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Abstract

We propose in this paper a framework dedicated to the construction of
what we call time elastic inner products that allows embedding sets of non-
uniformly sampled multivariate time series of varying lengths into vector
space structures. This framework is based on a recursive definition that cov-
ers the case of multiple embedded time elastic dimensions. We prove that
such inner products exist in our framework and show how a simple instance of
this inner product class operates on some toy applications, while generalizing
the Euclidean inner product.

Keywords: Vector Space, Discrete Time Series, Non Uniform Sampling,
Elastic Inner Product, Time Warping

1. Introduction

Time series analysis in metric spaces has attracted much attention dur-
ing numerous decades and in various domains such as biology, statistics,
sociology, networking, signal processing, etc, essentially due to the ubiqui-
tous nature of time series, being they symbolic or numeric. Among other
characterizing tools, time warp distances (see [1], [2], and more recently [3],
[4] among other references) have shown some interesting robustness com-
pared to Euclidean metric especially when similarity searching in time series
data bases is an issue. Unfortunately, this kind of elastic distances does not
allow directly to construct definite kernels useful when addressing regression,
classification or clustering of time series. A fortiori they do not allow to
construct directly inner products involving some time elasticity, namely able
to cope with some time stretching or some time compression. Recently, [5]
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have shown that it is quite easy to proposed inner product with time elastic-
ity capability at least for some restricted time series spaces, basically spaces
containing uniformly sampled time series having all the same lengths (in such
cases, time series can be embedded easily in Euclidean spaces).

The aim of this paper is to derive an extension of this preliminary work
for the construction of time elastic inner products, to achieve the construc-
tion of a time elastic inner product for quasi-unrestricted set of time series,
i.e. sets for which the times series are not uniformly sampled and have any
lengths. Section two of the paper, following preliminary results presented
in [5], gives the main notations used throughout this paper and presents a
recursive construction for inner-like products. It gives then the conditions
and the proof of existence of time elastic inner product (and time elastic vec-
tor spaces) defined on quasi-unrestricted set of times series while explaining
what we mean by quasi-unrestricted. The third section presents succinctly
some applications, mainly to highlight some of the features of Time Elastic
vector Spaces such as orthogonality.

2. Discrete Time Elastic Vector Spaces

2.1. Sequence and sequence element

Definition 2.1. Given a finite sequence A we note A(i) the ith element (sym-
bol or sample) of sequence A. We will consider that A(i) ∈ S × T where
(S,⊕S,⊗S) is a vector space that embeds the multidimensional space vari-
ables (e.g. S ⊂ R

d, with d ∈ N
+) and T ⊂ R embeds the timestamps variable,

so that we can write A(i) = (a(i), ta(i)) where a(i) ∈ S and ta(i) ∈ T , with
the condition that ta(i) > ta(j) whenever i > j (timestamps strictly increase

in the sequence of samples). Aj
i with i ≤ j is the subsequence consisting of

the ith through the jth element (inclusive) of A. So Aj
i = A(i)A(i+1)...A(j).

Λ denotes the null element. By convention Aj
i with i > j is the null time

series, e.g. Ω.

2.2. Sequence set

Definition 2.2. The set of all finite discrete time series is thus embedded
in a spacetime characterized by a single discrete temporal dimension, that
encodes the timestamps, and any number of spatial dimensions that encode
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the value of the time series at a given timestamps. We note U = {Ap
1|p ∈ N}

the set of all finite discrete time series. Ap
1 is a time series with discrete index

varying between 1 and p. We note Ω the empty sequence (with null length)
and by convention A0

1 = Ω so that Ω is a member of set U. |A| denotes
the length of the sequence A. Let Up = {A ∈ U | |A| ≤ p} be the set of
sequences whose length is shorter or equal to p. Finally let U∗ be the set of
discrete times series defined on (S − {0S}) × T , i.e. the set of time series
that do not contain the null spatial value. We denote by 0S the null value in S.

2.3. Scalar multiplication on U∗

Definition 2.3. For all A ∈ U∗ and all λ ∈ R, C = λ⊗A ∈ U∗ is such that
for all i ∈ N such that 0 ≤ i ≤ |A|, C(i) = (λ.a(i), ta(i)) and thus |C| = |A|.

2.4. addition on U∗

Definition 2.4. For all (A,B) ∈ (U∗)2, the addition of A and B, noted
C = A⊕B ∈ U∗, is defined in a constructive manner as follows: Let i, j and
k be in N.

k = i = j = 1,
As far as 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|,
if tai < tbj , C(k) = (a(i), tai) and i← i+ 1, k ← k + 1
else if tai > tbj , C(k) = (b(j), tbj ) and j ← j + 1, k ← k + 1
else if ai+bj 6= 0, C(k) = (a(i)+b(j), tai) and i← i+1, j ← j+1, k ← k+1
else i← i+ 1, j ← j + 1

Three comments need to be made at this level to clarify the semantic of
the operator ⊕:

i) Note that the⊕ addition of two times series of equal lengths an uniformly
sampled coincides with the classical addition in vector spaces. Fig. 1
gives an example of the addition of two time series not uniformly sampled
and having different lengths.

ii) implicitly (at the light of the last case described in Def. 2.4), any
sequence element of the sort (0S, t), where 0S is the null value in S
and t ∈ T must be assimilated to the null sequence element Λ. For
instance, the addition of A = (1, 1)(1, 2) with B = (−1, 1)(1, 2) is
C = A ⊕ B = (2, 2): the addition of the two first sequence elements
is (0, 1) that is assimilated to Λ and as such suppressed in C.
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Figure 1: The ⊕ binary operator when applied to two discrete time series of variable

lengths and not uniformly sampled. Co-occurring events have been slightly separated at

the top of the figure for readability purpose.

iii) The ⊕ operator, when restricted to the set U∗ is reversible in the way
that if C = A ⊕ B then A = C ⊕ ((−1) ⊗ B) or B = C ⊕ ((−1) ⊗ A).
This is not the case if we consider the entire set U

2.5. Time elastic product (TEP)

Definition 2.5. A function < ., . >: U∗ × U∗ → R is called a Time Elastic
Product if, for any pair of sequences Ap

1, B
q
1, there exists a function f : S2 →

R, a non negative symmetric function g : T 2 → R+ and three constants α, β
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and ξ in R such that the following recursive equation is holds:

< Ap
1, B

q
1 >tep=

∑







α· < Ap−1
1 , Bq

1 >tep

β· < Ap−1
1 , Bq−1

1 >tep +f(a(p), b(q)) · g(ta(p), tb(q))

α· < Ap
1, B

q−1
1 >tep

(1)

This recursive definition requires to define an initialization. To that end
we set, ∀A ∈ U∗, < A,Ω >tep=< Ω, A >tep=< Ω,Ω >tep= ξ, where ξ is a
real constant (typically we set ξ = 0), and Ω is the null sequence, with the
convention that Ai

j = Ω whenever i > j.

It has been shown in [5] that time elastic inner products can easily be
constructed from Def. 2.5 using the ⊕ and ⊗ operations when we restrict the
set of time series to some subset containing uniformly sampled time series
of equal lengths (in that case, the ⊕ coincide with the classical addition on
S). For instance, Def. ?? and ?? recursively define two TEP that are inner
products on such restrictions.

Definition 2.6.

< Ap
1, B

q
1 >twip1=

1
3
·

∑







< Ap−1
1 , Bq

1 >twip1

< Ap−1
1 , Bq−1

1 >twip1 +e−ν.d(ta(p),tb(q))(a(p) · b(q))

< Ap
1, B

q−1
1 >twip1

(2)

where d is a distance, and ν a stiffness parameter.

Definition 2.7.

< Ap
1, B

q
1 >twip2=

1
1+2·e−ν ·

∑







e−ν · < Ap−1
1 , Bq

1 >twip2

< Ap−1
1 , Bq−1

1 >twip2 +e−ν.d(ta(p),tb(q))(a(p) · b(q))

e−ν · < Ap
1, B

q−1
1 >twip2

(3)

where d is a distance, and ν a stiffness parameter.

It can be shown that < ., . >twip2 coincides with the Euclidean inner prod-
uct on the considered restrictions of U when ν →∞.
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This paper addresses the more interesting question of the existence of
similar elastic inner products on the set U∗ itself, i.e. without any restriction
on the lengths of the considered time series nor the way they are sampled.
If the choice of functions f and g, although constrained, is potentially large,
we show hereinafter that the choice for constants α, β and ξ is unique.

2.6. Existence of TEP inner products defined on U
∗

Theorem 2.1. < ., . >tep is an inner product on (U∗,⊕,⊗) iff:

i) ξ = 0.

ii) h : (S×T )→ R defined as h((a, ta)) = f(a, a)·g(ta, ta) is strictly positive
on ((S − {0S})× T ),

iii) f is an inner product on (S,⊕S,⊗S), if we extend the domain of f on
S while setting f(0S, 0S) = 0.

iv) α = 1 and β = −1,

2.6.1. proof of theorem 2.1

Proof of the direct implication

Let suppose first that < ., . >tep is an inner product defined on U∗. Then
< ., . >tep is positive-definite, and thus < Ω,Ω >tep= ξ = 0. Furthermore,
for any A = (a, ta) ∈ U∗, < A,A >tep= h(a, ta)) > 0. Thus i) and ii) are sat-
isfied. As g is non-negative, if we set f(0S, 0S) = 0, f is positive-definite on S.

It is also straightforward to show that f is symmetric if g and < ., . >tep

are symmetric.

Since ξ = 0, for any A, B, and C ∈ U∗ such that A = (a, t), B(b, t) and
C = (c, tc), we have:
< A⊕B,C >tep= h((a⊕S b, t), (c, tc)) = f(a⊕S b, c).g(t, tc).
As < A⊕B,C >tep=< A,C >tep + < B,C >tep

= h((a, t), (c, tc)) + h((b, t), (c, tc))
= f(a, c).g(t, tc) + f(a, c).g(t, tc) = (f(a, c) + f(b, c)).g(t, tc),
As g is non negative, we get that f(a⊕S b, c) = (f(a, c) + f(b, c)).
Furthermore, < λ⊗ A,C >tep= h((λ⊗S a, t), (c, tc)) = f(λ⊗S a, c).g(t, tc).
As < λ⊗A,C >tep= λ. < A,C >tep= λ.f(a, c).g(t, tc) and g is non negative,
we get that f(λ⊗S a, c) = λ.f(a, c).
This shows that f is linear, symmetric and positive-definite. Hence it is an
inner product on (S,⊕S ,⊗S) and iii) is satisfied.
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Let us show that necessarily α = 1 and β = −1. To that end, let us
consider any Ap

1, B
q
1 and Cr

1 in U∗, such that p > 1, q > 1, r > 1 and such
that tap < tbq , i.e. if X

s
1 = Ap

1 ⊕ Bq
1, then Xs−1

1 = Ap
1 ⊕Bq−1

1 .
Since by hypothesis < ., . >tep is an inner product (U∗,⊕,⊗), it is linear and
thus we can write:
< Ap

1 ⊕ Bq
1, C

r
1 >tep=< Ap

1, C
r
1 >tep + < Bq

1, C
r
1 >tep.

Decomposing < Ap
1 ⊕Bq

1, C
r
1 >tep, we obtain:

< Ap
1 ⊕ Bq

1, C
r
1 >tep= α. < Ap

1 ⊕Bq−1
1 , Cr

1 >tep +
β. < Ap

1 ⊕Bq−1
1 , Cr−1

1 >tep +f(bq, cr).g(tbq , tcr) + α. < Ap
1 ⊕Bq

1, C
r−1
1 >tep

As < ., . >tep is linear we get:
< Ap

1 ⊕ Bq
1, C

r
1 >tep= α. < Ap

1, C
r
1 >tep +α. < Bq−1

1 , Cr
1 >tep +

β. < Ap
1, C

r−1
1 >tep +β. < Bq−1

1 , Cr−1
1 >tep +f(bq, cr).g(tbq , tcr)+

α. < Ap
1, C

r−1
1 >tep +α. < Bq

1 , C
r−1
1 >tep

Hence,
< Ap

1 ⊕ Bq
1, C

r
1 >tep= α. < Ap

1, C
r
1 >tep +β. < Ap

1, C
r−1
1 >tep +

α. < Ap
1, C

r−1
1 >tep + < Bq

1, C
r
1 >tep

If we decompose < Ap
1, C

r
1 >tep, we get:

< Ap
1 ⊕ Bq

1 , C
r
1 >tep= (α2 + β + α) < Ap

1, C
r−1
1 >tep +α.β. < Ap−1

1 , Cr−1
1 >tep

+α.f(ap, cr).g(tap, tcr) + α2. < Ap−1
1 , Cr

1 >tep + < Bq
1 , C

r
1 >tep

Thus we have to identify < Ap
1, C

r
1 >tep= α. < Ap

1, C
r−1
1 >tep +β. <

Ap−1
1 , Cr−1

1 >tep +f(ap, cr).g(tap, tcr) + α. < Ap−1
1 , Cr

1 >tep

with (α2+β+α) < Ap
1, C

r−1
1 >tep +α.β. < Ap−1

1 , Cr−1
1 >tep +α.f(ap, cr).g(tap , tcr)+

α2. < Ap−1
1 , Cr

1 >tep.

The unique solution is α = 1 and β = −1. That is if < ., . >tep is an
existing inner product, then necessarily α = 1 and β = −1, establishing iv).

Proof of the converse implication

Let us suppose that i), ii), iii) and iv) are satisfied and show that < ., . >tep

is an inner product on U∗.

First, by construction, since f and g are symmetric, so is < ., . >tep.

It is easy to show by induction that < ., . >tep is non-decreasing with the
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length of its arguments, namely, ∀Ap
1 and Bq

1 in U∗,
< Ap

1, B
q
1 >tep − < Ap

1, B
q−1
1 >tep≥ 0. Let n = p + q. The proposition is

true at rank n = 0. It is also true if Ap
1 = Ω, whatever Bq

1 is, or Bq
1 = Ω,

whatever < Ap
1 is. Suppose it is true at a rank n ≥ 0, and consider Ap

1 6= Ω
and Bq

1 6= Ω such that p+ q = n.
By decomposing < Ap

1, B
q
1 >tep we get:

< Ap
1, B

q
1 >tep − < Ap

1, B
q−1
1 >tep= − < Ap−1

1 , Bq−1
1 >tep +f(ap, bq).g(tap, tbq)+ <

Ap−1
1 , Bq

1 >tep

Since f(ap, bq).g(tap, tbq) > 0 and the proposition is true by inductive hy-

pothesis at rank n, we get that < Ap
1, B

q
1 >tep − < Ap

1, B
q−1
1 >tep) > 0. By

induction the proposition is proved.

Let us show by induction on the length of the times series the positive
definiteness of < ., . >tep.
At rank 0 we have < Ω,Ω >tep= ξ = 0. At rank 1, let us consider any time
series of length 1, A1

1. < A1
1, A

1
1 >tep= f(a1, a1).g(ta1, ta1) > 0 by hypothesis

on f and g. Let us suppose that the proposition is true at rank n > 1 and let
consider any time series of length n+1, An+1

1 . Then, since α = 1 and β = −1,
< An+1

1 , An+1
1 >tep= 2. < An+1

1 , An
1 >tep − < An

1 , A
n
1 >tep +f(an+1, an+1).g(tan+1 , tan+1).

Since < An+1
1 , An

1 >tep − < An
1 , A

n
1 >tep≥ 0, and h(A(n+1), A(n+1) > 0, <

An+1
1 , An+1

1 >tep> 0, showing that the proposition is true at rank n+1. By in-
duction, the proposition is proved, which establishes the positive-definiteness
of < ., . >tep since < Ap

1, A
p
1 >tep= 0 only if Ap

1 = Ω.

Let us consider any λ ∈ R, and any Ap
1, B

q
1 in U∗ and show by induction

on n = p+ q that< λ⊗Ap
1, B

q
1 >tep= λ. < Ap

1, B
q
1 >tep:

The proposition is true at rank n = 0. Let us suppose that the proposition
is true at rank n ≥ 0, i.e. for all r ≤ n, and consider any pair Ap

1, B
q
1 of time

series such that p+ q = n+ 1.
We have: < λ⊗Ap

1, B
q
1 >tep= α. < λ⊗Ap

1, B
q−1
1 >tep +β. < λ⊗Ap−1

1 , Bq−1
1 >tep

+f(λ⊗S ap, bq).g(tap, tbq) + α. < λ⊗ Ap−1
1 , Bq

1 >tep

Since f is linear on (S,⊕S,⊗S), and since the proposition is true by hy-
pothesis at rank n, we get that < λ ⊗ Ap

1, B
q
1 >tep= λ.α < Ap

1, B
q−1
1 >tep

+λ.β. < Ap−1
1 , Bq−1

1 >tep +λ.f(ap, bq).g(tap , tbq) + λ.α. < Ap−1
1 , Bq

1 >tep=
λ. < Ap

1, B
q
1 >tep.

By induction, the proposition is true for any n, and we have proved this
proposition.
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Furthermore, for any Ap
1, B

q
1 and Cr

1 in U∗, let us show by induction on
n = p + q + r that < Ap

1 ⊕ Bq
1, C

r
1 >tep=< Ap

1, C
r
1 >tep + < Bq

1 , C
r
1 >tep. Let

Xs
1 be equal to Ap

1 ⊕ Bq
1. The proposition is obviously true at rank n = 0.

Let us suppose that it is true up to rank n ≥ 0, and consider any Ap
1, B

q
1 and

Cr
1 such that p+ q + r = n+ 1.
Three cases need then to be considered:

1) if Xs−1
1 = Ap−1

1 ⊕ Bq−1
1 , then tap = tbq = t and < Ap

1 ⊕ Bq
1, C

r
1 >tep=

α. < Ap
1 ⊕ Bq

1, C
r−1
1 >tep +β. < Ap−1

1 ⊕ Bq−1
1 , Cr−1

1 >tep +f((ap +
bq), cr).g(t, tcr)+α. < Ap−1

1 ⊕B
q−1
1 , Cr

1 >tep. Since f is linear on (S,⊕S,⊗S),
and the proposition true at rank n, we get the result.

2) if Xs−1
1 = Ap

1 ⊕ Bq−1
1 , then tap < tbq = t and < Ap

1 ⊕ Bq
1, C

r
1 >tep= α. <

Ap
1 ⊕Bq

1, C
r−1
1 >tep +β. < Ap

1 ⊕Bq−1
1 , Cr−1

1 >tep +f(bq, cr).g(t, tcr) + α. <
Ap

1 ⊕ Bq−1
1 , Cr

1 >tep. Having α = 1 and β = −1 with the proposition
supposed to be true at rank n we get the result.

3) if Xs−1
1 = Ap−1

1 ⊕Bq−1
1 , we proceed similarly to case 2).

Thus the proposition is true at rank n + 1, and by induction the propo-
sition is true for all n. This establish the linearity of < ., . >tep.
This ends the proof of the converse implication and theorem 2.1 is therefore
established �

.
The existence of functions f and g entering into the definition of < ., . >tep

and satisfying the conditions allowing to construct an inner product on
(U∗,⊕,⊗) is ensured by the following proposition:

Proposition 2.2. The functions f : S2 → R defined as f(a, b) =< a, b >S

where < ., . >S is an inner product on (S,⊕S ,⊗S) and g : T 2 → R defined as
f(ta, tb)) = e−d(ta,tb), where d is a distance defined on T 2 and ν ∈ R+, satisfy
the conditions required to construct an elastic inner product on (U∗,⊕,⊗).

The proof of Prop.2.2 is obvious. This proposition establishes the ex-
istence of TEP inner products, that we will denote TEIP (Time Elastic
Inner Product). Note that < ., . >S can be chosen to be also a TEIP , in
case where a second times elastic dimension is required. This leads naturally
to recursive definitions for TEP and TEIP .

Proposition 2.3. For any n ∈ N, and any discrete subset T = {t1, t2, · · · , tn} ⊂
R, let Un,R,T be the set of all times series defined on R×T whose lengths are n
(the time series in Un,R,T are considered to be uniformly sampled). Then, the
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TEIP on Un,R constructed from the functions f and g defined in Prop. 2.2
tends towards the euclidean inner product when ν →∞ if S is an euclidean
space and < a, b >S is the euclidean inner product defined on S.

The proof of Prop.2.3 is straightforward and is omitted. Prop.2.3 shows
that a TEIP generalizes the classical euclidean inner product.

3. Some applications

We present in the following sections some applications to highlights the
properties of Time Elastic Vector Spaces (TEV S).

3.1. Distance in TEV S

The following proposition provides U∗ with a norm and a distance, both
induced by a TEIP .

Proposition 3.1. For all Ap
1 ∈ U∗, and any < ., . > TEIP defined on

(U∗,⊕,⊗)
√

< Ap
1, A

p
1 > is a norm on U

∗.
For all pair (Ap

1, B
q
1) ∈ (U∗)2, and any TEIP defined on (U∗,⊕,⊗), δ(Ap

1, B
q
1) =

√

< Ap
1 ⊕ (−1.⊗ Bq

1), A
p
1 ⊕ (−1.⊗ Bq

1) > defines a distance metric on U∗.

The proof of Prop. 3.1 is straightforward and is omitted.

3.2. Orthogonalization in TEV S

To exemplify the effect of elasticity in TEV S, we give below the result of
the Gram-Schmidt orthogonalization algorithm for two families of indepen-
dent time series. The first family is composed with uniformly sampled times
series having increasing lengths. The second family (a sine-cosine basis) is
composed with uniformly sampled time series having all the same length.

The tests we are carrying on in the next sections are performed on a set
U∗ of discrete time series whose elements are defined on (R − {0} × [0; 1])2

using the following TEIP :
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< Ap
1, B

q
1 >teip=

∑







< Ap
1, B

q−1
1 >teip

− < Ap−1
1 , Bq−1

1 >teip +a(p)b(q) · e−ν.|tap−tbq |

< Ap−1
1 , Bq

1 >teip

(4)

3.2.1. Orthogonalization of an independent family of times series having in-
creasing lengths

The family of time series we are considering is composed of 11 time series
uniformly sampled, whose lengths are 11 samples:

(1, 0)
(ǫ, 0)(1, 1/10)
(ǫ, 0)(ǫ, 0)(1, 1/10)
· · ·
(ǫ, 0)(ǫ, 1/10)(ǫ, 2/10) · · · (1, 1)

(5)

Since, the zero value cannot be used for the space dimension, we replaced
it by ǫ, which is the smallest non zero positive real for our test machine (i.e.
2−1074). The result of the Gram-Schmidt orthogonalization process using
ν = .01 on this basis is given in Fig.2.

3.2.2. Orthogonalization of a sine-cosine basis

The result of the Gram-Schmidt orthogonalization process using ν = .01
when applied on a discrete sine-cosine basis is given in Fig.3. The lengths of
the waves are 128 samples.

3.3. Kernels methods in TEV S

A wide literature exists on kernels, among which [6], [7] and [8] present
some large synthesis of major results.

Definition 3.1. A kernel on a non empty set U refers to a complex (or real)
valued symmetric function ϕ(x, y) : U × U → C (or R).

Definition 3.2. Let U be a non empty set. A function ϕ : U × U → C is
called a positive (resp. negative) definite kernel if and only if it is Hermitian
(i.e. ϕ(x, y) = ϕ(y, x) where the overline stands for the conjugate number)
for all x and y in U and

∑n

i,j=1 cic̄jϕ(xi, xj) ≥ 0 (resp.
∑n

i,j=1 cic̄jϕ(xi, xj) ≤
0), for all n in N, (x1, x2, ..., xn) ∈ Un and (c1, c2, ..., cn) ∈ Cn.
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Figure 2: Result of the orthogonalization of the family of increasing lengths time series

defined in Eq.5 using ν = .01: except for the first spike located at time 0, each original

spike is replaced by two spikes, one negative the other positive.
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Figure 3: Orthogonalization of the sine-cosine basis using ν = .01: the waves are slightly

deformed jointly in amplitude and in frequency. For readability of the figure, we have

presented the 8 first components

Definition 3.3. Let U be a non empty set. A function ϕ : U × U → C is
called a conditionally positive (resp. conditionally negative) definite kernel
if and only if it is Hermitian (i.e. ϕ(x, y) = ϕ(y, x) for all x and y in U) and
∑n

i,j=1 cic̄jϕ(xi, xj) ≥ 0 (resp.
∑n

i,j=1 cic̄jϕ(xi, xj) ≤ 0), for all n ≥ 2 in N,
(x1, x2, ..., xn) ∈ Un and (c1, c2, ..., cn) ∈ Cn with

∑n

i=1 ci = 0.

In the last two above definitions, it is easy to show that it is sufficient to
consider mutually different elements in U , i.e. collections of distinct elements
x1, x2, ..., xn.

Definition 3.4. A positive (resp. negative) definite kernel defined on a finite
set U is also called a positive (resp. negative) semidefinite matrix. Similarly,
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a positive (resp. negative) conditionally definite kernel defined on a finite set
is also called a positive (resp. negative) conditionally semidefinite matrix.

3.3.1. Definiteness of TEIP based kernel

Proposition 3.2. A TEIP is a positive definite kernel.

The proof of Prop. 3.2 is straightforward and is omitted.

3.3.2. SVM classification using a TEP based kernel

In [5], < ., . >twip2 (Eq.3) have been experimented on a classification
task using a SVM classifier on 20 datasets containing times series uniformly
sampled and having the same lengths inside each dataset. On the same
data, we get similar results for < ., . >teip (Eq.4) and do not report them
in this paper. The benefit of introducing some time elasticity, controlled
using the parameter ν is quite clear when comparing the classification error
rates obtained using a Gaussian kernel exploiting the distance derived from
< ., . >teip (Prop. 3.1) with the classification error rates obtained using a
Gaussian kernel exploiting the Euclidean distance.

4. Conclusion

This paper proposed what we called a family of time elastic inner products
able to cope with non-uniformly sampled time series of various lengths, as far
as they do not contain the zero value. These constructions allow to embed any
such time series in a single vector space, that some how generalizes the notion
of euclidean vector space. The recursive structure of the construction offers
the possibility to manage several time elastic dimensions. Some applicative
benefits could be expected in time series analysis when time elasticity is an
issue.
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