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Abstract

This paper presents the link between stochastic approximation and clinical trials based

on randomized urn models investigated in [5, 6, 7]. We reformulate the dynamics of both

the urn composition and the assigned treatments as standard stochastic approximation (SA)

algorithms with remainder. Then, we derive the a.s. convergence and the asymptotic normality

(Central Limit Theorem CLT ) of the normalized procedure under less stringent assumptions

by calling upon the ODE and SDE methods. As a second step, we investigate a more involved

family of models, known as multi-arm clinical trials, where the urn updating depends on the

past performances of the treatments. By increasing the dimension of the state vector, our SA

approach provides this time a new asymptotic normality result.
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1 Introduction

The aim of this paper is to illustrate the efficiency of Stochastic Approximation (SA) Theory by

revisiting several recent results on randomized urn models applied to clinical trials (especially [5, 6,

7]). We will first retrieve the a.s. convergence (strong consistency) and asymptotic normality results

obtained in these papers under less stringent assumptions. Then we will take advantage of this

more synthetic approach to establish a new Central Limit Theorem (CLT ) in the more sophisticate

randomized urn model known as “multi-arm clinical test”. In this model, the urn updating which

produces the adaptive design is based on statistical estimators of the past efficiency of the assigned

treatments.

In these adaptive models, the starting point is the equation which governs the urn composition

updated after each new treated patient. Basically, we will show that a normalized version of this

urn composition can be formulated as a classical recursive stochastic algorithm with step γn = 1
n

which classical Stochastic Approximation Theory deals with. Doing so we will be in position to

establish the a.s. convergence of the procedure by calling upon the so-called Ordinary Differential

Equation Method (ODE method) and to derive the asymptotic normality - a CLT , to be precise

- from the standard CLT for stochastic algorithms (sometimes called the Stochastic Differential

Equation Method (SDE method), see e.g. [14, 9]). These two main theoretical results are recalled

in a self-contained form in the Appendix. They can be found in all classical textbooks on SA ([9],

[13], [14], [22]) and go back to [21] and [11]. SA Theory is also used in clinical trials to solve

dose-finding problems (see for example [12] and citations therein).

Clinical trials essentially deal with the asymptotic behaviour of the patient allocation to several

treatments during the procedure. Adaptive designs in clinical trials aim at detecting “on line” which

treatment should be assigned to more patients, while keeping randomness enough to preserve the

basis of treatments. This adaptive approach relies on the cumulative information provided by the

responses to treatments of previous patients in order to adjust treatment allocation to the new

patients. To this end, many urn models have been suggested in the literature (see [20], [28], [27],

[15] and [25]). The most widespread random adaptive model is the Generalized Friedman Urn

(GFU) (see [2] and more recently [19, 24]), also called Generalized Pólya Urn (GPU). The idea

of this modeling is that the urn contains balls of d different types representative of the treatments.
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All random variables involved in the model are supposed to be defined on the same probability

space (Ω,A,P). Denote Y0 = (Y i
0 )i=1,...,d ∈ R

d
+ \ {0} the initial composition of the urn, where Y i

0

denotes the number of balls of type i, i = 1, . . . , d (of course a more realistic though not mandatory

assumption would be Y0 ∈ N
d \ {0}). The allocation of the treatments is sequential and the urn

composition at draw n is denoted by Yn = (Y i
n)i=1,...,d. When the nth patient presents, one draws

randomly (i.e. uniformly) a ball from the urn with instant replacement. If the ball is of type j, then

the treatment j is assigned to the nth patient, j = 1, . . . , d, n ≥ 1. The urn composition is updated

by taking into account the response of the nth patient to the treatment j, or the responses of all

patients up to the nth one (i.e. the efficiency of the assigned treatment), namely by adding Dij
n balls

of type i, i = 1, . . . , d. The procedure is iterated as long as patients present. Consequently the larger

the number of balls of a given type is, the more efficient the treatment is. The urn composition at

stage n, modeled by an R
d-valued vector Yn, satisfies the following recursive procedure:

Yn = Yn−1 +DnXn, n ≥ 1, Y0∈ R
d
+ \ {0}, (1.1)

with Dn = (Dij
n )1≤i,j≤d is the addition rule matrix and Xn is the result of the nth draw and

Xn : (Ω,A,P) → {e1, · · · , ed} models the selected treatment ({e1, · · · , ed} denotes the canonical

basis of Rd and ej stands for treatment j). We assume that there is no extinction i.e. Yn∈ R
d
+ \{0}

a.s. for every n ≥ 1: so is the case if all the entries Dij
n are a.s. nonnegative, but other settings can

also be taken under consideration (see Section 2). We model the drawing in the urn by setting

Xn =
d∑

j=1

1{∑j−1

ℓ=1
Y ℓ
n−1

∑d
ℓ=1

Y ℓ
n−1

<Un≤

∑j
ℓ=1

Y ℓ
n−1

∑d
ℓ=1

Y ℓ
n−1

}ej , n ≥ 1, (1.2)

where (Un)n≥1 is i.i.d. with distribution U1
L∼ U[0,1].

Let Fn = σ(Y0, Uk,Dk, 1 ≤ k ≤ n) be the filtration of the procedure. The generating matrices

are defined as the Fn-compensator of the additions rule sequence i.e.

Hn =
(
E
[
Dij

n | Fn−1

])
1≤i,j≤d

, n ≥ 1.

Other fields of application can be considered for such procedures like the adaptive asset allocation
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by an asset manager or a trader. Indeed this has already been done in [23] and successfully

implemented with multi-armed bandit procedure. Imagine an asset manager who can trade the

same financial instrument (tradable asset) on different trading venues. To optimize the execution

of an inventory of this asset, she can split her orders across these trading destinations. She starts

with the initial allocation vector Y0. At stage n, she chooses a trading destinations according to the

distribution (1.2) of Xn, then evaluates its performance during one time step and modifies the urn

composition (most likely virtually) and proceeds. Thus the normalized urn composition represents

the allocation vector among the venues and the addition rule matrices model the successive re-

allocations depending on the past performances of the different trading destinations.

One may also consider this type of procedure as a strategy to update the composition of a

portfolio or even a whole fund, based on the (recent) past performances of the assets.

The first designs under consideration were the homogeneous GFU models where the addition

rules Dn are i.i.d. and the so-called generating matrices Hn = H = EDn are identical, non-

random, with nonnegative entries and irreducible. Hence by the Perron-Frobenius Theorem H has

a unique and positive maximal eigenvalue and an eigenvector with positive components (see [2,

3, 17, 18]). But the homogeneity of the generating matrix is often not satisfied in practice and

inhomogeneous GFU models have been introduced (see [5]) in which Hn are not random but

converge to a deterministic limit H, under the assumption that the total number of balls added

at each stage is constant. As a third step, the homogeneous Extended Pólya Urn (EPU) models

have been introduced in [26] in which only the mean total number of balls added at each stage is

constant. This number is called the balance of the urn and the urn is said balanced.

Finally, in [6] the authors proposed a nonhomogeneous EPU model because in applications,

the addition rule Dn depends on the past history of previous trials (see [1]), so that the general

generating matrix Hn is usually random. Thus the entries of H may not be all nonnegative (e.g.,

when there is no replacement after the draw diagonal terms may become negative), and they

assume that the matrix H has a unique maximal eigenvalue λ with associated (right) eigenvector

v∗ = (v∗,i)i=1,...,d with
∑d

i=1 v
∗,i = 1. Furthermore the conditional expectation of the total number

of balls added at each stage was constant.

The first theoretical investigations on these models focused on the asymptotic properties of

the urn composition (consistency and asymptotic normality). However, for practical matter, it
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is clear that the asymptotic behaviour of the vector Nn :=
∑n

k=1Xk which stores the treatment

allocation among the first n patients is of high interest, especially its variance structure in order to

compare several adaptive designs. Thus, in [6] is proved the strong consistency of both (normalized)

quantities Yn/n and Nn/n (under a summability assumption on the generating matrices).

By considering an appropriate recursive procedure for the normalized urn composition derived

from (1.1) we prove by the ODE method its a.s. convergence toward v∗ under a significantly less

stringent assumption, namely the minimal requirement that Hn
a.s.−→

n→∞
H. The a.s. convergence of

the treatment allocation frequency Nn/n toward the same v∗ follows from the previous one.

As concerns asymptotic normality, separate results on these two quantities are obtained in [6]

under an additional assumption on the rate of convergence of the generating matrices Hn toward H.

On our side we propose to consider a stochastic approximation procedure with remainder satisfied

by the higher dimensional vector (Yn/n,Nn/n). Then, the standard CLT for SA procedures with

remainder directly provides the expected asymptotic normality result for the whole vector under an

assumption on the L2-rate of convergence of the generating matrices towards their limit (namely

i.e. |||Hn−H||| = o(n−1/2)) which is again slightly less stringent than the original one. As a result,

we obtain the asymptotic joint distribution with an explicit global covariance structure matrix.

In the end of [6], an application to multi-arm clinical trials randomized urn models is proposed.

This adaptive design has already been introduced in [7] with first consistency results. This kind of

models is clearly the most interesting for practitioners since it takes into account the past results of

the assigned treatments in the addition rule matrices, denoted Sn at time n (Si
n denotes the number

of cured patients by treatment i among the N i
n treated ones). The above strong consistency results

apply but none of the asymptotic normality works as stated since the generating matrices Hn do

not – in fact cannot as we will emphasize – converge at the requested rate. The reason being that

they themselves satisfy a CLT . However we van overcome this obstacle by increasing once again the

structural dimension of the problem: we show that the triplet (Yn/n,Nn/n, Sn/n) can be written

as a recursive SA algorithm with remainder satisfying a.s. convergence and a CLT (provided the

limiting generating matrix is still irreducible, etc). Thus we illustrate on this example that SA

Theory is a powerful tool to investigate this kind of adaptive design problem. The main difficulty is

to exhibit the appropriate form for the recursion by making a priori the balance between significant

asymptotic terms and remainder terms.
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The paper is organized as follows. We rewrite the dynamics (1.1) of the urn composition as a

stochastic approximation procedure with state variable for Ỹn := Yn/n in Section 2.1. In Section 2.2

the a.s. convergence of 1
n

∑d
i=1 Y

i
n is established which implies that of Ỹn and Ñn := Nn/n by using

the ODE method of SA under slightly lighten assumption than in [6]. The rate of convergence is

investigated in Section 2.3: we obtain a CLT , once again under slightly less stringent assumptions

on the limit generating matrix H than in [6]. Section 3 is devoted to multi-arm clinical tests. In

Section 3.1 we briefly recall the Wei GFU model introduced [27, 7] where the generating matrices

Hn are not random. In this case, the strong consistency and the asymptotic normality follow from

the results of Section 2 (like in [6]). In Section 3.2 we study the adaptive design proposed in [7]

where the addition rule matrices depend on the responses of all the past patients. We use the

results from Section 2.2 to prove the strong consistency. We prove in Section 3.3 a new CLT for

this model, when the generating matrix Hn satisfies itself a CLT , which relies again on Stochastic

Approximation techniques.

Notations ∀u = (ui)i=1,...,d ∈ R
d, ‖u‖ denotes the canonical Euclidean norm of the column vector

u on R
d, w(u) =

∑d
k=1 u

k denotes its “weight”, ut denotes its transpose; |||A||| denotes the operator

norm of the matrix A ∈ Md,q(R) with d rows and q columns with respect to canonical Euclidean

norms. When d = q, Sp(A) denotes the set of eigenvalues of A. 1 = (1 · · · 1)t denotes the unit

column vector in R
d, Id denotes the d× d identity matrix and diag(u) = [δijui]1≤i,j≤d, where δij is

the Kronecker symbol.

2 Convergence and first rate result

With the notations and definitions described in the introduction, we then formulate the main

assumptions to establish the a.s. convergence of the urn composition.
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(A1) ≡





(i) Addition rule matrix: For every n ≥ 1, the matrix Dn a.s. has nonnegative

entries.

(ii) Generating matrix: For every n ≥ 1, the generating matrices

Hn = (H ij
n )1≤i,j≤d a.s. satisfies

∀ j ∈ {1, . . . , d},
d∑

i=1

H ij
n = c > 0.

(iii) Starting value: The starting urn composition vector Y0∈ R
d
+ \ {0}.

The constant c is known as the balance of the urn. In fact, we may assume without loss of

generality, up to a renormalization of Yn, that c = 1: since Ŷn = Yn

c and D̂n+1 = Dn+1

c , n ≥ 0,

formally satisfies the dynamics (1.1), namely

Ŷn = Ŷn−1 + D̂nXn, n ≥ 1, Ŷ0∈ R
d
+ \ {0}.

From now on, throughout the paper, we will considered this normalized balance version. Never-

theless, we will still denote by Yn and Dn the normalized quantities and assume that c = 1.

(A2) The addition rule Dn is conditionally independent of the drawing procedure Xn given Fn−1

and satisfies

∀1 ≤ j ≤ d, sup
n≥1

E

[∥∥D·j
n

∥∥2 | Fn−1

]
< +∞ a.s. (2.3)

where D· j
n = (Dij

n )i=1,...,d.

(A3) Assume that there exists an irreducible d× d matrix H (with nonnegative entries) such that

Hn
a.s.−→

n→∞
H. (2.4)

H is called the limit generating matrix.

The combination of assumptions (A1)-(A3) guarantees that H satisfies the assumptions of

the Perron-Frobenius Theorem (see [10]) so that 1 is the eigenvalue of H with the highest norm

(maximal eigenvalue) and that the components of its right eigenvector v can be chosen all positive.

Therefore, we may normalize this vector v∗ such that w(v∗) = 1.

A variant including possible definite removal. We may relax Assumption (A1) by allow-
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ing the removal of the drawn ball from its urn (see e.g. [19]). Other relaxation of these requirements

may be considered: it could be possible to remove other balls than the drawn one. This leads to

tenable urns (studied notably in [4], see also [24]) where an arithmetical assumption to the row of

any negative diagonal entry in Dn is added, in order to avoid the urn extinction (see Assumption

(A′1) below). Thus we may replace Assumption (A1) (after renormalization) by

(A′1) ≡





(i) Addition rule matrix: For every i∈ {1, . . . , d}, there exists ci∈ (0,+∞)

such that, for every n ≥ 1, ∀ i, j ∈ {1, . . . , d}, δij
ci

+Dij
n ∈ N

ci
a.s.

and ∀ j ∈ {1, . . . , d}, ∑d
i=1D

ij
n ≥ 0 a.s.

(ii) Generating matrix: For every n ≥ 1, Hn a.s. satisfies

∀ j ∈ {1, . . . , d},
d∑

i=1

H ij
n = 1.

(iii) Starting value: The starting urn composition vector Y0∈
( d∏

i=1

N

ci

)
\ {0}.

In this case H may have negative (diagonal) entries and the Perron-Frobenius Theorem cannot

be used, so we change Assumption (A3) into

(A′3) 1 is the maximal eigenvalue of H and ∃ v ∈ R
d
+ \ {0} such that Hv = v.

Throughout the paper, we may substitute (A′1)-(A′3) for (A1)-(A3) as recalled in each result.

The following preliminary lemma ensures that if (A′1) holds then the urn extinction never

occurs and its weight w(Yn) is non-decreasing.

Lemma 2.1 (Preliminary). If (A′1) holds, then w(Yn) is non-decreasing and postive.

Proof. We proceed by induction on n ≥ 0. Assume Yn−1∈
( d∏

i=1

N

ci

)
\{0}. For every i∈ {1, . . . , d},

Y i
n = Y i

n−1 +
d∑

j=1

Dij
n 1{Xn=ej} and {Xn = ej} ⊂ {Y j

n−1 > 0} = {Y j
n−1 ≥ 1/cj}.

Consequently Y i
n ≥ Y i

n−1 and Y i
n∈

N

ci
\{0} on the event

⋃
j 6=i{Xn = ej}. On {Xn = ei}, {Y i

n−1 ≥ 1
ci
}
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so that Y i
n = Y i

n−1 +Dii
n ≥ 1

ci
− 1

ci
≥ 0. Finally

w(Yn) = w(Yn−1) +

d∑

j=1

( d∑

i=1

Dij
n

)
1{Xn=ej} ≥ w(Yn−1) > 0. �

2.1 The dynamics as a stochastic approximation procedure

Our aim in this section is to reformulate the dynamics (1.1)-(1.2) into a recursive stochastic al-

gorithm. Then we aim at applying the most powerful tools of SA, namely the “ODE” and the

“SDE” methods to elucidate the asymptotic properties (a.s. convergence and weak rate) of both

the urn composition and the treatment allocation. We start from (1.1) with Y0 ∈ Rd
+ \ {0}. For

n ≥ 1,

Yn+1 = Yn +Dn+1Xn+1 = Yn + E [Dn+1Xn+1 | Fn] + ∆Mn+1, (2.5)

where

∆Mn+1 := Dn+1Xn+1 − E [Dn+1Xn+1 | Fn]

is an Fn-martingale increment. By the definition of the generating matrix Hn, we have

E [Dn+1Xn+1 | Fn] =
d∑

i=1

E
[
Dn+11{Xn+1=ei}e

i | Fn

]
=

d∑

i=1

E [Dn+1 | Fn]P
(
Xn+1 = ei | Fn

)
ei

= Hn+1

d∑

i=1

Y i
n

w(Yn)
ei = Hn+1

Yn

w(Yn)

so that Yn+1 = Yn +Hn+1
Yn

w(Yn)
+ ∆Mn+1.

Now we can derive a stochastic approximation for the normalized urn composition Yn. First we

have for every n ≥ 1,

Yn+1

n+ 1
=

Yn

n
+

1

n+ 1

(
Hn+1

Yn

w(Yn)
− Yn

n

)
+

∆Mn+1

n+ 1
.
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Consequently, Ỹn =
Yn

n
, n ≥ 1, satisfies a canonical recursive stochastic approximation procedure

Ỹn+1 = Ỹn +
1

n+ 1
(Hn+1 − Id) Ỹn +

1

n+ 1

(
∆Mn+1 +

(
n

w(Yn)
− 1

)
Hn+1Ỹn

)

= Ỹn − 1

n+ 1
(Id −H) Ỹn +

1

n+ 1
(∆Mn+1 + rn+1) (2.6)

with step γn = 1
n and a remainder term given by

rn+1 :=

(
n

w(Yn)
− 1

)
Hn+1Ỹn + (Hn+1 −H)Ỹn. (2.7)

Furthermore, in order to establish the a.s. boundedness of (Ỹn)n≥1 we will rely on the following

recursive equation satisfied by w(Yn):

w(Yn+1) = w(Yn) +
w(Hn+1Yn)

w(Yn)
+ w(∆Mn+1).

By the properties of the generating matrix Hn+1, we obtain

w(Hn+1Yn) =

d∑

i=1

(Hn+1Yn)i =

d∑

i=1

d∑

j=1

H ij
n+1Y

j
n =

d∑

j=1

(
d∑

i=1

H ij
n+1

)
Y j
n = w(Yn).

Consequently

w(Yn+1) = w(Yn) + 1 + w(∆Mn+1). (2.8)

2.2 Convergence results

Theorem 2.1. Let (Yn)n≥0 be the urn composition sequence defined by (1.1)-(1.2). Under the

assumptions (A1), (A2) and (A3) (or (A′1), (A2) and (A′3)),

(a) w(Yn)
n

a.s.−→
n→∞

1 and
Yn

w(Yn)

a.s.−→
n→∞

v∗.

(b) Ñn :=
Nn

n
=

1

n

n∑

k=1

Xk
a.s.−→

n→∞
v∗.

Remarks. • We simply need that Hn
a.s.−→

n→∞
H while the assumption in [6] is

∑

n≥1

‖Hn −H‖∞
n

< +∞
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where ‖·‖∞ is the norm on L∞
Rd×d(P).

• Assumption (A3) is not necessary to prove that w(Yn)
n

a.s.−→
n→∞

1.

Proof. We will first prove that (a) ⇒ (b), then we will prove (a).

(a) ⇒ (b). We have

E [Xn | Fn−1] =

d∑

i=1

Y i
n−1

w(Yn−1)
ei =

Yn−1

w(Yn−1)

and, by construction ‖Xn‖2 = 1 so that E
[
‖Xn‖2 | Fn−1

]
= 1. Hence the martingale

M̃n =

n∑

k=1

Xk − E [Xk | Fk−1]

k

a.s.&L2

−→
n→∞

M̃∞ ∈ L2,

and by the Kronecker Lemma we obtain

1

n

n∑

k=1

Xk −
1

n

n∑

k=1

Yk−1

w(Yk−1)

a.s.−→
n→∞

0.

This yields the announced implication owing to the Cesaro Lemma.

(a) First Step: We have

Dn+1Xn+1 =
d∑

j=1

D· j
n+11{Xn+1=ej}.

Therefore

‖Dn+1Xn+1‖2 =
d∑

j=1

∥∥∥D· j
n+1

∥∥∥
2
1{Xn+1=ej},

so that E

[
‖Dn+1Xn+1‖2 | Fn

]
=

d∑

j=1

E

[∥∥∥D·j
n+1

∥∥∥
2
| Fn

]
P
(
Xn+1 = ej | Fn

)

≤ sup
n≥0

sup
1≤j≤d

E

[∥∥∥D·j
n+1

∥∥∥
2
| Fn

]
< +∞ a.s.

Consequently supn≥1 E

[
‖∆Mn+1‖2 | Fn

]
< +∞ a.s.. Therefore thanks to the strong law of large

numbers for conditionally L2-bounded martingale increments, we have Mn

n
a.s.−→

n→∞
0. Consequently

it follows from (2.8) that

w(Yn)

n
= 1 +

w(Y0)− 1

n
+

w(Mn)

n

a.s.−→
n→∞

1. (2.9)
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Second Step: Since the components of Ỹn = Yn

n are nonnegative and w(Ỹn) =
w(Yn)

n
a.s.−→

n→∞
1, it is

clear that (Ỹn)n≥1 is a.s. bounded and that a.s. the set Y∞ of all its limiting value is contained in

V = w−1{1} =
{
u ∈ R

d
+ |w(u) = 1

}
.

So we may try applying the ODE method (see Appendix Theorem A.1). Since Ỹn and Hn+1Ỹn are

a.s. bounded, (2.9) and (A3) imply that rn
a.s.−→

n→∞
0.

The ODE associated to the recursive procedure reads

ODEId−H ≡ ẏ = −(Id −H)y.

Owing to Assumption (A3), Id−H admits v∗ as unique zero in V. The restriction of ODEId−H to

the affine hyperplane V is the linear system ż = −(Id−H)z, where z = y− v∗ takes values in V0 =
{
u ∈ R

d |w(u) = 0
}
. Since Sp

(
(Id −H) | V0

)
⊂ {λ ∈ C, ℜe(λ) > 0}, owing to Assumption (A3).

As a consequence v∗ is an uniformly stable equilibrium for the restriction of ODEId−H to V, the

whole hyperplane, as an attracting area. The fundamental result derived from the ODE method

(see Theorem A.1 in Appendix and the notations therein, in particular the remainder rn) yields

the expected result

Ỹn
a.s.−→

n→∞
v∗. �

Remark: If we assume that the addition rule matrices (Dn)n≥1 satisfy besides (A1), then we can

directly write a stochastic approximation for Yn

w(Yn)
with step 1

w(Yn)
in which the remainder simply

reads rn+1 = (Hn+1 −H) Yn

w(Yn)
and prove the a.s. convergence under the same assumptions.

Comments. We could apply directly the ODE method because we first proved that (Ỹn)n≥1 is

a.s. bounded without using the standard Lyapunov machinery developed in SA Theory. That is

why the assumption on the remainder sequence (rn)n≥1 simply reads

rn
a.s.−→

n→∞
0.

Another approach is the martingale one. It relies on the existence of a Lyapunov function V : Rd →
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R+ associated to the algorithm satisfying

∃ a > 0, ∀y ∈ R
d, y 6= v∗, 〈∇V | Id −H〉 (y) > 0 and 〈∇V | Id −H〉 > a |∇V |2 . (2.10)

In this framework the existence of a Lyapunov function can be established. Hence, the natural

condition on the remainder sequence (rn)n≥1 reads (see [13])

∑

n≥1

‖rn‖2
n

< +∞ a.s.

In that perspective, the assumption on the generating matrices would read
∑

n≥1

|||Hn −H|||2
n

< +∞

a.s. which is still slightly less stringent than assumption on the generating matrices made in [6].

2.3 Rate of convergence

In the previous section we proved the a.s. convergence of both quantities of interest, namely Ỹn and

Ñn, toward v∗. In this section we establish a “joint CLT” for the couple θn := (Ỹn, Ñn)
t with an

explicit asymptotic joint normal distribution (including covariances). To this end we will show that

θn satisfies a SA recursive procedure which (a.s. converges toward θ∗ = (v∗, v∗)t and) fulfills the

assumptions of the CLT Theorem A.2 for SA algorithms (see Appendix), with a special attention

paid to Condition (A.22) about the remainder term.

As concerns Ỹn, we derive from (2.6) that

∀n ≥ 1, Ỹn+1 = Ỹn − 1

n+ 1

(
Id − (2− w(Ỹn))H

)
Ỹn +

1

n+ 1
(∆Mn+1 + r̄n+1) ,

where r̄n+1 :=

(
Hn+1 −H

w(Ỹn)
+

(w(Ỹn)− 1)2

w(Ỹn)
H

)
Ỹn.

For Ñn we have, still for every n ≥ 1,

Ñn+1 = Ñn − 1

n+ 1

(
Ñn − (2− w(Ỹn))Ỹn

)
+

1

n+ 1

(
∆M̃n+1 + r̃n+1

)

with ∆M̃n+1 := Xn+1 − E [Xn+1 | Fn] = Xn+1 −
Yn

w(Yn)
and r̃n+1 :=

(w(Ỹn)− 1)2

w(Ỹn)
Ỹn.

13



Thus, we obtain a new recursive SA procedure, still with step γn = 1
n , namely

θn+1 = θn − 1

n+ 1
h(θn) +

1

n+ 1
(∆Mn+1 +Rn+1) , n ≥ 1,

with ∆Mn+1 :=



∆Mn+1

∆M̃n+1


, Rn+1 :=



r̄n+1

r̃n+1


 and

∀ θ =



y

ν


 , y ∈ R

d, ν ∈ R
d, h(θ) :=



(Id − (2− w(y))H)y

ν − (2− w(y))y


 with h(θ∗) = 0.

The function h is differentiable on R
2d and its differential at point θ∗ is given by

Dh(θ∗) =



Id −H + v∗1t 0Md(R)

v∗1t − Id Id


 .

To establish a CLT for the sequence (θn)n≥1 we need to make the following additional assumptions:

(A4) The addition rules Dn a.s. satisfy

∀1 ≤ j ≤ d,





supn≥1 E

[
‖D·j

n ‖2+δ | Fn−1

]
≤ C < ∞ for a δ > 0,

E

[
D·j

n (D
·j
n )t | Fn−1

]
−→
n→∞

Cj,

where Cj = (Cj
il)1≤i,l≤d, j = 1, . . . , d, are d× d positive definite matrices.

Note that (A4) ⇒(A2) since E

[
‖D·j

n ‖2 | Fn−1

]
≤
(
E

[
‖D·j

n ‖2+δ | Fn−1

]) 2

2+δ
.

(A5) The matrix H satisfies

nE
[
|||Hn −H|||2

]
−→
n→∞

0. (2.11)

Theorem 2.2. Assume (A1), (A3) (or (A′1), (A′3)), (A4) and (A5).

(a) Assume furthermore that

ℜe (Sp(H) \ {1}) < 1/2. (2.12)

14



Then, θn → θ∗ a.s. as n → +∞ and

√
n (θn − θ∗)

L−→
n→∞

N (0,Σ) with Σ =

∫ +∞

0
eu(Dh(θ∗)− I

2
)Γeu(Dh(θ∗)− I

2
)tdu

and Γ =




d∑

k=1

v∗kCk − v∗(v∗)t H
(
diag(v∗)− v∗(v∗)t

)

(
diag(v∗)− v∗(v∗)t

)t
Ht diag(v∗)− v∗(v∗)t



= a.s.- lim

n→∞
E
[
∆Mn∆Mt

n | Fn−1

]
.

(2.13)

(b) Denote by λmax the eigenvalue, different from 1, of H with the highest real part. If λmax = 1/2,

then θn → θ∗ a.s. as n → +∞ and

√
n

log n
(θn − θ∗)

L−→
n→∞

N (0,Σ) .

(c) If λmax > 1/2, then θn → θ∗ a.s. as n → +∞ and nβ (θn − θ∗) a.s. converges as n → +∞

towards a finite random variable, where β = 1− λmax.

Proof. (a) We will check the three assumptions of the CLT for SA algorithms recalled in the

Appendix (Theorem A.2). Firstly, the condition (A.23) on the spectrum of Dh(θ∗) requested

for algorithms with step 1
n in Theorem A.2 reads ℜe (Sp(Dh(θ∗))) > 1

2 . This follows from our

Assumption (2.12) since by decomposing R
d = Rv∗ ⊕Ker(w), one checks that

Sp(Dh(θ∗)) = {1} ∪ {1− λ, λ∈ Sp(H) \ {1}}.

Secondly Assumption (A4) ensures that Condition (A.21) is satisfied since

sup
n≥1

E

[
‖∆Mn‖2+δ | Fn−1

]
< +∞ a.s. and E

[
∆Mn∆Mt

n | Fn−1

] a.s.−→
n→∞

Γ as n → ∞,

where Γ is the symmetric nonnegative matrix given by (2.13) as established below. To this end we

have to determine three blocks since Γ reads

Γ =




Γ1 Γ12

Γt
12 Γ2


 where Γ1,Γ2,Γ12 ∈ Md(R).
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Computation of Γ1.

E
[
∆Mn+1∆M t

n+1 | Fn

]
=

d∑

q=1

P(Xn+1 = eq | Fn)
(
E
[
D·q

n+1(D
·q
n+1)

t | Fn

]

− E [Dn+1Xn+1 | Fn]E [Dn+1Xn+1 | Fn]
t)

=

d∑

q=1

Y q
n

w(Yn)
E
(
D·q

n+1(D
·q
n+1)

t | Fn

)
−
(
Hn+1

Yn

w(Yn)

)(
Hn+1

Yn

w(Yn)

)t

a.s.−→
n→∞

Γ1 =

d∑

q=1

v∗qCq − v∗(v∗)t.

Computation of Γ2.

E

[
∆M̃n+1∆M̃ t

n+1 | Fn

]
= E

[
Xn+1X

t
n+1 | Fn

]
− Yn

w(Yn)

(
Yn

w(Yn)

)t

= diag

(
Yn

w(Yn)

)
− Yn

w(Yn)

(
Y q
n

w(Yn)

)t
a.s.−→

n→∞
Γ2 = diag(v∗)− v∗(v∗)t.

Computation of Γ12.

E

[
∆Mn+1∆M̃ t

n+1 | Fn

]
= E

[
Dn+1Xn+1X

t
n+1 | Fn

]
− E [Dn+1Xn+1 | Fn]E [Xn+1 | Fn]

t

= E [Dn+1 | Fn]E
[
Xn+1X

t
n+1 | Fn

]

−E [Dn+1 | Fn]E [Xn+1 | Fn]E [Xn+1 | Fn]
t

= Hn+1diag

(
Yn

w(Yn)

)
−Hn+1

Yn

w(Yn)

(
Yn

w(Yn)

)t

a.s.−→
n→∞

Γ12 = H
(
diag(v∗)− v∗(v∗)t

)
.

Finally, it remains to check that the remainder sequence (Rn)n≥1 satisfies (A.22) for an ǫ > 0:

E

[
(n+ 1) ‖Rn+1‖2 1{‖θn−θ∗‖≤ǫ}

]
−→
n→∞

0. (2.14)

We note that ‖Rn+1‖2 = ‖r̄n+1‖2+‖r̃n+1‖2. It follows from the definition of r̄n+1 and the elementary
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facts ‖Ỹn − v∗‖ ≤ ‖θn − θ∗‖ and w(Ỹn) ≥ ‖Ỹn‖ that

‖r̄n+1‖2 1{
‖θn−θ∗‖≤

‖v∗‖
2

} ≤ 2

(
(w(Ỹn)− 1)4

‖v∗‖
2

+
|||Hn+1 −H|||2

‖v∗‖
2

)
3

2
‖v∗‖1{

‖θn−θ∗‖≤
‖v∗‖

2

}

≤ 6
(
(w(Ỹn)− 1)4 + |||Hn+1 −H|||2

)
1{

‖θn−θ∗‖≤
‖v∗‖

2

}.

But w(Ỹn)− 1 = w(∆Mn)
n where supn≥0 E

[
|w(∆Mn+1)|2+δ | Fn

]
≤ C ′, δ > 0, owing to (A4). Now

using that |w(y)| ≤ Cd‖y‖,

E

[
n
∣∣∣w(Ỹn)− 1

∣∣∣
4
1{

‖θn−θ∗‖≤
‖v∗‖

2

}
]
≤ C∗

δnE

[∣∣∣w(Ỹn)− 1
∣∣∣
2+δ
]
=

Cd

n1+δ
E

[
|w(∆Mn)|2+δ

]
≤ C ′

d

n1+δ
,

where C∗
δ > 0 is a real constant. Consequently

E

[∣∣∣w(Ỹn)− 1
∣∣∣
4
1{

‖θn−θ∗‖≤ ‖v∗‖
2

}
]
= o

(
1

n

)
.

Thus, by (A5) we obtain

E

[
‖r̄n+1‖2 1{

‖θn−θ∗‖≤
‖v∗‖

2

}
]
= o

(
1

n

)
.

The same argument yields E

[
‖r̃n+1‖2 1{

‖θn−θ∗‖≤ ‖v∗‖
2

}
]
= o

(
1

n

)
, therefore (2.14) is satisfied.

(b)-(c) Follows from Theorem A.2 (b)-(c) in the Appendix (see also [14]). �

3 Application to urn models for multi-arm clinical trials

In this section, we consider urn models for multi-arm clinical trials introduced by Wei and general-

ized by Bai, Hu and Shen. In this context, the initial framework where the addition rule matrices

have nonnegative entries is the only one to make sense.

3.1 The Wei GFU Model

We consider here the model presented in [27] and in [7], where balls are added depending on

the success probabilities of each treatment. Define an efficiency indicator as follows: let (T i
n)n≥1,

1 ≤ i ≤ d, be d independent sequences of [0, 1]-valued i.i.d. random variables, independent of the
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i.i.d.sampling sequence (Un)n≥1 so that

E
[
T i
n

]
= pi, 0 < pi < 1, 1 ≤ i ≤ d. (3.15)

Remark. If (T i
n)n≥1, 1 ≤ i ≤ d, is simply a success indicator, namely d independent sequences

of i.i.d. {0, 1}-valued Bernoulli trials with respective parameter pi, then the convention is to set

T i
n =1 to indicate that the response of the ith treatment in the nth trial is a success and T i

n = 0

otherwise.

In this framework one considers the filtration Fn = σ (Y0, Uk, Tk, 1 ≤ k ≤ n), n ≥ 0. Consider

the following addition rules: a success on the treatment i adds a ball of type i to the urn and a

failure on the treatment i adds 1
d−1 balls for each of the other d− 1 types. Thus the addition rule

proposed in [27] is as follows

Dn+1 =




T 1
n+1

1−T 2
n+1

d−1 · · · 1−T d
n+1

d−1

1−T 1
n+1

d−1 T 2
n+1 · · · 1−T d

n+1

d−1

...
...

. . .
...

1−T 1
n+1

d−1

1−T 2
n+1

d−1 · · · T d
n+1




so that

Hn+1 = E [Dn+1 | Fn] = EDn+1 = H =




p1 q2

d−1 · · · qd

d−1

q1

d−1 p2 · · · qd

d−1

...
...

. . .
...

q1

d−1
q2

d−1 · · · pd




,

where qi = 1− pi, 1 ≤ i ≤ d. The strong consistency has been first established in [3], then redone

in [6]. It follows from Theorem 2.1 as well. The asymptotic normality

Yn − nv∗√
n

=
√
n
(Yn

n
− v∗

)
L−→ N (0,Σ)
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results from Theorem 3.2 in [6] and from Theorem 2.2 of this paper. However using Theorem 2.2

we obtain a joint CLT for (Ỹn, Ñn). Furthermore we know that

v∗i =
1/qi

∑d
j=1 1/q

j
, 1 ≤ i ≤ d.

Note that if pi > pj, then v∗i > v∗j . Hence the components v∗i are ordered according to the

increasing efficiency pi of the treatments. Furthermore, it is clear that, if pi ↑ 1 and all other

probabilities pj stand still, then

lim
pi→1

v∗j = δij.

Consequently, since v∗i is the asymptotic probability of assigning treatment i to a patient, the

procedure asymptotically allocates more patients to the most efficient treatment(s). Following the

practitioners, the fact that a marginal allocation of less efficient treatments is preserved is justified

by some comparison matter.

However this model only takes into account in the addition rule matrix Dn the response of the

nth patient without considering the ones of past patients. This led the author to introduce [7] a

new model based on statistical observations of the efficiency of the assigned treatments to all past

patients.

3.2 The Bai-Hu-Shen GFU Model

We consider now the model introduced in [7] (and considered again in [6]) where (T i
n)n≥1,1 ≤ i ≤ d,

are d independent sequences of i.i.d. {0, 1}-valued Bernoulli trials satisfying (3.15) and the filtration

(Fn)n≥0 is defined as in the previous section. LetNn = (N1
n, . . . , N

d
n)

t and Sn = (S1
n, . . . , S

d
n)

t, where

N i
n = N i

n−1 +Xi
n, n ≥ 1, still denotes the number of times the ith treatment is selected among the

first n stages and

Si
n = Si

n−1 + T i
nX

i
n, n ≥ 1,

denotes the number of successes of the ith treatment among these N i
n trials, i = 1, . . . , d. However,

to avoid degeneracy of the procedure, we will make the following initialization assumption

N i
0 = 1, Si

0 = 1, i = 1, . . . , d
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(which makes the above interpretation of these quantities correct “up to one unit”).

Remark. Like with the Wei model, we can simply assume that T i
n is a {0, 1}-valued efficiency

indicator.

Define Πn = (Π1
n, . . . ,Π

d
n)

t, where Πi
n = Si

n

N i
n
, i = 1, . . . , d. In [7] the authors consider the

following addition rule matrices,

Dn+1 =




T 1
n+1

Π1
n(1−T 2

n+1)∑
j 6=2

Πj
n

· · · Π1
n(1−T d

n+1)∑
j 6=d Πj

n

Π2
n(1−T 1

n+1
)

∑
j 6=1

Πj
n

T 2
n+1 · · · Π2

n(1−T d
n+1

)
∑

j 6=d Πj
n

...
...

. . .
...

Πd
n(1−T 1

n+1
)

∑d
j 6=1

Πj
n

Πd
n(1−T 2

n+1
)

∑d
j 6=2

Πj
n

· · · T d
n+1




,

i.e. at stage n+1, if the response of the jth treatment is a success, then one ball of type j is added

in the urn. Otherwise, Πi
n∑

k 6=j Π
k
n
(virtual) balls of type i, i 6= j, are added. This addition rule matrix

clearly satisfies (A1)-(i) and (A2). Then, one easily checks that the generating matrices are given

by

Hn+1 = E [Dn+1 | Fn] =




p1 Π1
n(1−p2)∑
j 6=2

Πj
n

· · · Π1
n(1−pd)∑
j 6=d Π

j
n

Π2
n(1−p1)∑
j 6=1 Π

j
n

p2 · · · Π2
n(1−pd)∑
j 6=d Π

j
n

...
...

. . .
...

Πd
n(1−p1)∑
j 6=1

Πj
n

Πd
n(1−p2)∑
j 6=2

Πj
n

· · · pd




and satisfy (A1)-(ii). As soon as Y0 ∈ R
d
+ \ {0}, Hn

a.s.−→ H (see Lemma 3.1 below or [7] when

Y0 ∈ (0,∞)d) where

H =




p1 p1(1−p2)∑
j 6=2

pj
· · · p1(1−pd)∑

j 6=d p
j

p2(1−p1)∑
j 6=1

pj
p2 · · · p2(1−pd)∑

j 6=d p
j

...
...

. . .
...

pd(1−p1)∑
j 6=1

pj
pd(1−p2)∑

j 6=2
pj

· · · pd




.
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The matrix H is clearly irreducible since 0 < pi < 1, 1 ≤ i ≤ d so that Assumption (A3) is

satisfied. Then calling upon Theorem 2.1 (or following the direct proof from [7]) we obtain

Ỹn =
Yn

n

a.s.−→
n→∞

v∗ and Ñn =
Nn

n

a.s.−→
n→∞

v∗. (3.16)

Note that the normalizes maximal eigenvector v∗ (associated to the eigenvalue 1) is given by

v∗i =

pi

1−pi

∑
k 6=i p

k

∑
1≤j≤d

pj

1−pj

∑
k 6=j p

k
, i = 1, . . . , d.

Note that if pi > pj, pi

pj

∑
k 6=i p

k

∑
k 6=j p

k > 1 and 1−pj

1−pi
> 1 so that v∗i > v∗j . Hence the entries v∗i are

ordered according to the increasing efficiency pi of the treatments. This model can be considered

as more ethical than the Wei model since a better treatment will be administrated to more patients.

Indeed, when d > 2, for any i 6= j, 1 ≤ i, j ≤ d, if pi > pj,

v∗iBHS

v∗jBHS

>
v∗iW
v∗jW

> 1

(when d = 2 both matrices H coincide).

Remark. Note that in that model the “balls” in the urn become virtual since there exists no

N ∈ N such that, for every n ≥ 1, NDn ∈ Md(N).

3.3 Asymptotic normality for multi-arm clinical trials for the BHS GFU model

In [7] in order to derive a CLT , not with the bias EYn but with nv∗, from their own general

asymptotic normality result (which statement is similar to Theorem 2.2) they need to fulfill the

following convergence rate assumption for Hn

∑

n≥1

‖Hn −H‖∞√
n

< +∞ (3.17)

where ‖·‖∞ is the norm on L∞
Rd×d(P). In [7], the a.s. rate of decay |||Hn−H|||∞ = o(n− 1

4 ) is shown

which is clearly not fast enough to fulfill (3.17).
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However, by enlarging the dimension of the structure process of the procedure by considering

the 3d-dimensional random sequence

θ̃n =




Ỹn

Ñn

S̃n




where S̃n =
Sn

n
, n ≥ 1,

we will establish that a CLT does hold for the BHS GFU model.

The first step is to notice that the generating matrix Hn+1 can may be written as a function de-

pending on S̃n and Ñn, i.e. Hn+1 = Φ(S̃n, Ñn), where Φ : Rd
+× (0,∞)d → Md(R) is a differentiable

function defined by

Φ(s, ν) =
(
Φij(s, ν)

)
1≤i,j≤d

where





Φii(s, ν) = pi 1 ≤ i ≤ d

Φij(s, ν) = si/νi∑
k 6=j s

k/νk
qj 1 ≤ i, j ≤ d, i 6= j.

Then the following strong consistency and CLT hold for (θ̃n)n≥1.

Theorem 3.1. Assume that Y0 ∈ R
d
+ \ {0}. (a) If ℜe(Sp(H) \ {1}) < 1

2 , then

θ̃n
a.s.−→

n→∞
θ̃∗ and

√
n
(
θ̃n − θ̃∗

)
L−→

n→∞
N
(
0, Σ̃

)
,

where

θ̃∗ := (v∗, v∗,diag(p)v∗)t , Σ̃ =

∫ +∞

0
eu(Dh̃(θ̃∗)− I

2
)Γ̃eu(Dh̃(θ̃∗)− I

2
)tdu

with

Γ̃ =




d∑

k=1

v∗kCk − v∗(v∗)t H
(
diag(v∗)− v∗(v∗)t

) (
diag(v∗)− v∗(v∗)t

)
diag(p)

(
diag(v∗)− v∗(v∗)t

)t
Ht diag(v∗)− v∗(v∗)t

(
diag(v∗)− v∗(v∗)t

)
diag(p)

diag(p)
(
diag(v∗)− v∗(v∗)t

)t
diag(p)

(
diag(v∗)− v∗(v∗)t

)t
diag(p)

(
v∗ − v∗v∗tdiag(p)

)
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where Ck = (Ck
ij)1≤i,j≤d, 1 ≤ k ≤ d, are d× d positive definite matrices with

Ck
ij =

pipj(1− pk)
(∑

ℓ 6=k p
ℓ
)2 1{i,j 6=k} + pk1{i=j=k},

and

Dh̃(θ̃∗) =




Id −H + v∗1t − ∂
∂ν (Φ(s, ν)y)|θ̃=θ̃∗

− ∂
∂s (Φ(s, ν)y)|θ̃=θ̃∗

v∗1t − Id Id 0Md(R)

diag(p)
(
v∗1t − Id

)
0Md(R) Id




which is invertible.

(b) Denote by λmax the eigenvalue, different from 1, of H with the highest real part. If λmax = 1/2,

then, θn → θ∗ a.s. as n → +∞ and

√
n

log n
(θn − θ∗)

L−→
n→∞

N (0,Σ) .

(c) If λmax > 1/2, then nβ (θn − θ∗) a.s. converges as n → +∞ towards a finite random variable,

where β = 1− λmax.

Proof. Step 1 (Strong consistency). We will show with Lemma 3.1 that S̃n
a.s.−→

n→∞
diag(p)v∗

and we will deduce that Hn
a.s.−→

n→∞
H, i.e. Assumption (A3) holds. As we have already checked

that Assumptions (A1)-(i)-(ii) and (A2) are satisied, then by only adding (A1)-(iii) we use

Theorem 2.1 to prove that θ̃n
a.s.−→

n→∞
θ̃∗.

Lemma 3.1. If the assumption (1.1) holds and Y0 ∈ R
d
+ \ {0}, then,

Πn
a.s.−→ p = (p1, . . . , pd) as n → ∞

so that Assumption (2.4) holds i.e. Hn
a.s.−→

n→∞
H.

Remark. If we assume that Y i
0 > 0, 1 ≤ i ≤ d, then we can prove that limnN

i
n = +∞ a.s.,

1 ≤ i ≤ d, faster than below by using that Y i
n ≥ Y i

0 , 1 ≤ i ≤ d, n ≥ 1. The following proof
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considers the more general case where Y0 ∈ R
d
+ \ {0}.

Proof of Lemma 3.1. Step 1. It follows from the dynamics (1.1) and the definitions of Dn+1 and

Hn+1 that, for every n ≥ 0, w(Yn) = w(Y0) + n and that, for every i∈ {1, . . . , d},

Y i
n+1 = Y i

n +

d∑

j=1

H ij
n+1

Y i
n

w(Yn)
+ ∆M i

n+1

where (∆M i
n)n≥1 is a sequence of martingale increments satisfying supn E

[
|∆M i

n|2 | Fn−1

]
< +∞

since the addition rule matrices satisfy (2.3). Now using that Si
0 = N i

0 = 1 by convention, one

derives that

∀ i 6= j, H ij
n+1 ≥

κ0
n
, with κ0 =

1

2d
min
1≤i≤d

(
pi, 1− pi

)
> 0

so that, using that H ii
n+1 = pi, there exists a deterministic integer n0 such that for every n ≥ n0,

Y i
n+1 ≥

(
1 +

pi
n

− κ0
w(Yn)

)
Y i
n +

κ0
n

+∆M i
n+1

≥
(
1 +

pi
2w(Yn)

)
Y i
n +

κ0
n

+∆M i
n+1.

Standard computations show that, setting ain =
∏n−1

k=n0
(1 + pi

2w(Yn)

)
, i = 1, . . . , d,

∀n ≥ n0,
Y i
n

ain
≥ Y i

n0

ain0

+

n∑

k=n0+1

κ0
aik

+

n∑

k=n0+1

∆M i
k

aik

Since there exists κ1, κ2 > 0 such that κ1n
pi

2 ≤ ain ≤ κ2n
pi

2 , one has

∀ η > 0,

n∑

k=n0+1

∆M i
k

aik
= o
(
n

1−pi+η
2

)
.

Finally, there exists a positive real constant c′ such that, for every i = 1, . . . , d,

Y i
n ≥ c′n

pi

2

n∑

k=n0+1

k−
pi

2 + o
(
n

1+η
2

)
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so that

∀ i∈ {1, . . . , d}, lim inf
n

Ỹ i
n ≥ c′

∫ 1

0
u−

pi

2 du > 0

and, as a consequence,
∑

n≥1 Ỹ
i
n = +∞ a.s. Now using that for every i = 1, . . . , d,

N i
n =

n∑

k=1

1{Xk=ei} and P(Xn = ei | Fn−1) = Ỹ i
n−1

(
1− w(Y0)

w(Yn−1)

)
, n ≥ 1,

we get by the conditional Borel-Cantelli Lemma that N i
∞ = limnN

i
n = +∞ a.s.

Step 2. First we note that

Πi
n =

∑n
k=1 T

i
k∆N i

k

N i
n

and we introduce the sequence (Π̃n)n≥1 defined by

Π̃i
n =

n∑

k=1

(T i
k − pi)

∆N i
k

N i
k−1 + 1

, n ≥ 1.

It is an Fn-martingale since, T i
k being independent of Fk−1 and Xk,

E

(
(T i

k − pi)∆N i
k | Fk−1

)
= E(T i

k − pi)P(Xk = ei | Fk−1) = 0.

It has bounded increments since |T i
k − pi| ≤ 1 and

〈Π̃i〉n ≤
n∑

k=1

E((∆N i
k)

2 | Fk−1)

(N i
k−1 + 1)2

.

It follows, using (∆N i
k)

2 = ∆N i
k, that, for every n ≥ 1,

E〈Π̃i〉n ≤ E

( n∑

k=1

∆N i
k

(N i
k−1 + 1)2

)
≤ E

( n∑

k=1

∆N i
k

N i
k−1N

i
k

)
≤ 1

N i
0

= 1.

Consequently Π̃i
n → Π̃i

∞∈ L1(P) a.s. as n → ∞. This in turn implies by Kronecker’s Lemma that

Πi
n

a.s.−→ pi as n → ∞

since N i
n → ∞ by the first step. �
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It follows from the lemma and Theorem 2.1 that (Ỹn, Ñn) → (v∗, v∗). Furthermore diag(S̃n) =

diag(Qn)Ñn → diag(p)v∗ = u∗ so that θ̃n → θ̃∗ as n → +∞.

Step 2 (Asymptotic normality). We will show now that (θ̃n)n≥1 satisfies an appropriate recursion

to apply Theorem A.2 (CLT ). First, we write a recursive procedure for S̃n. Having in mind that

Sn = 1 +
∑

1≤k≤n diag(Tk)Xk, we get

S̃n+1 = S̃n − 1

n+ 1

(
S̃n − diag(Tn+1)Xn+1

)

= S̃n − 1

n+ 1

(
S̃n − diag(p)

Ỹn

w(Ỹn)

)
+

1

n+ 1
∆M̂n+1

= S̃n − 1

n+ 1

(
S̃n − diag(p)(2 − w(Ỹn))Ỹn

)
+

1

n+ 1

(
∆M̂n+1 + r̂n+1

)
(3.18)

where ∆M̂n+1 := diag(Tn+1)Xn+1 − E [diag(Tn+1)Xn+1 | Fn] = diag(Tn+1)Xn+1 − diag(p)
Ỹn

w(Yn)

is an Fn-martingale increment and r̂n+1 = diag(p)
(w(Ỹn)−1)

2

w(Ỹn)
Ỹn. Then we rewrite the dynamics

satisfied by Ỹn as follows

Ỹn+1 = Ỹn − 1

n+ 1

(
Id − (2− w(Ỹn))Hn+1

)
Ỹn +

1

n+ 1
(∆Mn+1 + řn+1) , (3.19)

where řn+1 :=

(
w(Ỹn)− 1

)2

w(Ỹn)
Hn+1Ỹn. Finally, we get the following recursive procedure for θ̃n

θ̃n+1 = θ̃n − 1

n+ 1
h̃(θ̃n) +

1

n+ 1

(
∆M̃n+1 + R̃n+1

)
, n ≥ 1,

where, for every θ̃ = (y, ν, s)t∈ R
3d
+ ,

h̃(θ̃) :=




(Id − (2− w(y))Φ(s, ν))y

ν − (2− w(y))y

s− (2− w(y))diag(p)y



, ∆M̃n+1 :=




∆Mn+1

∆M̃n+1

∆M̂n+1




and R̃n+1 :=




řn+1

r̃n+1

r̂n+1




.

Let us check that the addition rule matrices satisfy (A4). For every j ∈ {1, . . . , d}, let set Cj
n =
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E

[
D·j

n+1(D
·j
n+1)

t | Fn

]
. We have that

(Cj
n)ii′ = E

[
Dij

n+1(D
i′j
n+1)

t | Fn

]

=
Qi

nQ
i′
n(∑

k 6=j Q
k
n

)2E
[
(1− T j

n+1)
2 | Fn

]
1{i,i′ 6=j} + E

[
(T j

n+1)
2 | Fn

]
1{i=i′=j}

because T j
n+1(1− T j

n+1) = 0. Then owing to Lemma 3.1, Cj
n

a.s.−→
n→+∞

Cj with

Cj
ii′ =

pipi
′
(1− pj)

(∑
k 6=j p

k
)21{i,i′ 6=j} + pj1{i=i′=j}.

We can check that Cj is a positive definite matrice. Consequently (A4) holds.

The function Φ being differentiable at the equilibrium point θ̃∗, we have

Dh̃(θ̃∗) =




Id −H + v∗1t − ∂
∂ν (Φ(s, ν)y)|θ̃=θ̃∗

− ∂
∂s (Φ(s, ν)y)|θ̃=θ̃∗

v∗1t − Id Id 0Md(R)

diag(p)
(
v∗1t − Id

)
0Md(R) Id




which is invertible since by Schur complement we have det(Dh̃(θ̃∗)) = det(Id −H + v∗1t) thanks

to ∂
∂ν (Φ(s, ν)y)|θ̃=θ̃∗

= −diag(p) ∂
∂s (Φ(s, ν)y)|θ̃=θ̃∗

.

At this stage, the proof follows the lines of that of Theorem 2.2: the computation of the

covariance matrix Γ̃ and the treatment of the remainder term uses the same tools as before. The

three results of convergence rate follows from Theorem A.2 in the Appendix. The details are left

to the reader. �

Remark. The asymptotic variances of Ỹn and Ñn in Theorem 3.1 are different from those in

Theorem 2.2 because the differential matrices Dh(θ∗) and Dh̃(θ̃∗) are not the same.

Corollary 3.1. Under the assumptions of Theorem 3.1,

√
n
(
Hn −H

) L−→
n→∞

N (0; ΓH)
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where ΓH is a d2 × d2 matrix given by ΓH = DΦ(u∗, v∗)[Σ̃i+d,j+d]1≤i,j≤2dDΦ(u∗, v∗)t.

Proof. This is an easy consequence of the so-called ∆-method since

Hn = Φ(S̃n, Ñn) = Φ(u∗, v∗) +DΦ(u∗, v∗).(S̃n − u∗, Ñn − v∗) + ‖(S̃n − u∗, Ñn − v∗)‖ε(S̃n, Ñn)

with limy→(u∗,v∗) ε(y) = 0. Consequently

√
n
(
Hn −H

)
= DΦ(u∗, v∗).(

√
n(S̃n − u∗),

√
n(Ñn − v∗)) + εP(n)

where εP(n) goes to 0 in probability (as the product of a tight sequence and an a.s. convergent

sequence). This concludes the proof. �

Remark. This corollary shows a posteriori that it was hopeless to try applying Theorem 2.2 in its

standard form to establish asymptotic normality for multi-arm clinical trials since the assumption

(A5) cannot be satisfied. Our global SA approach breaks the vicious circle.
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Numerical Example: BHS model. We consider the case d = 2, so v∗ as the same form as in

the example in Subsection 2.3.
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Figure 1: Convergence of Yn

n toward v∗ (up-windows) and of Nn

n toward v∗ (down-windows): d = 2,
n = 2.103, p1 = 0.5, p2 = 0.7, Y0 = (0.5, 0.5)t and N0 = (1, 1)t.

Appendix

A Basic tools of Stochastic Approximation

Consider the following recursive procedure defined on a filtered probability space (Ω,A, (Fn)n≥0,P)

∀n ≥ n0, θn+1 = θn − γn+1h(θn) + γn+1 (∆Mn+1 + rn+1) , (A.20)
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where h : Rd → R
d is a locally Lipschitz continuous function, θn0

an Fn0
-measurable finite random

vector and, for every n ≥ n0, ∆Mn+1 is an Fn-martingale increment and rn is an Fn-adapted

remainder term.

Theorem A.1. (A.s. convergence with ODE method, see e.g. [9, 14, 22, 16, 8]). Assume that h

is locally Lipschitz, that

rn
a.s.−→

n→∞
0 and sup

n≥n0

E

[
‖∆Mn+1‖2 | Fn

]
< +∞ a.s.,

and that (γn)n≥1 is a positive sequence satisfying

∑

n≥1

γn = +∞ and
∑

n≥1

γ2n < +∞.

Then the set Θ∞ of its limiting values as n → +∞ is a.s. a compact connected set, stable by the

flow of

ODEh ≡ θ̇ = −h(θ).

Furthermore if θ∗ ∈ Θ∞ is a uniformly stable equilibrium on Θ∞ of ODEh, then

θn
a.s.−→

n→∞
θ∗.

Comments. By uniformly stable we mean that

sup
θ∈Θ∞

|θ(θ0, t)− θ∗| −→ 0 as t → +∞,

where θ(θ0, t)θ0∈Θ∞,t∈R+
is the flow of ODEh on Θ∞.

Theorem A.2. (Rate of convergence see [14] Theorem 3.III.14 p.131 (for CLT see also e.g. [9,

22])). Let θ∗ be an equilibrium point of {h = 0}. Assume that the function h is differentiable at θ∗

and all the eigenvalues of Dh(θ∗) have positive real parts. Assume that for some δ > 0,

sup
n≥n0

E

[
‖∆Mn+1‖2+δ | Fn

]
< +∞ a.s., E

[
∆Mn+1∆M t

n+1 | Fn

] a.s.−→
n→∞

Γ, (A.21)
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where Γ is a deterministic symmetric definite positive matrix and for an ǫ > 0,

E

[
(n+ 1) ‖rn+1‖2 1{‖θn−θ∗‖≤ǫ}

]
−→
n→∞

0. (A.22)

Specify the gain parameter sequence as follows

∀n ≥ 1, γn =
1

n
. (A.23)

(a) If Λ := ℜe(λmin) >
1
2 , where λmin denotes the eigenvalue of Dh(θ∗) with the lowest real part,

then, the above a.s. convergence is ruled on the convergence set {θn −→ θ∗} by the following Central

Limit Theorem

√
n (θn − θ∗)

L−→
n→∞

N
(
0,

1

2Λ− 1
Σ

)
with Σ :=

∫ +∞

0

(
e
−
(
Dh(θ∗)−

Id
2

)
u
)t

Γe
−
(
Dh(θ∗)−

Id
2

)
u
du.

(b) If Λ = 1
2 , then √

n

log n
(θn − θ∗)

L−→
n→∞

N (0,Σ).

(c) If Λ < 1
2 , then nΛ (θn − θ∗) a.s. converges as n → +∞ towards a finite random variable.
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