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Abstract

This work deals with backward stochastic differential equation (BSDE) with random

marked jumps, and their applications to default risk. We show that these BSDEs are

linked with Brownian BSDEs through the decomposition of processes with respect to

the progressive enlargement of filtrations. We show that the equations have solutions if

the associated Brownian BSDEs have solutions. We also provide a uniqueness theorem

for BSDEs with jumps by giving a comparison theorem based on the comparison for

Brownian BSDEs. We give in particular some results for quadratic BDSEs. As applica-

tions, we study the pricing and the hedging of a European option in a complete market

with a single jump, and the utility maximization problem in an incomplete market with

a finite number of jumps.

Keywords: Backward SDE, quadratic BSDE, multiple random marked times, progressive
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1 Introduction

In recent years, credit risk has come out to be one of most fundamental financial risk.

The most extensively studied form of credit risk is the default risk. Many people, such as

Bielecki, Jarrow, Jeanblanc, Pham, Rutkowski ([3, 4, 14, 15, 18, 26]) and many others, have

worked on this subject. In several papers (see for example Ankirchner et al. [1], Bielecki and

Jeanblanc [5], Lim and Quenez [21] and Peng and Xu [25]), related to this topic, backward

stochastic differential equations (BSDEs) with jumps have appeared. Unfortunately, the

results relative to these latter BSDEs are far from being as numerous as for Brownian

BSDEs. In particular, there is not any general result on the existence and the uniqueness
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of solution to quadratic BSDEs, except Ankirchner et al. [1], in which the assumptions

on the driver are strong. In this paper, we study BSDEs with random marked jumps and

apply the obtained results to mathematical finance where these jumps can be interpreted

as default times. We give a general existence and uniqueness result for the solutions to

these BSDEs, in particular we enlarge the result given by [1] for quadratic BSDEs.

A standard approach of credit risk modeling is based on the powerful technique of

filtration enlargement, by making the distinction between the filtration F generated by the

Brownian motion, and its smallest extension G that turns default times into G-stopping

times. This kind of filtration enlargement has been referred to as progressive enlargement of

filtrations. This field is a traditional subject in probability theory initiated by fundamental

works of the French school in the 80s, see e.g. Jeulin [16], Jeulin and Yor [17], and Jacod

[13]. For an overview of applications of progressive enlargement of filtrations on credit risk,

we refer to the books of Duffie and Singleton [9], of Bielecki and Rutkowski [3], or the

lectures notes of Bielecki et al. [4].

The purpose of this paper is to combine results on Brownian BSDEs and results on

progressive enlargement of filtrations in view of providing existence and uniqueness of solu-

tions to BSDEs with random marked jumps. We consider a progressive enlargement with

multiple random times and associated marks. These marks can represent for example the

name of the firm which defaults or the jump sizes of asset values. Throughout the sequel,

we make the classical assumption in the enlargement of filtration which ensures the stabil-

ity of the class of semimartingale. This assumption, usually called (H’) hypothesis, means

that any F-semimartingale remains a G-semimartingale. This assumption is a fundamen-

tal property both in probability and finance where it is closely related to the absence of

arbitrage.

Our approach consists in using the recent results of Pham [26] on the decomposition of

predictable processes with respect to the progressive enlargement of filtrations to decompose

a BSDE with random marked jumps into a sequence of Brownian BSDEs. By combining

the solutions of Brownian BSDEs, we obtain a solution to the BSDE with random marked

times. This method allows to get a general existence theorem. In particular, we get an

existence result for quadratic BSDEs which is more general than the result of Ankirchner

et al [1]. This decomposition approach also allows to obtain a uniqueness theorem under

the stronger assumption (H) i.e. any F-martingale remains a G-martingale. We first set

a general comparison theorem for BSDEs with jumps based on comparison theorems for

Brownian BSDEs. Using this theorem, we prove, in particular, the uniqueness for quadratic

BSDEs with a concave generator in z.

We illustrate our methodology with two financial applications in default risk manage-

ment: the pricing and the hedging of a European option in a complete market, and the

problem of utility maximization in an incomplete market. A similar problem (without

marks) has recently been considered in Ankirchner et al. [1] and Lim and Quenez [21].

The paper is organized as follows. The next section presents the general framework of

progressive enlargement of filtrations with successive random times and marks, and states

the decomposition result for G-predictable and G-progressively measurable processes. In

Section 3, we use this decomposition to make a link between Brownian BSDEs and BSDEs
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with random marked jumps. This allows to give a general existence result. We then give

two examples: quadratic BSDEs with marked jumps for the first one, and linear BSDEs

arising in the pricing and hedging problem of a European option in a complete market with

a single jump for the second one. In Section 4, we give a general comparison theorem for

BSDEs and we use this result to give a uniqueness theorem for quadratic BSDEs. Finally,

in Section 5, we apply our existence and uniqueness results to solve the exponential utility

maximization problem in an incomplete market with a finite number of marked jumps.

2 Progressive enlargement of filtrations with successive ran-

dom times and marks

We fix a probability space (Ω,G,P), and we start with a reference filtration F = (Ft)t≥0

satisfying the usual conditions1 and generated by a Brownian motion W . Throughout the

sequel, we consider a finite sequence (τk, ζk)1≤k≤n, where

– (τk)1≤k≤n is a nondecreasing sequence of random times (i.e. nonnegative G-random

variables),

– (ζk)1≤k≤n is a sequence of random marks valued in some Borel subset E of Rm.

We denote by µ the random measure associated to the sequence (τk, ζk)1≤k≤n :

µ([0, t] ×B) =

n
∑

k=1

1{τk≤t, ζk∈B} , t ≥ 0 , B ∈ B(E) .

For each k = 1, . . . , n, we consider Dk = (Dk
t )t≥0 the smallest right-continuous filtration

for which τk is a stopping time and ζk is Dk
τk
-measurable. D

k is then given by Dk
t = D̃k

t+
,

where D̃k
t = σ(1τk≤s, s ≤ t) ∨ σ(ζk1τk≤s, s ≤ t). The global information is then defined by

the progressive enlargement G = (Gt)t≥0 of the initial filtration F whereG := F∨D1∨. . .∨Dn.

The filtration G = (Gt)t≥0 is the smallest filtration containing F, and such that for each

k = 1, . . . , n, τk is a G-stopping time, and ζk is Gτk -measurable. We denote by ∆k the set

where the random k-tuple (τ1, . . . , τk) takes its values in {τn < ∞}:

∆k :=
{

(θ1, . . . , θk) ∈ (R+)
k : θ1 ≤ . . . ≤ θk

}

, 1 ≤ k ≤ n .

We introduce some notations used throughout the paper:

– P(F) (resp. P(G)) is the σ-algebra of F (resp. G)-predictable measurable subsets

of Ω × R+, i.e. the σ-algebra generated by the left-continuous F (resp. G)-adapted

processes.

– PM(F) (resp. PM(G)) is the σ-algebra of F (resp. G)-progressively measurable

subsets of Ω× R+.

– For θ = (θ1, . . . , θn) ∈ ∆n and e = (e1, . . . , en) ∈ En, we denote by

θ(k) = (θ1, . . . , θk) and e(k) = (e1, . . . , ek) , 1 ≤ k ≤ n .

1
F0 contains the P-null sets and F is right continuous: Ft = Ft+ := ∩s>tFs.

3



The following result provides the basic decomposition of predictable and progressive

measurable processes with respect to this progressive enlargement of filtrations.

Lemma 2.1. – Any P(G)-measurable process X = (Xt)t≥0 is represented as

Xt = X0
t 1t≤τ1 +

n−1
∑

k=1

Xk
t (τ(k), ζ(k))1τk<t≤τk+1

+Xn
t (τ(n), ζ(n))1τn<t , (2.1)

for all t ≥ 0, where X0 is P(F)-measurable, and Xk is P(F) ⊗ B(∆k) ⊗ B(Ek)-

measurable, for k = 1, . . . , n.

– Any càd-làg PM(G)-measurable process X = (Xt)t≥0 is represented as

Xt = X0
t 1t<τ1 +

n−1
∑

k=1

Xk
t (τ(k), ζ(k))1τk≤t<τk+1

+Xn
t (τ(n), ζ(n))1τn≤t , (2.2)

for all t ≥ 0, where X0 is PM(F)-measurable, and Xk is PM(F)⊗B(∆k)⊗B(Ek)-

measurable, for k = 1, . . . , n.

The proof of the first point is given in Pham [26] and is therefore omitted. The proof

of the second point is based on similar arguments. Hence, we postpone it to the appendix.

Throughout the sequel, we will use the convention τ0 = 0, τn+1 = +∞, θ0 = 0 and

θn+1 = +∞ for any θ ∈ ∆n, and X0(θ(0), e(0)) = X0 to simplify the notation.

Remark 2.1. In the case where the studied process X depends on another parameter x

evolving in a Borelian subset X of Rp, and if X is P(G) ⊗ B(X ) (resp. PM(G) ⊗ B(X ))-

measurable, then, decomposition (2.1) (resp. (2.2)) is still true but where Xk is P(F) ⊗

B(∆k) ⊗ B(Ek) ⊗ B(X ) (resp. PM(F) ⊗ B(∆k) ⊗ B(Ek) ⊗ B(X ))-measurable. Indeed,

it is obvious for the processes generating P(G) ⊗ B(X ) (resp. PM(G) ⊗ B(X )) of the

form Xt(ω, x) = Lt(ω)R(x), (t, ω, x) ∈ R+ × Ω × X , where L is P(G) (resp. PM(G))-

measurable and R is B(X )-measurable. Then, the result is extended to any P(G) ⊗ B(X )

(resp. P(G)⊗ B(X ))-measurable process by the monotone class theorem.

We shall make, throughout the sequel, the standing assumption of the semimartingale

invariance property, also called (H’)-hypothesis, i.e. any F-semimartingale remains a G-

semimartingale. This result is related in finance to no-arbitrage conditions, and is thus also

a desirable property from an economical viewpoint. We also notice that under (H’) the

stochastic integral w.r.t. the F-Brownian motion W is well defined in G.

We now introduce a density assumption on the random times and their associated

marks by assuming that the distribution of (τ1, . . . , τn, ζ1, . . . , ζn) is absolutely continuous

with respect to the Lebesgue measure dθ de on B(∆n)⊗B(En). More precisely, we assume

that there exists a positive P(F)⊗ B(∆n)⊗ B(En)-measurable map γ such that

(HD) P[(τ1, . . . , τn, ζ1, . . . , ζn) ∈ dθde|Ft] = γt(θ1, . . . , θn, e1, . . . , en)dθ1 . . . dθnde1 . . . den .
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We then introduce some notation. Define the (deterministic) process γ0 by

γ0t = P[τ1 > t] =

∫

∆n×En

1θ1>tγt(θ, e)dθde ,

and the map γk an P(F)⊗ B(∆k)⊗ B(Ek)-measurable process, k = 1, . . . , n− 1, by

γkt
(

θ1, . . . , θk, e1, . . . , ek
)

=

∫

∆n−k×En−k

1θk+1>tγt(θ1, . . . , θn, e1 . . . , en)dθk+1 . . . dθndek+1 . . . den .

We shall use the natural convention γn = γ. We obtain that under (HD), the random

measure admits a compensator absolutely continuous w.r.t. the Lebesgue measure. The

intensity λ is given by the following proposition.

Proposition 2.1. The random measure admits a compensator for the filtration G given by

λt(e)dedt, where the intensity λ is defined by

λt(e) =
n
∑

k=1

λk
t (e, τ(k−1), ζ(k−1))1τk−1<t≤τk , (2.3)

with

λk
t (e, θ(k−1), e(k−1)) =

γkt (θ(k−1), t, e(k−1), e)

γk−1
t (θ(k−1), e(k−1))

, (θ(k−1), t, e(k−1), e) ∈ ∆k−1 × R+ × Ek .

The proof of Proposition 2.1 is based on similar arguments to those of [11]. We therefore

postpone it to the appendix.

Throughout the sequel, we add an assumption on the intensity λ:

(HBI) The process
(

∫

E

λt(e)de
)

t≥0
is bounded on [0,∞) .

We now consider one dimensional BSDEs driven by W and the random measure µ. To

define solutions, we need to introduce the following spaces, where a, b ∈ R+ with a ≤ b,

and T < ∞ is the terminal time:

– S∞
G
[a, b] (resp. S∞

F
[a, b]) is the set of PM(G) (resp. PM(F))-measurable processes

(Yt)t∈[a,b] essentially bounded:

‖Y ‖S∞[a,b] := ess sup
t∈[a,b]

|Yt| < ∞ .

– L2
G
[a, b] (resp. L2

F
[a, b]) is the set of P(G) (resp. P(F))-measurable processes (Zt)t∈[a,b]

such that

‖Z‖L2[a,b] :=
(

E

[

∫ b

a

Z2
t dt

])
1
2

< ∞ .
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– L2(µ) is the set of P(G) ⊗B(E)-measurable processes U such that

‖U‖L2(µ) :=
(

E

[

∫ T

0

∫

E

|Us(e)|
2µ(de, ds)

])
1
2

< ∞ .

We then consider BSDEs of the form: find a triple (Y,Z,U) ∈ S∞
G
[0, T ]×L2

G
[0, T ]×L2(µ)

such that2

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−

∫ T

t

ZsdWs −

∫ T

t

∫

E

Us(e)µ(de, ds), 0 ≤ t ≤ T, (2.4)

where ξ is a GT -measurable random variable and f is a P(G) ⊗ B(R) ⊗ B(Rd) ⊗ B(RE)-

measurable map.

3 Existence of a solution

In this section, we use the decompositions given by Lemma 2.1 to solve BSDEs with a finite

number of jumps. We use a similar approach to Ankirchner et al. [1]: one can explicitly

construct a solution by combining solutions of an associated recursive system of Brownian

BSDEs. But contrary to them, we suppose that there exist n random times and n random

marks. Our assumptions on the driver are also weaker. We first give a general existence

theorem which links the studied BSDEs with jumps with a system of recursive Brownian

BSDEs. We then illustrate our general result with concrete examples.

3.1 The existence theorem

To prove the existence of a solution to BSDE (2.4), we introduce the decomposition of the

coefficients ξ and f as given in Lemma 2.1.

Considering the càd-làg PM(G)-measurable process (ξ1t=T )0≤t≤T , we get from Lemma

2.1 the following decomposition

ξ =
n
∑

k=0

ξk(τ(k), ζ(k))1τk≤T<τk+1
, (3.1)

where ξ0 is FT -measurable and ξk is FT ⊗B(∆k)⊗B(Ek)-measurable for each k = 1, . . . , n.

Then, using Remark 2.1, we get the following decomposition for f

f(t, y, z, u) =
n
∑

k=0

fk(t, y, z, u, τ(k), ζ(k))1τk≤t<τk+1
, (3.2)

where f0 is P(F) ⊗ B(R) ⊗ B(Rd) ⊗ B(RE)-measurable and fk is P(F) ⊗ B(R) ⊗ B(Rd) ⊗

B(RE)⊗ B(∆k)⊗ B(Ek)-measurable for each k = 1, . . . , n.

In the following theorem, we show how BSDEs driven by W and µ are related to a

recursive system of Brownian BSDEs involving the coefficients ξk and fk, k = 0, . . . , n.

2The symbol
∫ t

s
stands for the integral on the interval (s, t] for all s, t ∈ R+.
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Theorem 3.1. Assume that for all (θ, e) ∈ ∆n × En, the Brownian BSDE

Y n
t (θ, e) = ξn(θ, e) +

∫ T

t

fn
(

s, Y n
s (θ, e), Zn

s (θ, e), 0, θ, e
)

ds

−

∫ T

t

Zn
s (θ, e)dWs , θn ∧ T ≤ t ≤ T , (3.3)

admits a solution (Y n(θ, e), Zn(θ, e)) ∈ S∞
F
[θn ∧ T, T ] × L2

F
[θn ∧ T, T ], and that for each

k = 0, . . . , n− 1, the Brownian BSDE

Y k
t (θ(k), e(k)) = ξk(θ(k), e(k)) +

∫ T

t

fk
(

s, Y k
s (θ(k), e(k)), Z

k
s (θ(k), e(k)),

Y k+1
s (θ(k), s, e(k), .)− Y k

s (θ(k), e(k)), θ(k), e(k)

)

ds

−

∫ T

t

Zk
s (θ(k), e(k))dWs , θk ∧ T ≤ t ≤ T ,

(3.4)

admits a solution
(

Y k(θ(k), e(k)), Z
k(θ(k), e(k))

)

∈ S∞
F
[θk ∧ T, T ] × L2

F
[θk ∧ T, T ]. Assume

moreover that each Y k (resp. Zk) is PM(F) ⊗ B(∆k) ⊗ B(Ek)-measurable (resp. P(F) ⊗

B(∆k)⊗ B(Ek)-measurable).

If all these solutions satisfy

sup
(k,θ,e)

‖Y k(θ(k), e(k))‖S∞[θk∧T,T ]
< ∞ , (3.5)

and

E

[

∫

∆n×En

(

∫ θ1∧T

0
|Z0

s |
2ds+

n
∑

k=1

∫ θk+1∧T

θk∧T
|Zk

s (θ(k), e(k))|
2ds

)

γT (θ, e)dθde
]

< ∞ ,

then, BSDE (2.4) admits a solution (Y,Z,U) ∈ S∞
G
[0, T ]× L2

G
[0, T ]× L2(µ) given by















































Yt = Y 0
t 1t<τ1 +

n
∑

k=1

Y k
t (τ(k), ζ(k))1τk≤t<τk+1

,

Zt = Z0
t 1t≤τ1 +

n
∑

k=1

Zk
t (τ(k), ζ(k))1τk<t≤τk+1

,

Ut(.) = U0
t (.)1t≤τ1 +

n−1
∑

k=1

Uk
t (τ(k), ζ(k), .)1τk<t≤τk+1

,

(3.6)

with Uk
t (τ(k), ζ(k), .) = Y k+1

t (τ(k), t, ζ(k), .)− Y k
t (τ(k), ζ(k)) for each k = 0, . . . , n− 1.

Proof. To alleviate notation, we shall often write ξk and fk(t, y, z, u) instead of ξk(θ(k), e(k))

and fk(t, y, z, u, θ(k), e(k)), and Y k
t (t, e) instead of Y k

t (θ(k−1), t, e(k−1), e).

Step 1: We prove that for t ∈ [0, T ], (Y,Z,U) defined by (3.6) satisfied the equation

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−

∫ T

t

ZsdWs −

∫ T

t

∫

E

Us(e)µ(de, ds) . (3.7)
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We make an induction on the number k of jumps in (t, T ].

• Suppose that k = 0. We distinguish two cases.

Case 1: there are n jumps before t. We then have τn ≤ t and from (3.6) we get Yt = Y n
t .

Using BSDE (3.3), we can see that

Y n
t = ξn +

∫ T

t

fn(s, Y n
s , Zn

s , 0)ds −

∫ T

t

Zn
s dWs .

Since τn ≤ T , we have ξn = ξ from (3.1). In the same way, we have Ys = Y n
s , Zs = Zn

s

and Us = 0 for all s ∈ (t, T ] from (3.6). Using (3.2), we also get fn(s, Y n
s , Zn

s , 0) =

f(s, Ys, Zs, Us) for all s ∈ (t, T ]. Hence, we have

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−

∫ T

t

ZsdWs −

∫ T

t

∫

E

Us(e)µ(de, ds) .

Case 2: there are i jumps before t with i < n. Since there is no jump after t, we have

Ys = Y i
s , Zs = Zi

s, U
i
s(.) = Y i+1

s (s, .)− Y i
s , ξ = ξi and f i(s, Y i

s , Z
i
s, U

i
s) = f(s, Ys, Zs, Us) for

all s ∈ (t, T ], and
∫ T

t

∫

E
Us(e)µ(de, ds) = 0. Combining these equalities with (3.4), we get

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−

∫ T

t

ZsdWs −

∫ T

t

∫

E

Us(e)µ(de, ds) .

• Suppose equation (3.7) holds true when there are k jumps in (t, T ], and consider the case

where there are k + 1 jumps in (t, T ].

Denote by i the number of jumps in [0, t]. Then, we have Zs = Zi
s, U

i
s(.) = Y i+1

s (s, .)−Y i
s

for all s ∈ (t, τi+1], and Ys = Y i
s and f(s, Ys, Zs, Us) = f i(s, Y i

s , Z
i
s, U

i
s) for all s ∈ (t, τi+1).

Using (3.2), we have

Yt = Y i
τi+1

+

∫ τi+1

t

f(s, Ys, Zs, Us)ds −

∫ τi+1

t

ZsdWs

= Y i+1
τi+1

+

∫ τi+1

t

f(s, Ys, Zs, Us)ds −

∫ τi+1

t

ZsdWs

−

∫ τi+1

t

∫

E

Us(e)µ(de, ds) . (3.8)

Using the induction assumption on (τi+1, T ], we have

Y i+1
τi+1

= ξ +

∫ T

τi+1

f(s, Ys, Zs, Us)ds −

∫ T

τi+1

ZsdWs −

∫ T

τi+1

∫

E

Us(e)µ(de, ds) . (3.9)

Combining (3.8) and (3.9), we get (3.7).

Step 2: Notice that the process Y (resp. Z, U) is PM(G) (resp. P(G), P(G) ⊗ B(E))-

measurable since each Y k (resp. Zk) is PM(F) ⊗ B(∆k) ⊗ B(Ek) (resp. P(F) ⊗ B(∆k) ⊗

B(Ek))-measurable.

Step 3: We now prove that the solution satisfies the integrability conditions. Suppose that

the processes Y k, k = 0, . . . , n, satisfy (3.5). By definition of Y , we have

ess sup
t∈[0,T ]

|Yt| ≤ ess sup
(t,θ,e)∈[0,T ]×∆n×En

∣

∣

∣
Y 0
t 1t<θ1 +

n
∑

k=1

Y k
t (θ(k), e(k))1θk≤t<θk+1

∣

∣

∣
,

≤ ‖Y 0‖S∞[0,T ] +

n
∑

k=1

sup
(θ(k),e(k))∈∆k×Ek

‖Y k(θ(k), e(k))‖S∞[θk∧T,T ]
.
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Thus, Y ∈ S∞
G
[0, T ] since the processes Y k, k = 0, . . . , n, satisfy

sup
(k,θ,e)∈{0,...,n}×∆n×En

‖Y k(θ(k), e(k))‖S∞[θk∧T,T ]
< ∞ .

In the same way, using (HD) and the tower property of conditional expectation, we get

E

[

∫ T

0
|Zs|

2ds
]

= E

[

∫

∆n×En

(

∫ θ1∧T

0
|Z0

s |
2ds+

n
∑

k=1

∫ θk+1∧T

θk∧T
|Zk

s (θ(k), e(k))|
2ds

)

γT (θ, e)dθde
]

.

Thus, Z ∈ L2
G
[0, T ] since the processes Zk, k = 0, . . . , n, satisfy

E

[

∫

∆n×En

(

∫ θ1∧T

0
|Z0

s |
2ds+

n
∑

k=1

∫ θk+1∧T

θk∧T
|Zk

s (θ(k), e(k))|
2ds

)

γT (θ, e)dθde
]

< ∞ .

Finally, we check that U ∈ L2(µ). Using (HD), we have

‖U‖2L2(µ) =

n
∑

k=1

∫

∆n×En

E
[

|Y k
θk
(θ(k), e(k))− Y k−1

θk
(θ(k−1), e(k−1))|

2γT (θ, e)
]

dθde

≤ 2
n
∑

k=1

(

‖Y k(θ(k), e(k))‖
2
S∞[θk∧T,T ] + ‖Y k−1(θ(k−1), e(k−1))‖

2
S∞[θk−1∧T,T ]

)

< ∞ .

Hence, U ∈ L2(µ). 2

3.2 Application to quadratic BSDEs with jumps

We suppose that the random variable ξ and the generator f satisfy the following conditions:

(HEQ1) The random variable ξ is bounded: there exists a constant such that

|ξ| ≤ C , P− a.s.

(HEQ2) The generator f is quadratic in z: there exists a constant C such that

|f(t, y, z, u)| ≤ C
(

1 + |y|+ |z|2 +

∫

E

|u(e)|λt(e)de
)

,

for all (t, y, z, u) ∈ [0, T ] ×R× R
d ×R

E .

Proposition 3.1. Under (HBI), (HEQ1) and (HEQ2), BSDE (2.4) admits a solution in

S∞
G
[0, T ]× L2

G
[0, T ]× L2(µ).

Proof. Step 1. Since ξ is a bounded random variable, we can choose ξk bounded for each

k = 0, . . . , n. Indeed, let C be a positive constant such that |ξ| ≤ C, P−a.s., then, we have

ξ =

n
∑

k=0

ξ̃k(τ1, . . . , τk, ζ1, . . . , ζk)1τk≤T<τk+1
,
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with ξ̃k(τ1, . . . , τk, ζ1, . . . , ζk) = (ξk(τ1, . . . , τk, ζ1, . . . , ζk)∧C)∨ (−C), for each k = 1, . . . , n.

Step 2. Since f is quadratic in z, it is possible to choose the functions fk, k = 0, . . . , n,

quadratic in z. Indeed, if C is a positive constant such that |f(t, y, z, u)| ≤ C(1 + |y| +

|z|2 +
∫

E
|u(e)|λt(e)de), for all (t, y, z, u) ∈ [0, T ] × R × R

d × R
E , P − a.s. and f has the

following decomposition

f(t, y, z, u) =

n
∑

k=0

fk(t, y, z, u, τ(k), ζ(k))1τk≤t<τk+1
,

then, f satisfies the same decomposition with f̃k instead of fk where

f̃k(t, y, z, u, θ(k), e(k)) = fk(t, y, z, u, θ(k), e(k)) ∧
(

C
(

1 + |y|+ |z|2 +

∫

E

|u(e)|λt(e)de
))

∨
(

−C
(

1 + |y|+ |z|2 +

∫

E

|u(e)|λt(e)de
))

,

for all (t, y, z, u) ∈ [0, T ]× R× R
d × R

E and (θ, e) ∈ ∆n × En.

Step 3. We now prove by a backward induction that there exists for each k = 0, . . . , n− 1

(resp. k = n), a solution (Y k, Zk) to BSDE (3.4) (resp. (3.3)) s.t. Y k (resp. Zk) is a

PM(F) ⊗ B(∆k)⊗ B(Ek) (resp. P(F)⊗ B(∆k)⊗ B(Ek))-measurable process and

sup
(θ(k),e(k))∈∆k×Ek

‖Y k(θ(k), e(k))‖S∞[θk∧T,T ]
+ ‖Zk(θ(k), e(k))‖L2[θk∧T,T ]

< ∞ .

• Choosing ξn(θ(n), e(n)) bounded as in Step 1, we get from Theorem 2.3 of Kobylanski [20]

the existence of a solution (Y n(θ(n), e(n)), Z
n(θ(n), e(n))) to BSDE (3.3).

We now check that we can choose Y n (resp. Zn) as a PM(F) ⊗ B(∆n) ⊗ B(En)

(resp. P(F)⊗B(∆n)⊗B(En))-measurable process. Indeed, we know (see [20]) that we can

construct the solution (Y n, Zn) as limits of solutions to Lipschitz BSDEs. From Proposition

C.1, we then get a P(F)⊗B(∆n)⊗B(En)-measurable solution as limit of P(F)⊗B(∆n)⊗

B(En)-measurable processes. Hence, Y (resp. Z) is a PM(F) ⊗ B(∆n) ⊗ B(En) (resp.

P(F)⊗B(∆n)⊗B(En))-measurable process. Applying Proposition 2.1 of [20] to (Y n, Zn),

we get from (HEQ1) and (HEQ2)

sup
(θ,e)∈∆n×En

‖Y n(θ(n), e(n))‖S∞ + ‖Zn(θ(n), e(n))‖L2(W )
< ∞ .

• Suppose that the result holds true for k + 1: there exits (Y k+1, Zk+1) such that

sup
(θ(k+1),e(k+1))∈∆k+1×Ek+1

{

‖Y k+1(θ(k+1), e(k+1))‖S∞[θk+1∧T,T ]

+‖Zk+1(θ(k+1), e(k+1))‖L2[θk+1∧T,T ]

}

< ∞ .

Then, using (HBI), there exists a constant C > 0 such that

∣

∣

∣
fk

(

s, y, z, Y k+1
s (θ(k), s, e(k), .) − y), θ(k), e(k)

)∣

∣

∣
≤ C(1 + |y|+ |z|2) .
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Choosing ξk(θ(k), e(k)) bounded as in Step 1, we get from Theorem 3.1 of Kobylanski [20]

the existence of a solution (Y k(θ(k), e(k)), Z
k(θ(k), e(k))).

As for k = n, we can choose Y k (resp. Zk) as a PM(F) ⊗ B(∆k) ⊗ B(Ek) (resp.

P(F) ⊗ B(∆k)⊗ B(Ek))-measurable process.

Applying Proposition 2.1 of [20] to (Y k(θ(k), e(k)), Z
k(θ(k), e(k))), we get from (HEQ1)

and (HEQ2)

sup
(θ(k),e(k))∈∆k×Ek

‖Y k(θ(k), e(k))‖S∞[θk∧T,T ]
+ ‖Zk(θ(k), e(k))‖L2[θk∧T,T ]

< ∞ .

Step 4. From Step 3, we can apply Theorem 3.1. We then get the existence of a solution

to BSDE (2.4). 2

3.3 Application to the pricing of a European option in a complete market

with a jump

In this example, we assume that there is a single random time τ representing the time

occurrence of a shock in the prices on the market. We denote by N the associated pure

jump process:

Nt = 1τ≤t , 0 ≤ t ≤ T .

We consider a financial market which consists of

– a non-risky asset S0, whose strictly positive price process is defined by

dS0
t = rtS

0
t dt , 0 ≤ t ≤ T , S0

0 = 1 ,

with rt ≥ 0, for all t ∈ [0, T ],

– two risky assets with respective price processes S1 and S2 defined by

dS1
t = S1

t−(btdt+ σtdWt + βdNt) , 0 ≤ t ≤ T , S1
0 = s10 ,

and

dS2
t = S2

t (b̄tdt+ σ̄tdWt) , 0 ≤ t ≤ T , S2
0 = s20 ,

with σt > 0 and σ̄t > 0 and β > −1 (to ensure that the price process S1 always

remains strictly positive).

We make the following assumption which ensures the existence of the processes S0, S1, and

S2:

(HB) The coefficients r, b, b̄, σ, σ̄, 1
σ
and 1

σ̄
are bounded: there exists a constant C s.t.

|rt|+ |bt|+ |b̄t|+ |σt|+ |σ̄t|+
∣

∣

∣

1

σt

∣

∣

∣
+

∣

∣

∣

1

σ̄t

∣

∣

∣
≤ C , 0 ≤ t ≤ T , P− a.s.

11



We assume that the coefficients r, b, b̄, σ and σ̄ have the following forms



































rt = r01t<τ + r1(τ)1t≥τ ,

bt = b01t<τ + b1(τ)1t≥τ ,

b̄t = b̄01t<τ + b̄1(τ)1t≥τ ,

σt = σ0
1t<τ + σ1(τ)1t≥τ ,

σ̄t = σ̄0
1t<τ + σ̄1(τ)1t≥τ .

The aim of this subsection is to provide an explicit price for any bounded GT -measurable

European option ξ, together with a replicating strategy π = (π0, π1, π2) (πi
t corresponds

to the number of share of Si held at time t). We introduce the following proportionality

assumption which ensures the viability of the market (no free lunch), see [6]:

(HP) The following proportionality relation holds true

r1(θ)− µ1(θ)

σ1(θ)
=

r1(θ)− µ̄1(θ)

σ̄1(θ)
, θ ∈ R+ , .

Let π = (π0, π1, π2) be a P(G)−measurable self-financing strategy. The wealth process Y

associated to this strategy satisfies

Yt = π0
t S

0
t + π1

t S
1
t + π2

t S
2
t , 0 ≤ t ≤ T . (3.10)

Since π is a self-financing strategy, we have

dYt = π0
t dS

0
t + π1

t dS
1
t + π2

t dS
2
t , 0 ≤ t ≤ T .

Combining this last equation with (3.10), we get

dYt =
(

rtYt + (bt − rt)π
1
t S

1
t + (b̄t − rt)π

2
t S

2
t

)

dt

+
(

π1
t σtS

1
t + π2

t σ̄tS
2
t

)

dWt + π1
t βS

1
t−dNt , 0 ≤ t ≤ T . (3.11)

Define the predictable processes Z and U by

Zt = π1
t σtS

1
t + π2

t σ̄tS
2
t and Ut = π1

t βS
1
t− , 0 ≤ t ≤ T . (3.12)

Then, (3.11) can be written under the form

dYt =
[

rtYt −
rt − b̄t
σ̄t

Zt −
(rt − bt

β
−

σt(rt − b̄t)

βσ̄t

)

Ut

]

dt+ ZtdWt + UtdNt , 0 ≤ t ≤ T .

Therefore, the problem of valuing and hedging of the contingent claim ξ consists in solving

the following BSDE











−dYt =
[

rt−b̄t
σ̄t

Zt +
(

rt−bt
β

− σt(rt−b̄t)
βσ̄t

)

Ut − rtYt

]

dt

−ZtdWt − UtdNt , 0 ≤ t ≤ T ,

YT = ξ .

(3.13)
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The recursive system of Brownian BSDEs associated to (3.13) is then given by

{

−dY 1
t (θ) =

[

r1(θ)−b̄1(θ)
σ̄1(θ)

Z1
t (θ)− r1(θ)Y 1

t (θ)
]

dt− Z1
t (θ)dWt , θ ≤ t ≤ T ,

Y 1
T (θ) = ξ1(θ) ,

(3.14)

and










−dY 0
t =

[

r0−b̄0

σ̄0 Zt +
(

r0−b0

β
− σ0(r0−b̄0)

βσ̄0

)

(Y 1
t (t)− Y 0

t )− r0Y 0
t

]

dt

−ZtdWt , 0 ≤ t ≤ T ,

Y 0
T = ξ0 .

(3.15)

Proposition 3.2. Under (HB), BSDE (3.13) admits a solution in S∞
G
[0, T ] × L2

G
[0, T ] ×

L2(µ).

Proof. Using the same argument as in Step 1 of the proof of Proposition 3.1, we can

assume w.l.o.g. that the coefficients of BSDEs (3.14) and (3.15) are bounded. Then, BSDE

(3.14) is a linear BSDE with bounded coefficients and a bounded terminal condition. From

Theorem 2.3 in [20], we get the existence of a solution (Y 1(θ), Z1(θ)) in S∞
F
[θ, T ]×L2

F
[θ, T ]

to (3.14) for all θ ∈ [0, T ]. Moreover, from Proposition 2.1 in [20], we have

sup
θ∈[0,T ]

‖Y 1(θ)‖S∞[θ,T ] < ∞ . (3.16)

Applying Proposition C.1 with X = [0, T ] and dρ(θ) = γ0(θ)dθ we can choose the solution

(Y 1, Z1) as a P(F)⊗ B([0, T ])−measurable process.

Estimate (3.16) gives that BSDE (3.15) is also a linear BSDE with bounded coefficients.

Applying Theorem 2.3 and Proposition 2.1 in [20] as previously, we get the existence of a

solution (Y 0, Z0) in S∞
F
[0, T ]×L2

F
[0, T ] to (3.15). Applying Theorem 3.1, we get the result.

2

Since BSDEs (3.14) and (3.15) are linear, we have explicit formulae for the solutions.

For Y 1(θ), we get:

Y 1
t (θ) =

1

Γ1
t (θ)

E

[

ξ1(θ)Γ1
T (θ)

∣

∣

∣
Ft

]

, θ ≤ t ≤ T ,

with Γ1(θ) defined by

Γ1
t (θ) = exp

(r1(θ)− b̄1(θ)

σ̄1(θ)
Wt −

1

2

∣

∣

∣

r1(θ)− b̄1(θ)

σ̄1(θ)

∣

∣

∣

2
t− r1(θ)t

)

, θ ≤ t ≤ T .

For Y 0, we get :

Y 0
t =

1

Γ0
t

E

[

ξ0Γ0
T +

∫ T

t

csΓ
0
sds

∣

∣

∣
Ft

]

, 0 ≤ t ≤ T ,

with Γ0 defined by

Γ0
t = exp

(

∫ t

0
dsdWs −

1

2

∫ t

0
|ds|

2ds +

∫ t

0
asds

)

, 0 ≤ t ≤ T ,
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where the parameters a, d and c are given by



































at = −r0 −
(r0 − b0

β
−

σ0(r0 − b̄0)

βσ̄0

)

,

dt =
r0 − b̄0

σ̄0
,

ct =
(r0 − b0

β
−

σ0(r0 − b̄0)

β̄σ
0

)

Y 1
t (t) .

The price at time t of the European option ξ is equal to Y 0
t if t < τ and Y 1

t (τ) if t ≥ τ .

Once we know the processes Y and Z, a hedging strategy π = (π0, π1, π2) is given by (3.10)

and (3.12).

4 Uniqueness

In this section, we provide a uniqueness result based on a comparison theorem. We first

provide a general comparison theorem which allows to compare solutions to the studied

BSDEs as soon as we can compare solutions to the associated system of recursive Brow-

nian BSDEs. We then illustrate our general result with a concrete example in a convex

framework.

4.1 The general comparison Theorem

We consider two BSDEs with coefficients (f, ξ) and (f̄ , ξ̄). We denote by (Y ,Z,U) and

(Ȳ , Z̄, Ū) their respective solutions in S∞
G
[0, T ]×L2

G
[0, T ]×L2(µ). We consider the decom-

position (Y k)0≤k≤n (resp. (Ȳ k)0≤k≤n, (Z
k)0≤k≤n, (Z̄

k)0≤k≤n, (U
k)0≤k≤n, (Ū

k)0≤k≤n ) of

Y (resp. Ȳ , Z, Z̄, U , Ū). For ease of notation, we shall write F k(t, y, z) and F̄ k(t, y, z)

instead of f(t, y, z, Y k+1
t (τ(k), t, ζ(k), .) − y) and f̄(t, y, z, Ȳ k+1

t (τ(k), t, ζ(k), .) − y) for each

k = 0, . . . , n− 1, and Fn(t, y, z) and F̄n(t, y, z) instead of f(t, y, z, 0) and f̄(t, y, z, 0).

We shall make, throughout the sequel, the standing assumption known as (H)-hypothesis:

(HC) Any F-martingale remains a G-martingale.

Remark 4.1. Since W is an F−Brownian motion, we get under (HC) that it remains a

G−Brownian motion. Indeed, using (HC), we have that W is a G−local martingale with

quadratic variation 〈W,W 〉t = t. Applying Lévy’s characterization of Brownian motion

(see e.g. Theorem 39 in [27]), we obtain that W remains a G−Brownian motion.

Definition 4.1. We say that a generator g : Ω× [0, T ]×R×R
d → R satisfies a comparison

theorem for Brownian BSDEs if for any bounded G-stopping times ν2 ≥ ν1, any generator

g′ : Ω × [0, T ] × R × R
d → R and any Gν2-measurable r.v. ζ and ζ ′ such that g ≤ g′ and

ζ ≤ ζ ′ (resp. g ≥ g′ and ζ ≥ ζ ′), we have Y ≤ Y ′ (resp. Y ≥ Y ′ ) on [ν1, ν2]. Here, (Y,Z)

and (Y ′, Z ′) are solutions in S∞
G
[0, T ]× L2

G
[0, T ] to BSDEs with data (ζ, g) and (ζ ′, g′):

Yt = ζ +

∫ ν2

t

g(s, Ys, Zs)ds−

∫ ν2

t

ZsdWs , ν1 ≤ t ≤ ν2 ,
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and

Y ′
t = ζ ′ +

∫ ν2

t

g′(s, Y ′
s , Z

′
s)ds −

∫ ν2

t

Z ′
sdWs , ν1 ≤ t ≤ ν2 .

We can state the general comparison theorem.

Theorem 4.1. Suppose that ξ ≤ ξ̄, P-a.s. Suppose moreover that for each k = 0, . . . , n

F k(t, y, z) ≤ F̄ k(t, y, z), ∀(t, y, z) ∈ [0, T ]× R× R
d, P− a.s. ,

and the generators F̄ k or F k satisfy a comparison theorem for Brownian BSDEs. Then, if

Ūt = U t = 0 for t > τn, we have under (HC)

Y t ≤ Ȳt , 0 ≤ t ≤ T , P− a.s.

Proof. The proof is performed in four steps. We first identify the BSDEs of which the terms

appearing in the decomposition of Ȳ and Y are solutions in the filtration G. We then modify

Ȳ k and Y k outside of [τk, τk+1) to get càd-làg processes for each k = 0, . . . , n. We then

compare the modified processes by killing their jumps. Finally, we retrieve a comparison

for the initial processes since the modification has happened outside of [τk, τk+1) (where

they coincide with Ȳ and Y ).

Step 1. Since (Ȳ , Z̄, Ū) (resp. (Y ,Z,U)) is solution to the BSDE with parameters (ξ̄, f̄)

(resp. (ξ, f)), we obtain from the decomposition in the filtration F that (Ȳ n, Z̄n) (resp.

(Y n, Zn)) is solution to

Ȳ n
t (τ(n), ζ(n)) = ξ̄ +

∫ T

t

F̄n
(

s, Ȳ n
s (τ(n), ζ(n)), Z̄

n
s (τ(n), ζ(n))

)

ds

−

∫ T

t

Z̄n
s (τ(n), ζ(n))dWs , τn ∧ T ≤ t ≤ T , (4.1)

(resp. Y n
t (τ(n), ζ(n)) = ξ +

∫ T

t

Fn
(

s, Y n
s (τ(n), ζ(n)), Z

n
s (τ(n), ζ(n))

)

ds

−

∫ T

t

Zn
s (τ(n), ζ(n))dWs , τn ∧ T ≤ t ≤ T ) (4.2)

and (Ȳ k, Z̄k) (resp. (Y k, Zk)) is solution to

Ȳ k
t (τ(k), ζ(k)) =

[

Ȳ k+1
τk+1

(τ(k+1), ζ(k+1))− Ūτk+1
(ζk+1)

]

1τk+1≤T + ξ̄1τk+1>T

+

∫ τk+1∧T

t

F̄ k
(

s, Ȳ k
s (τ(k), ζ(k)), Z̄

k
s (τ(k), ζ(k))

)

ds

−

∫ τk+1∧T

t

Z̄k
s (τ(k), ζ(k))dWs , τk ∧ T ≤ t < τk+1 ∧ T , (4.3)

(resp. Y k
t (τ(k), ζ(k)) =

[

Y k+1
τk+1

(τ(k+1), ζ(k+1))− U τk+1
(ζk+1)

]

1τk+1≤T + ξ1τk+1>T

+

∫ τk+1∧T

t

F k
(

s, Y k
s(τ(k), ζ(k)), Z

k
s(τ(k), ζ(k))

)

ds

−

∫ τk+1∧T

t

Zk
s(τ(k), ζ(k))dWs , τk ∧ T ≤ t < τk+1 ∧ T )(4.4)
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for each k = 0, . . . , n− 1.

Step 2. We introduce a family of processes ( ˜̄Y k)0≤k≤n (resp. (Ỹ
k
)0≤k≤n). We define it

recursively by

˜̄Y n
t = Ȳ n

t (τ(n), ζ(n))1t≥τn (resp. Ỹ
n

t = Y n
t (τ(n), ζ(n))1t≥τn) , 0 ≤ t ≤ T ,

and for k = 0, . . . , n− 1

˜̄Y k
t = Ȳ k

t (τ(k), ζ(k))1τk≤t<τk+1
+ ˜̄Y k+1

t 1t≥τk+1

(resp. Ỹ
k

t = Y k
t (τ(k), ζ(k))1τk≤t<τk+1

+ Ỹ
k+1
t 1t≥τk+1

) , 0 ≤ t ≤ T .

These processes are càd-làg with jumps only at times τl, l = 1, . . . , n. Notice also that ˜̄Y n

(resp. Ỹ
n
, ˜̄Y k, Ỹ

k
) satisfies equation (4.1) (resp. (4.2), (4.3), (4.4)).

Step 3. We prove by a backward induction that Ỹ
n
≤ ˜̄Y n on [τn ∧ T, T ] and Ỹ

k
≤ ˜̄Y k on

[τk ∧ T, τk+1 ∧ T ), for each k = 0, . . . , n− 1.

• Since ξ ≤ ξ̄, Fn ≤ F̄n and F̄n or Fn satisfy a comparison theorem for Brownian

BSDEs, we immediately get from (4.1) and (4.2)

Ỹ
n

t ≤ ˜̄Y n
t , τn ∧ T ≤ t ≤ T .

• Fix k ≤ n − 1 and suppose that Ỹ
k+1
t ≤ ˜̄Y k+1

t for t ∈ [τk+1 ∧ T, τk+2 ∧ T ). Denote

by p ˜̄Y l (resp. pỸ
l
) the predictable projection of ˜̄Y l (resp. Ỹ

l
) for l = 0, . . . , n. Since the

random measure µ admits an intensity absolutely continuous w.r.t. the Lebesgue measure

on [0, T ], ˜̄Y l (resp. Ỹ
l
) has inaccessible jumps (see Ch. IV of [8]). We then have

p ˜̄Y l
t = ˜̄Y l

t− (resp. pỸ
l

t = Ỹ
l

t−) , 0 ≤ t ≤ T .

From equations (4.3) and (4.4), and the definition of ˜̄Y l (resp. Ỹ
l
), we have for l = k

p ˜̄Y k
t = p ˜̄Y k+1

τk+1
1τk+1≤T + ξ̄1τk+1>T +

∫ τk+1∧T

t

F̄ k
(

s,p ˜̄Y k
s , Z̄

k
s (τ(k), ζ(k))

)

ds

−

∫ τk+1∧T

t

Z̄k
s (τ(k), ζ(k))dWs , τk ∧ T ≤ t < τk+1 ∧ T . (4.5)

(resp. pỸ
k

t = pỸ
k+1
τk+1

1τk+1≤T + ξ1τk+1>T +

∫ τk+1∧T

t

F k
(

s,p Ỹ
k

s , Z
k
s(τ(k), ζ(k))

)

ds

−

∫ τk+1∧T

t

Zk
s(τ(k), ζ(k))dWs , τk ∧ T ≤ t < τk+1 ∧ T ) (4.6)

Since ˜̄Y k+1
τk+1

≥ Ỹ
k+1
τk+1

, we get p ˜̄Y k+1
τk+1

≥ pỸ
k+1
τk+1

. This together with conditions on ξ̄, ξ, F̄ k

and F k give the result.

Step 4. Since ˜̄Y k (resp. Ỹ
k
) coincides with Ȳ (resp. Y ) on [τk ∧ T, τk+1 ∧ T ), we get the

result. 2
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4.2 Uniqueness via comparison

In this form, the previous theorem is not usable since the condition on the generators of

the Brownian BSDEs is implicit: it involves the solution of the previous Brownian BSDEs

at each step. We give, throughout the sequel, an explicit example for which Theorem 4.1

provides uniqueness. This example is based on a comparison theorem for quadratic BSDEs

given by Briand and Hu [7]. We first introduce the following assumptions.

(HUQ1) The function f(t, y, ., u) is concave for all (t, y, u) ∈ [0, T ]× R× R
E.

(HUQ2) There exists a constant L s.t.

|f(t, y, z, (u(e) − y)e∈E)− f(t, y′, z, (u(e) − y′)e∈E)| ≤ L|y − y′|

for all (t, y, y′, z, u) ∈ [0, T ]× [R]2 × R
d × R

E.

(HUQ3) There exist a constant C > 0 such that

|f(t, y, z, u)| ≤ C
(

1 + |y|+ |z|2 +

∫

E

|u(e)|λt(e)de
)

for all (t, y, z, u) ∈ [0, T ]× R× R
d × R

E.

(HUQ4) f(t, ., u) = f(t, ., 0) for all u ∈ R
E and all t ∈ (τn ∧ T, T ].

Theorem 4.2. Under (HBI), (HC), (HUQ1), (HUQ2) , (HUQ3) and (HUQ4), BSDE

(2.4) admits at most one solution.

Proof. Let (Y,Z,U) and (Y ′, Z ′, U ′) be two solutions of (2.4) in S∞
G
[0, T ]×L2

G
[0, T ]×L2(µ).

Define the process Ũ (resp. Ũ ′) by

Ũt(e) (resp. Ũ ′
t(e)) = Ut(e)1t≤τn (resp. U ′

t(e)1t≤τn) , (t, e) ∈ [0, T ]× E .

Then, from (HUQ4), we have that (Y,Z, Ũ ) and (Y ′, Z ′, Ũ ′) are also solutions to (2.4) in

S∞
G
[0, T ] × L2

G
[0, T ] × L2(µ). Using Remark 4.1 and Theorem 5 in [7], we obtain that the

generator f satisfies a comparison theorem in the sense of Definition 4.1. We can then

apply Theorem 4.1 and we get that Y ≤ Y ′. Since Y and Y ′ play the same role we obtain

that Y ′ ≤ Y and Y = Y ′. Identifying the finite variation part and the unbounded variation

part of Y we get Z = Z ′. Then, identifying the pure jump part of Y we get Ũ = Ũ ′. Since

Ũ = U (resp. Ũ ′ = U ′ ) in L2(µ), we finaly get (Y,Z,U) = (Y ′, Z ′, U ′). 2

5 Exponential utility maximization in a jump market model

We consider a financial market model with a riskless bond assumed for simplicity equal to

one, and a risky asset subjects to some counterparty risks. We suppose that the Brownian

motion W is one dimensional (d = 1). The dynamics of the risky asset is affected by other

firms, the counterparties, which may default at some random times, inducing consequently

some jumps in the asset price. However, this asset still exists and can be traded after the
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default of the counterparties. We keep the notation of previous sections.

Throughout the sequel, we suppose that (HD) and (HC) are satisfied. We consider that

the price process S evolves according to the equation

St = S0 +

∫ t

0
Su−

(

budu+ σudWu +

∫

E

βu(e)µ(de, du)
)

, 0 ≤ t ≤ T .

All processes b, σ and β are assumed to be G-predictable. We introduce the following

assumptions on the coefficients appearing in the dynamic of S:

(HS1) The processes b, σ and β are uniformly bounded: there exists a constant C s.t.

|bt|+ |σt|+ |βt(e)| ≤ C , 0 ≤ t ≤ T , e ∈ E , P− a.s.

(HS2) There exists a positive constant cσ such that

σt ≥ cσ , 0 ≤ t ≤ T , P− a.s.

(HS3) The process β satisfies:

βt(e) > −1 , 0 ≤ t ≤ T , e ∈ E , P− a.s.

(HS4) The process ϑ defined by ϑt =
bt
σt
, t ∈ [0, T ], is uniformly bounded: there exists a

constant C such that

|ϑt| ≤ C , 0 ≤ t ≤ T , P− a.s.

We notice that (HS1) allows the process S to be well defined and (HS3) ensures it to be

positive.

A self-financing trading strategy is determined by its initial capital x ∈ R and the

amount of money πt invested in the stock, at time t ∈ [0, T ]. The wealth at time t associated

with a strategy (x, π) is

Xx,π
t = x+

∫ t

0
πsbsds+

∫ t

0
πsσsdWs +

∫ t

0

∫

E

πsβs(e)µ(de, ds) , 0 ≤ t ≤ T .

We consider a contingent claim, that is a random payoff at time T described by a GT -

measurable random variable B. We suppose that B is bounded. Then, we define

V (x) = sup
π∈A

E
[

− exp(−α(Xx,π
T −B))

]

, (5.1)

the maximal expected utility that we can achieve by starting at time 0 with the initial

capital x, using some admissible strategy π ∈ A (which is defined throughout the sequel)

on [0, T ] and paying B at time T . α is a given positive constant which can be seen as a

coefficient of absolute risk aversion.

Finally, we introduce a compact subset C of R with 0 ∈ C, which represents an eventual

constraint imposed to the trading strategies, that is, πt(ω) ∈ C. We then define the space

A of admissible strategies.
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Definition 5.1. The setA of admissible strategies consists of all R-valued P(G)-measurable

processes π = (πt)0≤t≤T which satisfy E
∫ T

0 |πtσt|
2dt+E

∫ T

0

∫

E
|πtβt(e)|λt(e)dedt < ∞, and

πt ∈ C, dt⊗ dP− a.e., as well as the uniform integrability of the family
{

exp
(

− αXx,π
τ

)

: τ stopping time valued in [0, T ]
}

.

We first notice that the compactness of C implies the integrability conditions imposed

to the admissible strategies.

Lemma 5.1. Any P(G)-measurable process π valued in C satisfy π ∈ A.

The proof is exactly the same as in Morlais [22]. We therefore omit it.

In order to characterize the value function V (x) and an optimal strategy, we construct,

as in Hu et al. [12] and Morlais [22], a family of stochastic processes (R(π))π∈A with the

following properties:

(i) R
(π)
T = − exp(−α(Xx,π

T −B)) for all π ∈ A,

(ii) R
(π)
0 = R0 is constant for all π ∈ A,

(iii) R(π) is a supermartingale for all π ∈ A and there exists π̂ ∈ A such that R(π̂) is a

martingale.

Given processes owning these properties we can compare the expected utilities of the strate-

gies π ∈ A and π̂ ∈ A by

E
[

− exp
(

− α(Xx,π
T −B)

)]

≤ R0(x) = E
[

− exp
(

− α(Xx,π̂
T −B)

)]

= V (x) ,

whence π̂ is the desired optimal strategy. To construct this family, we set

R
(π)
t = − exp

(

− α(Xx,π
t − Yt)

)

, 0 ≤ t ≤ T , π ∈ A ,

where (Y,Z,U) is a solution of the BSDE

Yt = B +

∫ T

t

f(s, Zs, Us)ds −

∫ T

t

ZsdWs −

∫ T

t

∫

E

Us(e)µ(de, ds) , 0 ≤ t ≤ T . (5.2)

We have to choose a function f for which R(π) is a supermartingale for all π ∈ A, and

there exists a π̂ ∈ A such that R(π̂) is a martingale. We assume that there exists a triple

(Y,Z,U) solving a BSDE with jumps of the form (5.2), with terminal condition B and with

a driver f to be determined. We first apply Itô’s formula to R(π) for any strategy π:

dR
(π)
t = R

(π)
t−

[(

− α(f(t, Zt, Ut) + πtbt) +
α2

2
(πtσt − Zt)

2
)

dt− α(πtσt − Zt)dWt

+

∫

E

(

exp(−α(πtβt(e) − Ut(e))) − 1
)

µ(de, dt)
]

.

Thus, the process R(π) satisfies the following SDE:

dR
(π)
t = R

(π)
t−

dM
(π)
t +R

(π)
t dA

(π)
t , 0 < t ≤ T ,
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with M (π) a local martingale and A(π) a finite variation continuous process given by






























dM
(π)
t = − α(πtσt − Zt)dWt +

∫

E

(

exp(−α(πtβt(e) − Ut(e))) − 1
)

µ̃(de, dt) ,

dA
(π)
t =

(

− α(f(t, Zt, Ut) + πtbt) +
α2

2
(πtσt − Zt)

2

+

∫

E

(

exp(−α(πtβt(e) − Ut(e))) − 1
)

λt(e)de
)

dt .

It follows that R(π) has the multiplicative form

R
(π)
t = R

(π)
0 E(M (π))t exp

(

A
(π)
t

)

,

where E(M (π)) denotes the Doleans-Dade exponential of the local martingale M (π). Since

exp(−α(πtβt(e) − Ut(e))) − 1 > −1, P − a.s., the Doleans-Dade exponential of the dis-

continuous part of M (π) is a positive local martingale and hence, a supermartingale. The

supermartingale condition in (iii) holds true, provided, for all π ∈ A, the process exp(A(π))

is nondecreasing, this entails

−α(f(t, Zt, Ut) + πtbt) +
α2

2
(πtσt − Zt)

2 +

∫

E

(

exp(−α(πtβt(e)− Ut(e))) − 1
)

λt(e)de ≥ 0 .

This condition holds true, if we define f as follows

f(t, z, u) = inf
π∈C

{α

2

∣

∣

∣
πσt −

(

z +
ϑt

α

)
∣

∣

∣

2
+

∫

E

exp(α(u(e) − πβt(e))) − 1

α
λt(e)de

}

−ϑtz −
|ϑt|

2

2α
,

recall that ϑt = bt/σt for t ∈ [0, T ].

Theorem 5.1. Under (HS1), (HS2), (HS3) and (HS4), the value function of the optimiza-

tion problem (5.1) is given by

V (x) = − exp(−α(x− Y0)) , (5.3)

where Y0 is defined as the initial value of the unique solution (Y,Z,U) ∈ S∞
G
[0, T ] ×

L2
G
[0, T ]× L2(µ) of the BSDE

Yt = B +

∫ T

t

f(s, Zs, Us)ds −

∫ T

t

ZsdWs −

∫ T

t

∫

E

Us(e)µ(de, ds) , 0 ≤ t ≤ T , (5.4)

with

f(t, z, u) = inf
π∈C

{α

2

∣

∣

∣
πσt −

(

z +
ϑt

α

)
∣

∣

∣

2
+

∫

E

exp(α(u(e) − πβt(e))) − 1

α
λt(e)de

}

−ϑtz −
|ϑt|

2

2α
,

for all (t, z, u) ∈ [0, T ] × R × R
E. There exists an optimal trading strategy π̂ ∈ A which

satisfies

π̂t ∈ argmin
π∈C

{α

2

∣

∣

∣
πσt −

(

z +
ϑt

α

)
∣

∣

∣

2
+

∫

E

exp(α(u(e) − πβt(e))) − 1

α
λt(e)de

}

, (5.5)

for all t ∈ [0, T ].
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Proof. Step 1. We first prove the existence of a solution to BSDE (5.4). For that we

apply Theorem 3.1. Let σk, ϑk and βk, k = 0, . . . , n, be the respective terms appearing

in the decomposition of σ, ϑ and β given by Lemma 2.1. Using (HS1) and (HS4), we can

assume w.l.o.g. that these terms are uniformly bounded.

Then, in the decomposition of the generator f , we can choose the functions fk, k =

0, . . . , n, as

fn(t, z, u, θ, e) = inf
π∈C

{α

2

∣

∣

∣
πσn

t (θ, e)−
(

z +
ϑn
t (θ, e)

α

)
∣

∣

∣

2}

− ϑn
t (θ, e)z −

|ϑn
t (θ, e)|

2

2α
,

and

fk(t, z, u, θ(k), e(k)) = inf
π∈C

{α

2

∣

∣

∣
πσk

t (θ(k), e(k))−
(

z +
ϑk
t (θ(k), e(k))

α

)
∣

∣

∣

2

+

∫

E

exp(α(u(e′)− πβk
t (θ(k), e(k), e

′)))− 1

α
λk+1
t (e′, θ(k), e(k))de

′
}

−ϑk
t (θ(k), e(k))z −

|ϑk
t (θ(k), e(k))|

2

2α
,

for k = 0, . . . , n− 1 and (θ, e) ∈ ∆n × En.

Notice also that since B is bounded, we can choose Bk, k = 0, . . . , n, uniformly bounded.

We now prove by backward induction on k that the BSDEs (we shall omit the dependence

on (θ, e))

Y n
t = Bn +

∫ T

t

fn(s, Zn
s , 0)ds −

∫ T

t

Zn
s dWs , θn ∧ T ≤ t ≤ T , (k = n) (5.6)

and

Y k
t = Bk +

∫ T

t

fk(s, Zk
s , Y

k+1
s (s, .)− Y k

s )ds

−

∫ T

t

Zk
s dWs , θk ∧ T ≤ t ≤ T , (k = 0, . . . , n− 1) (5.7)

admit a solution (Y k, Zk) in S∞
F
[θk ∧ T, T ] × L2

F
[θk ∧ T, T ] such that Y k (resp. Zk) is

PM(F) ⊗ B(∆k)⊗ B(Ek) (resp. P(F)⊗ B(∆k)⊗ B(Ek))-measurable with

sup
(θ,e)∈∆n×En

‖Y k(θ(k), e(k))‖S∞[θk∧T,T ] + ‖Zk(θ(k), e(k))‖L2[θk∧T,T ] < ∞ ,

for all k = 0, . . . , n.

• Since 0 ∈ C, we have

−ϑn
t z −

|ϑn
t |

2

2α
≤ fn(t, z, 0) ≤

α

2
|z|2 .

Therefore, we can apply Theorem 2.3 of [20], and we get that for any (θ, e) ∈ ∆n×En, there

exists a solution
(

Y n(θ, e), Zn(θ, e)
)

to BSDE (5.6) in S2
F
[θn∧T, T ]×L2

F
[θn∧T, T ]. Moreover,

this solution is constructed as a limit of Lipschitz BSDEs (see [20]). Using Proposition C.1,
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we get that Y n (resp. Zn) is PM(F) ⊗ B(∆n) ⊗ B(En) (resp. P(F) ⊗ B(∆n) ⊗ B(En))-

measurable.

Then, using Proposition 2.1 of [20], we get the existence of a constant K such that

sup
(θ,e)∈∆n×En

‖Y n(θ, e)‖S∞[θn∧T,T ] + ‖Zn(θ, e)‖L2[θn∧T,T ] ≤ K .

• Suppose that BSDE (5.7) admits a solution at rank k + 1 ( k ≤ n− 1) with

sup
(θ,e)∈∆n×En

{

‖Y k+1(θ(k+1), e(k+1))‖S∞[θk+1∧T,T ]

+‖Zk+1(θ(k+1), e(k+1))‖L2[θk+1∧T,T ]

}

< ∞ . (5.8)

We denote gk the function defined by

gk(t, y, z, θ(k), e(k)) = fk(t, z, Y k+1
t (θ(k), t, e(k), .)− y, θ(k), e(k)) ,

for all (t, y, z) ∈ [0, T ]×R×R and (θ, e) ∈ ∆n×En. Since gk has an exponential growth in

the variable y in the neighborhood of −∞, we can not directly apply our previous results.

We then prove via a comparison theorem that there exists a solution by introducing another

BSDE which admits a solution and whose generator coincides with g in the domain where

the solution lives.

Let (Y k(θ(k), e(k)), Z
k(θ(k), e(k))) be the solution in S∞

F
[θk ∧ T, T ]×L2

F
[θk ∧ T, T ] to the

linear BSDE

Y k
t (θ(k), e(k)) = Bk(θ(k), e(k)) +

∫ T

t

gk(s, Y k
s , Z

k
s)(θ(k), e(k))ds

−

∫ T

t

Zk
s(θ(k), e(k))dWs , θk ∧ T ≤ t ≤ T ,

where

gk(t, y, z, θ(k), e(k)) = −ϑk
t (θ(k), e(k))z −

ϑk
t (θ(k), e(k))

2α
,

for all (t, y, z) ∈ [0, T ] × R× R. Since Bk and ϑk are uniformly bounded, we have

sup
(θ(k),e(k))∈∆k×Ek

‖Y k(θ(k), e(k))‖S∞[θk∧T,T ]
< ∞ . (5.9)

Then, define the generator g̃k by

g̃k(t, y, z, θ(k), e(k)) = gk(t, y ∨ Y k
t (θ(k), e(k)), z, θ(k), e(k)) ,

for all (t, y, z) ∈ [0, T ] × R× R and (θ, e) ∈ ∆n × En.

Moreover, since 0 ∈ C, we get from (5.8) and (5.9) the existence of a constant K such

that

|g̃k(t, y, z, θ(k), e(k))| ≤ K(1 + |z|2) ,
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for all (t, y, z) ∈ [0, T ] × R × R and (θ, e) ∈ ∆n × En. We can then apply Theorem 2.3 of

[20], and we obtain that the BSDE

Ỹ k
t (θ(k), e(k)) = Bk(θ(k), e(k)) +

∫ T

t

g̃k(s, Ỹ k
s , Z̃

k
s )(θ(k), e(k))ds

−

∫ T

t

Z̃k
s (θ(k), e(k))dWs , θk ∧ T ≤ t ≤ T ,

admits a solution (Ỹ k(θ(k), e(k)), Z̃
k(θ(k), e(k))) ∈ S∞

F
[θk ∧ T, T ] × L2

F
[θk ∧ T, T ]. Using

Proposition 2.1 of [20], we get

sup
(θ(k),e(k))∈∆k×Ek

‖Ỹ k(θ(k), e(k))‖S∞[θk∧T,T ] < ∞ .

Then, since g̃k ≥ gk and since gk is Lipschitz continuous, we get from the comparison theo-

rem for BSDEs that Ỹ k ≥ Y k. Hence, (Ỹ k, Z̃k) is solution to BSDE (5.7). Notice then that

we can choose Ỹ k (resp. Z̃k) as a PM(F)⊗B(∆k)⊗B(Ek) (resp. P(F)⊗B(∆k)⊗B(Ek))-

measurable process. Indeed, these processes are solutions to quadratic BSDEs and hence

can be written as the limit of solutions to Lipschitz BSDEs (see [20]). Using Proposition C.1

with X = ∆k×Ek and dρ(θ, e) = γ0(θ, e)dθde we get that the solutions to Lipschitz BSDEs

are P(F)⊗B(∆k)⊗B(Ek)−measurable and hence Ỹ k (resp. Z̃k) is PM(F)⊗B(∆k)⊗B(Ek)

(resp. P(F)⊗ B(∆k)⊗ B(Ek))-measurable.

Step 2. We now prove the uniqueness of a solution to BSDE (5.4). Let (Y 1, Z1, U1) and

(Y 2, Z2, U2) be two solutions of BSDE (5.4) in S∞
G
[0, T ] × L2

G
[0, T ]× L2(µ).

Applying an exponential change of variable, we obtain that (Ỹ i, Z̃i, Ũ i) defined for

i = 1, 2 by

Ỹ i
t = exp(αY i

t ) ,

Z̃i
t = αỸ i

t Z
i
t ,

Ũ i
t (e) = Ỹ i

t−

(

exp(αU i
t (e)) − 1

)

,

for all t ∈ [0, T ], are solution in S∞
G
[0, T ]× L2

G
[0, T ]× L2(µ) to the BSDE

Ỹt = exp(αB) +

∫ T

t

f̃(s, Ỹs, Z̃s, Ũs)ds−

∫ T

t

Z̃sdWs −

∫ T

t

∫

E

Ũs(e)µ(de, ds) ,

where the generator f̃ is defined by

f̃(t, y, z, u) = inf
π∈C

{α2

2
|πσt|

2y − απσt(z + ϑty) +

∫

E

[

e−απβt(e)(u(e) + y)− y
]

λt(e)de
}

.

We then notice that

• f̃ satisfies (HUQ1) since it is an infimum of linear functions in the variable z,

• f̃ satisfies (HUQ2). Indeed, from the definition of f̃ we have

f̃(t, y, z, u(.) − y)− f̃(t, y′, z, u(.) − y′) ≥ inf
π∈C

{

(y − y′)(ϑt +
α

2
πσt)απσt

}

− (y − y′)

∫

E

λt(e)de ,
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for all (t, z, u) ∈ [0, T ]× R× R
E and y, y′ ∈ R. Since C is compact, we get from (HBI) the

existence of a constant C such that

f̃(t, y, z, u − y)− f̃(t, y′, z, u− y′) ≥ −C|y − y′| .

Inverting y and y′ we get the result.

• f̃ satisfies (HUQ3). Indeed, since 0 ∈ C, we get from (HBI) the existence of a constant C

such that

f̃(t, y, z, u) ≤ C
(

|y|+

∫

E

|u(e)|λt(e)de
)

, (t, y, z, u) ∈ [0, T ]× R× R× R
E .

We get then from (HBI), there exists a constant positive constant C s.t.

f̃(t, y, z, u) ≥ inf
π∈C

{α2

2
|πσt|

2y − απσt(z + ϑty)
}

+ inf
π∈C

{

∫

E

e−απβt(e)(u(e) + y)λt(e)de
}

− C|y| .

Then, from (HS1), (HS2) and the compactness of C, we get

f̃(t, y, z, u) ≥ −C
(

1 + |y|+ |z|+

∫

E

|u(e)|λt(e)de
)

, (t, y, z, u) ∈ [0, T ]× R× R× R
E .

• f̃ satisfies (HUQ4) since at time t it is an integral of the variable u w.r.t. λt, which

vanishes on the interval (τn,∞).

Since f̃ satisfies (HUQ1), (HUQ2), (HUQ3) and (HUQ4), we get from Theorem 4.2 that

Ỹ 1 = Ỹ 2. Then, identifying the pure jump part and the infinite variation part of Ỹ 1, we

get (Y 1, Z1, U1) = (Y 2, Z2, U2) in S∞
G
[0, T ]× L2

G
[0, T ]× L2(µ).

Step 3. We check that M (π̂) is a BMO-martingale. Since C is compact, (HS1) holds and U

is bounded as the jump process of the bounded process Y , it suffices to prove that
∫ .

0 ZsdWs

is a BMO-martingale.

Let M denote the upper bound of the uniformly bounded process Y . Applying Itô’s

formula to (Y −M)2, we obtain for any stopping time τ ≤ T

E

[

∫ T

τ

|Zs|
2ds

∣

∣

∣
Gτ

]

= E
[

(ξ −M)2
∣

∣Gτ

]

− |Yτ −M |2

+2E
[

∫ T

τ

(Ys −M)f(s, Zs, Us)ds
∣

∣

∣
Gτ

]

.

The definition of f yields

−ϑtZt −
|ϑt|

2

2α
−

1

α

∫

E

λt(e)de ≤ f(t, Zt, Ut) ,

for all t ∈ [0, T ]. Therefore, since (HBI) and (HS4) hold, we get

E

[

∫ T

τ

|Zs|
2ds

∣

∣

∣
Gτ

]

≤ C
(

1 + E

[

∫ T

τ

|Zs + 1|ds
∣

∣

∣
Gτ

])

≤ C +
1

2
E

[

∫ T

τ

|Zs|
2ds

∣

∣

∣
Gτ

]

.
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Hence,
∫ .

0 ZsdWs is a BMO-martingale for k = 0, . . . , n.

Step 4. It remains to show that R(π) is a supermartingale for any π ∈ A. Since π ∈ A, the

process E(M (π)) is a positive local martingale, because it is the Doleans-Dade exponential

of a local martingale whose the jumps are grower to −1. Hence, there exists a sequence

of stopping times (δn)n∈N satisfying limn→∞ δn = T, P − a.s., such that E(M (π)).∧δn is a

positive martingale for each n ∈ N. The process A(π) is nondecreasing. Thus, R
(π)
t∧δn

=

R0E(M
(π))t∧δn exp(A

(π)
t∧δn

) is a supermartingale, i.e. for s ≤ t

E
[

R
(π)
t∧δn

∣

∣Gs

]

≤ R
(π)
s∧δn

.

For any set A ∈ Gs, we have

E
[

R
(π)
t∧δn

1A

]

≤ E
[

R
(π)
s∧δn

1A

]

. (5.10)

On the other hand, since

R
(π)
t = − exp

(

− α(Xx,π
t − Yt)

)

,

we use both the uniform integrability of (exp(−αXx,π
δ )) where δ runs over the set of all

stopping times and the boundedness of Y to obtain the uniform integrability of

{R(π)
τ : τ stopping time valued in [0, T ]}.

Hence, the passage to the limit as n goes to ∞ in (5.10) is justified and it implies

E
[

R
(π)
t 1A

]

≤ E
[

R(π)
s 1A

]

.

We obtain the supermartingale property of R(π).

To complete the proof, we show that the strategy π̂ defined by (5.5) is optimal. We first

notice that from Lemma 5.1 we have π̂ ∈ A. By definition of π̂, we have A(π̂) = 0 and

hence, R
(π̂)
t = R0E(M

(π̂))t. Since C is compact, (HS1) holds and U is bounded as jump

part of the bounded process Y , there exists a constant δ > 0 s.t.

∆M
(π̂)
t = M

(π̂)
t −M

(π̂)
t−

≥ −1 + δ .

Applying Kazamaki criterion to the BMO martingale M (π̂) (see [19]) we obtain that

E(M (π̂)) is a true martingale. As a result, we get

sup
π∈A

E
(

R
(π)
T

)

= R0 = V (x) .

Using that (Y,Z,U) is the unique solution of the BSDE (5.4), we obtain the expression

(5.3) for the value function. 2

Appendix
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A Proof of decomposition for the progressively measurable

processes

We adopt the same approach as in [2]. We first give a decomposition lemma for Gt-

measurable random variables for any t ∈ R+. We then apply this lemma to prove the

decomposition of progressively measurable processes.

Lemma A.1. Fix t ∈ R+. Any Gt-measurable random variable X can be written in the

form

X =

n
∑

i=0

1τi≤t<τi+1X(τ(i), ζ(i)) ,

where Xi is Ft ⊗ B(∆i)⊗ B(Ei)-measurable.

Proof. We prove the decomposition result by induction on n. We denote by G
i :=

F ∨ D
1 ∨ . . . ∨ D

i, for i = 1, . . . , n.

Step 1. Suppose first that n = 1, so that G = F ∨ D
1. Let us consider generators of the

set of Gt-measurable random variables, which are random variables in the form

ηf(ξ1τ≤t)g(τ ∧ t) ,

with η an Ft-measurable r.v., f B(R)-measurable and g measurable defined on E ∪ {0}.

By taking

X0 = ηf(0)g(t) and X1(θ1, e) = ηf(e1θ1≤t)g(θ1 ∧ t)

we see that the decomposition holds for generators of the set of Gt-measurable random

variables. We then extend this decomposition for any Gt-measurable random variable by

the monotone class theorem.

Step 2. Suppose that the result holds for i and consider the case with i+ 1 ranked jump

times, so that G = G
i∨D

i+1. By the same arguments of enlargement of filtration with one

jump time as in Step 1, we derive that any Gt-measurable random variable X is represented

as

X = X0,(i)
1t<τi+1 +X1,(i)(τi+1, ζi+1)1t≥τi+1 ,

where X0,(i) is a Gi
t-measurable random variable, and (ω, θi+1, ei+1) 7→ X1,(i)(ω, θi+1, ei+1)

is Gi
t ⊗ B(R+)⊗ B(E)-measurable. Now, from induction hypothesis for Gi, we have

X0,(i) = X0,0,(i)
1t<τ1 +

i−1
∑

k=1

Xk,0,(i)(τ(k), ζ(k))1τk≤t<τk+1

Xi,0,(i)(τ(i), ζ(i))1τi≤t , t ≥ 0 ,

where X0,0,(i) is an Ft-measurable random variable, and Xk,0,(i) is an Ft⊗B(∆k)⊗B(Ek)-

measurable random variable for k = 1, . . . , i. Similarly, we have

X1,(i)(θi+1, ei+1) = X0,1,(i)(θi+1, ei+1)1t<τ1 +

i−1
∑

k=1

Xk,1,(i)(τ(k), ζ(k), θi+1, ei+1)1τk≤t<τk+1

Xi,1,(i)(τ(i), ζ(i), θi+1, ei+1)1τi≤t , t ≥ 0 ,
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where X0,1,(i) is an Ft ⊗ B(R+) ⊗ B(E)-measurable random variable, and Xk,1,(i) is an

Ft⊗B(∆k×R+)⊗B(Ek+1)-measurable random variable for k = 1, . . . , i. Finally, plugging

these two decompositions and recalling that τ1 ≤ . . . ≤ τi ≤ τi+1, we get the required

decomposition at level i+ 1 for G. 2

We now prove the decomposition for the progressively measurable processes.

For p ≥ 0 we may choose Xk
p (τ(k), ζ(k)) for k = 0, . . . , n such that

Xp =

n
∑

i=0

1τi≤p<τi+1X
i
p(τ(i), ζ(i)) .

Define Xk
t (τ(k), ζ(k)) for k = 0, . . . , n by setting Xk

t (τ(k), ζ(k)) = lim infp↓tX
k
p (τ(k), ζ(k)). X

k,

k = 0, . . . , n, are then PM(F)⊗B(∆k)⊗B(Ek)-measurable, by [8]. It is easily verified that

Xt =
n
∑

i=0

1τi≤t<τi+1X
i
t(τ(i), ζ(i)) , t ≥ 0 .

B Proof of Proposition 2.1

We first give a lemma which is a generalization of a proposition in [11]. Throughout the

sequel, we denote

EF,i,k
t

(

G
)

(θ(i−1), e(i−1)) =

∫

∆k−i+1×Ek−i+1

1θi>tE[G(θ(k), e(k))|Ft]dθi . . . dθkdei . . . dek ,

for any F∞ ⊗ B(∆k) ⊗ B(Ek)-measurable function G and any integers i and k such that

1 ≤ i ≤ k ≤ n.

Lemma B.1. Fix t, s ∈ R+ such that t ≤ s. Let X be a positive Fs ⊗ B(∆n) ⊗ B(En)-

measurable function on Ω×∆n × En, then

E[X(τ(n), ζ(n))|Gt] =
n
∑

i=0

1τi≤t<τi+1

EF,i+1,n
t

(

Xγs
)

(τ(i), ζ(i))

EF,i+1,n
t

(

γt
)

(τ(i), ζ(i))
.

Proof. Let H be a positive and Gt-measurable test random variable, which can be written

H =

n
∑

i=0

H i(τ(i), ζ(i))1τi≤t<τi+1 ,

where H i is Ft⊗B(∆i)⊗B(Ei)-measurable for i = 0, . . . , n. Using the joint density γt(θ, e)

of (τ, ζ), we have on the one hand

E[1τi≤t<τi+1HX(τ(n), ζ(n))] = E

[

∫

(0,t]i∩∆i×Ei

dθ(i)de(i)H
i
t(θ(i), e(i))E

F,i+1,n
t

(

Xγs
)

(τ(i), ζ(i))
]

.

27



On the other hand, we have

E

[

1τi≤t<τi+1H
EF,i+1,n
t

(

Xγs
)

(τ(i), ζ(i))

EF,i+1,n
t

(

γt
)

(τ(i), ζ(i))

]

= E

[

1τi≤t<τi+1H
i(τ(i), ζ(i))

EF,i+1,n
t

(

Xγs
)

(τ(i), ζ(i))

EF,i+1,n
t

(

γt
)

(τ(i), ζ(i))

]

= E

[

∫

(0,t]i∩∆i×Ei

dθ(i)de(i)H
i
t(θ(i), e(i))

EF,i+1,n
t

(

Xγs
)

(θ(i), e(i))

EF,i+1,n
t

(

γt
)

(θ(i), e(i))
EF,i+1,n
t

(

γt
)

(θ(i), e(i))
]

= E[1τi≤t<τi+1HX(τ(n), ζ(n))] .

2

We now prove Proposition 2.1. To this end, we prove that for any nonnegative P(G)⊗

B(E)-measurable process U , any T > 0 and any t ∈ [0, T ], we have

E

[

∫ T

t

∫

E

Us(e)µ(de, ds)
∣

∣

∣
Gt

]

= E

[

∫ T

t

∫

E

Us(e)λs(e)deds
∣

∣

∣
Gt

]

, (B.1)

where λ is defined by (2.3).

We first study the left hand side of (B.1). From Lemma 2.1 and Remark 2.1, we can

write

Ut(e) =
n
∑

k=0

1τk<t≤τk+1
Uk
t (τ(k), ζ(k), e) , (t, e) ∈ [0, T ]× E ,

where Uk is a P(G) ⊗ B(∆k) ⊗ B(Ek+1)-measurable process for k = 0, . . . , n. Moreover,

since U is nonnegative, we can assume that Uk, k = 0, . . . , n, are nonnegative. Then, from

Lemma B.1, we have:

E

[

∫ T

t

∫

E

Us(e)µ(de, ds)
∣

∣

∣
Gt

]

=
n
∑

k=1

E
[

1t<τk≤TU
k−1
τk

(τ(k−1), ζ(k))
∣

∣Gt

]

=

n
∑

k=1

n
∑

i=0

1τi≤t<τi+1

EF,i+1,n
t

(

1t<θk≤TU
k−1
θk

(θ(k−1), e(k))γT (θ, e)
)

(τ(i), e(i))

EF,i+1,n
t

(

γt
)

(τ(i), e(i))

=

n−1
∑

k,i=0
i≤k

1τi≤t<τi+1

EF,i+1,n
t

(

1t<θk+1≤TU
k
θk+1

(θ(k), e(k+1))γθk+1
(θ, e)

)

(τ(i), e(i))

EF,i+1,n
t

(

γt
)

(τ(i), e(i))

=
n−1
∑

k,i=0
i≤k

1τi≤t<τi+1

EF,i+1,k+1
(

1t<θk+1≤TU
k
θk+1

(θ(k), e(k+1))γ
k+1
θk+1

(θ(k+1), e(k+1))
)

(τ(i), e(i))

EF,i+1,n
(

γt
)

(τ(i), e(i))
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We now study the right hand side of (B.1):

E

[

∫ T

t

∫

E

Us(e)λs(e)deds
∣

∣

∣
Gt

]

=
n−1
∑

k=0

E

[

∫ T

t

∫

E

1τk<s≤τk+1
Uk
s (τ(k), ζ(k))λ

k+1
s (e, τ(k), ζ(k))deds

∣

∣

∣
Gt

]

=

n−1
∑

k=0

n
∑

i=0

1τi≤t<τi+1

EF,i+1,n
t

(

∫ T

t

∫

E
1θk<s≤θk+1

Uk
s (θ(k), e(k))λ

k+1
s (e′, θ(k), e(k))γs(θ, e)de

′ds
)

(τ(i), ζ(i))

EF,i+1,n
t

(

γt
)

(τ(i), e(i))

=

n−1
∑

k,i=0
i≤k

1τi≤t<τi+1

EF,i+1,k
t

(

∫ T

t

∫

E
1θk<sU

k
s (θ(k), e(k))λ

k+1
s (e, θ(k), e(k))γ

k
s (θ(k), e(k))de

′ds
)

(τ(i), ζ(i))

EF,i+1,n
t

(

γt
)

(τ(i), e(i))

=
n−1
∑

k,i=0
i≤k

1τi≤t<τi+1

EF,i+1,k
t

(

∫ T

t

∫

E
1θk<sU

k
s (θ(k), e(k))γ

k+1
s (θ(k), s, e(k), e

′)de′ds
)

EF,i+1,n
t

(

γt
)

(τ(i), e(i))
,

where the last equality comes from the definition of λk. Hence, we get (B.1).

C Measurability of solutions to BSDEs depending on a pa-

rameter

C.1 Representation for Brownian martingale depending on a parameter

We consider X a Borelian subset of Rp and ρ a finite measure on B(X ). Let {ξ(x) : x ∈ X}

be a family of random variables such that the map ξ : Ω×X → R is FT ⊗B(X )−measurable

and satisfies
∫

X E|ξ(x)|2ρ(dx) < ∞. In the following result, we generalize the representa-

tion property as a stochastic integral w.r.t. W of square-integrable random variables to the

family {ξ(x) : x ∈ X}. The proof follows the same lines as for the classical Itô representa-

tion Theorem which can be found e.g. in [23]. For the sake of completeness we sketch the

proof.

Theorem C.1. There exists a P(F)⊗B(X )-measurable map Z such that
∫

X

∫ T

0 E|Zs(x)|
2dsρ(dx)

< ∞ and

ξ(x) = E[ξ(x)] +

∫ T

0
Zs(x)dWs , P⊗ ρ− a.e. (C.1)

As for the standard representation theorem, we first need a lemma which provides a

dense subset of L2(FT ⊗ B(X ),P⊗ ρ) generated by easy functions.

Lemma C.1. Random variables of the form

exp
(

∫ T

0
ht(x)dWt −

1

2

∫ T

0
|ht(x)|

2dt
)

, (C.2)

where h is a bounded B([0, T ]) ⊗ B(X )−measurable map span a dense subset of L2(FT ⊗

B(X ),P ⊗ ρ).
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Sketch of the proof. Let Λ ∈ L2(FT ⊗ B(X ),P ⊗ ρ) orthogonal to all functions of the

form (C.2). Then, in particular, we have

G(α1, . . . , αn) =

∫

X
E
[

Λexp(α1Wt1 + · · ·+ αnWtn)
]

dρ = 0 ,

for all α1, . . . , αn ∈ R and all t1, . . . , tn ∈ [0, T ]. Since G is identically equal to zero on R
n

and is analytical it is also identically equal to 0 on C
n. We then have for any B(X )⊗B(Rp)−

measurable function φ such that φ(x, .) ∈ C∞(Rn) with compact support for all x ∈ X

∫

X
E[Y φ(x,Wt1 , . . . ,Wtn)]dρ(x) =

∫

Rn×X
φ̂(x, α1, . . . , αn)E

[

Λexp(α1Wt1 + · · ·+ αnWtn)
]

dρ(x)dα1 . . . dαn = 0 ,

where φ̂(x, .) is the Fourier transform of φ(x, .). Hence, Λ is equal to zero since it is

orthogonal to a dense subset of L2(FT ⊗ B(X )). 2

Sketch of the proof of Theorem C.1. First suppose that ξ has the following form:

ξ(x) = exp
(

∫ T

0
ht(x)dWt −

1

2

∫ T

0
|ht(x)|

2dt
)

,

with h a bounded B([0, T ])⊗ B(X )−measurable map. Then, applying Itô’s formula to the

process exp
(

∫ .

0 ht(x)dWt −
1
2

∫ .

0 |ht(x)|
2dt

)

, we get that ξ satisfies (C.1) where the process

Z is given by

Zt(x) = ht(x) exp
(

∫ t

0
hs(x)dWs −

1

2

∫ t

0
|hs(x)|

2ds
)

, (t, x) ∈ [0, T ]× X .

Now for any ξ ∈ L2(FT ⊗ B(X ),P ⊗ ρ), there exists a sequence (ξn)n∈N such that each ξn

satisfies

ξn(x) = E[ξn(x)] +

∫ T

0
Zn
s (x)dWs , P⊗ ρ− a.e.

and (ξn)n∈N converges to ξ in L2(FT ⊗B(X ),P⊗dt⊗ρ) . Then, using Itô’s Isometry, we get

that the sequence (Zn)n∈N is Cauchy and hence converges in L2(P(F) ⊗ B(X ),P⊗ dt⊗ ρ)

to some Z. Using again the Itô Isometry, we get that (ξn)n∈N converges to E[ξ(x)] +
∫ T

0 Zs(x)dWs in L2(FT ⊗ B(X ),P ⊗ ρ). Identifying the limits, we get the result. 2

Corollary C.1. Let M be a P(F) ⊗ B(X )−measurable map such that (Mt(x))0≤t≤T is

a martingale for all x ∈ X and
∫

X E|MT (x)|
2ρ(dx) < ∞. Then, there exists a P(F) ⊗

B(X )−measurable map Z such that
∫ T

0

∫

X E|Zs(x)|
2ρ(dx)ds < ∞ and

Mt(x) = M0(x) +

∫ t

0
Zs(x)dWs .

The proof is a direct consequence of Theorem C.1 as in [23] so we omit it.
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C.2 BSDEs depending on a parameter

We now study the measurability of solutions to Brownian BSDEs whose data depend on

the parameter x ∈ X . We consider

– a family {ξ(x) : x ∈ X} of random variables such that the map ξ : Ω × X → R is

FT ⊗ B(X )−measurable and satisfies
∫

X E|ξ(x)|2ρ(dx) < ∞,

– a family {f(., x) : x ∈ X} of random maps such that the map f : Ω×[0, T ]×R×R
d×

X → R is P(F)⊗B(R)⊗B(Rd)⊗B(X )−measurable and satisfies
∫ T

0

∫

X E|f(s, 0, 0, x)|2ρ(dx)ds <

∞.

We then consider the BSDEs depending on the parameter x ∈ X :

Yt(x) = ξ(x) +

∫ T

t

f(s, Ys(x), Zs(x), x)ds −

∫ T

t

Zs(x)dWs, (t, x) ∈ [0, T ]× X . (C.3)

Lemma C.2. Assume that the generator f does not depend on (y, z) i.e. f(t, y, z, x) =

f(t, x). Then, BSDE (C.3) admits a solution (Y,Z) such that Y and Z are P(F) ⊗

B(X )−measurable.

Proof. Consider the family of martingales {M(x) : x ∈ X}, where M is defined by

Mt(x) = E

[

ξ(x) +

∫ T

0
f(s, x)ds

∣

∣

∣
Ft

]

, (t, x) ∈ [0, T ]× X .

Then, from Corollary C.1, there exists a P(F) ⊗ B(Rd)−measurable map Z such that
∫ T

0

∫

X E|Zs(x)|
2ρ(dx)ds < ∞ and

Mt(x) = M0(x) +

∫ t

0
Zs(x)dWs , (t, x) ∈ [0, T ] × X .

We then easily check that the process Y defined by

Yt(x) = Mt(x)−

∫ t

0
f(s, x)ds , (t, x) ∈ [0, T ]× X ,

is P(F)⊗ B(X )−measurable and that (Y,Z) satisfies (C.3). 2

We now consider the case where the generator f is Lipschitz continuous: there exists a

constant L such that

|f(t, y, z, x) − f(t, y′, z′, x)| ≤ L(|y − y′|+ |z − z′|) , (C.4)

for all (t, y, y′, z, z′) ∈ [0, T ]× [R]2 × [Rd]2.

Proposition C.1. Suppose that f satisfies (C.4). Then, BSDE (C.3) admits a P(F) ⊗

B(X )−measurable solution (Y,Z) such that E
∫ T

0

∫

X (|Ys(x)|
2 + |Zs(x)|

2)ρ(dx)ds < ∞.

Proof. Consider the sequence (Y n, Zn)n∈N defined by (Y 0, Z0) = (0, 0) and for n ≥ 1

Y n+1
t (x) = ξ(x) +

∫ T

t

f(s, Y n
s (x), Zn

s (x))ds −

∫ T

t

Zn+1
s (x)dWs, (t, x) ∈ [0, T ]× X .

From Lemma C.2, we get that (Y n, Zn) is P(F) ⊗ B(X )−measurable for all n ∈ N.

Moreover, since f satisfies (C.4), the sequence (Y n, Zn)n∈N converges (up to a subse-

quence) a.e. to (Y,Z) solution to (C.3) (see [24]). Hence, the solution (Y,Z) is also

P(F) ⊗ B(X )−measurable. 2
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