Sophie Laruelle 
email: sophie.laruelle@upmc.fr
  
Gilles Pagès 
email: gilles.pages@upmc.fr
  
Randomized Urn Models revisited using Stochastic Approximation

Keywords: Stochastic approximation, extended Pólya urn models, non-homogeneous generating matrix, strong consistency, asymptotic normality, multi-arm clinical trials, adaptive asset allocation. 2010 AMS classification: 62L20, 62E20, 62L05 secondary: 62F12, 62P10

. We reformulate the dynamics of both the urn composition and the assigned treatments as standard stochastic approximation (SA) algorithms with remainder. Then, we derive the a.s. convergence and the asymptotic normality (Central Limit Theorem CLT ) of the normalized procedure under less stringent assumptions by calling upon the ODE and SDE methods. As a second step, we investigate a more involved family of models, known as multi-arm clinical trials, where the urn updating depends on the past performances of the treatments. By increasing the dimension of the state vector, our SA approach provides this time a new asymptotic normality result. This is the extended version of the eponym published paper in Annals of Applied Probability 23(4):1409-1436. Proofs are more detailed and additional results are established on specified models of urns investigated in the paper.

Introduction

The aim of this paper is to illustrate the efficiency of Stochastic Approximation (SA) Theory by revisiting several recent results on randomized urn models applied to clinical trials (especially [START_REF] Bai | Asymptotic theorems for urn models with nonhomogeneous generating matrices[END_REF][START_REF] Bai | Asymptotics in randomized urn models[END_REF][START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF]). We will first retrieve the a.s. convergence (strong consistency) and asymptotic normality results obtained in these papers under less stringent assumptions. Then we will take advantage of this more synthetic approach to establish a new Central Limit Theorem (CLT ) in the more sophisticate randomized urn model known as "multi-arm clinical test". In this model, the urn updating which produces the adaptive design is based on statistical estimators of the past efficiency of the assigned treatments.

denotes the number of balls of type i, i = 1, . . . , d (of course a more realistic though not mandatory assumption would be Y 0 ∈ N d \ {0}). The allocation of the treatments is sequential and the urn composition at draw n is denoted by Y n = (Y i n ) i=1,...,d . When the n th patient presents, one draws randomly (i.e. uniformly) a ball from the urn with instant replacement. If the ball is of type j, then the treatment j is assigned to the n th patient, j = 1, . . . , d, n ≥ 1. The urn composition is updated by taking into account the response of the n th patient to the treatment j, or the responses of all patients up to the n th one (i.e. the efficiency of the assigned treatment), namely by adding D ij n balls of type i, i = 1, . . . , d. The procedure is iterated as long as patients present. Consequently the larger the number of balls of a given type is, the more efficient the treatment is. The urn composition at stage n, modeled by an R d -valued vector Y n , satisfies the following recursive procedure:

Y n = Y n-1 + D n X n , n ≥ 1, Y 0 ∈ R d + \ {0}, (1.1) 
with D n = (D ij n ) 1≤i,j≤d is the addition rule matrix and X n is the result of the n th draw and X n : (Ω, A, P) → {e 1 , • • • , e d } models the selected treatment ({e 1 , • • • , e d } denotes the canonical basis of R d and e j stands for treatment j). We assume that there is no extinction i.e. Y n ∈ R d + \ {0} a.s. for every n ≥ 1: so is the case if all the entries D ij n are a.s. non-negative, but other settings can also be taken under consideration (see Section 2). We model the drawing in the urn by setting

X n = d j=1 1 j-1 ℓ=1 Y ℓ n-1 d ℓ=1 Y ℓ n-1 <Un≤ j ℓ=1 Y ℓ n-1 d ℓ=1 Y ℓ n-1 e j , n ≥ 1, (1.2) 
where (U n ) n≥1 is i.i.d. with distribution U 1

L ∼ U [0,1] .
Let F n = σ(Y 0 , U k , D k , 1 ≤ k ≤ n) be the filtration of the procedure. The generating matrices are defined as the F n -compensator of the additions rule sequence i.e.

H n = E D ij n | F n-1 1≤i,j≤d , n ≥ 1. Other fields of application can be considered for such procedures like the adaptive asset allocation by an asset manager or a trader. Indeed this has already been done in [START_REF] Lamberton | When can the two-armed bandit algorithm be trusted?[END_REF] and successfully implemented with multi-armed bandit procedure. Imagine an asset manager who can trade the same financial instrument (tradable asset) on different trading venues. To optimize the execution of an inventory of this asset, she can split her orders across these trading destinations. She starts with the initial allocation vector Y 0 . At stage n, she chooses a trading destinations according to the distribution (1.2) of X n , then evaluates its performance during one time step and modifies the urn composition (most likely virtually) and proceeds. Thus the normalized urn composition represents the allocation vector among the venues and the addition rule matrices model the successive reallocations depending on the past performances of the different trading destinations.

One may also consider this type of procedure as a strategy to update the composition of a portfolio or even a whole fund, based on the (recent) past performances of the assets.

The first designs under consideration were the homogeneous GF U models where the addition rules D n are i.i.d. and the so-called generating matrices H n = H = ED n are identical, nonrandom, with nonnegative entries and irreducible. Hence by the Perron-Frobenius Theorem H has a unique and positive maximal eigenvalue and an eigenvector with positive components (see [START_REF] Athreya | Limit theorems for the split times of branching processes[END_REF][START_REF] Athreya | Embedding of urn schemes into continuous time Markov branching processes and related limit theorems[END_REF][START_REF] Freedman | Bernard Friedman's urn[END_REF][START_REF] Gouet | Martingale functional central limit theorems for a generalized Pólya urn[END_REF]). But the homogeneity of the generating matrix is often not satisfied in practice and inhomogeneous GF U models have been introduced (see [START_REF] Bai | Asymptotic theorems for urn models with nonhomogeneous generating matrices[END_REF]) in which H n are not random but converge to a deterministic limit H, under the assumption that the total number of balls added at each stage is constant. As a third step, the homogeneous Extended Pólya Urn (EP U ) models have been introduced in [START_REF] Smythe | Central limit theorems for urn models[END_REF] in which only the mean total number of balls added at each stage is constant. This number is called the balance of the urn and the urn is said balanced.

Finally, in [START_REF] Bai | Asymptotics in randomized urn models[END_REF] the authors proposed a nonhomogeneous EP U model because in applications, the addition rule D n depends on the past history of previous trials (see [START_REF] Andersena | A randomized play-the-winner design for multi-arm clinical trials[END_REF]), so that the general generating matrix H n is usually random. Thus the entries of H may not be all nonnegative (e.g., when there is no replacement after the draw diagonal terms may become negative), and they assume that the matrix H has a unique maximal eigenvalue λ with associated (right) eigenvector v * = (v * ,i ) i=1,...,d with d i=1 v * ,i = 1. Furthermore the conditional expectation of the total number of balls added at each stage was constant.

The first theoretical investigations on these models focused on the asymptotic properties of the urn composition (consistency and asymptotic normality). However, for practical matter, it is clear that the asymptotic behaviour of the vector N n := n k=1 X k which stores the treatment allocation among the first n patients is of high interest, especially its variance structure in order to compare several adaptive designs. Thus, in [START_REF] Bai | Asymptotics in randomized urn models[END_REF] is proved the strong consistency of both (normalized) quantities Y n /n and N n /n (under a summability assumption on the generating matrices).

By considering an appropriate recursive procedure for the normalized urn composition derived from (1.1) we prove by the ODE method its a.s. convergence toward v * under a significantly less stringent assumption, namely the minimal requirement that H n a.s.

-→ n→+∞ H. The a.s. convergence of the treatment allocation frequency N n /n toward the same v * follows from the previous one.

As concerns asymptotic normality, separate results on these two quantities are obtained in [START_REF] Bai | Asymptotics in randomized urn models[END_REF] under an additional assumption on the rate of convergence of the generating matrices H n toward H.

On our side we propose to consider a stochastic approximation procedure with remainder satisfied by the higher dimensional vector (Y n /n, N n /n). Then, the standard CLT for SA procedures with remainder directly provides the expected asymptotic normality result for the whole vector under an assumption on the L 2 -rate of convergence of the generating matrices towards their limit (namely i.e. |||H n -H||| = o(n -1/2 )) which is again slightly less stringent than the original one. As a result, we obtain the asymptotic joint distribution with an explicit global covariance structure matrix.

In the end of [START_REF] Bai | Asymptotics in randomized urn models[END_REF], an application to multi-arm clinical trials randomized urn models is proposed. This adaptive design has already been introduced in [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF] with first consistency results. This kind of models is clearly the most interesting for practitioners since it takes into account the past results of the assigned treatments in the addition rule matrices, denoted S n at time n (S i n denotes the number of cured patients by treatment i among the N i n treated ones). The above strong consistency results apply but none of the asymptotic normality works as stated since the generating matrices H n do not -in fact cannot as we will emphasize -converge at the requested rate. The reason being that they themselves satisfy a CLT . However we van overcome this obstacle by increasing once again the structural dimension of the problem: we show that the triplet (Y n /n, N n /n, S n /n) can be written as a recursive SA algorithm with remainder satisfying a.s. convergence and a CLT (provided the limiting generating matrix is still irreducible, etc). Thus we illustrate on this example that SA Theory is a powerful tool to investigate this kind of adaptive design problem. The main difficulty is to exhibit the appropriate form for the recursion by making a priori the balance between significant asymptotic terms and remainder terms.

The paper is organized as follows. We rewrite the dynamics (1.1) of the urn composition as a stochastic approximation procedure with state variable for Y n := Y n /n in Section 2.1. In Section 2.2 the a.s. convergence of

1 n d i=1 Y i
n is established which implies that of Y n and N n := N n /n by using the ODE method of SA under slightly lighten assumption than in [START_REF] Bai | Asymptotics in randomized urn models[END_REF]. The rate of convergence is investigated in Section 2.3: we obtain a CLT , once again under slightly less stringent assumptions on the limit generating matrix H than in [START_REF] Bai | Asymptotics in randomized urn models[END_REF]. Section 3 is devoted to multi-arm clinical tests. In Section 3.1 we briefly recall the Wei GF U model introduced [START_REF] Wei | The generalized Polya's urn design for sequential medical trials[END_REF][START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF] where the generating matrices H n are not random. In this case, the strong consistency and the asymptotic normality follow from the results of Section 2 (like in [START_REF] Bai | Asymptotics in randomized urn models[END_REF]). In Section 3.2 we study the adaptive design proposed in [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF] where the addition rule matrices depend on the responses of all the past patients. We use the results from Section 2.2 to prove the strong consistency. We prove in Section 3.3 a new CLT for this model, when the generating matrix H n satisfies itself a CLT , which relies again on Stochastic Approximation techniques.

Notations ∀ u = (u i ) i=1,...,d ∈ R d , u denotes the canonical Euclidean norm of the column vector u on R d , w(u) = d k=1 u k denotes its "weight", u t denotes its transpose; |||A||| denotes the operator norm of the matrix A ∈ M d,q (R) with d rows and q columns with respect to canonical Euclidean norms. When d = q, Sp(A) denotes the set of eigenvalues of A.

1 = (1 • • • 1) t denotes the unit column vector in R d , I d denotes the d × d identity matrix and diag(u) = [δ ij u i ] 1≤i,j≤d , where δ ij is the Kronecker symbol. S = u ∈ R d + : d i=1 u i = 1 denotes the d-dimensional simplex and V 0 = u ∈ R d : d i=1 u i = 0 .

Convergence and first rate result

With the notations and definitions described in the introduction, we then formulate the main assumptions to establish the a.s. convergence of the urn composition.

(A1) ≡                        (i)
Addition rule matrix: For every n ≥ 1, the matrix D n a.s. has non-negative entries.

(ii) Generating matrix: For every n ≥ 1, the generating matrices

H n = (H ij n ) 1≤i,j≤d a.s. satisfies ∀ j ∈ {1, . . . , d}, d i=1 H ij n = c > 0.
(iii) Starting value: The starting urn composition vector

Y 0 ∈ R d + \ {0}.
The constant c is known as the balance of the urn. In fact, we may assume without loss of generality, up to a renormalization of Y n , that c = 1: since Y n = Yn c and D n+1 = D n+1 c , n ≥ 0, formally satisfies the dynamics (1.1), namely

Y n = Y n-1 + D n X n , n ≥ 1, Y 0 ∈ R d + \ {0}.
From now on, throughout the paper, we will considered this normalized balance version. Nevertheless, we will still denote by Y n and D n the normalized quantities and assume that c = 1.

(A2) The addition rule D n is conditionally independent of the drawing procedure X n given F n-1 and satisfies

∀1 ≤ j ≤ d, sup n≥1 E D •j n 2 | F n-1 < +∞ a.s. (2.3)
where

D • j n = (D ij n ) i=1,.
..,d . The conditional independence is obtained in practice by assuming that the sequences of addition rules (D n ) n≥1 and the sequence (U n ) n≥1 used to randomize the drawings in (1.2) are independent.

(A3) Assume that there exists an irreducible d × d matrix H (with non-negative entries) such that

H n a.s. -→ n→+∞ H.
(2.4)

H is called the limit generating matrix.

The combination of assumptions (A1)-(A3) guarantees that H satisfies the assumptions of the Perron-Frobenius Theorem (see [START_REF] Berman | Nonnegative matrices in the mathematical sciences[END_REF]) so that 1 is the eigenvalue of H with the highest norm (maximal eigenvalue) has order 1, the components of its right eigenvector v can be chosen all positive and all other eigenvalues has a modulus lower than 1. In particular, we may normalize this vector v * such that w(v * ) = 1.

A variant including possible definite removal. We may relax Assumption (A1) by allowing the removal of the drawn ball from its urn (see e.g. [START_REF] Janson | Functional limit theorems for multitype branching processes and generalized Pólya urns[END_REF]). Other relaxation of these requirements may be considered: it could be possible to remove other balls than the drawn one. This leads to tenable urns (studied notably in [START_REF] Bagchi | Asymptotic normality in the generalized Pólya-Eggenberger urn model, with an application to computer data structures[END_REF], see also [START_REF] Pouyanne | An algebraic approach to Pólya processes[END_REF]) where an arithmetical assumption to the row of any negative diagonal entry in D n is added, in order to avoid the urn extinction (see Assumption (A ′ 1) below). Thus we may replace Assumption (A1) (after renormalization) by

(A ′ 1) ≡                                    (i)
Addition rule matrix: For every i ∈ {1, . . . , d}, there exists c i ∈ (0, +∞) such that, for every n ≥ 1,

∀ i, j ∈ {1, . . . , d}, δ ij c i + D ij n ∈ N c i a.s. and ∀ j ∈ {1, . . . , d}, d i=1 D ij n ≥ 0 a.s.
(ii) Generating matrix: For every n ≥ 1, H n a.s. satisfies

∀ j ∈ {1, . . . , d}, d i=1 H ij n = 1.
(iii) Starting value: The starting urn composition vector

Y 0 ∈ d i=1 N c i \ {0}.
In this case H may have negative (diagonal) entries and the Perron-Frobenius Theorem cannot be used, so we change Assumption (A3) into (A ′ 3) 1 is the eigenvalue of H with maximal modulus, has order 1 and {v :

Hv = v} ⊂ R d + .
Throughout the paper, we may substitute (A ′ 1)-(A ′ 3) for (A1)-(A3) as recalled in each result.

The following preliminary lemma ensures that if (A ′ 1) holds then the urn extinction never occurs and its weight w(Y n ) is non-decreasing. 

Proof. We proceed by induction on

n ≥ 0. Assume Y n-1 ∈ d i=1 N c i \ {0}. For every i ∈ {1, . . . , d}, Y i n = Y i n-1 + d j=1 D ij n 1 {Xn=e j } and {X n = e j } ⊂ {Y j n-1 > 0} = {Y j n-1 ≥ 1/c j }. Consequently Y i n ≥ Y i n-1 and Y i n ∈ N c i \ {0} on the event j =i {X n = e j }. On {X n = e i }, {Y i n-1 ≥ 1 c i so that Y i n = Y i n-1 + D ii n ≥ 1 c i -1 c i ≥ 0. Finally w(Y n ) = w(Y n-1 ) + d j=1 d i=1 D ij n 1 {Xn=e j } ≥ w(Y n-1 ) > 0.

The dynamics as a stochastic approximation procedure

Our aim in this section is to reformulate the dynamics (1.1)-(1.2) into a recursive stochastic algorithm. Then we aim at applying the most powerful tools of SA, namely the "ODE" and the "SDE" methods to elucidate the asymptotic properties (a.s. convergence and weak rate) of both the urn composition and the treatment allocation. We start from (1.1) with

Y 0 ∈ R d + \ {0}. For n ≥ 1, Y n+1 = Y n + D n+1 X n+1 = Y n + E [D n+1 X n+1 | F n ] + ∆M n+1 , (2.5) 
where

∆M n+1 := D n+1 X n+1 -E [D n+1 X n+1 | F n ]
is an F n -martingale increment. By the definition of the generating matrix H n , we have

E [D n+1 X n+1 | F n ] = d i=1 E D n+1 1 {X n+1 =e i } e i | F n = d i=1 E [D n+1 | F n ] P X n+1 = e i | F n e i = H n+1 d i=1 Y i n w(Y n ) e i = H n+1 Y n w(Y n ) so that Y n+1 = Y n + H n+1 Y n w(Y n ) + ∆M n+1 .
Now we can derive a stochastic approximation for the normalized urn composition Y n . First we have for every n ≥ 1,

Y n+1 n + 1 = Y n n + 1 n + 1 H n+1 Y n w(Y n ) - Y n n + ∆M n+1 n + 1 . Consequently, Y n = Y n n , n ≥ 1, satisfies a canonical recursive stochastic approximation procedure Y n+1 = Y n + 1 n + 1 (H n+1 -I d ) Y n + 1 n + 1 ∆M n+1 + n w(Y n ) -1 H n+1 Y n = Y n - 1 n + 1 (I d -H) Y n + 1 n + 1 (∆M n+1 + r n+1 ) (2.6)
with step γ n = 1 n and a remainder term given by

r n+1 := n w(Y n ) -1 H n+1 Y n + (H n+1 -H) Y n . (2.7) 
Furthermore, in order to establish the a.s. boundedness of ( Y n ) n≥1 we will rely on the following recursive equation satisfied by w(Y n ):

w(Y n+1 ) = w(Y n ) + w(H n+1 Y n ) w(Y n ) + w(∆M n+1 ).
By the properties of the generating matrix H n+1 , we obtain

w(H n+1 Y n ) = d i=1 (H n+1 Y n ) i = d i=1 d j=1 H ij n+1 Y j n = d j=1 d i=1 H ij n+1 Y j n = w(Y n ). Consequently w(Y n+1 ) = w(Y n ) + 1 + w(∆M n+1 ). (2.8)

Convergence results

Theorem 2.1. Let (Y n ) n≥0 be the urn composition sequence defined by (1.1)-(1.2). Under the assumptions (A1), (A2) and (A3) (or (A ′ 1), (A2) and (A ′ 3)),

(a) w(Yn) n a.s. -→ n→+∞ 1 and Y n w(Y n ) a.s. -→ n→+∞ v * . (b) N n := N n n = 1 n n k=1 X k a.s. -→ n→+∞ v * .
Remarks. • We simply need that H n a.s.

-→ n→+∞ H while the assumption in [START_REF] Bai | Asymptotics in randomized urn models[END_REF] is

n≥1 H n -H ∞ n < +∞ where • ∞ is the norm on L ∞ R d×d (P). • Assumption (A3) is not necessary to prove that w(Yn) n a.s. -→ n→+∞ 1.
Proof. We will first prove that (a) ⇒ (b), then we will prove (a). (a) ⇒ (b). We have

E [X n | F n-1 ] = d i=1 Y i n-1 w(Y n-1 ) e i = Y n-1 w(Y n-1 )
and, by construction

X n 2 = 1 so that E X n 2 | F n-1 = 1. Hence the martingale M n = n k=1 X k -E [X k | F k-1 ] k a.s.& L 2 -→ n→+∞ M ∞ ∈ L 2 ,
and by the Kronecker Lemma we obtain

1 n n k=1 X k - 1 n n k=1 Y k-1 w(Y k-1 ) a.s. -→ n→+∞ 0.
This yields the announced implication owing to the Cesaro Lemma.

(a) First Step: We have

D n+1 X n+1 = d j=1 D • j n+1 1 {X n+1 =e j } .
Therefore 

D n+1 X n+1 2 = d j=1 D • j n+1 2 1 {X n+1 =e j } , so that E D n+1 X n+1 2 | F n = d j=1 E D •j n+1 2 | F n P X n+1 = e j | F n ≤ sup n≥0 sup 1≤j≤d E D •j n+1 2 | F n < +∞ a.s.
w(Y n ) n = 1 + w(Y 0 ) -1 n + w(M n ) n a.s.
-→ n→+∞ 1.

(2.9)

Second Step: Since the components of Y n = Yn n are non-negative and w( Y n ) = w(Yn) n a.s. -→ n→+∞ 1, it is clear that ( Y n ) n≥1 is a.s.
bounded and that a.s. the set Y ∞ of all its limiting value is contained in

S = w -1 {1} = u ∈ R d + | w(u) = 1 .
So we may try applying the ODE method (see Appendix Theorem A.1). Since Y n and H n+1 Y n are a.s. bounded, (2.9) and (A3) imply that r n a.s.

-→ n→+∞ 0.

The ODE associated to the recursive procedure reads

ODE I d -H ≡ ẏ = -(I d -H)y.
Owing to Assumption (A3), I d -H admits v * as unique zero in S. The restriction of ODE I d -H to the affine hyperplane V is the linear system ż = -(

I d -H)z, where z = y -v * takes values in V 0 = u ∈ R d | w(u) = 0 . Since Sp (I d -H) | V 0 ⊂ {λ ∈ C, ℜe(λ) > 0}
, owing to Assumption (A3). As a consequence v * is a uniformly stable equilibrium for the restriction of ODE I d -H to S, the whole hyperplane, as an attracting area. The fundamental result derived from the ODE method (see Theorem A.1 in Appendix and the notations therein, in particular the remainder r n ) yields the expected result

Y n a.s. -→ n→+∞ v * .
Remark: If we assume that the addition rule matrices (D n ) n≥1 satisfy besides (A1), then we can directly write a stochastic approximation for Yn w(Yn) with step 1 w(Yn) in which the remainder simply reads r n+1 = (H n+1 -H) Yn w(Yn) and prove the a.s. convergence under the same assumptions.

Comments. We could apply directly the ODE method because we first proved that ( Y n ) n≥1 is a.s. bounded without using the standard Lyapunov machinery developed in SA Theory. That is why the assumption on the remainder sequence (r n ) n≥1 simply reads

r n a.s. -→ n→+∞ 0.
Another approach is the martingale one. It relies on the existence of a Lyapunov function V : R d → R + associated to the algorithm satisfying

∃ a > 0, ∀y ∈ R d , y = v * , ∇V | I d -H (y) > 0 and ∇V | I d -H > a |∇V | 2 . (2.10)
In this framework the existence of a Lyapunov function can be established. Hence, the natural condition on the remainder sequence (r n ) n≥1 reads (see [START_REF] Duflo | Algorithmes stochastiques[END_REF])

n≥1 r n 2 n < +∞ a.s.
In that perspective, the assumption on the generating matrices would read n≥1

|||H n -H||| 2 n < +∞ a.s. which is still slightly less stringent than assumption on the generating matrices made in [START_REF] Bai | Asymptotics in randomized urn models[END_REF].

Rate of convergence

In the previous section we proved the a.s. convergence of both quantities of interest, namely Y n and N n , toward v * . In this section we establish a "joint CLT " for the (column) couple

θ n := ( Y n , N n ) t
with an explicit asymptotic joint normal distribution (including covariances). To this end we will show that θ n satisfies a S 2 -valued SA recursive procedure which (a.s. converges toward 

θ * = (v * , v * ) t ∈
∀ n ≥ 1, Y n+1 = Y n - 1 n + 1 I d -(2 -w( Y n ))H Y n + 1 n + 1 (∆M n+1 + rn+1 ) , where rn+1 := H n+1 -H w( Y n ) + (w( Y n ) -1) 2 w( Y n ) H Y n .
For N n we have, still for every n ≥ 1,

N n+1 = N n - 1 n + 1 N n -(2 -w( Y n )) Y n + 1 n + 1 ∆ M n+1 + r n+1 (2.11) with ∆ M n+1 := X n+1 -E [X n+1 | F n ] = X n+1 - Y n w(Y n ) and r n+1 := (w( Y n ) -1) 2 w( Y n ) Y n .
Thus, we obtain a new recursive SA procedure, still with step γ n = 1 n , namely

θ n+1 = θ n - 1 n + 1 h(θ n ) + 1 n + 1 (∆M n+1 + R n+1 ) , n ≥ 1, with ∆M n+1 := ∆M n+1 ∆ M n+1 , R n+1 := rn+1 r n+1 and ∀ θ = y ν , y ∈ R d , ν ∈ R d , h(θ) := (I d -(2 -w(y))H)y ν -(2 -w(y))y with h(θ * ) = 0.
The function h is differentiable on R d × R d and its differential at point θ * is given by

Dh(θ * ) = I d -H + v * 1 t 0 M d (R) v * 1 t -I d I d so that Dh(θ * ) |V 2 0 = (I d -H) |1 ⊥ 0 |1 ⊥ -I d|1 ⊥ I d|1 ⊥ .
To establish a CLT for the sequence (θ n ) n≥1 we need to make the following additional assumptions:

(A4) The addition rules D n a.s. satisfy

∀1 ≤ j ≤ d,    sup n≥1 E D •j n 2+δ | F n-1 ≤ C < +∞ for a δ > 0, E D •j n (D •j n ) t | F n-1 -→ n→+∞ C j ,
where

C j = (C j il ) 1≤i,l≤d , j = 1, . . . , d, are d × d symmetric positive definite matrices. Note that (A4) ⇒(A2) since E D •j n 2 | F n-1 ≤ E D •j n 2+δ | F n-1 2 2+δ . (A5) v The matrix H satisfies nv n E |||H n -H||| 2 -→ n→+∞ 0, (2.12) 
where (v n ) n≥1 is a positive sequence (specified in each item of the theorems further on). 

=      d k=1 v * k C k -v * (v * ) t H diag(v * ) -v * (v * ) t diag(v * ) -v * (v * ) t t H t diag(v * ) -v * (v * ) t      = a.s.-lim n→+∞ E ∆M n ∆M t n | F n-1 . (2.14) (b) If λ max = 1/2, H is R-diagonalizable and (2.12) holds with v n = log n, n ≥ 2, then θ n → θ * a.s. and n log n (θ n -θ * ) L -→ n→+∞ N (0, Σ) with Σ = lim n→+∞ 1 log n log n 0 e -u Dh(θ * )- I 2d 2 t Γe -u Dh(θ * )- I 2d 2 du. (c) If λ max ∈ (1/2, 1
), H is R-diagonalizable and (2.12) holds with v n = n 1-2λmax+η , n ≥ 1, for some η > 0, then θ n → θ * a.s. and n 1-λmax (θ nθ * ) a.s. converges as n → +∞ towards a finite random variable.

Proof. (a) We will check the three assumptions of the CLT for SA algorithms recalled in the Appendix (Theorem A.2). Firstly, the condition (A.26) on the spectrum of Dh(θ * ) |S requested for algorithms with step 1 n in Theorem A.2 reads ℜe Sp(Dh(θ * ) |S ) > 1 2 . This follows from our Assumption (2.13) since by decomposing R d = Rv * ⊕ Ker(w), one checks that

Sp(Dh(θ * ) |S ) = {1} ∪ 1 -λ, λ ∈ Sp(H) \ {1} .
Secondly Assumption (A4) ensures that Condition (A.24) is satisfied since

sup n≥1 E ∆M n 2+δ | F n-1 < +∞ a.s. and E ∆M n ∆M t n | F n-1 a.s. -→ n→+∞ Γ as n → +∞,
where Γ is the symmetric nonnegative matrix given by (2.14) as established below. To this end we have to determine three blocks since Γ reads

Γ = Γ 1 Γ 12 Γ t 12 Γ 2 where Γ 1 , Γ 2 , Γ 12 ∈ M d (R).
Computation of Γ 1 .

E ∆M n+1 ∆M t n+1 | F n = d q=1 P(X n+1 = e q | F n ) E D •q n+1 (D •q n+1 ) t | F n -E [D n+1 X n+1 | F n ] E [D n+1 X n+1 | F n ] t = d q=1 Y q n w(Y n ) E D •q n+1 (D •q n+1 ) t | F n -H n+1 Y n w(Y n ) H n+1 Y n w(Y n ) t a.s. -→ n→+∞ Γ 1 = d q=1 v * q C q -v * (v * ) t . Computation of Γ 2 . E ∆ M n+1 ∆ M t n+1 | F n = E X n+1 X t n+1 | F n - Y n w(Y n ) Y n w(Y n ) t = diag Y n w(Y n ) - Y n w(Y n ) Y q n w(Y n ) t a.s. -→ n→+∞ Γ 2 = diag(v * ) -v * (v * ) t .
Computation of Γ 12 .

E ∆M n+1 ∆ M t n+1 | F n = E D n+1 X n+1 X t n+1 | F n -E [D n+1 X n+1 | F n ] E [X n+1 | F n ] t = E [D n+1 | F n ] E X n+1 X t n+1 | F n -E [D n+1 | F n ] E [X n+1 | F n ] E [X n+1 | F n ] t = H n+1 diag Y n w(Y n ) -H n+1 Y n w(Y n ) Y n w(Y n ) t a.s. -→ n→+∞ Γ 12 = H diag(v * ) -v * (v * ) t .
Finally, it remains to check that the remainder sequence (R n ) n≥1 satisfies (A.25) for an ǫ > 0:

E (n + 1) R n+1 2 1 { θn-θ * ≤ǫ} -→ n→+∞ 0. (2.15)
We note that R n+1

2 = rn+1 2 + r n+1 2 .
It follows from the definition of rn+1 and the elementary facts

Y n -v * ≤ θ n -θ * and w( Y n ) ≥ Y n that rn+1 2 1 θn-θ * ≤ v * 2 ≤ 2 (w( Y n ) -1) 4 v * 2 + |||H n+1 -H||| 2 v * 2 3 2 v * 1 θn-θ * ≤ v * 2 ≤ 6 (w( Y n ) -1) 4 + |||H n+1 -H||| 2 1 θn-θ * ≤ v * 2 . But w( Y n ) -1 = w(∆Mn) n where sup n≥0 E |w(∆M n+1 )| 2+δ | F n ≤ C ′ , δ > 0, owing to (A4). Now using that |w(y)| ≤ C d y , E n w( Y n ) -1 4 1 θn-θ * ≤ v * 2 ≤ C * δ nE w( Y n ) -1 2+δ = C d n 1+δ E |w(∆M n )| 2+δ ≤ C ′ d n 1+δ , where C * δ > 0 is a real constant. Consequently nE w( Y n ) -1 4 1 θn-θ * ≤ v * 2 = O 1 n δ .
Thus, by (A5) we obtain

nE rn+1 2 1 θn-θ * ≤ v * 2 = O 1 n δ .
The same argument yields nE r n+1 2 1 θn-θ * ≤ v * 

Application to urn models for multi-arm clinical trials

In this section, we consider urn models for multi-arm clinical trials introduced by Wei and generalized by Bai, Hu and Shen. In this context, the initial framework where the addition rule matrices have nonnegative entries is the only one to make sense.

The Wei GFU Model

We consider here the model presented in [START_REF] Wei | The generalized Polya's urn design for sequential medical trials[END_REF] and in [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF], where balls are added depending on the success probabilities of each treatment. Define an efficiency indicator as follows: let (T i n ) n≥1 , 1 ≤ i ≤ d, be d independent sequences of [0, 1]-valued i.i.d. random variables, independent of the i.i.d.sampling sequence (U n ) n≥1 so that

E T i n = p i , 0 < p i < 1, 1 ≤ i ≤ d. (3.16) Remark. If (T i n ) n≥1 , 1 ≤ i ≤ d
, is simply a success indicator, namely d independent sequences of i.i.d. {0, 1}-valued Bernoulli trials with respective parameter p i , then the convention is to set T i n = 1 to indicate that the response of the i th treatment in the n th trial is a success and T i n = 0 otherwise.

In this framework one considers the filtration

F n = σ (Y 0 , U k , T k , 1 ≤ k ≤ n), n ≥ 0.
Consider the following addition rules: a success on the treatment i adds a ball of type i to the urn and a failure on the treatment i adds1 d-1 balls for each of the other d -1 types. Thus the addition rule proposed in [START_REF] Wei | The generalized Polya's urn design for sequential medical trials[END_REF] is as follows

D n+1 =          T 1 n+1 1-T 2 n+1 d-1 • • • 1-T d n+1 d-1 1-T 1 n+1 d-1 T 2 n+1 • • • 1-T d n+1 d-1 . . . . . . . . . . . . 1-T 1 n+1 d-1 1-T 2 n+1 d-1 • • • T d n+1         
so that

H n+1 = E [D n+1 | F n ] = E D n+1 = H =         p 1 q 2 d-1 • • • q d d-1 q 1 d-1 p 2 • • • q d d-1 . . . . . . . . . . . . q 1 d-1 q 2 d-1 • • • p d        
,

where q i = 1 -p i , 1 ≤ i ≤ d.
Moreover, H is R-diagonalizable since its transpose is obviously a reversible (stochastic) matrix with respect to its invariant probability measure v * 1 , given for this model by

v * i = 1 q i d j=1 1/q j , 1 ≤ i ≤ d.
The strong consistency has been first established in [START_REF] Athreya | Embedding of urn schemes into continuous time Markov branching processes and related limit theorems[END_REF], then redone in [START_REF] Bai | Asymptotics in randomized urn models[END_REF]. It follows from Theorem 2.1 as well. If λ max < 1/2, the asymptotic normality

Y n -nv * √ n = √ n Y n n -v * L -→ N (0, Σ) as n → +∞
results from Theorem 3.2 in [START_REF] Bai | Asymptotics in randomized urn models[END_REF] and from Theorem 2.2 of this paper. Therefore, the other types of rate, depending on λ max , hold (since r n ≡ 0). However, using Theorem 2.2 we obtain a joint CLT for ( Y n , N n ). Note that if p i > p j , then v * i > v * j . Hence the components v * i are ordered according to the increasing efficiency p i of the treatments. Furthermore, it is clear that, if p i ↑ 1 and all other probabilities p j stand still, then lim

p i →1 v * j = δ ij .
Consequently, since v * i is the asymptotic probability of assigning treatment i to a patient, the procedure asymptotically allocates more patients to the most efficient treatment(s). Following the practitioners, the fact that a marginal allocation of less efficient treatments is preserved is justified by some comparison matter. However this model only takes into account in the addition rule matrix D n the response of the n th patient without considering the ones of past patients. This led the author to introduce [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF] a new model based on statistical observations of the efficiency of the assigned treatments to all past patients.

The Bai-Hu-Shen GFU Model

We consider now the model introduced in [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF] (and considered again in [START_REF] Bai | Asymptotics in randomized urn models[END_REF]) where (T i n ) n≥1 ,1 ≤ i ≤ d, are d independent sequences of i.i.d. {0, 1}-valued Bernoulli trials satisfying (3.16) and the filtration (F n ) n≥0 is defined as in the previous section. Let

N n = (N 1 n , . . . , N d n ) t and S n = (S 1 n , . . . , S d n ) t , where N i n = N i n-1 + X i n , n ≥ 1,
still denotes the number of times the i th treatment is selected among the first n stages and

S i n = S i n-1 + T i n X i n , n ≥ 1
, denotes the number of successes of the i th treatment among these N i n trials, i = 1, . . . , d. However, to avoid degeneracy of the procedure, we will make the following initialization assumption

N i 0 = 1, S i 0 = 1, i = 1, . . . , d
which makes the above interpretation of these quantities correct "up to one unit".

Remark.

Like with the Wei model, we can simply assume that T i n is a {0, 1}-valued efficiency indicator.

Define Π n = (Π 1 n , . . . , Π d n ) t , where Π i n = S i n N i n , i = 1, . . . , d.
In [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF] the authors consider the following addition rule matrices,

D n+1 =            T 1 n+1 Π 1 n (1-T 2 n+1 ) j =2 Π j n • • • Π 1 n (1-T d n+1 ) j =d Π j n Π 2 n (1-T 1 n+1 ) j =1 Π j n T 2 n+1 • • • Π 2 n (1-T d n+1 ) j =d Π j n . . . . . . . . . . . . Π d n (1-T 1 n+1 ) d j =1 Π j n Π d n (1-T 2 n+1 ) d j =2 Π j n • • • T d n+1            ,
i.e. at stage n + 1, if the response of the j th treatment is a success, then one ball of type j is added in the urn. Otherwise,

Π i n k =j Π k n
(virtual) balls of type i, i = j, are added. This addition rule matrix clearly satisfies (A1)-(i) and (A2). Then, one easily checks that the generating matrices are given by

H n+1 = E [D n+1 | F n ] =            p 1 Π 1 n (1-p 2 ) j =2 Π j n • • • Π 1 n (1-p d ) j =d Π j n Π 2 n (1-p 1 ) j =1 Π j n p 2 • • • Π 2 n (1-p d ) j =d Π j n . . . . . . . . . . . . Π d n (1-p 1 ) j =1 Π j n Π d n (1-p 2 ) j =2 Π j n • • • p d           
and satisfy (A1)-(ii). As soon as

Y 0 ∈ R d + \ {0}, H n a.s.
-→ H (see Lemma 3.1 below or [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF] when

Y 0 ∈ (0, ∞) d ) where H =           p 1 p 1 (1-p 2 ) j =2 p j • • • p 1 (1-p d ) j =d p j p 2 (1-p 1 ) j =1 p j p 2 • • • p 2 (1-p d ) j =d p j . . . . . . . . . . . . p d (1-p 1 ) j =1 p j p d (1-p 2 ) j =2 p j • • • p d          
.

The matrix H is clearly irreducible since 0 < p i < 1, 1 ≤ i ≤ d, so that Assumption (A3) is satisfied. The normalized maximal eigenvector v * (associated to the eigenvalue 1) is given by

v * i = p i k =i p k (1 -p i ) 1≤j≤d p j 1-p j k =j p k , i = 1, . . . , d.
In the next section, devoted to rates, we will use again the fact that H is R-diagonalizable, still because its transpose is reversible with respect to its invariant distribution v * . Then calling upon Theorem 2.1 (or following the direct proof from [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF]) we obtain

Y n = Y n n a.s. -→ n→+∞ v * and N n = N n n a.s. -→ n→+∞ v * . (3.17) Note that if p i > p j , p i p j k =i p k k =j p k > 1 and 1-p j 1-p i > 1 so that v * i > v * j
. Hence the entries v * i are ordered according to the increasing efficiency p i of the treatments. This model can be considered as more ethical than the Wei model since a better treatment will be administrated to more patients. Indeed, when d > 2, for any i = j,

1 ≤ i, j ≤ d, if p i > p j , v * i BHS v * j BHS > v * i W v * j W > 1 
(when d = 2 both matrices H coincide).

Remark. Note that in that model the "balls" in the urn become virtual since there exists no N ∈ N such that, for every n ≥ 1, N D n ∈ M d (N).

Asymptotic normality for multi-arm clinical trials for the BHS GF U model

In [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF] in order to derive a CLT , not with the bias EY n but with nv * , from their own general asymptotic normality result (which statement is similar to Theorem 2.2) the authors need to fulfill the following convergence rate assumption for

H n n≥1 H n -H ∞ √ n < +∞ (3.18)
where • ∞ is the norm on L ∞ R d×d (P). In [START_REF] Bai | An adaptive design for multi-arm clinical trials[END_REF], an a.s. rate of decay 4 ) is shown for this model which is clearly not fast enough to fulfill (3.18).

|||H n -H|||| ∞ = o(n - 1 
However, by enlarging the dimension of the structure process of the procedure by considering the 3d-dimensional R d × S × [0, 1] d -valued random sequence

θ n =    Y n N n S n    where S n = S n n , n ≥ 1,
we will establish that a CLT does hold for the BHS GF U model. The first step is to notice that the generating matrix H n+1 can may be written as a function depending on S n and N n , i.e. H n+1 = Φ( S n , N n ), where Φ :

R d + × (0, ∞) d → M d (R) is a differentiable function defined by Φ(s, ν) = Φ ij (s, ν) 1≤i,j≤d where Φ ii (s, ν) = p i 1 ≤ i ≤ d Φ ij (s, ν) = s i /ν i k =j s k /ν k q j 1 ≤ i, j ≤ d, i = j.
Then the following strong consistency and CLT hold for ( θ n ) n≥1 . Theorem 3.1. Assume that Y 0 ∈ R d + \ {0}. We still denote by λ max the highest eigenvalue of H apart from 1.

(a) If λ max = max (Sp(H) \ {1}) ⊂ -∞, 1 2 , then θ n a.s. -→ n→+∞ θ * ∈ S 2 × [0, 1] d and √ n θ n -θ * L -→ n→+∞ N 0, Σ ,
where

θ * := (v * , v * , diag(p)v * ) t , Σ = +∞ 0 e -u D h( θ * )- I 3d 2 Γe -u D h( θ * )- I 3d 2 t du with Γ =           d k=1 v * k C k -v * (v * ) t H diag(v * ) -v * (v * ) t diag(v * ) -v * (v * ) t diag(p) diag(v * ) -v * (v * ) t t H t diag(v * ) -v * (v * ) t diag(v * ) -v * (v * ) t diag(p) diag(p) diag(v * ) -v * (v * ) t t diag(p) diag(v * ) -v * (v * ) t t diag(p) v * -v * v * t diag(p)           where C k = (C k ij ) 1≤i,j≤d , 1 ≤ k ≤ d, are d × d positive definite matrices with C k ij = p i p j (1 -p k ) ℓ =k p ℓ 2 1 {i,j =k} + p k 1 {i=j=k} , and D h( θ * ) is an R-diagonalizable matrix reading D h( θ * ) =       I d -H + v * 1 t -∂ ∂ν (Φ(s, ν)y) | θ= θ * -∂ ∂s (Φ(s, ν)y) | θ= θ * v * 1 t -I d I d 0 M d (R) diag(p) v * 1 t -I d 0 M d (R) I d       . so that Sp(D h( θ * ) |V 2 0 ×R d ) = Sp((I d -H) |1 ⊥ ) = {1 -λ, λ ∈ Sp(H) \ {1}} ⊂ R (see Appendix C). (b) If λ max = 1/2, then, θ n → θ * a.s. and n log n θ n -θ * L -→ n→+∞ N 0, Σ with Σ = lim n→+∞ 1 log n log n 0 e -u D h( θ * )- I 3d 2 t Γe -u D h( θ * )- I 3d 2 du. 
(c) If λ max > 1/2, then n 1-λmax θ nθ * a.s. converges as n → +∞ towards a finite random variable.

Proof.

Step 1 (Strong consistency). We will show with Lemma 3.1 that S n a.s. -→ p = (p 1 , . . . , p d ) as n → +∞ so that Assumption (2.4) holds i.e. H n a.s.

-→ n→+∞ H.

Remark. If we assume that

Y i 0 > 0, 1 ≤ i ≤ d, then we can prove that lim n N i n = +∞ a.s., 1 ≤ i ≤ d, faster than below by using that Y i n ≥ Y i 0 , 1 ≤ i ≤ d, n ≥ 1.
The following proof considers the more general case where

Y 0 ∈ R d + \ {0}.
Proof of Lemma 3.1.

Step 1. It follows from the dynamics (1.1) and the definitions of D n+1 and H n+1 that, for every n ≥ 0, w(Y n ) = w(Y 0 ) + n and that, for every i ∈ {1, . . . , d},

Y i n+1 = Y i n + d j=1 H ij n+1 Y i n w(Y n ) + ∆M i n+1
where (∆M i n ) n≥1 is a sequence of martingale increments satisfying sup n E |∆M i n | 2 | F n-1 < +∞ since the addition rule matrices satisfy (2.3). Now using that S i 0 = N i 0 = 1 by convention, one derives that

∀ i = j, H ij n+1 ≥ κ 0 n , with κ 0 = 1 2d min 1≤i≤d p i , 1 -p i > 0
so that, using that H ii n+1 = p i , there exists a deterministic integer n 0 such that for every n ≥ n 0 ,

Y i n+1 ≥ 1 + p i n - κ 0 w(Y n ) Y i n + κ 0 n + ∆M i n+1 ≥ 1 + p i 2w(Y n ) Y i n + κ 0 n + ∆M i n+1 .
Standard computations show that, setting

a i n = n-1 k=n 0 (1 + p i 2w(Yn) , i = 1, . . . , d, ∀ n ≥ n 0 , Y i n a i n ≥ Y i n 0 a i n 0 + n k=n 0 +1 κ 0 a i k + n k=n 0 +1 ∆M i k a i k Since there exists κ 1 , κ 2 > 0 such that κ 1 n p i 2 ≤ a i n ≤ κ 2 n p i 2 , one has ∀ η > 0, n k=n 0 +1 ∆M i k a i k = o n 1-p i +η 2
.

Finally, there exists a positive real constant c ′ such that, for every i = 1, . . . , d,

Y i n ≥ c ′ n p i 2 n k=n 0 +1 k -p i 2 + o n 1+η 2 so that ∀ i ∈ {1, . . . , d}, lim inf n Y i n ≥ c ′ 1 0 u -p i 2 du > 0
and, as a consequence, n≥1 Y i n = +∞ a.s. Now using that for every i = 1, . . . , d,

N i n = n k=1 1 {X k =e i } and P(X n = e i | F n-1 ) = Y i n-1 1 - w(Y 0 ) w(Y n-1 ) , n ≥ 1,
we get by the conditional Borel-Cantelli Lemma that N i ∞ = lim n N i n = +∞ a.s.

Step 2. First we note that

Π i n = n k=1 T i k ∆N i k N i n
and we introduce the sequence ( Π n ) n≥1 defined by

Π i n = n k=1 (T i k -p i ) ∆N i k N i k-1 + 1 , n ≥ 1.
It is an F n -martingale since, T i k being independent of F k-1 and X k ,

E (T i k -p i )∆N i k | F k-1 = E(T i k -p i )P(X k = e i | F k-1 ) = 0.
It has bounded increments since |T i kp i | ≤ 1 and

Π i n ≤ n k=1 E((∆N i k ) 2 | F k-1 ) (N i k-1 + 1) 2 .
It follows, using (∆N i k ) 2 = ∆N i k , that, for every n ≥ 1, 

E Π i n ≤ E n k=1 ∆N i k (N i k-1 + 1) 2 ≤ E n k=1 ∆N i k N i k-1 N i k ≤ 1 N i 0 = 1. Consequently Π i n → Π i ∞ ∈ L
) → (v * , v * ). Furthermore diag( S n ) = diag(Q n ) N n → diag(p)v * = u * so that θ n → θ * as n → +∞.
Step 2 (Asymptotic normality). We will show now that ( θ n ) n≥1 satisfies an appropriate recursion to apply Theorem A.2(a) (standard CLT ). First, we write a recursive procedure for S n . Having in mind that S n = 1 + 1≤k≤n diag(T k )X k , we get

S n+1 = S n - 1 n + 1 S n -diag(T n+1 )X n+1 = S n - 1 n + 1 S n -diag(p) Y n w( Y n ) + 1 n + 1 ∆ M n+1 = S n - 1 n + 1 S n -diag(p)(2 -w( Y n )) Y n + 1 n + 1 ∆ M n+1 + r n+1 (3.19) 
where

∆ M n+1 := diag(T n+1 )X n+1 -E [diag(T n+1 )X n+1 | F n ] = diag(T n+1 )X n+1 -diag(p) Y n w(Y n ) is an F n -martingale increment and r n+1 = diag(p) (w( Yn)-1) 2 w( Yn)
Y n . Then we rewrite the dynamics satisfied by Y n as follows

Y n+1 = Y n - 1 n + 1 I d -(2 -w( Y n ))H n+1 Y n + 1 n + 1 (∆M n+1 + řn+1 ) , (3.20) 
where řn+1 :=

w( Y n ) -1 2 w( Y n ) H n+1 Y n .
Finally, we get the following recursive procedure for θ n

θ n+1 = θ n - 1 n + 1 h( θ n ) + 1 n + 1 ∆ M n+1 + R n+1 , n ≥ 1,
where, for every θ = (y, ν, s

) t ∈ R 3d + , h( θ) :=   (I d -(2 -w(y))Φ(s, ν))y ν -(2 -w(y))y s -(2 -w(y))diag(p)y   , ∆ M n+1 :=   ∆M n+1 ∆ M n+1 ∆ M n+1   and R n+1 :=   řn+1 r n+1 r n+1   .
Let us check that the addition rule matrices satisfy (A4). For every j ∈ {1, . . . , d}, let set

C j n = E D •j n+1 (D •j n+1 ) t | F n . We have that (C j n ) ii ′ = E D ij n+1 (D i ′ j n+1 ) t | F n = Q i n Q i ′ n k =j Q k n 2 E (1 -T j n+1 ) 2 | F n 1 {i,i ′ =j} + E (T j n+1 ) 2 | F n 1 {i=i ′ =j} because T j n+1 (1 -T j n+1 ) = 0. Then owing to Lemma 3.1, C j n a.s. -→ n→+∞ C j with C j ii ′ = p i p i ′ (1 -p j ) k =j p k 2 1 {i,i ′ =j} + p j 1 {i=i ′ =j} .
We can check that C j is a positive definite matrice. Consequently (A4) holds. The function Φ being differentiable at the equilibrium point θ * , we have i=1 u i = 0, D h( θ * ) leaves stable V 2 0 × R d and its spectrum on this subspace does not contain 1, hence is equal to Sp((

D h( θ * ) =       I d -H + v * 1 t -∂ ∂ν (Φ(s, ν)y) | θ= θ * -∂ ∂s (Φ(s, ν)y) | θ= θ * v * 1 t -I d I d 0 M d (R) diag(p) v * 1 t -I d 0 M d (R) I d       . ( 3 
I d -H)) 1 ⊥ = {1 -λ, λ ∈ Sp(H), λ = 1}.
As for the reminder term R n+1 we first note that it is F n -measurable and reads

R n+1 = w( Y n ) -1 2 w( Y n )    H n+1 Y n Y n Y n .    As Yn w( Yn)
lies in the simplex, its ℓ 1 -norm ( (u 1 , . . . ,

u d ℓ 1 = |u 1 | + • • • |u d |)
is 1 and so is the case of H n+1 Y n . Finally, following th elines of the end of the proof of Theorem 2.2(a).

E R n+1 2 1 { θn-θ * ≤ε} ≤ 3dE (w( Y n ) -1) 4 1 { θn-θ * ≤ε} ≤ C d n 2+δ
At this stage, the proof follows the lines of that of Theorem 2.2: the computation of the covariance matrix Γ and the treatment of the remainder term uses the same tools as before. The three results of convergence rate follow from Theorem A.2 in the Appendix (given the above rate obtained for the remainder term). The details are left to the reader. 

Remark

√ n H n -H L -→ n→+∞ N (0; Γ H ) where Γ H is a d 2 × d 2 matrix given by Γ H = DΦ(u * , v * )[ Σ i+d,j+d ] 1≤i,j≤2d DΦ(u * , v * ) t .
Proof. This is an easy consequence of the so-called ∆-method since

H n = Φ( S n , N n ) = Φ(u * , v * ) + DΦ(u * , v * ).( S n -u * , N n -v * ) + ( S n -u * , N n -v * ) ε( S n , N n ) with lim y→(u * ,v * ) ε(y) = 0. Consequently √ n H n -H = DΦ(u * , v * ).( √ n( S n -u * ), √ n( N n -v * )) + ε P (n)
where ε P (n) goes to 0 in probability (as the product of a tight sequence and an a.s. convergent sequence). This concludes the proof.

Remark. This corollary shows a posteriori that it was hopeless to try applying Theorem 2.2 in its standard form to establish asymptotic normality for multi-arm clinical trials since the assumption (A5) cannot be satisfied. Our global SA approach breaks the vicious circle.

Theorem A. Then the set Θ ∞ of its limiting values as n → +∞ is a.s. a compact connected set, stable by the flow of

ODE h ≡ θ = -h(θ). Furthermore if θ * ∈ Θ ∞ is a uniformly stable equilibrium on Θ ∞ of ODE h , then θ n a.s.
-→ θ * as n → +∞.

Comments. By uniformly stable we mean that sup

θ∈Θ ∞ |θ(θ 0 , t) -θ * | -→ 0 as t → +∞ where θ(θ 0 , t) θ 0 ∈Θ ∞ , t∈R + is the flow of ODE h on Θ ∞ .
We introduce the η-differentiability of the vector field h at θ * :

h(θ) = h(θ * ) + Dh(θ * )(θ -θ * ) + o θ -θ * 1+η
as θ → θ * for some η > 0.

(A.23)

Theorem A.2 (Rate of convergence see [START_REF] Duflo | Random iterative models[END_REF] Theorem 3.III.14 p.131 (for CLT see also e.g. [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF][START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF])). Let θ * be an equilibrium point of {h = 0}. Assume that the function h is differentiable at θ * and all the eigenvalues of Dh(θ * ) have positive real parts. Assume that for some δ > 0, sup

n≥n 0 E ∆M n+1 2+δ | F n < +∞ a.s., E ∆M n+1 ∆M t n+1 | F n a.s. -→ n→+∞ Γ, (A.24)
where Γ is a deterministic symmetric definite positive matrix and for an ǫ > 0,

(n + 1)v n E r n+1 2 1 { θn-θ * ≤ǫ} -→ n→+∞ 0, (A.25)
where (v n ) n≥1 is a positive sequence. Specify the gain parameter sequence as follows (c) If λ min ∈ (0, 1 2 ), Dh(θ * ) is as above and (A.25) holds with v n = n 2λ min -1+ε , n ≥ 1, for some ε > 0, then n λ min (θ nθ * ) a.s. converges as n → +∞ towards a finite random variable.

Remark. After this paper was published in Annals of Applied Probability, L.-X. Zhang pointed out in [START_REF] Zhang | Central limit theorems of a recursive stochastic algorithm with applications to adaptive design[END_REF] a less stringent assumption on H to get (b) and (c), namely that all the Jordan blocks of λ min have order 1 and, in (c), that λ min can be replaced mutatis mutandis by ℜe(λ min ). When these orders are not equal to 1 (or even in situations when H itself is random), new rates are obtained (see Theorem 2.1 in [START_REF] Zhang | Central limit theorems of a recursive stochastic algorithm with applications to adaptive design[END_REF]). Thus, in item (b), if ν denotes the maximum size of Jordan blocks of λ min then n log n should be replaced by

√ n (log n) ν-1 2
(and the definition of Σ should be modified accordingly by replacing 1/T by 1/T 2ν-1 in the r.h.s. of its definition).

Note that in our examples of applications the matrices H are diagonalizable since H t always turns out to be reversible w.r.t. to their invariant distribution.

B On the eigenvalues of the limit generating matrix in the Bai-Hu-Shen model

We have seen in Section 3.3 that the limit generating matrix H of the BHS model reads and is always diagonalizable since its transpose is reversible with respect to its "first" eigenvector v * . We propose below another proof when the p i are pairwise distinct which provides bounds for the eigenvalues. Hence we can give a sufficient condition for having a standard CLT for the urn dynamics.

H = p i δ ij + p i (1 -p j ) π -p j (1 -δ ij )
Theorem B.1. The characteristic polynomial of the above BHS generating matrix H is given by det(H -λI d ) =

d i=1 p i (1 -a i ) -λ + d i=1 p i a i i =j p j (1 -a j ) -λ ,
where a i = 1-p i π-p i , i ∈ {1, . . . , d}. In particular, if for every i = j, p i = p j , then H has pairwise distinct eigenvalues hence it is diagonalizable. Furthermore the second highest eigenvalue λ max of H satisfies λ max < max ⊲ If for every i = j, p i = p j and π = 1, then for every i = j, p i (1a i ) = p j (1a j ). Consequently, there exists a permutation σ ∈ Σ d such that i → p σ(i) (1a σ(i) ) is increasing. Thus, one checks by considering the function λ → det(H-λI d )

d i=1 (p i (1-a i )-λ)
that there are d distinct roots for det(H -λI d ) such that λ i ∈ (p σ(i) (1a σ(i) ), p σ(i+1) (1a σ(i+1) )), i ∈ {1, . . . , d} (with the convention that p σ(d+1) (1a σ(d+1) ) = +∞). Consequently, H has d real distinct eigenvalues.

⊲ If for every i = j, p i = p j and π = 1, then 1 is an eigenvalue of H of multiplicity one and 0 of multiplicity d -1. It is easy to check that the eigensubspace associated to 0 is of dimension d -1.

Therefore, if for every i = j, p i = p j , H is diagonalizable.

C Additional results

In this section we briefly prove that the matrices Dh(θ * ) are diagonalizable in both investigated models.

Spectrum of Dh(θ * ) |V 2 0 in Theorem 2.2. We aim at proving that, if H is diagonalizable, so is the case of Dh(θ * ) |V 2 0 . We know that H leaves stable Rv * and V 0 and R d = Rv * ⊕ V 0 . So let λ ∈ Sp(H) \ {1} and y ∈ E H λ (eigenspace of λ). Noting that E H λ ⊂ V 0 and that v * 1 t y = ( i y i )v * = 0, one derives that y with B = -∂ ∂s (Φ(s, ν)y) | θ= θ * . Let y ∈ V 0 be an eigenvector of H with eigenvalue λ = 1. Then, elementary computations show that (y, y 1-λ , diag(p)y 1-λ ) t is an eigenvector in V 

Lemma 2 . 1 (

 21 Preliminary). If (A ′ 1) holds, then w(Y n ) is non-decreasing and postive.

Theorem 2 . 2 .

 22 Assume (A1), (A3) (or (A ′ 1), (A ′ 3)), (A4) and (A5). (a) Let λ max the eigenvalue of H with the highest real part appart from 1. If λ max = max ℜe (Sp(H) \ {1}) < 1/2 (2.13) and (2.12) holds with v n = 1, n ≥ 1, then, θ n → θ * a.s. and √ n (θ nθ * ) L -→ N (0, Σ) as n → +∞ with Σ =

2 = O 1 n

 21 δ , therefore the remainder condition (2.15) is satisfied. (b)-(c) follow from Theorem A.2 (b)-(c) in the Appendix since one easily checks that D(h(θ * )) |V 2 is diagonalizable as soon as H is with Sp(D(h(θ * )) |S 2 ) = {1λ, λ ∈ Sp(H) \ {1}} (see Appendix C). Moreover the above computations show that the remainder condition (2.15) is satisfied.
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 31 .e. Assumption (A3) holds. As we have already checked that Assumptions (A1)-(i)-(ii) and (A2) are satisfied, then by only adding (A1)-(iii) we use Theorem 2.1 to prove that θ n a.s. If the assumption (1.1) holds and Y 0 ∈ R d + \ {0}, then, Π n a.s.
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 21 Elementary though tedious computations show that∂ ∂ν (Φ(s, ν)y) | θ= θ * = -∂ ∂s (Φ(s, ν)y) | θ= θ * diag(p). It follows (see Appendix C) that D h( θ * ) is diagonalizable and that Sp(D h( θ * )) = Sp(I d -H). Moreover as v * 1 t u = v * d

.Corollary 3 . 1 .

 31 The asymptotic variances of Y n and N n in Theorem 3.1 are different from those in Theorem 2.2 because the differential matrices Dh(θ * ) and D h( θ * ) are not the same. Under the assumptions of Theorem 3.1,

∀n ≥ 1 ,e-

 1 If ℜe(λ min ) >1 2 , where λ min denotes the eigenvalue of Dh(θ * ) with the lowest real part and (A.25) holds with v n = 1, n ≥ 1, then, the above a.s. convergence is ruled on the convergence set {θ n → θ * } by the following Central Limit Theorem√ n (θ nθ * ) L -→ n→+∞ N (0, Σ) with Σ := +∞ 0 Dh(θ * ) t -I d 2 u Γe -Dh(θ * )-I d 2 u du. (b) If ℜe(λ min ) =1 2 , h is η-differentiable at θ * with diagonalizable Dh(θ * ) and (A.25) holds with v n = log n, n ≥ 2, then n log n (θ nθ * )

  1≤i≤d

p i ( 1 -

 1 p i ) πp i . Proof. Setting D d (λ, p 1:d , a 1:d ) = det 1 -λ p i δ ij + a j (1δ ij ) implies that det(H -λI d ) = d i=1 p i D d (λ, p 1:d , a 1:d ).Moreover, by subtracting the second line to the first one and by developing with respect to the first line, we obtain thatD d (λ, p 1:d , a 1:d ) = 1 -λ p 1a 1 D d-1 (λ, p 2:d , a 2:d ) + a 1 d i=2 1 -λ p ia i .By iteration, we getD d (λ, p 1:d , a 1:d ) = a j . Therefore det(H -λI d ) = d i=1 p i (1a i )λ + d i=1p i a i i =j p j (1a j )λ .

I 1 ⊥

 1 is an eigenvector of Dh(θ * ) |V 2 0 . If H admits a base of eigenvectors (v * , y 2 , . . . ,y d ) on R d , it is clear that if (ν 1 , . . . , ν d-1 ) is basis of V 0 then   y i y i 1-λ i   , i = 2, . . . ,d, ν 2 , . . . , ν d , makes up clearly an eigenbasis of V 2 0 for Dh(θ * ) |V 2 0 . Spectrum of D h( θ * ) |V 2 0 in Theorem 3.1. We are interested in the spectrum of D h( θ * ) |V 2 0 ×R d (this vector subspace is left stable by D h( θ * )). Still owing to v * 1 t y = 0 for y ∈ V 0 , we derive from (3.21) that D h( θ * ) |V 2 0 ×R d = -H 1 ⊥ -B diag(p)

  Consequently sup n≥1 E ∆M n+1 2 | F n < +∞ a.s.. Therefore thanks to the strong law of large numbers for conditionally L 2 -bounded martingale increments, we have Mn

	it follows from (2.8) that	n	a.s. n→+∞ -→	0. Consequently

  1 (P) a.s. as n → +∞. This in turn implies by Kronecker's Lemma +∞ by the first step.It follows from the lemma and Theorem 2.1 that ( Y n , N n

	that since N i n →	Π i n	a.s. -→ p i as n → +∞

  1 (A.s. convergence with ODE method, see e.g.[START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF][START_REF] Duflo | Random iterative models[END_REF][START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF][START_REF] Fort | Convergence of stochastic algorithms: from the Kushner-Clark theorem to the Lyapounov functional method[END_REF][START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]). Assume that h is locally Lipschitz, that

	r n	a.s. -→ n→+∞	0 and sup n≥n 0	E ∆M n+1	2 | F n < +∞ a.s.,
	and that (γ n ) n≥1 is a positive sequence satisfying	
			γ n = +∞ and	γ 2 n < +∞.
			n≥1	n≥1	

  2 0 : timesR d for D h( θ * ) |V 2 0 ×R d . As a consequence, if (y 2 , . . . , y d ) is a eigenbasis of H |1 ⊥ and (ν , . . . , ν d-1 , e 1 , . . . , e d ) denotes a basis of {0 V 0 } × V 0 × R d , then  , i = 2, . . . , d, ν 2 , . . . , ν d , e 1 , . . . , e d makes up an eigenbasis of D h( θ * ) |V 2 0 ×R d .

	     	y i y i 1-λ i diag(p)y i	      
		1-λ i	

By reversible we mean that Hdiag(v * ) = diag(v * )H t . So H is diagonalizable, since it is auto-adjoint with respect to the inner product induced by diag(v * ).

Numerical Example: BHS model. We consider the case d = 2, so v * as the same form as in the example in Subsection 2.3. Simulation results are reproduced in Figure 1. 

Appendix A Basic tools of Stochastic Approximation

Consider the following recursive procedure defined on a filtered probability space (Ω, A, (F n ) n≥0 , P)

where h : R d → R d is a locally Lipschitz continuous function, θ n 0 an F n 0 -measurable finite random vector and, for every n ≥ n 0 , (∆M n ) is a sequence of (F n )-martingale increment and (r n ) is an (F n )-adapted sequence of remainder terms.