, IL, USA) was released; this assay was developed for an automatic large-scale screening platform. This assay was evaluated using pre-characterised serum panels and routine samples from the clinical laboratory. The sensitivity was 100% for HTLV-1 and -2 (99/99 and 42/42, respectively, including one sample that was dually reactive, HTLV-1+2). To test assay specificity, panels of blood donor sera, specimens from patients with autoimmune diseases and some viral infections were used. False-reactive samples from previous HTLV diagnoses were also included. With these panels, the specificity was 99.4% (619/623). However, the four false-reactive samples all belonged to the group of samples that were previously considered as false-reactive for HTLV-antibodies. All other samples were negative by the rHTLV-I/II assay, and thus 100% specificity was obtained. The 1 412 samples tested in the clinic by this assay in routine use were all negative (100% specificity). Taken together, the overall specificity was 99.8%. The assay was sensitive, specific and appropriate for the large-scale screening of samples for HTLV-1/2 antibodies.

50 Introduction

The human T-lymphotropic viruses type 1 and 2 (HTLV-1 and -2) are effectively transmitted via blood and blood products [Hall et al., 1996, Verdonck et al., 2007]. Therefore, many countries have introduced mandatory screening for HTLV infection of blood and plasma donors. The most cost-efficient mode of screening is by the detection of HTLV-1 or -2 antibodies. Enzyme immuno assays (EIAs) have been used for this screening, and the majority of these EIA screening assays have been based on a microtiter plate format [Andersson et al., 1999; Berini et al., 2008]. Confirmation of screening-reactive specimens has usually been accomplished using immunoblot assays (western blot or line immunoassays) [Thorstensson et al., 2002]. The number of commercially available antibody-screening assays is limited, and the development and release of new assays have been rather few over a period of several years.

Instruments have become increasingly common for use in large-scale screening of blood samples for blood-borne infectious diseases, and assays have been developed for the most prevalent microorganisms and adapted for these instruments [Malm et al., 2009; Kim et al., 2008; Marangoni et al., 2009]. Until recently, no assay for HTLV-1 or -2 has been available on such instruments. With the release of the *r*HTLV-I/II assay (Abbott Laboratories, Abbott Park, IL, USA) it may be possible to perform a package of screening assays for blood-borne infections that, in many countries, would be specific for microorganisms of regional priority. This will allow an important rationalisation of testing procedures in laboratories that have suitable equipment. It is also the first new commercially available screening assay for HTLV-1 and -2 in many years. This new automated assay for detection of antibodies to HTLV-1 and HTLV-2, rHTLV-I/II, is an immunoassay using a chemiluminescent microparticle technique [Qiu et al., 2008].

The *r*HTLV-I/II assay has been evaluated using well-characterised panels of sera from
HTLV-1 or HTLV-2 infected individuals and various HTLV-negative specimens. The assay
showed high sensitivity and specificity, and it is appropriate for use in a large-scale screening
package.

.d

78	Material	and	Methods

79 Screening immunoassays

This study evaluated an automated, chemiluminescent immunoassay assay for the detection of antibodies to HTLV-1 and HTLV-2 (rHTLV-I/II). All assay steps were performed by the automated ARCHITECT *i* system immunoanalyser (Abbott Laboratories). The solid phase of the assay consisted of paramagnetic microparticles coated with three different antigens; HTLV-1 gp 46 syntetic peptide, HTLV-2 gp 46 syntetic peptide and HTLV-2 gp 21 recombinant antigen. The samples were each mixed with assay diluent, and an aliquot of the mix was combined with the microparticles. After incubation and washing, an acridinium-labelled conjugate with HTLV-1 gp 21 recombinant antigen, HTLV-1 gp 46 and HTLV-2 gp 46 synthetic peptides were added. After another incubation and wash cycle, pre-trigger (H₂O₂) and trigger (NaOH) were added. This resulted in a chemiluminescent reaction, which was measured by the instrument's optical system as relative light units (RLU). The presence or absence of anti-HTLV antibodies was analysed by comparing the chemiluminescent signal to the cut-off signal determined by a calibration step. The ARCHITECT *i* System calculates the cutoff (CO) by using the mean chemiluminescent signal (RLU) from three replicates of the Calibrator 1 multiplied by 0.25. The result is shown as a signal-to-cut-off ratio (s/co). Samples with s/co ratios ≥ 1.0 are considered reactive. The immunoanalyser used, ARCHITECT i2000 (Abbott Laboratories), is a fully automated instrument that performs all the assay steps, from sample collecting to reporting of the result [Hendriks et al., 2000]. The samples that were analysed in this evaluation were also analysed with the Murex HTLV I/II assay (Murex Biotech Ltd, Dartford, United Kingdom), which was the routine assay used by a large proportion of laboratories in Sweden prior to the introduction of the rHTLV-I/II assay. Murex HTLV I/II is a microtiter plate EIA assay. The microtiter-plate wells are coated with HTLV-2 p21 recombinant antigen and HTLV-1 and -2

1 2			
3 4	103	gp 46 peptides. Sample and reagent addition steps, as well as washing steps, were performed	
5 6	104	manually with the use of a washing instrument (Anthos Fluido, Anthos Nordstrasse 4,	
7 8 9 10 11 12 13 14 15 16 17	105	Eugendorf, Austria); samples were read manually using a spectrophotometer (Multiskan	
	106	Ascent, Thermo Labsystems, P.O. Box 208, Helsinki, Finland). The conjugate in this assay	
12 13	107	was horseradish peroxidase-labelled HTLV-1 p21 recombinant antigen, HTLV-1 and -2 gp	
14 15 16	108	46 peptides. The resulting absorbance values were divided by the cut-off value, like the	
17 18	109	ARCHITECT results, to give an s/co ratio. The cut-off value is determined by adding 0.200 to	
19 20 21 22 23 24 25 26 27 28 29 30	110	the mean value of the negative control. All experimental protocols and analyses were	
	111	performed according to the manufacturers' directions.	
	112	Serum panels	
	113	The following samples were used for the evaluation of assay sensitivity:	
	114	a) Serum panels kept at the Swedish institute for Infectious Disease Control, Stockholm,	
31 32	115	Sweden (SMI) including HTLV-1 positive samples frpm Guinea-Bissau (n=63 and	
33 34 35	116	Sweden (n=11) and HTLV-2 positive samples from Sweden (n=28). The HTLV-1	
36 37	117	positive samples from Guinea-Bissau had been collected in previous field studies	
38 39	118	described elsewhere [Andersson et al 1999, Norrgren et al., 1995, Andersson et al.,	
40 41 42	119	1997]. They included samples from occupational cohorts, pregnant women,	
43 44	120	outpatients clinics and hospitals. The HTLV-2 positive specimens were obtained from	
45 46 47	121	intravenous drug users in Stockholm, Sweden, also described previously [Andersson	
48 49	122	et al., 1995];	
50 51	123	b) Confirmed positive quality-control samples, (26 total; 18 HTLV-1, 7 HTLV-2, and 1	
52 53 54	124	HTLV-1/2). These samples were sent to clinical laboratories for quality evaluation of	
55 56	125	the laboratory methods during the years 2001–2008. The samples were prepared by	
57 58 59 60	126	the External Quality Assurance in Laboratory Medicine in Sweden (Equalis AB, Box	

1 2		
3 4	127	977, Uppsala, Sweden). Twenty-three of these samples were undiluted, while one
5 6	128	sample was diluted 1/50, one 1/100 and one 1/1000;
7 8 9	129	c) A commercial panel consisting of 14 reactive (7 HTLV-1, 7 HTLV-2) and one non-
10 11	130	reactive sample (PRP207, BBI diagnostics, West Bridgewater, Ma, USA). Two of
12 13	131	these panel members (one HTLV-1, PRP207-09 and one HTLV-2, PRP207-08) were
14 15 16	132	also serially diluted 10-fold into six dilutions $(1/10 \text{ to } 1/10^6)$.
17 18	133	The following samples were tested to evaluate the specificity of the assay:
19 20	134	d) 504 samples from non-reactive blood donors that had tested HTLV-negative using the
21 22 23	135	Murex assay in the past;
24 25	136	e) 36 samples from patients with positive rheumatoid factor;
26 27 28	137	f) 37 samples from patients with antibodies associated with autoimmune disease (anti-
29 30	138	nuclear antibodies, SS-A antibodies and/or native DNA-antibodies);
31 32	139	g) 30 samples with antibodies/antigens to some viral infections, namely, Hepatitis B
33 34 35	140	(HBV, n=10), Hepatitis C (HCV, n=10), Cytomegalovirus (CMV, n=5) and Epstein-
36 37	141	Barr virus (EBV, n=5);
38 39	142	h) 16 samples (14 clinical samples and 2 quality-control samples) that were repeatedly
40 41 42	143	reactive with the Murex assay but regarded as false-reactive, as they could not be
43 44	144	confirmed positive with confirmatory assays (12 negative and 4 indeterminate);
45 46 47	145	i) 1 412 routine samples that were analysed at the Department of Laboratory Medicine,
47 48 49	146	Microbiology, Örebro University Hospital, Örebro, Sweden (USÖ), from December
50 51	147	2008 to October 2009; these samples were analysed only with the ARCHITECT
52 53 54	148	<i>r</i> HTLV I/II assay.
55 56	149	The samples in groups c and h were analysed at the Department of Laboratory Medicine,
57 58	150	Karlstad Hospital, Karlstad, Sweden (KH), as were 10 samples from group e and 10 samples
59 60	151	from group f. The other sample groups were tested at USÖ. Sample groups e and f were

3
4
4
5
6
7
0
8
9
10
11
40
12
13
14
15
16
10
17
18
19
20
21
21
22
23
24
25
20
26
27
28
20
20
30
31
32
33
24
34
35
36
37
38
20
39
40
41
42
43
43
44
45
46
47
10
40
49
50
51
52
52
53
54
55
56
57
57
58
59

1 2

> 152 analysed with the Murex assay during this study, while the other samples were tested 153 previously with the Murex assay. All samples were stored at -20° C prior to analysis on the 154 ARCHITECT instrument.

> 155 The confirmatory assays used in this study were a line immunoblot assay; INNO-LIA

> 156 HTLV I/II Score (Innogenetics NV, Technologiepark 6, Gent, Belgium) and a western blot

157 assay; HTLV Blot 2.3 (Genelabs Diagnostics, Singapore). The confirmatory assays were

158 performed at SMI, except for the commercial panel, where the assays were performed at BBI

159 Diagnostics.

160

John Wiley & Sons

1 2						
2 3 4	161	Results				
5 6 7	162	Sensitiv	sitivity evaluation			
7 8 9 10 11 12 13 14 15 16 17 18	163	a)	The 102 clinical samples that were confirmed HTLV-positive were all reactive with			
	164		the ARCHITECT <i>r</i> HTLV assay. The mean s/co ratio for these samples when analysed			
	165		with the ARCHITECT rHTLV assay was 70.42 (73.96 for HTLV-1, 61.61 for HTLV-			
	166		2), with s/co ratios ranging from 1.17 to 149.33 (14.88–149.88 for HTLV-1 and 1.17–			
	167		87.16 for HTLV-2). Except for one sample ratio (1.17), the s/co ratios for the positive			
19 20 21	168		samples were at least five times higher than cut-off. The Murex assay's mean s/co			
22 23	169		ratio for 93 of these (available) samples was 10.56 (12.10 for HTLV-1, 7.08 for			
24 25 26	170		HTLV-2) with s/co ratios ranging from 1.12 to 15.82 (1.40-15.82 for HTLV-1 and			
26 27 28 29 30 31 32 33	171		1.12-15.00 for HTLV-2).			
	172	b)	All 26 HTLV-positive quality-control samples analysed were reactive with the new			
	173		ARCHITECT assay. The mean s/co ratio for these samples when analysed with the			
34 35	174		ARCHITECT <i>r</i> HTLV assay was 97.90 (115.36 for HTLV-1, 51.34 for HTLV-2) with			
36 37	175		s/co ratios ranging from 35.60 to 151.12 (35.60-151.12 for HTLV-1, n=16 and 48.79			
38 39 40	176		to 53.41 for HTLV-2 ,n=6, undiluted samples only). With the Murex assay the mean			
41 42	177		s/co ratios for the same samples was 14.39 (15.09 for HTLV-1, 12.55 for HTLV-2)			
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	178		with s/co ratios ranging from 10.16 to 23.43 (10.16-23.43 for HTLV-1 and 10.72-			
	179		16.76 for HTLV-2).			
	180	c)	All 14 (seven HTLV-1, seven HTLV-2) expected positive members of the commercial			
	181		panel were reactive when tested with the ARCHITECT rHTLV assay. The non-			
	182		reactive panel member was non-reactive with the ARCHITECT rHTLV assay. The			
	183		mean s/co ratio for the panel samples when analysed with ARCHITECT rHTLV assay			
	184		was 83.19 (89.05 for HTLV-1, 77.32 for HTLV-2) with s/co ratios ranging from 47.20			
60	185		to 149.60 (47.20-149.60 for HTLV-1, and 66.26 to 71.36 for HTLV-2, positive			

1 2			
3 4 5 6 7 8 9 10 11 12 13 14 15	186	samples only). With the Murex assay the mean s/co ratios for the same samples was	
	187	11.64 (11.68 for HTLV-1, 11.60 for HTLV-2) with s/co ratios ranging from 11.60 to	
	188	11.80.	
	189	The two panel members that were serially diluted 10-fold six times showed an end-	
	190	point dilution for HTLV-1 of $1/10^6$ and for HTLV-2 of $1/10^4$ (final sample still reactive; Table	
	191	1). In all, 141 (98 HTLV-1, 42 HTLV-2 and one HTLV-1/2) samples that were confirmed	
17 18	192	positive for HTLV-1 or/and HTLV-2 were also positive with the new rHTLV assay. Thus, the	
19 20	193	sensitivity for the rHTLV assay was 100% in this study (Table 2).	
21 22 23	194		
24 25	195	Specificity evaluation	
26 27 28	196	d) The 504 previously HTLV-negative blood donors were non-reactive when analysed	
20 29 30	197	with the ARCHITECT rHTLV-I/II assay. The mean s/co ratio for these samples was	
31 32	198	0.22, compared to 0.32 when analysed with the Murex assay. In Figure 1, the	
33 34 35	199	distributions of s/co ratios for these samples are shown.	
36 37	200	e) The 36 samples from patients with rheumatoid factor antibodies were all non-reactive	
38 39	201	with the ARCHITECT rHTLV-I/II assay.	
40 41 42	202	f) The 37 samples from patients with anti-nuclear antibodies, SS-A antibodies and/or	
43 44	203	native DNA-antibodies were all non-reactive with the ARCHITECT rHTLV assay.	
45 46 47	204	g) The 30 samples with antibodies/antigens to viral infections were all non-reactive with	
47 48 49	205	the ARCHITECT rHTLV-I/II assay.	
50 51	206	h) Of the 16 samples that were previously regarded as false-reactive, 12 were non-	
52 53 54 55 56 57 58	207	reactive when tested with the ARCHITECT rHTLV assay. Among these, 11 were	
	208	negative with confirmatory assays for HTLV-1/2, while one sample was	
	209	indeterminate. Four samples were still reactive when tested with the ARCHITECT	
59 60	210	rHTLV assay. Three of these were indeterminate with confirmatory tests, one was	

1 2			
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	211		negative. If these four samples were considered false-reactive, the specificity for the
	212		ARCHITECT rHTLV-I/II assay in this evaluation is 99.36% (Table 2). More detailed
	213		data on the 16 previously false-reactive samples (with the Murex assay) are shown in
	214		Table 3.
	215	i)	When the samples from the routine screening at USÖ (n=1 412) were included, the
	216		overall specificity was 99.80% (100% if the preselected Murex false-reactive samples
	217		were excluded) (Table 2).
19 20 21			
22 23			
24 25			
26 27 28			
29 30			
31 32 32			
33 34 35			
36 37			
38 39 40			
40 41 42			
43 44			
45 46 47			
47 48 49			
50 51			
52 53 54			
55 56			
57 58			
59 60			

2	
3 4	218
5 6	219
/ 8 0	220
10 11	221
12 13	222
14 15	223
16 17 18	224
19 20	225
21 22	226
23 24 25	227
25 26 27	228
28 29	220
30 31	22)
32 33	230
34 35	231
36 37	232
38 39	233
40 41 42	234
42 43 44	235
45 46	236
47 48	237
49 50	238
51 52 53	230
53 54	239
55 56	240
57 58	241
59 60	

218 Discussion

219 The new ARCHITECT rHTLV-I/II fully automated assay for large scale screening of 220 antibodies to HTLV-1 or -2 has been evaluated. The sensitivity of this assay was high for both 221 HTLV-1- and HTLV-2-positive specimens. The specificity of this assay was high for HTLV-222 negative blood donor specimens as well as for samples collected from individuals with 223 various autoimmune disorders or infections known to influence the results of other screening 224 assays, such as EBV infections.

226 The number of commercially available assays for HTLV-1 and HTLV-2 antibody screening is 227 limited. This new assay will be a useful alternative to the available assays. It is performed on 228 the ARCHITECT *i* system immunoanalyser, which is designed for large-scale screening of 229 blood samples. As this instrument also has assays for other markers for blood-borne infectious 230 diseases, this assay will facilitate the screening process of blood donations and clinical 231 samples, especially in laboratories with large volumes of samples. With just one sample tube 232 it is possible to analyse all the markers needed.

234 It has been shown previously that for several ELISAs used to detect HTLV-1 and -2 235 antibodies it is possible to dilute or pool serum samples up to at least 1/10 and maintain a 236 positive signal [Andersson et al., 2001; Chang et al., 2002]. This may be useful, for example, 237 in studies of the seroepidemiology of large number of samples. Some countries are also using 238 pools of samples established for nucleic acid testing (NAT) screening of blood donors (HIV, 239 hepatitis B and C) for serological HTLV screening. The limited dilution experiment in this 240 study indicates that a pooling strategy, combining 5-10 samples, can be used with the *r*HTLV 241 I/II assay. However, it is important to realise that this strategy should not be used for clinical

diagnoses. An extended dilution experiment is also needed in order to conclude the utility of the Architect rHTLV-I/II assay for analyses of pooled samples.

When the screening of large numbers of negative samples is one of the main objectives in the assay, it is important to have a clear separation between the negative values and the cut-off value. This will minimise the risk of scoring samples as reactive when they are not actually positive. As shown in Figure 1, for the negative blood donor samples analysed in this study, the sample to cut-off (s/co) ratios for the *r*HTLV I/II assay are lower than for the Murex assay. Moreover, the mean s/co values for the positive samples are at least 10 times higher than the cut-off level for both HTLV-1 and HTLV-2. Thus, there is a wide separation of s/co ratios between positive and negative samples, which is in accordance with the high specificity observed in this evaluation.

The only samples that were designated false-reactive in this evaluation came from a group of samples that were reactive in prior tests using the Murex HTLV-I/II assay. It cannot be excluded that some of these samples were actually positive for HTLV-1 or -2 as follow-up samples were not available for all of them. For instance, it is known that HTLV-2 may be associated with low viral load and low antibody reactivity, which at times may give indeterminate results upon testing [Thorstensson et al., 2002]. Recent reports have also suggested the existence of HTLV-3 and possibly HTLV-4, which may also give indeterminate reactions in common assays for HTLV-1 and -2 [Calattini et al ,2005, Switzer et al, 2006, Wolfe et al 2005]. Of the 16 samples that were previously designated as indeterminate, 12 were negative by the *r*HTLV-I/II assay. Although this may be interpreted as a result of higher specificity for the rHTLV-I/II assay, it is important to remember that other samples with false reactivities may be selected with the *r*HTLV-I/II assay.

1 2		
- 3 4	267	
5 6	268	In conclusion, the rHTLV-I/II assay performed well on the serum panels used in this
7 8 9	269	evaluation, and with its design for large-scale screening, it may be a novel tool of high value
9 10 1 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 3 3 3 3	270	in the diagnostic arsenal for blood-borne infections.

2		
3 4	271	References
5 6 7	272	Andersson S, Dias F, Mendez PJ, Rodrigues P, Biberfeld G. 1997. HTLV-I and-II infections
7 8 9	273	in a nationwide survey of pregnant women in Guinea-Bissau, West Africa. J accuir
10 11	274	Immune Defic Syndr Hum Retrovirol 15 (4) 320-322
12 13 14	275	Andersson S, Gessain A, Taylor GP. 2001. Pooling of samples for seroepidemiological
14 15 16	276	surveillance of human T-cell lymphotropic virus types I and II. Virus Res 78 (1-2): 101-
17 18	277	106
19 20 21	278	Andersson S, Krook A, Käll K, Julander I, Thorstensson R, Biberfeld G. 1995. HTLV
22 23	279	infections among Swedish intravenous drug users in 1992. Scand J Infect Dis 27 (6) 547-
24 25	280	550.
26 27 28	281	Andersson S, Thorstensson R, Godoy Ramirez K, Krook A, von Sydow M, Dias F, Biberfeld
29 30	282	G. 1999. Comparative evaluation of 14 immunoassays for detection of antibodies to the
31 32 33	283	human T-lymphotropic virus types I and II using panels of sera from Sweden and West
34 35	284	Africa. Transfusion 39 (8) :845-51
36 37	285	Berini CA, Pascuccio MS, Bautista CT, Gendler SA, Eirin ME, Rodriguez C, Pando MA,
38 39 40	286	Biglione MM. 2008. Comparision of four commercial screening assays for the diagnosis
41 42	287	of human T-cell Lymphotropic virus types 1 and 2. J Virol Methods 147: 322-327.
43 44 45	288	Calattini S, Chevalier SA, Duprez R, Bassot S, Froment A, Mahieux R, Gessain A. 2005.
45 46 47	289	Discovery of a new human T-cell lymphotropic viris (HTLV-3) in Central Africa.
48 49	290	Retorvirology 2:30.
50 51 52	291	Chang CS, Wu YW, Pan YC, Chen ZY, Wang CS. 2002. Feasibility of human T-
52 53 54	292	lymphotropic virus type I screening using pooled sera. J Formos Med Assoc. 101 (11):
55 56	293	775-778.
57 58 59	294	Hall WW, Ishak R, Zhu SW, Novoa P, Eiraku N, Takahashi H, da Costa Ferreira M, Azevedo
60	295	V, Ishak MO, da Costa Ferreira O, Monken C, Kurata T. 1996. Human T Lymphotropic

1 2		
2 3 4 5 6 7 8 9 10 11 2 3 4 15 16	296	Virus type II (HTLV-II): Epidemiology, Molecular Properties, and Clinical Features of
	297	Infection. J Acquir Immune Defic Syndr Hum Retrovirol. 13 Suppl 1: S204-S214.
	298	Hendriks AH, Kortlandt W, Verweij WM. 2000. Standardized Comparision of Processing
	299	Capacity and Efficiency of Five New-Generation Immunoassay Analyzers. Clin Chem
	300	46(1):105-11.
	301	Kim S, Kim JH, Yoon S, Park YH, Kim HS. 2008. Clinical performance evaluation of four
17 18	302	automated chemiluminescence immunoassays for Hepatitis C virus antibody detection. J
19 20 21	303	Clin Microbiol 46 (12): 3919-23.
21 22 23	304	Malm K, von Sydow M, Andersson S. 2009. Performance of three automated fourth
24 25	305	generations combined HIV antigen/antibody assays in large scale screening of blood
26 27 28	306	donors and clinical samples. Transfus Med 19 (2):78-88.
29 30	307	Marangoni A, Moroni A, Accardo S, Cevenini R. 2009. Laboratory Diagnosis of Syphilis
31 32 33 34 35 36 37 38 39 40 41 42	308	With Automated Immunoassays. J Clin Lab Anal 23(1):1-6.
	309	Norrgren H, Andersson S, Nauclér A, Dias F, Johansson I, Biberfeld G. 1995. HIV-1, HIV-2,
	310	HTLV I/II and Treponema pallidum infections: incidence, prevalence, and HIV-2-
	311	associated mortality in an occupational cohort in Guinea-Bissau. J accuir Immune Defic
	312	Syndr Hum Retrovirol 9 (4) 422-428.
43 44	313	Qui X, Hodges S, Lukaszewska T, Hino S, Arai H, Yamaguchi J, Swanson P, Schochetman
45 46 47	314	G, Devare SG. 2008. Evaluation of a New, Fully Automated Immunoassay for Detection
48 49	315	of HTLV-I and HTLV-II Antibodies. J Med Virol 80 (3):484-93.
50 51 52 53 54 55 56 57 58	316	Switzer WM, Qari SH, Wolfe ND, Burke DS, Folks TM, Heneine W. 2006. Ancient origin
	317	and molecular features of the novel human T-lymphotropic virus type 3 revealed by
	318	complete genome analysis. J Virol 80:7427-7438.
	319	Thorstensson R, Albert J, Andersson S. 2002. Strategies for diagnosis of HTLV-I and -II.
60	320	Transfusion 42 (6):780-91

3 4	,
5	,
6 7	•
8	,
9	
10 11	
12	
13	
14 15	,
16	•
17	,
18 19	
20	
21	
22 23	
24	
25	
26	
27 28	
29	
30	
31	
32	
34	
35	
36	
37	
39	
40	
41	
42 42	
43 44	
45	
46	
47 19	
40 49	
50	
51	
52 52	
53 54	
55	
56	
57 59	
50 59	

- 321 Verdonck K, González E, Van Dooren S, Vandamme A-M, Vanham G, Gotuzzo E. 2007.
- 322 Human T-lymphotropic virus 1: Recent knowledge about an ancient infection. Lancet 323 Infect Dis 7: 266-281.
- Wolfe ND, Heneine W, Carr JK, Garcia AD, Shanmugam V, Tamoufe U, Torimiro JN, 324
- 325 Prosser AT, Lebreton M, Mpoudi-Ngole E, McCutchan FE, Birx DL, Folks TM, Burke
- 326 DS, Switzer WM. Emergence of unique primate T-lymphotropic viruses among central
- .rce r African bushmeat hunters. 2005 Proc Natl Acad Sci USA 102:7994-7999. 327