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Abstract

This paper is devoted to assess the impact of quadrivalent Human Papillomavirus (HPV) vaccine
on prevalence of non-oncogenic HPV 6/11 types in French males and females. For this purpose, a
non-linear dynamic model of heterosexual transmission for HPV 6/11 types infection is developed,
which accounts for immunity due to vaccination in particular. The vaccinated reproduction number
Rv is derived using the approach described by Diekmann (2010) called the Next Generation Operator
approach. The model proposed is analyzed, with regard to existence and uniqueness of the solution,
steady-state stability. Precisely, the stability of the model is investigated depending on the sign of
Rv − 1. Prevalence data are used to fit a numerical HPV model, so as to assess infection rates. Our
approach suggests that 10 years after introducting vaccination, the prevalence of HPV 6/11 types in
females will be halved and that in males will be reduced by one quarter, assuming a sustained vaccine
coverage of 30% among females. Using the formula we derived for the vaccinated reproduction number,
we show that the non-oncogenic HPV 6/11 types would be eradicated if vaccine coverage in females
is kept above 12%. Human Papillomavirus, deterministic epidemic model, equilibrium, stability,
reproduction number, vaccination.

1 Introduction

Human Papillomavirus (HPV) is the most common sexually transmitted infection. At least 70 per cent of
sexually active people acquire HPV infection at some point in their lives (Syrjänen et al., 1990). Nearly
one hundred HPV genotypes have been identified, among which there are low risk genotypes, causing
benign anogenital lesions, and high risk genotypes, which induce pre-cancerous lesions in the cervix. Epi-
demiological studies on HPV infections establish the role of these viruses as the primary cause of cervical
cancer (Muñoz, 2000). These infections are also the cause of anogenital cancers, head and neck cancers,
anogenital warts and recurrent respiratory papillomatosis among women and men. While HPV 16/18
are incriminated in 70% of cervical cancer, HPV 6/11 are the primary cause of almost (90%) all geni-
tal warts and of most respiratory recurrent papillomatosis cases (Gissman et al., 1983). While available
epidemiological data in France indicate a prevalence of 1% in the general population for genital warts,
a prevalence of 10% has been observed in young individuals aged 15 to 25 (Monsonego, 2008). Efficacy
of curative treatment is limited in presence of a high recurrence rate for genital warts. Two prophylactic
vaccines against HPV infections are available. The bivalent vaccine protects individuals from oncogenic
HPV 16/18 types. The quadrivalent vaccine protects individuals from oncogenic HPV types 16/18 and
non-oncogenic HPV types 6/11. The purpose of this paper is to assess the impact of the quadrivalent
HPV vaccine on the prevalence of non-oncogenic HPV 6/11 types in French individuals.
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1 INTRODUCTION 2

Mathematical epidemic modeling provides useful tools for analyzing the spread and control of infectious
diseases (Hethcote, 2000; Brauer et al., 1945). In particular, it can be used in order to assess the impact
of vaccination. Numerous mathematical models have been introduced in the literature to study epidemics
of communicable diseases such as measles, influenza, rubeola, and chickenpox. References are much too
numerous to be listed exhaustively, see Nuno et al.(2005) or Feng et al.(2000) for instance for recent
accounts of (deterministic) epidemic models.

Since anti-HPV vaccines have been developed, several deterministic or hybrid models have been de-
veloped to assess the potential impact of vaccination on HPV prevalence and linked diseases (see e.g.
Hughes et al. (2002); Barnabas et al. (2006); Elbasha et al. (2007); Taira et al. (2004); Ribassin-Majed
et al. (2012a,b). However, the models documented in the literature are based on numerical simulations
and offer very limited analytical results. It should be noticed in addition that the complexity of these
models does not allow to study local and global stability for the equilibrium points. To the best of our
knowledge, only Elbasha et al. studied local and global stability for equilibrium solutions in a simple
Susceptible-Infected-Retired (SIR) model (Elbasha, 2006 and Elbasha, 2008).

In certain models developed for communicable diseases, the system of differential equations that de-
scribes the evolution of the epidemics is not globally asymptotically stable, multiple equilibrium points
coexisting (Feng et al., 2000; Nuño et al., 2005). When considering vaccination, the vaccinated reproduc-
tion number Rv, in addition to the basic reproduction number R0, is estimated to assess the spread of
the disease of interest. The basic reproduction number R0 is a threshold quantity establishing whether an
epidemic is likely to spread out or not. It is defined as the expected number of secondary cases of HPV
caused by an infected individual during the entire period of infectiousness, in a completely susceptible
population (Dietz, 1975; Diekmann et al., 1990). The vaccinated reproduction number represents the
threshold in presence of vaccination. These values may determine the likeliest scenario for the evolution
of the epidemic disease under study, depending on whether they are below or above the critical value
1. However, bringing the vaccinated reproduction number below 1 may not be sufficient to eradicate
endemicity of the disease when multiple locally stable equilibrium solutions coexist (Kribs-Zaleta et al.,
2000). Hence, in dynamic models, investigating the asymptotic behavior is an important issue.

The main objective of this paper is to assess the impact of quadrivalent HPV vaccine on HPV 6/11
prevalences in French females and males. A deterministic model is presented using a system of ordinary
differential equations to describe the heterosexual transmission of the virus in the French population, con-
sidering the real vaccine coverage observed in France. In addition, a mathematical analysis of the model
is provided. Deterministic epidemic modeling for sexually transmitted infections, taking into account sex
and vaccination both at the same time, are not well documented in the literature. Human Papillomavirus
is the only sexually transmitted infection which can be avoided through vaccination. To the best of our
knowledge, only Elbasha (2006, 2008) proposed a Susceptible-Infected-Retired (SIR) deterministic model
for HPV transmission. This paper is thus the first to investigate specifically the impact of HPV vaccination
on non-oncogenic HPV types, through a mathematical/numerical analysis of the dynamic model proposed.

The paper is structured as follows. In section 2, a two-sex model of HPV infection transmission in
the sexually active population is introduced. We developed a deterministic model based on a system of
ordinary differential equations for HPV 6/11 transmission considering vaccination, to evaluate the effects
of vaccination campaigns in France. The basic reproduction number R0 and vaccinated reproduction
number Rv are derived from an analytic formula in section 3. The asymptotic behavior of the HPV
models (with and without vaccination) is studied in section 3 and the stability of equilibrium solutions
of the developed models is illustrated through simulations in section 4. Subsequently, numerical values
for the infection rates are assessed by means of a fitting procedure based on prevalence data, and the
impact of quadrivalent vaccine on HPV 6/11 prevalence in France for both sexes is quantified in section
5, considering the current vaccine coverage in France. The experimental results are finally discussed in
section 6. Technical details are deferred to the Appendix section.
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2 Human Papillomavirus model

In this paper we develop a deterministic model that describes the transmission mechanism of HPV 6/11
infection in a heterosexually active population. Classically, the sexually active population is divided into
compartments. Non-oncogenic HPV types do not induce specific natural immunity (Monsonego, 2008),
therefore we use a Susceptible-Infected-Susceptible (SIS) structure. In addition, vaccination is taken into
account, see Figure 1.

Figure 1: Flow diagram.
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Deterministic models are widely used to simulate the spread of sexually transmitted infectious diseases.
Such models can be described using a system of ordinary differential equations, with females and males
in different compartments. The transmission term is non-linear as it reflects the interaction between in-
fectious and susceptible individuals. The use of a deterministic model allows us here to take into account
herd immunity (indirect benefits of vaccination, see Garnett (2005)) in a simple manner, which corre-
sponds to a decrease of HPV infections in non-vaccinated subpopulations due to vaccination coverage
of other individuals. When non-vaccinated (respectively vaccinated) women enter in the female sexually
active population (of size Nf ), they move into the susceptible compartment XS (respectively VS) at the
constant rate [(1- ϕf )Λ] (respectively [ϕfΛ]) and they leave all compartments at rate µf . We assume that
the exit of the sexually active population balances the entrance in the sexually active population so that
the population size N in the model remains constant. In a similar fashion, non-vaccinated (resp. vacci-
nated) men enter into the male sexually active population (of size Nm) into the susceptible compartment
YS (resp. WS) at constant rate [(1- ϕm)Λ] (respectively [ϕmΛ]) and leave all compartments at rate µ.
Susceptible individuals are infected with HPV at a per capita rate λm or λf (annual rates), depending on
their sex. The force of infection depends on infection rates (σm for men and σf for women) and on HPV
infection prevalence in the opposite sex as well. Then, they move into infected compartments: XI (resp.
VI) for women, YI (resp. WI) for men in non-vaccinated population (resp. in vaccinated population), see
the description of parameters on Table 1.
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Table 1: Description of variables and parameters.
Symbol Description Estimates References

Variables
Non-vaccinated population
XS(t) Susceptible women
YS(t) Susceptible men
XI(t) Infected women
YI(t) Infected men
Vaccinated population
VS(t) Susceptible women
WS(t) Susceptible men
VI(t) Infected women
WI(t) Infected men

λf Force of infection for women
λm Force of infection for men

Nf Number of females 500,000
Nm Number of males 500,000

Biological parameters

σf Infection rate for women calibration
σm Infection rate for men calibration
δ Clearance rate 1.25 Trottier et al, 2008

Vaccines Parameters
ϕf Female vaccination rate scenario 1: 30% Fagot et al, 2011

scenario 2: 10%
τ Vaccine degree of protection 90% Future, 2010

Demographic parameters

Λ Number of individuals in each sex 30,000 Λ = µ ∗N/2
who enter annually in the model

µ retirement rate 6%

The following assumptions shall also be required:

• Vaccinated people can be infected. The degree of protection of vaccine is τ , the relative risk of a
vaccinated person experiencing a breakthrough infection is 1− τ .

• Vaccinated infected individuals are as much infectious as non-vaccinated persons.

• Vaccine immunity does not wane during all sexually active life.

• Women and men who clear HPV infection at rate δ leave infected compartments and go back to
susceptible compartments.

Demographic and biological parameters are strictly positive. The notation d
dt
(·) is used for derivative.

The non-linear system of ordinary differential equations that represents this compartmental model is:
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dXS

dt
= (1− ϕf )Λ− λfXS + δXI − µXS

dXI

dt
= λfXS − (δ + µ)XI

dYS

dt
= (1− ϕm)Λ− λmYS + δYI − µYS

dYI

dt
= λmYS − (δ + µ)YI

dVS

dt
= ϕfΛ− (1− τ)λfVS + δVI − µVS (2.1)

dVI

dt
= (1− τ)λfVS − (δ + µ)VI

dWS

dt
= ϕmΛ− (1− τ)λmWS + δWI − µWS

dWI

dt
= (1− τ)λmWS − (δ + µ)WI

We highlight the fact that the system above is nonlinear, the forces of infection depend on infection rates
and the prevalences of HPV infection in the opposite sex:

λf = σf
(YI +WI)

Nm
,

λm = σm
(XI + VI)

Nf

.

The population in the model is assumed to remain constant, that is:

Nf = XS +XI + VS + VI ,

Nm = YS + YI +WS +WI ,

N = Nf +Nm.

And we assume: Nf = Nm.
Thus

N ′ = 2Λ− µN.

Since at equilibrium N∗ = 2Λ
µ
, we only need to analyze the asymptotically autonomous limiting system

where N is replaced by its equilibrium value. We consider the system only in the region

D =

{

(XS , XI , YS , YI , VS, VI , WS, WI) ∈ R
8
+, XS +XI + VS + VI =

Λ

µ
= Nf

and YS + YI +WS +WI =
Λ

µ
= Nm

}

.

It can be verified that D is positively invariant for this system, which has a unique solution in D. The
model is epidemiogically and mathematically well posed. In section 3, the equilibria of the model without
vaccination are analyzed and a closed analytical form for the basic reproduction number is given.

3 Analysis of equilibria and reproduction numbers

In this section, we consider the model without vaccination as a first go. There are two possible equilibria:
the Disease Free Equilibrium (DFE in abbreviated form) and the Endemic Equilibrium. In order to
analyze the stability of these equilibria, the basic reproduction number R0 is computed.
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3.1 The model without vaccination

In the abscence of vaccination, ϕm = 0 and ϕf = 0 as well as VS = VI = WS = WI = 0. The system of
ordinary differential equations is as follows:

dXS

dt
= Λ− σfYI

Nm
XS + δXI − µXS

dXI

dt
=

σfYI

Nm
XS − (δ + µ)XI

dYS

dt
= Λ− σmXI

Nf

YS + δYI − µYS (3.1)

dYI

dt
=

σmXI

Nf
YS − (δ + µ)YI

The equilibria of this model are obtained by setting the right hand sides of the model equations to zero.
The system (3.1) has two equilibria, one at:

P0= (X∗

S , X∗

I , Y ∗

S , Y ∗

I )= ( Λ
µ
, 0 , Λ

µ
, 0) which is the DFE, and P1= (X∗∗

S , X∗∗

I , Y ∗∗

S , Y ∗∗

I ) the endemic
equilibrium, where:

X∗∗

S =
dN(δ + µ)

2σf
,

X∗∗

I =
Λ

µ
− dN(δ + µ)

2σf

Y ∗∗

S =
Λ

µ
(1− 1/d) +

N(δ + µ)

2σf

Y ∗∗

I =
Λ

dµ
− N(δ + µ)

2σf

with

d =
σmσf + σf (δ + µ)

σmσf + σm(δ + µ)
.

The existence of the DFE is established. Following the Next Generation Matrix approach (NGM) (see
Diekmann et al. (2010); van den Driessche & Watmough (2002)), the basic reproduction number R0 is
computed in order to analyze local and global stability of the DFE depending on R0 values. Here we use
the additional notations: ẋ for the temporal derivative of the vector x and T for the transpose. The system
(3.2) is defined with the first two components corresponding to compartments of infected individuals and
the last two components corresponding to susceptible compartments:

ẋ = (ẊI , ẎI , ẊS , ẎS)
T = (0, 0, 0, 0)T . (3.2)

Following the Next Generation Matrix Method (see e.g. van den Driessche & Watmough (2002)) we break
up ẋ into F − V differentiating new infections from all other changes in population, it gives:

F =









σf
YI

Nm
XS

σm
XI

Nf
YS

0
0









and V =










(δ + µ)XI

(δ + µ)YI

−Λ+ λfXS − δXI + µXS

−Λ + λmYS − δYI + µYS










.

Then, the Jacobian matrices of F and V are evaluated at the disease-free equilibrium (DFE). Using the
relation: N = 2Λ

µ

dF(P0) =

(
F 0

0 0

)

and dV(P0) =





V 0

W µI2



 ,
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with

F =





0 σf

σm 0



 and V =





δ + µ 0

0 δ + µ



 .

Here, W is a square matrix and I2 is the unit matrix of size 2× 2. So, the next generation matrix for the
model ( Diekmann et al., 1990; van den Driessche & Watmough, 2002) is given by:

FV −1 =
1

(δ + µ)

(
0 σf
σm 0

)

.

The quantity R0 is equal to the spectral radius of FV −1, thus:

R0 =
√

R0,fR0,m,

where
R0,f =

σf
(δ + µ)

and R0,m =
σm

(δ + µ)
.

The basic reproduction number depends on parameters which describe the dynamic of infection (clearance
rate, male and female infection rates) and on the retirement rate. The basic reproduction number can be
less than unity if the infection rate is lower than the sum of the clearance rate and of the rate of exit of the
sexually active population for each sex. This corresponds to diseases which clear quickly with low infection
rates. Please note that R0 is the geometric mean of two values. In a one-sex model: R0,f = R0,m, we
find R0 = σ/(δ + µ) which is a classic expression of R0 in simple Susceptible-Infected-Susceptible model
(Hethcote, 2000). The quantity R0,f is the number of secondary infections generated by one infected
woman in a population of susceptible men during her infectious period. Then, each infected man can
infect a mean number of R0,m susceptible women during his infectious period. We do not know how many
secondary infections are generated by one infected individual in a population of susceptibles. Theoretical
computation based on the HPV model may thus provide the means of estimating the basic reproduction
number. In section 5, the value of the reproduction number for HPV epidemic is estimated using estimates
of parameters involved in the expression of R0. In addition, the basic reproduction number is a threshold
value for the global dynamics of the model. We obtain the global stability of either disease-free or endemic
steady state in terms of the basic reproduction number.
Now, the following Theorems focus on the stability of the Disease Free Equilibrium. Detailed proofs can
be found in the Appendix.

Theorem 3.1 if R0 < 1 then the DFE is locally asymptotically stable.

To prove this result, we prove that all eigenvalues of the jacobian matrix evaluated at the DFE have
strictly negative real parts.

Theorem 3.2 The DFE is globally asymptotically stable if and only if R0 ≤ 1.

This Theorem is proved using a suitable Lyapunov function.
We proved the local and global stability of the DFE when R0 ≤ 1 in the model without vaccination. Now,
the endemic equilibrium of the model without vaccination is considered. Using the expression of R0, we
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can rewrite P1 as:

X∗∗

S =
Λ

µ

(
R2

0 +R0,f

R2
0 +R0,m

)
1

R0,f

X∗∗

I =
Λ

µ

R2
0 − 1

R2
0 +R0,m

Y ∗∗

S =
Λ

µ

1 +R0,f

R2
0 +R0,f

Y ∗∗

I =
Λ

µ

R2
0 − 1

R2
0 +R0,f

.

X∗∗

I > 0 and Y ∗∗

I > 0, and then P1 is feasible in D, if and only if R0 > 1 (P1 = P0 when R0 = 1).
Previously, we proved that the model without vaccination reaches a steady-state which is a Disease Free
Equilibrium when R0 ≤ 1. The asymptotic behavior of the model has to be studied when R0 > 1. The
following theorem provides the condition for local stability of the endemic equilibrium:

Theorem 3.3 The endemic equilibrium is locally asymptotically stable if and only if R0 > 1.

To prove this result, we use the same method that for the DFE. We prove that eigenvalues of the jacobian
matrix of the linearized system have strictly negative real parts when R0 > 1. Also the endemic equilib-
rium is probably globally asymptotically stable for R0 > 1, but the Lyapunov function used in Theorem
3.2 does not work. Numerical calculations suggest asymptotic stability (see numerical simulations in
section 4). Now, let us consider the model including vaccination compartments.

3.2 The model with vaccination

Here we focus on the model including vaccination. As we did in the previous sections, we want to study
stability of DFE and endemic equilibrium. In a first step, we compute the vaccinated reproduction
number. The DFE of (2.1) is given by:

Q0 =

(

(1− ϕf )
Λ

µ
, 0, (1 − ϕm)

Λ

µ
, 0, ϕf

Λ

µ
, 0, ϕm

Λ

µ
, 0

)

.

The Next Generation approach uses only equations of infected persons. We define ẋ = (ẊI , V̇I , ẎI , ẆI)
T .

We break up ẏ into F1−V1 and compute the Jacobian matrices of F1 and V1, linearized around the DFE
Q0. The matrices F1 and V1 are defined by:

F1 = dF1(Q0) =










0 0 σf (1− ϕf ) σf (1− ϕf )

0 0 (1− τ)σfϕf (1− τ)σfϕf

σm(1− ϕm) σm(1− ϕm) 0 0

(1− τ)σmϕm (1 − τ)σmϕm 0 0










,

V1 = dV1(Q0) =










(δ + µ) 0 0 0

0 (δ + µ) 0 0

0 0 (δ + µ) 0

0 0 0 (δ + µ)










.



4 SIMULATIONS 9

The next generation matrix is defined as F1V
−1
1 with

F1V
−1
1 =










0 0
σf

(δ+µ) (1− ϕf )
σf

(δ+µ) (1− ϕf )

0 0 (1− τ)
σf

(δ+µ)ϕf (1− τ)
σf

(δ+µ)ϕf

σm

(δ+µ) (1− ϕm) σm

(δ+µ) (1− ϕm) 0 0

(1− τ) σm

(δ+µ)ϕm (1− τ) σm

(δ+µ)ϕm 0 0










.

An estimate of the vaccinated reproduction number Rv which is the spectral radius of F1V
−1
1 is:

Rv =
√

Rf (ϕf )Rm(ϕm) = R0

√

[(1− ϕm) + (1− τ)ϕm][(1 − ϕf ) + (1− τ)ϕf ],

with Rf (ϕf ) = R0,f [(1− ϕf ) + (1− τ)ϕf ] and Rm(ϕm) = R0,m[(1− ϕm) + (1− τ)ϕm].

This result is close to the expression for the vaccinated reproduction number using a S-I-R model for HPV
found in Elbasha (2006, 2008). The vaccinated reproduction number depends on:

• The basic reproduction number R0,

• Male and female vaccine coverage (ϕm and ϕf ),

• Efficacy of vaccine τ .

Please note that the terms inside brackets are less than one, so Rv < R0. The term under the square root
shows how much the vaccination reduces R0. The vaccinated reproduction number is a threshold quantity
taking into account vaccination, its expression may assist in the identification of important parameters on
which we can act. Bringing the vaccinated reproduction number under unity will lead to the eradication
of the virus if the DFE is globally asymptotically stable.
The following theorems provide properties of the system 2.1.

Theorem 3.4 The DFE is locally asymptotically stable if and only if Rv < 1.

When Rv < 1 the DFE is probably also globally asympotically stable. Numerical calculations suggest
global asymptotic stability (see simulations in section 4). When Rv > 1, we prove the existence and
uniqueness of endemic equilibrium of the vaccination model:

Theorem 3.5 If Rv > 1 the endemic equilibrium exists and is unique.
If Rv < 1 there isn’t any endemic equilibrium.

To prove these results (Theorem 3.4 and Theorem 3.5), we use the same method as Elbasha (2006), the
HPV model developed therein is quite similar to our model, the difference is the use of a SIR struc-
ture which is more convenient for oncogenic HPV types. In our model, a SIS structure is developed
corresponding to non-oncogenic HPV types. Proofs are provided in the Appendix.
Finally, we have proved that if the endemic equilibrium exists, it must be unique. Furthermore, if Rv > 1
the endemic equilibrium is probably globally asymptotically stable. Numerical calculations suggest this
asymptotic behaviour (see simulations in section 4).
We proved that if Rv < 1, the vaccination model has a disease free equilibrium which is locally asymp-
totically stable and the endemic equilibrium does not exist; whereas if Rv > 1 the endemic equilibrium
exists and is unique.

4 Simulations

In this section, we studied the global stability of the DFE in the model with vaccination (Q0) and of
endemic equilibrium in both models (2.1) and (3.1) (with and without vaccination) Q1 and P1 using
numerical simulations.
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Figure 2: Some trajectories in the phase plane portrait for the model with vaccination and considering
several sets of initial male and female prevalences when Rv < 1

4.1 Stability of DFE and of the endemic equilibrium in the model with vaccination

In the model with vaccination, we did not find any Lyapunov function to show that the DFE Q0 is glob-
ally asymptotically stable, thus we conducted analyses using simulations in order to study the asymptotic
behavior of the model (2.1) (with vaccination) when the vaccinated reproduction number is less than one
(Rv < 1). We used Scilab-5.1.1 software.
In section 3.2, we found an expression for Q0, considering several initial conditions (according to param-
eters which satisfied Rv < 1). We simulated a set of 10,000 combinations for initial prevalences with
the conditions Nf = 500, 000 and Nm = 500, 000. We considered several combinations of parameters
such as the female and male infection rates, the clearance rate and the vaccination rate that satisfied the
condition: Rv < 1. Thereafter, we compared the size of compartments at t=100 years to the expression
of Q0. Results suggest the stability of the DFE Q0 when Rv < 1 (Figures 2 and 3).
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Figure 3: Some trajectories for the model with vaccination and considering several sets of initial male and
female prevalences when Rv < 1 (to test that Q0 is globally asymptotically stable).

We used the same method to study the asymptotic behavior of the model with vaccination when Rv > 1
to study the hypothesis that Q1 is globally asymptotically stable. The same set of 10,000 combinations for
initial prevalences was used. Several sets of parameters (infection rates, clearance rates, vaccine coverage,
efficacy of vaccine, retirement rate) were chosen to verify the condition: Rv > 1. Results suggest that the
endemic equilibrium is globally asymptotically stable when Rv > 1 (Figure 4).

Figure 4: Some trajectories in the phase plane portrait for the model with vaccination and considering
several sets of parameters values when Rv > 1. The system reaches a steady-state which is an endemic
equilibrium

Based on this simulations, we expect the vaccination model to reach a steady-state depending on Rv

values : Q0 when Rv < 1 and Q1 when Rv > 1 (Figure 5).
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Figure 5: Some trajectories in the phase plane portrait for the model with vaccination considering the same
initial female and male prevalences and several initial values for parameters (female and male infection
rates, female and male vaccine coverage). The model with vaccination reaches a steady-state equilibrium
which is: the DFE Q∗

0 when Rv = 0.71, the DFE Q∗∗

0 when Rv = 0.44, the endemic equilibrium Q∗

1 when
Rv = 1.21, the endemic equilibrium Q∗∗

1 when Rv = 4.58

4.2 Global stability of the endemic equilibria P1

We considered the model without vaccination. As described in the previous section, we simulated sev-
eral set of initial conditions according to initial prevalences and parameters which verified the condition:
R0 > 1. Results are shown on Figure 6 and suggest that P1 is probably also globally asymptotically stable
when R0 > 1.

Figure 6: Some trajectories in the phase plane portrait for the model without vaccination considering
several sets of initial male and female prevalences when R0 > 1

5 Application to Human Papillomavirus types 6/11

The model without vaccination (3.1) is used to fit the data of HPV 6/11 prevalences in male and female
in order to assess the impact of HPV vaccination on HPV 6/11 prevalence.
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5.1 Calibration

Table 1 describes the values used for the parameters and inputs of the model. We set the population
size in the model to N=1,000,000 individuals, equally divided into females (Nf = 500, 000) and males
(Nm = 500, 000). We used the following values for the size of the 4 compartments at t=0 year (initial
values):

• XS(0) = 470, 000

• XI(0) = 30, 000 corresponding to a female HPV 6/11 prevalence of 6% (Ralston, 2009)

• YS(0) = 487, 000

• YI(0) = 13, 000 corresponding to a male HPV 6/11 prevalence of 2.6% (Nielson, 2009)

Male and female infection rates are unknown and have to be assessed in the calibration step. Parameters
which have to be assessed are not stochastic variables, thus they do not have a probability distribution
describing the probabilities of different values occurring. The method which is used is as follows: a set of
250,000 pairs of infection rates were tested, per capita annual infection rates were selected in the interval
[0,5]. Each value for the per capita annual male infection rate in the interval [0,5] was tested with 500
values of per capita annual female infection rates in the interval [0,5]. This procedure enables us to test
all combinations of infection rates in the space [0, 5]2. The combinations of male and female infection
rates which reproduced endemic prevalence of HPV 6/11 (before introduction of vaccination) in males and
females within a precision of 10% are shown on Figure 7. On this figure, we can see that it is not possible
to give a confidence interval for the estimation of the infection rates. Nonetheless, for some combinations
of male and female infection rates which reach the target defined in calibration, several female infection
rates could be linked with one male infection rate.

Figure 7: Combinations of annual infection rates for males and females estimated in calibration step.
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Remark 5.1 (on the calibration results): Male infection rates which match with HPV 6/11 prevalences
were lower than female infection rates; the explanation is that male HPV 6/11 prevalences used in the
fitting procedure are lower than female HPV 6/11 prevalences. In order to fit HPV prevalence, we observed
that the product of male and female infection rates was stable; its range was 1.86 to 1.89. This product
appears in the expression of the basic reproduction number in section 3. Female and male infection rates
which were used in the analysis above are respectively 2.63 and 0.71.

Using estimates for infections rates and expression of R0, we found an estimation for the basic repro-
duction number: R0 = 1.04. This value is close to unity corresponding to low prevalences used in the
fitting procedure. In the analytical formula for the basic reproduction number, there are two kinds of
parameters: the clearance rate δ and the retirement rate µ are estimated using data from the litterature,
whereas female and male infection rates are assessed in the fitting procedure, these estimates depend on
epidemiological data which are used to fit the model. This shows the importance in choosing data, they
should be as representative as possible of the epidemiological reality of the infection or disease. HPV is
a sexually transmitted infection, thus we need to consider male and female prevalences corresponding to
the same sexually active population or the same country in order to model heterosexual transmission for
HPV. There is very few published data on male HPV 6/11 prevalences, this is why we used data from
the USA (Ralston et al., 2009; Nielson et al., 2009).

5.2 Impact of vaccination

Table 2 describes the expected reduction in HPV 6/11 prevalence in each scenario of vaccination in an
horizon of 10, 20, 30 and 50 years after introduction of vaccination.

Table 2. Impact of vaccination on HPV 6/11 prevalence

Number of years after Female prevalence Male prevalence
initiation of vaccination

Scenario 1
10 3.55% 1.98%
20 1.52% 0.88%
30 0.005% 0.31%
50 4.10−3% 2.10−4%

Scenario 2
10 4.74% 2.54%
20 3.68% 2.00%
30 2.83% 1.53%
50 1.75% 0.95%

Initial prevalences are 6% (Ralston et al., 2009) in females and 2.6% in males (Nielson et al., 2009).
Vaccine coverage is assumed to be constant in time in each scenario. Efficacy of vaccine is assumed to
be of 90% (Future I/II study group, 2010). We considered 2 scenarios of vaccination: in scenario 1, we
assume that 30% of women (who enter annually in the sexually active population) received the 3 doses
of vaccine and are protected, this scenario corresponds to the vaccine coverage observed in France at the
launch of the vaccination campaign in 2007 (Fagot et al., 2011). In scenario 2, we considered that 10% of
women received 3 doses of vaccine, corresponding to the decrease in vaccine coverage observed in France
a few years after HPV vaccine introduction (Fagot et al., 2011). Considering the first scenario (30% of
women who enter annually in the model are protected by the vaccine), a 50% reduction of female HPV
6/11 prevalence is expected 10 years after vaccine introduction, and the male HPV 6/11 prevalence is
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reduced by one quarter. Thirty years after vaccine introduction, HPV 6/11 prevalences in males and
females are expected to be very low (respectively 0.005% and 0.31%). Considering scenario 2, a lower
vaccine coverage leads to a slower decrease in HPV prevalence (Table 2 and Figure 8).
According to R0 estimates and expression of Rv, the minimum female vaccine coverage which is necessary
to eradicate HPV 6/11 (i.e. to have Rv < 1) varies between 8.2% and 11%. Thus, if current vaccine
coverage in France is maintained, HPV 6/11 will be eradicated.

Figure 8: HPV 6/11 Prevalence in males and females. At t=0 (year), introduction of vaccination con-
sidering scenario 1 (30% of women who enter annually in the model are vaccinated) and scenario 2 (10%
of women who enter annually in the model are vaccinated). Diamond and triangle represent respectively
female and male prevalences in scenario 1, + and X represent respectively female and male prevalences
in scenario 2
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6 Summary and Discussion

The developed model in our paper may help to appreciate impact of prophylactic vaccination against
HPV on HPV 6/11 prevalence. In this paper, we developed a deterministic model of heterosexually HPV
6/11 transmission. A mathematical analysis of the model was carried out. We identify the vaccinated
reproduction number Rv as a threshold quantity for the stability of equilibria: if Rv > 1, the endemic
equilibrium exists and is globally asymptotically stable whereas if Rv < 1, the infection-free equilibrium
exists and is globally asymptotically stable and HPV will be eliminated. The yielded vaccinated reproduc-
tion number from our model represents a reliable parameter establishing whether an epidemic can spread
or die out. Its expression depends on other parameters such as vaccine coverage for each sex. Thus,
such parameters represent consistent tools which can be used by Public Health policy-makers to improve
policies that aim to control HPV epidemic. As an example, level of vaccine coverage can be targeted in
order to yield a vaccinated reproduction number that precludes the spread of epidemic. However, driving
out the basic reproduction number below one is not always sufficient to eradicate the disease (Zhang &
Liu, 2009). It is necessary to study the asymptotic behavior of the model. Our analyses found that our
model was asymptotically stable and supported the consistency of the derived parameters.
In a second part, we fitted the model on HPV 6/11 prevalences in order to estimate male and female
infection rates. We studied the impact of French vaccine strategies on the prevalence of HPV 6/11. The
basic reproduction number for these non-oncogenic HPV types was estimated at 1.04. As this value is
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close to unity, a low proportion of individuals have to be vaccinated in order to eradicate HPV 6/11
in the population. We estimated that if more than 12% of women were vaccinated against HPV using
quadrivalent vaccine, the non-oncogenic HPV 6/11 types would be eradicated. Non-oncogenic HPV types
are responsible for 90% of genital warts, and the lesions caused by non-oncogenic HPV-6/11 types appear
between 2 and 8 months after HPV infection. Therefore, we can expect a dramatic reduction in the
occurrence of genital warts caused by HPV 6/11 types.
Yielded results are based on assumptions made in the modeling process. Vaccine coverage was assumed to
be constant in the time in each scenario. French data did not specify vaccine coverage for each available
vaccine; we therefore used global vaccine coverage in French females as a parameter in our model. As only
one vaccine prevent HPV 6/11 infections, we were likely to overestimate vaccine coverage against HPV
6/11. French recommendations on HPV vaccination changed in 2010. Previously, quadrivalent vaccine
was recommended; while since 2010 French guidelines no longer preferentially support any vaccine.
In addition, infection rates were assessed in the calibration step and depend on HPV 6/11 prevalence in
males and females. In the absence of reliable French data for HPV 6/11 prevalence in males and females,
we used prevalence from studies completed in the USA (Ralston et al., 2009; Nielson et al., 2009) which
represent consistent data to model the heterosexual transmission of this infection.
In Australia a high vaccine coverage (70%) is reached due to a school-based program for HPV vaccination.
They observe a dramatic reduction of the number of genital warts (approximately a reduction of 90%) in
young women (under 21 years) and in heterosexual young men a few years after initiation of vaccination
(Read et al., 2011). This observed effect of vaccination matches with results of our modeling. In France,
lower vaccine coverage was observed at the launch of the vaccination campaign and the vaccine coverage is
currently decreasing (Fagot et al., 2011). Thus, the reduction in HPV 6/11 and in genital warts prevalence
will be expected to slow down. Our modeling suggests that in the horizon of 10 years after introduction
of vaccination, HPV 6/11 prevalence in females will be halved and HPV 6/11 prevalence in males will
be reduced by one quarter, assuming a sustained vaccine coverage of 30% among females (annual rate).
In this case, HPV 6/11 will be eradicated within 50 years after vaccine introduction. However, these
reductions will be slower if vaccine coverage is decreasing.
In our modeling, we did not assess directly the impact of vaccination on the occurrence of Recurrent
Respiratory Papillomatosis (RRP). RRP is caused by HPV 6/11 and is observed usually in young chil-
dren but also among adults. RRP in children is due to HPV 6/11 infection in the respiratory area due
to mother-to-child transmission of HPV 6/11 during delivery ( D’Souza et al., 2011). Thus, if female
prevalence for HPV 6/11 is decreasing due to vaccination, a reduction of RRP can be expected. However,
prevalence of RRP is very low compared to genital warts ( D’Souza et al., 2011). To study specifically
the impact of quadrivalent vaccine on RRP, a model including vertical transmission could be developed
in future research.
In order to study the asymptotic behavior of the model, we did not include age structure nor sexual be-
havior in the model. Thus a simplest model was developed whose asymptotic behavior could be assessed.
Nonetheless, the majority of HPV dynamic models take into account age or sexual behavior, in future
research the vaccinated reproduction number could be assessed in more complex models including age
structure.
To conclude, vaccination against HPV, using quadrivalent vaccine, represents a strong tool to prevent HPV
6/11 infections. A dramatic decrease of genital warts occurrence may be expected in France, especially
among young individuals.
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Appendix: Technical proofs

Local and global stability of Disease Free Equilibrium section:

Theorem (3.1):
if R0 < 1 then the DFE is locally asymptotically stable.

Proof. The Jacobian matrix of the system without vaccination (ẋ = (0, 0, 0, 0)T (3.2)) is evaluated at
the DFE P0:

J (P0) =







−(δ + µ) σf 0 0
σm −(δ + µ) 0 0
δ −σf −µ 0

−σm −δ 0 −µ







.

We define:

A1 =

(
−(δ + µ) σf

σm −(δ + µ)

)

.

Tr(A1) < 0 and det(A1) > 0 if R0 < 1 . Thus, if R0 < 1, all eigenvalues of the jacobian matrix linearized
system around the DFE have strictly negative real parts, hence by the Routh-Hurwitz Criterion (Gant-
macher, 1959) the DFE, P0, is locally asymptotically stable if R0 < 1.
If R0 > 1, one eigenvalue has positive real part and the DFE is locally unstable. �

Theorem (3.2):
The DFE is globally asymptotically stable if and only if R0 ≤ 1.

Proof. Consider the Lyapunov function in D:

V = XI +R0,fYI .

The derivative of V along the solution of (3) is given by

V ′ = X ′

I +R0,fY
′

I

=

(

R0,fσm
YS

Nf

− (δ + µ)

)

XI +

(

σf
XS

Nm
−R0,f (δ + µ)

)

YI .

Using YS ≤ Y ∗

S (because YS ≤ YS + YI ≤ Y ∗

S + Y ∗

I ), XS ≤ X∗

S and Nf = Nm = Λ
µ
:

V ′ ≤ (R0,f σm − (δ + µ))XI + (σf −R0,f (δ + µ))YI

V ′ ≤ (δ + µ)(R2
0 − 1)XI .

If R0 ≤ 1 then V ′ ≤ 0.

We denote A =
(

R0,fσm
YS

Nf
− (δ + µ)

)

and B =
(

σf
XS

Nm
−R0,f (δ + µ)

)

. We can rewrite V ′ = AXI+BYI.

We can prove that A ≤ 0 and B ≤ 0.
If R0 < 1, then A < 0 and B < 0, the equality V ′ = 0 holds only at the DFE (when XI = 0 and YI = 0).
If R0 = 1, V ′ = 0 if and only if:

XI = 0 and YI = 0
or A = 0 and YI = 0
or B = 0 and XI = 0
or A = 0 and B = 0
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The four cases considered lead to P0, thus, V ′ = 0 only in P0.
The Lasalle-Liapunov theory (Hale, 1969) implies that all paths in D approach the largest positively in-
variant subset of the set E where V’=0. Here, we have proved in that the only positively invariant subset
is {P0} so P0 is globally asymptotically stable for R0 ≤ 1. �

Theorem (3.3):
The endemic equilibrium is locally asymptotically stable if and only if R0 > 1.

Proof. The Jacobian matrix of the system (3.1) is evaluated at the endemic equilibrium P1:

J (P1) =
















−(δ + µ)
σf

Nm
X∗∗

S
σf

Nm
Y ∗∗

I 0

σm

Nf
Y ∗∗

S −(δ + µ) 0 σm

Nf
X∗∗

I

δ − σf

Nm
X∗∗

S − σf

Nm
Y ∗∗

I − µ 0

−σm

Nf
Y ∗∗

S δ 0 −σm

Nf
X∗∗

I − µ
















The charasteristic polynomial is:

p(x) = (µ+ x)2
[

(δ + µ+ x)2 +
σmX∗∗

I

Nf

(δ + µ+ x)− σmσf
NfNm

X∗∗

S Y ∗∗

S +
σfY

∗∗

I

Nm

(

δ + µ+ x+
σmX∗∗

I

Nf

)]

.

Thus −µ is a double eigenvalue of this matrix. The two other eigenvalues are the roots of the following
polynomial:

q(x) = x2 +

[

2(δ + µ) +
σm
Nf

X∗∗

I +
σf
Nm

Y ∗∗

I

]

x

+

[

(δ + µ)2 + (δ + µ)

(
σm
Nf

X∗∗

I +
σf
Nm

Y ∗∗

I

)

+
σfσm
NfNm

(X∗∗

I Y ∗∗

I −X∗∗

S Y ∗∗

S )

]

∆ =

[

2(δ + µ) +
σm
Nf

X∗∗

I +
σf
Nm

Y ∗∗

I

]2

− 4

[

(δ + µ)2 + (δ + µ)

(
σm
Nf

X∗∗

I +
σf
Nm

Y ∗∗

I

)

+
σfσm
NfNm

(X∗∗

I Y ∗∗

I −X∗∗

S Y ∗∗

S )

]

.

The discriminant is positive: ∆ =

(
σm
Nf

X∗∗

I − σf
Nm

Y ∗∗

I

)2

︸ ︷︷ ︸

>0

+4
σmσf
NfNm

X∗∗

S Y ∗∗

S

︸ ︷︷ ︸

>0

.

Therefore the 2 solutions of q, x1 and x2 are eigenvalues of J (P1).

x1 =
−[2(δ + µ) + σm

Nf
X∗∗

I +
σf

Nm
Y ∗∗

I ]−
√
∆

2
,

x2 =
−[2(δ + µ) + σm

Nf
X∗∗

I +
σf

Nm
Y ∗∗

I ] +
√
∆

2
.

x1 is negative, we have to study the sign of x2. We prove that x2 is negative if and only if R0 > 1 in
Lemma 6.1. Therefore, the endemic equilibrium is locally asymptotically stable if and only if R0 > 1. �
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Lemma 6.1 x2 < 0 if and only if R0 > 1.

Proof. We denote the charasteristic polynomial p(x) = x2 + bx+ c with

b = 2(δ+µ)+
σm
Nf

X∗∗

I +
σf
Nm

Y ∗∗

I andc = (δ+µ)2+(δ+µ)

(
σm
Nf

X∗∗

I +
σf
Nm

Y ∗∗

I

)

+
σfσm
NfNm

(X∗∗

I Y ∗∗

I −X∗∗

S Y ∗∗

S )

So,

x2 =
−b+

√
b2 − 4c

2
=

b

2

(

−1 +

√

1− 4c

b2

)

x2 < 0 ⇔
√

1− 4c

b2
< 1.

Let us prove that c > 0 ⇔ R0 > 1.

Using values of X∗∗

S , Y ∗∗

S ,X∗∗

I , Y ∗∗

I and Nf = Nm = Λ
µ
, we have:

c = (δ + µ)2 + (δ + µ)2
(

R0,m − R0,m

R0,f

R2
0 +R0,f

R2
0 +R0,m

+R0,f
R2

0 +R0,m

R2
0 +R0,f

− 1

)

+ (δ + µ)2R2
0

(

1− 1

R0,f

R2
0 +R0,f

R2
0 +R0,m

)(
R2

0 +R0,m

R2
0 +R0,f

− 1

R0,f

)

− (δ + µ)2R2
0

(
1

R0,f

R2
0 +R0,f

R2
0 +R0,m

(

1 +
1

R0,f
− R2

0 +R0,m

R2
0 +R0,f

))

Rearranging and after simplifying

c = (δ + µ)2R2
0

(
R0,m +R0,f +R2

0 + 1
)

(
R2

0 +R0,m

) (
R2

0 +R0,f

))

︸ ︷︷ ︸

>0

(
R2

0 − 1
)

c is the product of a strictly positive number and (R2
0 − 1).

We conclude that: c > 0 iff R0 > 1. �

In the model with vaccination, we prove the following results:
Theorem 3.4:
The DFE is locally asymptotically stable if and only if Rv < 1.

Proof. We define the system

(ẊI , V̇I , ẎI , ẆI , ẊS , V̇S , ẎS , ẆS)
T = (0, 0, 0, 0, 0, 0, 0, 0)T (6.1)

We compute the Jacobian matrix of the system (6.1) at its DFE Q0.

J1 =

(
A1 0
A2 D1

)

with A1 = F1−V1 and D1 = −µI4 , I4 being identity matrix of size 4; A2 being a square matrix of size 4;
Therefore, (-µ) is an eigenvalue of J1 of order four. We consider the matrix −A1:
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−A1 =















(δ + µ) 0 −σf (1− ϕf ) −σf (1− ϕf )

0 (δ + µ) −(1− τ)σfϕf −(1− τ)σfϕf

−σm(1− ϕm) −σm(1− ϕm) (δ + µ) 0

−(1− τ)σmϕm −(1− τ)σmϕm 0 (δ + µ)















.

All diagonal elements of −A1 are non-negative and all off-diagonal entries are non-positive. Therefore,
−A1 is a Z-matrix. Principal minors of −A1 are:

C1 = δ + µ

C2 = (δ + µ)2

C3 =

∣
∣
∣
∣
∣
∣

(δ + µ) 0 −σf (1− ϕf )
0 (δ + µ) −(1− τ)σfϕf

−σm(1− ϕm) −σm(1− ϕm) (δ + µ)

∣
∣
∣
∣
∣
∣

C4 = det(−A1).

After some calculations, we express more simply C3 and C4 to determine their signs, therefore:

C3 = C1C2

[

1−R2
v +Rf (ϕf )

σm
(δ + µ)

(1− τ)ϕm

]

C4 = (δ + µ)4(1−R2
v)

C3 and C4 are positive if and only if Rv < 1. If Rv < 1, all principal minors of the Z-matrix −A1 are
positive, so −A1 is a M-matrix (Hashimoto, 2009). The real parts of each eigenvalues of (−A1) are strictly
positive, thus real parts of each eigenvalues of (A1) are strictly negative. Then, the DFE Q0 is locally
asymptotically stable if Rv < 1. Otherwise, if Rv > 1: C4 < 0, thus det(−A1) < 0, the determinant of
(−A1) is equal to the product of 4 eigenvalues. Hence, at least one of the eigenvalues of the matrix (−A1)
has strictly negative real part, and at least one of the eigenvalues of the matrix (A1) has strictly positive
real part. Therefore, Q0 is locally asymptotically unstable. We proved that the DFE of the model with
vaccination is locally asymptotically stable if and only if Rv < 1. �

Theorem 3.5:
If Rv > 1 the endemic equilibrium exists and is unique.
If Rv < 1 there isn’t any endemic equilibrium.

Proof. We solve the system (2.1) in terms of λf and λm.

We obtain:

λf = σf

[

(1− ϕm)
λm

λm + δ + µ
+ ϕm

(1− τ)λm

(1− τ)λm + δ + µ

]

λm = σm

[

(1− ϕf )
λf

λf + δ + µ
+ ϕf

(1− τ)λf

(1− τ)λf + δ + µ

]

.
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We define 2 level curves:

Gf (λf , λm) = −λf + σf

[

(1− ϕm)
λm

λm + δ + µ
+ ϕm

(1− τ)λm

(1− τ)λm + δ + µ

]

,

Gm(λf , λm) = −λm + σm

[

(1− ϕf )
λf

λf + δ + µ
+ ϕf

(1− τ)λf

(1− τ)λf + δ + µ

]

.

The 2 levels curves go through the origin and limλk > 0 when λ′

k go to infinity. To prove the existence
and uniqueness of endemic equilibrium, we have to prove that these 2 level curves intersect only once in
the first positive quadrant (λf > 0, λm > 0), λf is on the x-axis . Following the method described by
Elbasha (2006), we prove that : if Rv > 1 the level curve Gm is above Gf around the origin, and the
slopes of level curves are positive. Furthermore, each level curve intersects only once a ray from the origin.
So, if Rv > 1, the endemic equilibrium exists.
In our modeling, we assumed that vaccination immunity is lifelong, this particular case was studied by
Elbasha (2006), when Rv > 1, the both curves are monotically increasing in the positive quadrant, thus
the two level curves intersect only once in the positive quadrant, therefore the endemic equilibrium is
unique when Rv > 1.
If Rv < 1, following the proof described by Elbasha (2006), there is no positive endemic equilibrium.
�


