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Abstract

This paper presents the link between stochastic approximation and clinical trials based
on randomized urn models investigated in [4, 5, 6]. We reformulate the dynamics of both
the urn composition and the assigned treatments as standard stochastic approximation (SA)
algorithms with remainder. Then, we derive the a.s. convergence and the asymptotic normality
(Central Limit Theorem CLT ) of the normalized procedure under less stringent assumptions
by calling upon the ODE and SDE methods. As a second step, we investigate a more involved
family of models, known as multi-arm clinical trials, where the urn updating depends on the
past performances of the treatments. By increasing the dimension of the state vector, our SA
approach provides this time a new asymptotic normality result.

Keywords Stochastic approximation, extended Pòlya urn models, nonhomogeneous generating
matrix, strong consistency, asymptotic normality, multi-arm clinical trials.

2010 AMS classification: 62L20, 62E20, 62L05 secondary: 62F12, 62P10.

1 Introduction

The aim of this paper is to illustrate the efficiency of Stochastic Approximation (SA) Theory by
revisiting several recent results on randomized urn models applied to clinical trials (especially [4, 5,
6]). We will first retrieve the a.s. convergence (strong consistency) and asymptotic normality results
obtained in these papers under less stringent assumptions. Then we will take advantage of this
more synthetic approach to establish a new Central Limit Theorem (CLT ) in the more sophisticate
randomized urn model known as “multi-arm clinical test”. In this model, the urn updating which
produces the adaptive design is based on statistical estimators of the past efficiency of the assigned
treatments.

In these adaptive models, the starting point is the equation which governs the urn composition
updated after each new treated patient. Basically, we will show that a normalized version of this
urn composition can be formulated as a classical recursive stochastic algorithm with step γn = 1

n
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which classical Stochastic Approximation Theory deals with. Doing so we will be in position to
establish the a.s. convergence of the procedure by calling upon the so-called Ordinary Differential
Equation Method (ODE method) and to derive the asymptotic normality - a CLT , to be precise
- from the standard CLT for stochastic algorithms (sometimes called the Stochastic Differential
Equation Method (SDE method), see e.g. [12, 8]). These two main theoretical results are recalled
in a self-contained form in the Appendix. They can be found in all classical textbooks on SA ([8],
[11], [12], [19]) and go back to [18] and [10].

Clinical trials essentially deal with the asymptotic behaviour of the patient allocation to several
treatments during the procedure. Adaptive designs in clinical trials aim at detecting “on line” which
treatment should be assigned to more patients, while keeping randomness enough to preserve the
basis of treatments. This adaptive approach relies on the cumulative information provided by the
responses to treatments of previous patients in order to adjust treatment allocation to the new
patients. To this end, many urn models have been suggested in the literature (see [17], [23], [22],
[13] and [20]). The most widespread random adaptive model is the Generalized Friedman Urn
(GFU) (see [2]), also called Generalized Pólya Urn (GPU). The idea of this modeling is that
the urn contains balls of d different types representative of the treatments. All random variables
involved in the model are supposed to be defined on the same probability space (Ω,A,P). Denote
Y0 = (Y i

0 )i=1,...,d ∈ R
d
+ \ {0} the initial composition of the urn, where Y i

0 denotes the number of
balls of type i, i = 1, . . . , d. The allocation of the treatments is sequential and the urn composition
at draw n is denoted by Yn = (Y i

n)i=1,...,d. When the nth patient presents, one draws randomly (i.e.
uniformly) a ball from the urn with instant replacement. If the ball is of type i, then the treatment
i is assigned to the nth patient, i = 1, . . . , d, n ≥ 1. The urn composition is updated by taking
into account the response of the nth patient to the treatment i, or the responses of all patients up
to the nth one (i.e. the efficiency of the assigned treatment), namely by adding Dij

n balls of type
j, j = 1, . . . , d. The procedure is iterated as long as patients present. Consequently the larger the
number of balls of a given type is, the more efficient the treatment is. The urn composition at n,
modeled by an R

d-valued vector Yn satisfies the following recursive procedure:

Yn = Yn−1 +DnXn, Y0∈ R
d
+ \ {0}, (1.1)

with Dn = (Dij
n )1≤i,j≤d is the addition rule matrix and Xn is the result of the nth draw and

Xn : (Ω,A,P) → {e1, · · · , ed} models the selected treatment ({e1, · · · , ed} denotes the canonical
basis of Rd and ei stands for treatment i). We model the drawing in the urn by setting

Xn =

d∑

i=1

1{∑i−1

ℓ=1
Y ℓ
n−1

∑d
ℓ=1

Y ℓ
n−1

<Un≤

∑i
ℓ=1

Y ℓ
n−1

∑d
ℓ=1

Y ℓ
n−1

}ei, n ≥ 1, (1.2)

where (Un)n≥1 is i.i.d. with distribution U1
L∼ U[0,1].

Let Fn = σ(Y0, Uk,Dk, 1 ≤ k ≤ n) be the filtration of the procedure. The generating matrices
are defined as the Fn-compensator of the additions rule sequence i; e.

Hn =
(
E
[
Dij

n | Fn−1

])
1≤i,j≤d

, n ≥ 1.

The first designs under consideration were the homogeneous GFU models where the addition rules
Dn are i.i.d. and the so-called generating matrices Hn = H = EDn are identical, non-random,
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nonnegative and irreducible. Hence by the Perron-Frobenius theorem H has a unique and positive
maximal eigenvalue and an eigenvector with positive components (see [2, 3, 15, 16]). But the
homogeneity of the generating matrix is often not satisfied in practice and inhomogeneous GFU
models have been introduced (see [4]) in which Hn are not random but converge to a deterministic
limit H, under the assumption that the total number of balls added at each stage is constant. As
a third step, the homogeneous Extended Pòlya Urn (EPU) models have been introduced in [21] in
which only the mean total number of balls added at each stage is constant.

Finally, in [5] the authors proposed a nonhomogeneous EPU model because in applications,
the addition rule Dn depends on the past history of previous trials (see [1]), so that the general
generating matrix Hn is usually random. Thus the entries of H may not be all nonnegative (e.g.,
when there is no replacement after the draw), and they assume that the matrix H has a unique
maximal eigenvalue λ with associated (right) eigenvector v∗ = (v∗,i)i=1,...,d with

∑d
i=1 v

∗,i = 1.
Furthermore the conditional expectation of the total number of balls added at each stage were
constant.

The first theoretical investigations on these models focused on the asymptotic properties of
the urn composition (consistency and asymptotic normality). However, for practical matter, it
is clear that the asymptotic behaviour of the vector Nn :=

∑n
k=1Xk which stores the treatment

allocation among the first n patients is of high interest, especially its variance structure in order to
compare several adaptive designs. Thus, in [5] is proved the strong consistency of both (normalized)
quantities Yn/n and Nn/n (under a summability assumption on the generating matrices).

By considering an appropriate recursive procedure for the normalized urn composition derived
from (1.1) we prove by the ODE method its a.s. convergence toward v∗ under a significantly less
stringent assumption, namely the minimal requirement that Hn

a.s.−→
n→∞

H. The a.s. convergence of

the treatment allocation frequency Nn

n toward the same v∗.
As concerns asymptotic normality, separate results on these two quantities are obtained in [5]

under an additional assumption on the rate of convergence of the generating matrices Hn toward
H. On our side we propose to consider a stochastic approximation procedure with remainder
satisfied by the higher dimensional vector (Yn

n , Nn

n ). Then, the standard CLT for SA procedures
with remainder directly provides the expected asymptotic normality result for the whole vector
under an assumption on the L2-rate of convergence of the generating matrices towards their limit

(namely i.e. |||Hn−H||| = o
(
n− 1

2

)
) which is again slightly less stringent than the original one. As

a result, we obtain the asymptotic joint distribution with an explicit global covariance structure
matrix.

In the end of [5], an application to multi-arm clinical trials randomized urn models is proposed.
This adaptive design has already been introduced in [6] with first consistency results. This kind of
models is clearly the most interesting for practitioners since it takes into account the past results of
the assigned treatments in the addition rule matrices, denoted Sn at time n (Si

n denotes the number
of cured patients by treatment i among the N i

n treated ones). The above strong consistency results
apply but none of the asymptotic normality works as stated since the generating matrices Hn do not
– in fact cannot as we will emphasize – converge at the requested rate since they themselves satisfy
a CLT . However by increasing again the structural dimension of the problem by considering the
triplet (Yn

n , Nn

n , Sn

n ) which can be shown again to satisfy a SA algorithm with remainder for which
a.s. convergence and the CLT hold (provided the limiting generating matrix is still irreducible,
etc). Thus we illustrate on this example that SA Theory is a powerful tool to investigate this kind
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of adaptive design problem. The main difficulty is to exhibit the appropriate form for the recursion
by making a priori the balance between significant asymptotic terms and remainder terms.

The paper is organized as follows. We rewrite the dynamics (1.1) of the urn composition as a
stochastic approximation procedure with state variable for Ỹn := Yn

n in Section 2.1. In Section 2.2

the a.s. convergence of 1
n

∑d
i=1 Y

i
n is established which implies that of Ỹn and Ñn := Nn

n by using
the ODE method of SA under slightly lighten assumption than in [5]. The rate of convergence is
investigated in Section 2.3: we obtain a CLT , once again under slightly less stringent assumptions
on the limit generating matrix H than in [5]. Section 3 is devoted to multi-arm clinical tests. In
Section 3.1 we briefly recall the Wei GFU model introduced [22, 6] where the generating matrices
Hn are not random. In this case, the strong consistency and the asymptotic normality follow from
the results of Section 2 (like in [5]). In Section 3.2 we study the adaptive design proposed in [6]
where the addition rule matrices depend on the responses of all the past patients. We use result in
Section 2.2 to prove the strong consistency. We prove in Section 3.3 a new CLT for this model, when
the generating matrix Hn satisfies itself a CLT, which relies again on Stochastic Approximation
techniques.

Notations ∀u = (ui)i=1,...,d ∈ R
d, ‖u‖ denotes the canonical Euclidean norm of the column vector

u on R
d, Tr(u) =

∑d
k=1 u

d denotes its “trace”, ut denotes its transpose; |||A||| denotes the operator
norm of the matrix A ∈ Md,q(R) with d rows and q columns with respect to canonical Euclidean
norms. When d = q, Sp(A) denotes the set of eigenvalues of A. 1 = (1 · · · 1)t denotes the unit
column vector in R

d and Id denotes the d× d identity matrix.

2 Convergence and first rate result

With the notations and definitions described in the introduction, we then formulate the main
assumptions to establish the a.s. convergence of the urn composition.

(A1) The generating matrices Hn = (H ij
n )1≤i,j≤d, n ≥ 1, satisfies a.s.

∀ i, j ∈ {1, . . . , d}, H ij
n ≥ 0 and ∀ j ∈ {1, . . . , d},

d∑

i=1

H ij
n = c > 0. (2.3)

We may assume up to a renormalization of Yn without loss of generality that c = 1.

(A2) The addition rule Dn is conditionally independent of the drawing procedure Xn given Fn−1

and satisfies
∀1 ≤ j ≤ d, sup

n≥1
E

[∥∥D·j
n

∥∥2 | Fn−1

]
< +∞. (2.4)

(A3) Assume that there exists an irreducible d× d matrix H (with non-negative entries) such that

Hn
a.s.−→

n→∞
H. (2.5)

H is called the limit generating matrix.

This assumption guarantees by the Perron-Frobenius Theorem (see [9]) that 1 is the maximal
eigenvalue of H and that the components of its right eigenvector v can be chosen all positive.
Therefore, we may normalize this vector v∗ such that Tr(v∗) = 1.
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2.1 The dynamics as a stochastic approximation procedure

Our aim in this section is to reformulate the dynamics (1.1)-(1.2) into a recursive stochastic al-
gorithm. Then we aim at applying the most powerful tools of SA, namely the “ODE” and the
“SDE” methods to elucidate the asymptotic properties (a.s. convergence and weak rate) of both
the urn composition and the treatment allocation. We start from (1.1) with Y0∈ R

d
+ \ {0}.

Yn+1 = Yn +Dn+1Xn+1 = Yn + E [Dn+1Xn+1 | Fn] + ∆Mn+1, (2.6)

where
∆Mn+1 := Dn+1Xn+1 − E [Dn+1Xn+1 | Fn]

is an Fn-martingale increment. By the definition of the generating matrix Hn, we have

E [Dn+1Xn+1 | Fn] =
d∑

i=1

E
[
Dn+11{Xn+1=ei}e

i | Fn

]
=

d∑

i=1

E [Dn+1 | Fn]P
(
Xn+1 = ei | Fn

)
ei

= Hn+1

d∑

i=1

Y i
n

Tr(Yn)
ei = Hn+1

Yn

Tr(Yn)

so that Yn+1 = Yn +Hn+1
Yn

Tr(Yn)
+ ∆Mn+1.

Now we can derive a stochastic approximation for the normalized urn composition Yn. First we
have for every n ≥ 1,

Yn+1

n+ 1
=

Yn

n
+

1

n+ 1

(
Hn+1

Yn

Tr(Yn)
− Yn

n

)
+

∆Mn+1

n+ 1
.

Consequently, Ỹn =
Yn

n
, n ≥ 1, satisfies a canonical recursive stochastic approximation procedure

Ỹn+1 = Ỹn +
1

n+ 1
(Hn+1 − Id) Ỹn +

1

n+ 1

(
∆Mn+1 +

(
n

Tr(Yn)
− 1

)
Hn+1Ỹn

)

= Ỹn − 1

n+ 1
(Id −H) Ỹn +

1

n+ 1
(∆Mn+1 + rn+1) (2.7)

with step γn = 1
n and a remainder term given by

rn+1 :=

(
n

Tr(Yn)
− 1

)
Hn+1Ỹn + (Hn+1 −H)Ỹn. (2.8)

Furthermore, in order to establish the a.s. boundedness of (Ỹn)n≥1 we will rely on the following
recursive equation satisfied by Tr(Yn):

Tr(Yn+1) = Tr(Yn) +
Tr(Hn+1Yn)

Tr(Yn)
+ Tr(∆Mn+1).

By the properties of the generating matrix Hn+1, we obtain

Tr(Hn+1Yn) =
d∑

i=1

(Hn+1Yn)i =
d∑

i=1

d∑

j=1

H ij
n+1Y

j
n =

d∑

j=1

(
d∑

i=1

H ij
n+1

)
Y j
n = Tr(Yn).

Consequently
Tr(Yn+1) = Tr(Yn) + 1 + Tr(∆Mn+1). (2.9)
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2.2 Convergence results

Theorem 2.1. Under the assumptions (A1), (A2) and (A3),

(a) Tr(Yn)
n

a.s.−→
n→∞

1 and
Yn

Tr(Yn)

a.s.−→
n→∞

v∗.

(b) Ñn :=
Nn

n
=

1

n

n∑

k=1

Xk
a.s.−→

n→∞
v∗.

Remarks. • We simply need that Hn
a.s.−→

n→∞
H whereas the assumption in [5], namely

∑

n≥1

‖Hn −H‖∞
n

< +∞ a.s.

• Assumption (A3) is not necessary to prove that Tr(Yn)
n

a.s.−→
n→∞

1.

Proof. We will first prove that (a) ⇒ (b), then we will prove (a).

(a) ⇒ (b). We have

E [Xn | Fn−1] =

d∑

i=1

Y i
n−1

Tr(Yn−1)
ei =

Yn−1

Tr(Yn−1)

and, by construction ‖Xn‖2 = 1 so that E
[
‖Xn‖2 | Fn−1

]
= 1. Hence the martingale

M̃n =
n∑

k=1

Xk − E [Xk | Fk−1]

k

a.s.&L2

−→
n→∞

M̃∞ ∈ L2,

and by the Kronecker Lemma we obtain

1

n

n∑

k=1

Xk −
1

n

n∑

k=1

Yk−1

Tr(Yk−1)

a.s.−→
n→∞

0.

This yields the announced implication owing to the Cesaro Lemma.

(a) First Step: We have

Dn+1Xn+1 =
d∑

j=1

D· j
n+11{Xn+1=ej}

where D· j
n+1 = (Dij

n+1)i=1,...,d. Therefore

‖Dn+1Xn+1‖2 =
d∑

j=1

∥∥∥D· j
n+1

∥∥∥
2
1{Xn+1=ej},

so that E

[
‖Dn+1Xn+1‖2 | Fn

]
=

d∑

j=1

E

[∥∥∥D·j
n+1

∥∥∥
2
| Fn

]
P
(
Xn+1 = ej | Fn

)

≤ d sup
n≥0

sup
1≤j≤d

E

[∥∥∥D·j
n+1

∥∥∥
2
| Fn

]
< +∞ a.s.
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Consequently supn≥1 E

[
‖∆Mn+1‖2 | Fn

]
< +∞. Therefore thanks to the strong law of large

numbers for conditionally L2-bounded martingale increments, we have Mn

n
a.s.−→

n→∞
0. Consequently

it follows from (2.9) that

Tr(Yn)

n
= 1 +

Tr(Y0)− 1

n
+

Tr(Mn)

n

a.s.−→
n→∞

1. (2.10)

Second Step: Since the components of Ỹn are non-negative and Tr(Ỹn) = Tr(Yn)
n

a.s.−→
n→∞

1, it is

clear that (Ỹn)n≥1 is a.s. bounded and that a.s. the set Y∞ of all its limiting value is contained in

V = Tr−1{1} =
{
u ∈ R

d
+ |Tr(u) = 1

}
.

So we may try applying the ODE method (see Appendix Theorem A.1). Since Ỹn and Hn+1Ỹn are
a.s. bounded, (2.10) and (A3) imply that rn

a.s.−→
n→∞

0.

The ODE associated to the recursive procedure reads

ODEId−H ≡ ẏ = −(Id −H)y.

Owing to Assumption (A3), Id−H admits v∗ as unique zero in V. The restriction of ODEId−H to
the affine hyperplane V is the linear system ż = −(Id−H)z, where z = y− v∗ takes values in V0 ={
u ∈ R

d |Tr(u) = 0
}
. Since Sp

(
(Id −H) | V0

)
⊂ {λ ∈ C, Re(λ) > 0}, owing to Assumption (A3).

As a consequence v∗ is an uniformly stable equilibrium for the restriction of ODEId−H to V, the
whole hyperplane, as an attracting area. The fundamental result derived from the ODE method
(see Theorem A.1 in Appendix) yields the expected result

Ỹn
a.s.−→

n→∞
v∗. �

Remark: If we assume that the addition rule matrices (Dn)n≥1 satisfy (A1), then we can directly
write a stochastic approximation for Yn

Tr(Yn)
in which the remainder simply reads (Hn+1−H) Yn

Tr(Yn)

and prove the a.s. convergence under the same assumptions.

Comments. We could apply directly the ODE method because we first proved that (Ỹn)n≥1 is
a.s. bounded without using the standard Lyapunov machinery developed in SA Theory. That is
why the assumption on the remainder sequence (rn)n≥1 simply reads

rn
a.s.−→

n→∞
0.

Another approach is the martingale one. It relies on the existence of a Lyapunov function V : Rd →
R+ associated to the algorithm satisfying

∃ a > 0, ∀y ∈ R
d, , y 6= v∗, 〈∇V | Id −H〉 (y) > 0 and 〈∇V | Id −H〉 > a |∇V |2 . (2.11)

In this framework the existence of a Lyapunov function can be established. Hence, the natural
condition on the remainder sequence (rn)n≥1 reads (see [11])

∑

n≥1

‖rn‖2
n

< +∞ a.s.
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In that perspective, the assumption on the generating matrices would read
∑

n≥1

|||Hn −H|||2
n

< +∞

a.s. which is still slightly less stringent than assumption on the generating matrices made in [5].

2.3 Rate of convergence

In the previous section we proved the a.s. convergence of both quantities of interest, namely Ỹn and
Ñn, toward v∗. In this section we establish a “joint CLT” for the couple θn := (Ỹn, Ñn)

t with an
explicit asymptotic joint normal distribution (including covariances). To this end we will show that
θn satisfies a SA recursive procedure which (a.s. converges toward θ∗ = (v∗, v∗)t and) fulfills the
assumptions of the CLT Theorem A.2 for SA algorithms (see Appendix), with a special attention
paid to Condition (A.23) about the remainder term. As concerns Ỹn, we derive from (2.7) that

∀n ≥ 1, Ỹn+1 = Ỹn − 1

n+ 1

(
Id − (2− Tr(Ỹn))H

)
Ỹn +

1

n+ 1
(∆Mn+1 + r̄n+1) ,

where r̄n+1 :=

(
Hn+1 −H

Tr(Ỹn)
+

(Tr(Ỹn)− 1)2

Tr(Ỹn)
H

)
Ỹn.

For Ñn we have, still for every n ≥ 1,

Ñn+1 = Ñn − 1

n+ 1

(
Ñn − (2− Tr(Ỹn))Ỹn

)
+

1

n+ 1

(
∆M̃n+1 + r̃n+1

)

with ∆M̃n+1 := Xn+1 − E [Xn+1 | Fn] = Xn+1 −
Yn

Tr(Yn)
and r̃n+1 :=

(Tr(Ỹn)− 1)2

Tr(Ỹn)
Ỹn.

Thus, we obtain a new recursive SA procedure, still with step γn = 1
n , namely

θn+1 = θn − 1

n+ 1
h(θn) +

1

n+ 1
(∆Mn+1 +Rn+1) , n ≥ 1,

with ∆Mn+1 :=

(
∆Mn+1

∆M̃n+1

)
, Rn+1 :=

(
r̄n+1

r̃n+1

)
and

∀ θ =

(
y
ν

)
, y ∈ R

d, ν ∈ R
d, h(θ) :=

(
(Id − (2−Tr(y))H)y

ν − (2− Tr(y))y

)
with h(θ∗) = 0.

The function h is differentiable on R
2d and its differential at point θ∗ is given by

Dh(θ∗) =

(
Id −H + v∗1t 0Md(R)

v∗1t − Id Id

)
.

To establish a CLT for the sequence (θn)n≥1 we need to make the following additional assumptions:

(A4) The addition rules Dn a.s. satisfy

∀1 ≤ j ≤ d,





supn≥1 E

[
‖D·j

n ‖2+δ | Fn−1

]
≤ C < ∞ for a δ > 0,

Cov
[
D·j

n (D
·j
n )t | Fn−1

]
−→
n→∞

Cj,
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where Cj = (Cj
il)1≤i,l≤d, j = 1, . . . , d, are d× d positive definite matrices.

(A5) The matrix H satisfies
nE

[
|||Hn −H|||2

]
−→
n→∞

0. (2.12)

Theorem 2.2. Assume (A1), (A3), (A4) and (A5) and

Re (Sp(H) \ {1}) < 1/2 (2.13)

Then, θn → θ∗ a.s. as n → ∞ and

√
n (θn − θ∗)

L−→
n→∞

N (0,Σ) with Σ =

∫ +∞

0
eu(Dh(θ∗)− I

2
)Γeu(Dh(θ∗)− I

2
)tdu

and Γ =




d∑

k=1

v∗kCk H
(
diag(v∗)− v∗(v∗)t

)

(
diag(v∗)− v∗(v∗)t

)t
Ht diag(v∗)− v∗(v∗)t


 = a.s.- lim

n→∞
E
[
∆Mn∆Mt

n | Fn−1

]
.

(2.14)

Proof. We will check the three assumptions of the CLT for SA algorithms recalled in the Appendix
(Theorem A.2). Firstly, the condition (A.24) on the spectrum of Dh(θ∗) requested for algorithms
with step 1

n in Theorem A.2 reads Re (Sp(Dh(θ∗))) > 1
2 . This follows from our Assumption (2.13)

since by decomposing R
d = Rv∗ ⊕Ker(Tr), one checks that

Sp(Dh(θ∗)) = {1} ∪ {1− λ, λ∈ Sp(H) \ {1}}.
Secondly Assumption (A4) ensures that Condition (A.22) is satisfied since

sup
n≥1

E

[
‖∆Mn‖2+δ | Fn−1

]
< +∞ a.s. and E

[
∆Mn∆Mt

n | Fn−1

] a.s.−→
n→∞

Γ as n → ∞,

where Γ is the symmetric nonnegative matrix given by (2.14) as established below. To this end we
have to determine three blocks since Γ reads

Γ =

(
Γ1 Γ12

Γt
12 Γ2

)
where Γ1,Γ2,Γ12 ∈ Md(R).

Computation of Γ1.

E
[
∆Mn+1∆M t

n+1 | Fn

]
=

d∑

q=1

P(Xn+1 = eq | Fn)
(
E
[
D·q

n+1(D
·q
n+1)

t | Fn

]
−E [Dn+1Xn+1 | Fn]E [Dn+1Xn+1 | Fn]

t)

=
d∑

q=1

Y q
n

Tr(Yn)
Cov

(
D·q

n+1(D
·q
n+1)

t | Fn

) a.s.−→
n→∞

Γ1 =
d∑

q=1

v∗qCq.

Computation of Γ2.

E

[
∆M̃n+1∆M̃ t

n+1 | Fn

]
= E

[
Xn+1X

t
n+1 | Fn

]
− Yn

Tr(Yn)

(
Y q
n

Tr(Yn)

)t

= diag

(
Yn

Tr(Yn)

)
− Yn

Tr(Yn)

(
Y q
n

Tr(Yn)

)t
a.s.−→

n→∞
Γ2 = diag(v∗)− v∗(v∗)t.
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Computation of Γ12.

E

[
∆Mn+1∆M̃ t

n+1 | Fn

]
= E

[
Dn+1Xn+1X

t
n+1 | Fn

]
− E [Dn+1Xn+1 | Fn]E [Xn+1 | Fn]

t

= E [Dn+1 | Fn]E
[
Xn+1X

t
n+1 | Fn

]
− E [Dn+1 | Fn]E [Xn+1 | Fn]E [Xn+1 | Fn]

t

= Hn+1diag

(
Yn

Tr(Yn)

)
−Hn+1

Yn

Tr(Yn)

(
Yn

Tr(Yn)

)t

a.s.−→
n→∞

Γ12 = H
(
diag(v∗)− v∗(v∗)t

)
.

Finally, it remains to check that the remainder sequence (Rn)n≥1 satisfies (A.23) for an ǫ > 0:

E

[
(n+ 1) ‖Rn+1‖2 1{‖θn−θ∗‖≤ǫ}

]
−→
n→∞

0. (2.15)

We note that ‖Rn+1‖2 = ‖r̄n+1‖2+‖r̃n+1‖2. It follows from the definition of r̄n+1 and the elementary
facts ‖Ỹn − v∗‖ ≤ ‖θn − θ∗‖ and Tr(Ỹn) ≥ ‖Ỹn‖ that

‖r̄n+1‖2 1{
‖θn−θ∗‖≤

‖v∗‖
2

} ≤ 2

(
(Tr(Ỹn)− 1)4

‖v∗‖
2

+
|||Hn+1 −H|||2

‖v∗‖
2

)
3

2
‖v∗‖1{

‖θn−θ∗‖≤
‖v∗‖

2

}

≤ 6
(
(Tr(Ỹn)− 1)4 + |||Hn+1 −H|||2

)
1{

‖θn−θ∗‖≤
‖v∗‖

2

}.

But Tr(Ỹn) − 1 = Tr(∆Mn)
n where supn≥0 E

[
|Tr(∆Mn+1)|2+δ | Fn

]
≤ C ′, δ > 0, owing to (A4).

Now using that |Tr(y)| ≤ Cd‖y‖,

E

[
n
∣∣∣Tr(Ỹn)− 1

∣∣∣
4
1{

‖θn−θ∗‖≤
‖v∗‖

2

}
]
≤ C∗

δnE

[∣∣∣Tr(Ỹn)− 1
∣∣∣
2+δ
]
=

Cd

n1+δ
E

[
|Tr(∆Mn)|2+δ

]
≤ C ′

d

n1+δ
,

where C∗
δ > 0 is a real constant. Consequently

E

[∣∣∣Tr(Ỹn)− 1
∣∣∣
4
1{

‖θn−θ∗‖≤ ‖v∗‖
2

}
]
= o

(
1

n

)
.

Thus, by (A5) we obtain

E

[
‖r̄n+1‖2 1{

‖θn−θ∗‖≤
‖v∗‖

2

}
]
= o

(
1

n

)
.

The same argument yields E

[
‖r̃n+1‖2 1{

‖θn−θ∗‖≤
‖v∗‖

2

}
]
= o

(
1

n

)
, therefore (2.15) is satisfied. �

3 Application to urn models for multi-arm clinical trials

3.1 The Wei GFU Model

We consider here the model presented in [22] and in [6], where balls are added depending on
the success probabilities of each treatment. Define an efficiency indicator as follows: let (T i

n)n≥1,
1 ≤ i ≤ d, be d independent sequences of [0, 1]-valued i.i.d. random variables, independent of the
i.i.d.sampling sequence (Un)n≥1 so that

E
[
T i
n

]
= pi, 0 < pi < 1, 1 ≤ i ≤ d. (3.16)

10



Remark. If (T i
n)n≥1, 1 ≤ i ≤ d, is simply a success indicator, namely d independent sequences

of i.i.d. {0, 1}-valued Bernoulli trials with respective parameter pi, then the convention is to set
T i
n =1 to indicate that the response of the ith treatment in the nth trial is a success and T i

n = 0
otherwise.

In this framework one considers the filtration Fn = σ (Y0, Uk, Tk, 1 ≤ k ≤ n), n ≥ 0. Consider
the following addition rules: a success on the treatment i adds a ball of type i to the urn and a
failure on the treatment i adds 1

d−1 balls for each of the other d− 1 types. Thus the addition rule
proposed in [22] is as follows

Dn+1 =




T 1
n+1

1−T 2
n+1

d−1 · · · 1−T d
n+1

d−1

1−T 1
n+1

d−1 T 2
n+1 · · · 1−T d

n+1

d−1
...

...
. . .

...
1−T 1

n+1

d−1

1−T 2
n+1

d−1 · · · T d
n+1




so that

Hn+1 = E [Dn+1 | Fn] = EDn+1 = H =




p1 q2

d−1 · · · qd

d−1

q1

d−1 p2 · · · qd

d−1
...

...
. . .

...
q1

d−1
q2

d−1 · · · pd




,

where qi = 1 − pi, 1 ≤ i ≤ d. The strong consistency has been first established in [3], then redone
in [5] and in this paper with Theorem 2.1, and the asymptotic normality

Yn − nv∗√
n

L−→ N (0,Σ)

results from Theorem 3.2 in [5] and from Theorem 2.2 of this paper where we obtain a joint CLT
for (Ỹn, Ñn). Furthermore we know that

v∗i =
1/qi

∑d
j=1 1/q

j
, 1 ≤ i ≤ d.

Note that if pi > pj, then v∗i > v∗j . Hence the components v∗i are ordered according to the
increasing efficiency pi of the treatments. Furthermore, it is clear that, if pi ↑ 1 and all other
probabilities pj stand still, then

lim
pi→1

v∗j = δij

where δij denotes the Kronecker symbol. Consequently, since v∗i is the asymptotic probability of
assigning treatment i to a patient, the procedure asymptotically allocates more patients to the
most efficient treatment(s). Following the practitioners, the fact that a marginal allocation of less
efficient treatments is preserved is justified by some comparison matter.
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However this model only takes into account in the addition rule matrix Dn the response of the
nth patient without considering the ones of past patients. This led the author of [6] to introduce
a new model based on statistical observations of the efficiency of the assigned treatments to past
patients.

3.2 The Bai-Hu-Shen GFU Model

We consider now the model introduced in [6] (and considered again in [5]) where (T i
n)n≥1,1 ≤ i ≤ d,

are d independent sequences of i.i.d. {0, 1}-valued Bernoulli trials satisfying (3.16) and the filtration
(Fn)n≥0 is defined as in the previous section. Let Nn = (N1

n, . . . , N
d
n)

t and Sn = (S1
n, . . . , S

d
n)

t,
where N i

n = N i
n−1 + Xi

n, n ≥ 1, still denotes the number of times the ith treatment is selected
among the first n stages and

Si
n = Si

n−1 + T i
nX

i
n, n ≥ 1,

denotes the number of successes of the ith treatment among these N i
n trials, i = 1, . . . , d. However,

to avoid degeneracy of the procedure, we will make the following initialization assumption

N i
0 = 1, Si

0 = 1, i = 1, . . . , d

(which makes the above interpretation of these quantities correct “up to one unit”).

Remark. Like with the Wei model, we can simply assume that T i
n is a [0, 1]-valued efficiency

indicator.

Define Qn = (Q1
n, . . . , Q

d
n)

t, where Qi
n = Si

n

N i
n
, i = 1, . . . , d and En =

∑d
i=1Q

i
n. In [6] the authors

consider the following addition rule matrices,

Dn+1 =




T 1
n+1

Q1
n(1−T 2

n+1
)

En−Q2
n

· · · Q1
n(1−T d

n+1
)

En−Qd
n

Q2
n(1−T 1

n+1
)

En−Q1
n

T 2
n+1 · · · Q2

n(1−T d
n+1

)

En−Qd
n

...
...

. . .
...

Qd
n(1−T 1

n+1)

En−Q1
n

Qd
n(1−T 2

n+1)

En−Q2
n

· · · T d
n+1




,

i.e. at stage n+1, if the response of the ith treatment is a success, then one ball of type i is added

in the urn. Otherwise, Qj
n

En−Qi
n
(virtual) balls of type j, j 6= i, are added. Then, one easily checks

that the generating matrices are given by

Hn+1 = E [Dn+1 | Fn] =




p1 Q1
n

En−Q2
n
q2 · · · Q1

n

En−Qd
n
qd

Q2
n

En−Q1
n
q1 p2 · · · Q2

n

En−Qd
n
qd

...
...

. . .
...

Qd
n

En−Q1
n
q1 Qd

n

En−Q2
n
q2 · · · pd




.
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As soon as Y0 ∈ R
d
+ \ {0}, Hn

a.s.−→ H (see Lemma 3.1 below or [6] when Y0 ∈ (0,∞)d) where

H =




p1 p1

E−p2
q2 · · · p1

E−pd
qd

p2

E−p1
q1 p2 · · · p2

E−pd
qd

...
...

. . .
...

pd

E−p1
q1 pd

E−p2
q2 · · · pd




where E = p1 + · · · + pd.

The matrix H is clearly irreducible since 0 < pi < 1, 1 ≤ i ≤ d. Then Theorem 2.1 (or following
the direct proof from [6]) we obtain

Ỹn =
Yn

n

a.s.−→
n→∞

v∗ and Ñn =
Nn

n

a.s.−→
n→∞

v∗. (3.17)

Note that the normalizes maximal eigenvector v∗ (associated to the eigenvalue 1) is given by

v∗i =
pi E−pi

1−pi∑
1≤j≤d p

j E−pj

1−pj

, i = 1, . . . , d.

Note that if pi > pj, pi

pj
E−pi

E−pj
> 1 and 1−pj

1−pi
> 1 so that v∗i > v∗j . Hence the entries v∗i are ordered

according to the increasing efficiency pi of the treatments. This model can be considered as more
ethical than the Wei model since a better treatment will be administrated to more patients. Indeed,
when d > 2, for any i 6= j, 1 ≤ i, j ≤ d, if pi > pj,

v∗iBHS

v∗jBHS

>
v∗iW
v∗jW

> 1

(when d = 2 both matrices H coincide).

Remark. Note that in that model the “balls” in the urn become virtual since there exists no
N ∈ N such that, for every n ≥ 1, NDn ∈ Md(N).

3.3 Asymptotic normality for multi-arm clinical trials for the BHS GFU model

In order to derive a CLT , not with the bias EYn but with nv∗, from their own general asymptotic
normality result (which statement is similar to Theorem 2.2) they need to fulfill the following
convergence rate assumption for Hn

∑

n≥1

|||Hn −H|||∞√
n

< ∞ a.s. (3.18)

In [6], the a.s. rate of decay |||Hn −H|||∞ = o(n− 1

4 ) is shown which is clearly not fast enough to
fulfill (3.18).
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However, by enlarging the dimension of the structure process of the procedure by considering
the 3d-dimensional random sequence

θ̃n =



Ỹn

Ñn

S̃n


 where S̃n =

Sn

n
, n ≥ 1,

we will establish that a CLT does hold for the BHS GFU model.
The first step is to notice that the generating matrix Hn+1 can may be written as a function de-

pending on S̃n and Ñn, i.e. Hn+1 = Φ(S̃n, Ñn), where Φ : Rd
+×(0,∞)d → Md(R) is a differentiable

function defined by

Φ(s, ν) =
(
Φij(s, ν)

)
1≤i,j≤d

where

{
Φii(s, ν) = pi 1 ≤ i ≤ d

Φij(s, ν) = si/νi∑
k 6=j s

k/νk
qj 1 ≤ i, j ≤ d, i 6= j.

Then the following strong consistency and CLT hold for (θ̃n)n≥1.

Theorem 3.1. Assume that (A1), (A4), (A5) and (2.13) hold. Then, as soon as Y0 ∈ R
d
+ \ {0},

θ̃n
a.s.−→

n→∞
θ̃∗ and

√
n
(
θ̃n − θ̃∗

)
L−→

n→∞
N
(
0, Σ̃

)
,

where

θ̃∗ := (v∗, v∗,diag(p)v∗)t , Σ̃ =

∫ +∞

0
eu(Dh̃(θ̃∗)− I

2
)Γ̃eu(Dh̃(θ̃∗)− I

2
)tdu

with Γ̃ = a.s. limn→+∞ E

[
∆M̃n+1∆M̃t

n+1 | Fn

]
(with (∆M̃n)n≥1 a sequence of martingale incre-

ments defined in the proof below) reads

Γ̃ =




d∑

k=1

v∗kCk H
(
diag(v∗)− v∗(v∗)t

) (
diag(v∗)− v∗(v∗)t

)
diag(p)

(
diag(v∗)− v∗(v∗)t

)t
Ht diag(v∗)− v∗(v∗)t

(
diag(v∗)− v∗(v∗)t

)
diag(p)

diag(p)
(
diag(v∗)− v∗(v∗)t

)t
diag(p)

(
diag(v∗)− v∗(v∗)t

)t
diag(p)

(
v∗ − v∗v∗tdiag(p)

)




and

Dh̃(θ̃∗) =




Id −H + v∗1t − ∂
∂ν (Φ(s, ν)y)|θ̃=θ̃∗

− ∂
∂s (Φ(s, ν)y)|θ̃=θ̃∗

v∗1t − Id Id 0Md(R)

diag(p)
(
v∗1t − Id

)
0Md(R) Id




which is invertible.

Proof. Step 1(Strong consistency). We will show with Lemma 3.1 that S̃n
a.s.−→

n→∞
diag(p)v∗ and

that Hn
a.s.−→

n→∞
H so that, using what precedes θ̃n

a.s.−→
n→∞

θ̃∗.
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Lemma 3.1. If the assumptions (1.1), (2.3), (2.4) hold and Y0 ∈ R
d
+ such that Tr(Y0) > 0, then,

Qn
a.s.−→ p = (p1, . . . , pd) as n → ∞

so that Assumption (2.5) holds i.e. Hn
a.s.−→

n→∞
H.

Remark. If we assume that Y i
0 > 0, 1 ≤ i ≤ d, then we can prove that limnN

i
n = +∞ a.s.,

1 ≤ i ≤ d, faster than below by using that Y i
n ≥ Y i

0 , 1 ≤ i ≤ d, n ≥ 1. The following proof consider
the more general case where Y0 ∈ R

d
+ \ {0}.

Proof of the lemma. Step 1. It follows from the dynamics (1.1) and the definition of Dn+1 and
Hn+1 that, for every n ≥ 0, Tr(Yn) = Tr(Y0) + n and that, for every i∈ {1, . . . , d},

Y i
n+1 = Y i

n +

d∑

j=1

H ij
n+1

Y i
n

TrYn
+∆M i

n+1

where (∆M i
n)n≥1 is a sequence of martingale increments satisfying supn E

[
|∆M i

n|2 | Fn−1

]
< +∞

owing to (2.4). Now using that Si
0 = N i

0 = 1 by convention, one derives that

∀ i 6= j, H ij
n+1 ≥

κ0
n
, with κ0 =

1

2d
min
1≤i≤d

(
pi, qi

)
> 0

so that, using that H ii
n+1 = pi, there exists a deterministic integer n0 such that for every n ≥ n0,

Y i
n+1 ≥

(
1 +

pi
n

− κ0
nTrYn

)
Y i
n +

κ0
n

+∆M i
n+1

≥
(
1 +

pi
2Tr(Yn)

)
Y i
n +

κ0
n

+∆M i
n+1.

Standard computations show that, setting ain =
∏n−1

k=n0
(1 + pi

2Tr(Yn)

)
, i = 1, . . . , d,

∀n ≥ n0,
Y i
n

ain
≥ Y i

n0

ain0

+
n∑

k=n0+1

κ0
aik

+
n∑

k=n0+1

∆M i
k

aik

Since there exists κ1, κ2 > 0 such that κ1n
pi

2 ≤ ain ≤ κ2n
pi

2 , one has

∀ η > 0,

n∑

k=n0+1

∆M i
k

aik
= o
(
n

1−pi+η
2

)
.

Finally, there exists a positive real constant c′ such that, for every i = 1, . . . , d,

Y i
n ≥ c′n

pi

2

n∑

k=n0+1

k−
pi

2 + o
(
n

1+η
2

)

so that

∀ i∈ {1, . . . , d}, lim inf
n

Ỹ i
n ≥ c′

∫ 1

0
u−

pi

2 du > 0
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and, as a consequence,
∑

n≥1 Ỹ
i
n = +∞-a.s. Now using that for every i = 1, . . . , d,

N i
n =

n∑

k=1

1{Xk=ei} and P(Xn = ei | Fn−1) = Ỹ i
n−1

(
1− Tr(Y0)

Tr(Yn−1)

)
, n ≥ 1,

we get by the conditional Borel-Cantelli Lemma that N i
∞ = limnN

i
n = +∞ a.s.

Step 2. First we note that

Qi
n =

∑n
k=1 T

i
k∆N i

k

N i
n

and we introduce the sequence (Q̃n)n≥1 defined by

Q̃i
n =

n∑

k=1

(T i
k − pi)

∆N i
k

N i
k−1 + 1

, n ≥ 1.

It is an Fn-martingale since, T i
k being independent of Fk−1 and Xk,

E

(
(T i

k − pi)∆N i
k | Fk−1

)
= E(T i

k − pi)P(Xk = ei | Fk−1) = 0.

It has bounded increments since |T i
k − pi| ≤ 1 and

〈Q̃i〉n ≤
n∑

k=1

E((∆N i
k)

2 | Fk−1)

(N i
k−1 + 1)2

.

It follows, using (∆N i
k)

2 = ∆N i
k, that, for every n ≥ 1,

E〈Q̃i〉n ≤ E

( n∑

k=1

∆N i
k

(N i
k−1 + 1)2

)
≤ E

( n∑

k=1

∆N i
k

N i
k−1N

i
k

)
≤ 1

N i
0

= 1.

Consequently Q̃i
n → Q̃i

∞∈ L1(P) a.s. as n → ∞. This in turn implies by Kronecker’s Lemma that

Qi
n

a.s.−→ pi as n → ∞

since N i
n → ∞ by the first step. �

It follows from the lemma and Theorem 2.1 that (Ỹn, Ñn) → (v∗, v∗). Furthermore diag(S̃n) =
diag(Qn)Ñn → diag(p)v∗ = u∗ so that θ̃n → θ̃∗ as n → ∞.

Step 2 (Asymptotic normality). We will show now that (θ̃n)n≥1 satisfies an appropriate recursion

to apply Theorem A.2 (CLT ). First, we write a recursive procedure for S̃n. Having in mind that
Sn = 1 +

∑
1≤k≤n diag(Tk)Xk, we get

S̃n+1 = S̃n − 1

n+ 1

(
S̃n − diag(Tn+1)Xn+1

)

= S̃n − 1

n+ 1

(
S̃n − diag(p)

Ỹn

Tr(Ỹn)

)
+

1

n+ 1
∆M̂n+1

= S̃n − 1

n+ 1

(
S̃n − diag(p)(2− Tr(Ỹn))Ỹn

)
+

1

n+ 1

(
∆M̂n+1 + r̂n+1

)
(3.19)
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where ∆M̂n+1 := diag(Tn+1)Xn+1−E [diag(Tn+1)Xn+1 | Fn] = diag(Tn+1)Xn+1−diag(p)
Ỹn

Tr(Yn)

is an Fn-martingale increment and r̂n+1 = diag(p)
(Tr(Ỹn)−1)

2

Tr(Ỹn)
Ỹn. Then we rewrite the dynamics

satisfied by Ỹn as follows

Ỹn+1 = Ỹn − 1

n+ 1

(
Id − (2− Tr(Ỹn))Hn+1

)
Ỹn +

1

n+ 1
(∆Mn+1 + řn+1) , (3.20)

where řn+1 :=

(
Tr(Ỹn)− 1

)2

Tr(Ỹn)
Hn+1Ỹn. Finally, we get the following recursive procedure for θ̃n

θ̃n+1 = θ̃n − 1

n+ 1
h̃(θ̃n) +

1

n+ 1

(
∆M̃n+1 + R̃n+1

)
, n ≥ 1,

where, for every θ̃ = (y, ν, s)t∈ R
3d
+ ,

h̃(θ̃) :=



(Id − (2− Tr(y))Φ(s, ν))y

ν − (2− Tr(y))y
s− (2− Tr(y))diag(p)y


, ∆M̃n+1 :=



∆Mn+1

∆M̃n+1

∆M̂n+1


 and R̃n+1 :=



řn+1

r̃n+1

r̂n+1


 .

The function Φ being differentiable at the equilibrium point θ̃∗, we have

Dh̃(θ̃∗) =




Id −H + v∗1t − ∂
∂ν (Φ(s, ν)y)|θ̃=θ̃∗

− ∂
∂s (Φ(s, ν)y)|θ̃=θ̃∗

v∗1t − Id Id 0Md(R)

diag(p)
(
v∗1t − Id

)
0Md(R) Id




which is invertible since by Schur complement we have det(Dh̃(θ̃∗)) = det(Id −H + v∗1t) thanks
to ∂

∂ν (Φ(s, ν)y)|θ̃=θ̃∗
= −diag(p) ∂

∂s (Φ(s, ν)y)|θ̃=θ̃∗
.

At this stage, the proof follows the lines of that of Theorem 2.2: the computation of the
covariance matrix Γ̃ and the treatment of the remainder term uses the same tools as before. The
details are left to the reader. �

Remarks. • The asymptotic variances of Ỹn and Ñn in Theorem 3.1 are different from those in
Theorem 2.2 because the differential matrices Dh(θ∗) and Dh̃(θ̃∗) are not the same.
• In the SA Theory, there also exists some results on the rate of convergence without CLT. For the
sake of simplicity, in this paper we only treat the case where L > 1

2 , with L = min {Re(λ); λ ∈ Sp (Dh(θ∗))}.
When L = 1

2 ,
√
n can be replaced by

√
n

(lnn)α , α > 0, and when L < 1
2 , we have an a.s. convergence

toward a finite random variable at a rate n−L (see [12]).

Corollary 3.1. Under the assumptions of Theorem 3.1,

√
n
(
Hn −H

) L−→
n→∞

N (0; ΓH)

where ΓH is a d2 × d2 matrix given by ΓH = DΦ(u∗, v∗)[Σ̃i+d,j+d]1≤i,j≤2dDΦ(u∗, v∗)t.
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Proof. This is an easy consequence of the so-called ∆-method since

Hn = Φ(S̃n, Ñn) = Φ(u∗, v∗) +DΦ(u∗, v∗).(S̃n − u∗, Ñn − v∗) + ‖(S̃n − u∗, Ñn − v∗)‖ε(S̃n, Ñn)

with limy→(u∗,v∗) ε(y) = 0. Consequently

√
n
(
Hn −H

)
= DΦ(u∗, v∗).(

√
n(S̃n − u∗),

√
n(Ñn − v∗)) + εP(n)

where εP(n) goes to 0 in probability (as the product of a tight sequence and an a.s. convergent
sequence). This concludes the proof. �

Remark. This corollary shows a posteriori that it was hopeless to try applying Theorem 2.2 in its
standard form to establish asymptotic normality for multi-arm clinical trials since the assumption
E|||Hn −H|||2 = o(n−1) cannot be satisfied. Our global SA approach breaks the vicious circle.

Numerical Example: BHS model. We consider the case d = 2, so v∗ as the same form as in
the example in Subsection 2.3.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Convergence of Y
n
1/n toward v*1

0 500 1000 1500 2000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Convergence of Y
n
2/n toward v*2

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 Convergence of N
n
1/n toward v*1

0 500 1000 1500 2000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Convergence of N
n
2/n toward v*2

Figure 1: Convergence of Yn

n toward v∗ (up-windows) and of Nn

n toward v∗ (down-windows): d = 2,
n = 2.103, p1 = 0.5, p2 = 0.7, Y0 = (0.5, 0.5)t and N0 = (1, 1)t.
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Appendix

A Basic tools of Stochastic Approximation

Consider the following recursive procedure defined on a filtered probability space (Ω,A, (Fn)n≥0,P)

∀n ≥ n0, θn+1 = θn − γn+1h(θn) + γn+1 (∆Mn+1 + rn+1) , (A.21)

where h : Rd → R
d is a locally Lipschitz continuous function, θn0

an Fn0
-measurable finite random

vector and, for every n ≥ n0, ∆Mn+1 is an Fn-martingale increment and rn is an Fn-adapted
remainder term.

Theorem A.1. (a.s. convergence with ODE method, see e.g. [8, 12, 19, 14, 7]). Assume that h is
locally Lipschitz, that

rn
a.s.−→

n→∞
0 and sup

n≥n0

E

[
‖∆Mn+1‖2 | Fn

]
< +∞ a.s.,

and that (γn)n≥1 is a positive sequence satisfying

∑

n≥1

γn = +∞ and
∑

n≥1

γ2n < +∞.

Then the set Θ∞ of its limiting values as n → +∞ is a.s. a compact connected set, stable by the
flow of

ODEh ≡ θ̇ = −h(θ).

Furthermore if θ∗ ∈ Θ∞ is a uniformly stable equilibrium on Θ∞ of ODEh, then

θn
a.s.−→

n→∞
θ∗.

Comments. By uniformly stable we mean that

sup
θ∈Θ∞

|θ(θ0, t)− θ∗| −→ 0 as t → +∞,

where θ(θ0, t)θ0∈Θ∞,t∈R+
is the flow of ODEh on Θ∞.

Theorem A.2. (CLT see e.g. [8, 12, 19]). Let θ∗ be an equilibrium point of {h = 0}. Assume
that the function h is differentiable at θ∗ and all the eigenvalues of Dh(θ∗) have positive real parts.
Assume that for some δ > 0,

sup
n≥n0

E

[
‖∆Mn+1‖2+δ | Fn

]
< +∞ a.s., E

[
∆Mn+1∆M t

n+1 | Fn

] a.s.−→
n→∞

Γ, (A.22)

where Γ is a nonrandom symmetric definite positive matrix and for an ǫ > 0,

E

[
(n+ 1) ‖rn+1‖2 1{‖θn−θ∗‖≤ǫ}

]
−→
n→∞

0. (A.23)
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Specify the gain parameter sequence as follows

∀n ≥ 1, γn =
α

n
, α >

1

2Re(λmin)
(A.24)

where λmin denotes the eigenvalue of Dh(θ∗) with the lowest real part. Then, the above a.s. con-
vergence is ruled on the convergence set {θn −→ θ∗} by the following Central Limit Theorem

√
n (θn − θ∗)

L−→
n→∞

N (0, αΣ) with Σ :=

∫ +∞

0

(
e
−
(
Dh(θ∗)−

Id
2α

)
u
)t

Γe
−
(
Dh(θ∗)−

Id
2α

)
u
du.
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