N
N

N

HAL

open science

Dynamic Adaptation of Broad Phase Collision Detection
Algorithms

Quentin Avril, Valérie Gouranton, Bruno Arnaldi

» To cite this version:

Quentin Avril, Valérie Gouranton, Bruno Arnaldi. Dynamic Adaptation of Broad Phase Collision
Detection Algorithms. ISVRI, Conjunction with IEEE Virtual Reality (VR), Mar 2011, Singapore.

7p. hal-00555720

HAL Id: hal-00555720
https://hal.science/hal-00555720

Submitted on 14 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00555720
https://hal.archives-ouvertes.fr

Dynamic Adaptation of Broad Phase Collision Detection Algorithms

Quentin Avril*

Valérie Gouranton’

Bruno Arnaldi*

Université Européenne de Bretagne, France INSA, INRIA, IRISA, UMR 6074, F-35043 RENNES

ABSTRACT

In this paper we present a new technique to dynamically adapt the
first step (broad phase) of the collision detection process on hard-
ware architecture during simulation. Our approach enables to face
the unpredictable evolution of the simulation scenario (this includes
addition of complex objects, deletion, split into several objects, ...).
Our technique of dynamic adaptation is performed on sequential
CPU, multi-core, single GPU and multi-GPU architectures. We
propose to use off-line simulations to determine fields of optimal
performance for broad phase algorithms and use them during in-line
simulation. This is achieved by a features analysis of algorithmic
performances on different architectures. In this way we ensure the
real time adaptation of the broad-phase algorithm during the simu-
lation, switching it to a more appropriate candidate. We also present
a study on how graphics hardware parameters (number of cores,
bandwidth, ...) can influence algorithmic performance. The goal of
this analysis is to know if it is possible to find a link between vari-
ations of algorithms performances and hardware parameters. We
test and compare our model on 1,2, 4 and 8 cores architectures and
also on 1 Quadro FX 3600M, 2 Quadro FX 4600 and 4 Quadro FX
5800. Our results show that using this technique during the colli-
sion detection process provides better performance throughout the
simulation and enables to face unpredictable scenarios evolution in
large-scale virtual environments.

Index Terms: [.3.1 [Computer Graphics]: Hardware
Architecture—Parallel processing; 1.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling

1 INTRODUCTION

In the virtual reality field, several thematics are considered as ma-
jor bottlenecks due to the computation time that some algorithms
require. Collision detection is one of them and during the three last
decades, the research in this field has intensively look for ways to
speed up algorithms. It is a large research field dealing with what
appears to be an easy problem: determining if two (or several) ob-
jects collide. Collisional computation is used in several fields in-
cluding computer animation, robotics, physical or mechanical sim-
ulations (medical, cars industry, civil engineering..), video games
and haptic applications. Virtual environments and 3D objects are
constantly evolving to become increasingly large and complex. The
performance level for a user in real time becomes harder to en-
sure in large-scale virtual environments. The use of parallel pro-
cessing has become a necessity to take advantage of recent gains
of Moore’s Law. Processors specialists have been able to provide
clock frequency increases and parallelism improvement in instruc-
tion sets. In that way, single-threaded applications have become
faster on a new generation of processors without any modification.
To have better management of power consumption, they promote

*e-mail: quentin.avril @irisa.fr
Te-mail: valerie.gouranton @irisa.fr
fe-mail: bruno.arnaldi @irisa.fr

Nb Objects

1 12 23 34 45 56 67 78 89 100 111122 133 144 155 166 177 188

Simulation Step

Figure 1: One sample of environment used to perform tests and to
compare algorithmic performances in relation to the number of ob-
jects. Simulation starts with few cubes (top left) and the user can
then split or delete cubes as much as he wants (bottom left). The
aim is to vary the number of objects in the scene from few to several
thousand as illustrated on the right curve.

multi-cores architectures. So, software, libraries and any piece of
code must be written and specially adapted to take advantage of this
hardware evolution. It is no longer possible to rely on the evolution
of processing power to overcome the problem of real-time collision
detection.

With the impressive hardware advances these last years, algo-
rithms for collision detection have greatly improved but remain
mostly very specific to certain types of simulation scenarios (con-
vex or non-convex, dynamic or static, rigid or deformable objects, 2
or n body simulation ...). Establishing a comparison between them
is not as simple as one would imagine. A lot of physical-based sim-
ulations have an unpredictable evolution and can become, at any
moment, a huge computations bottleneck (addition of objects, dele-
tion, splitting into thousands of pieces, separate into non convex
parts ...). So, using the most efficient and fast collision detection
algorithm in an unpredictable scenario will not necessarily insure
the best performance throughout the simulation.

We propose a new dynamic adaptation of broad phase algorithms
enabling to face scenario evolution during a simulation. We per-
form off-line simulations to determine the field of optimal perfor-
mance for each broad phase algorithm on every kind of computer
architecture. We then perform an analysis on obtained curves by
extracting features points. We have tested our benchmark appli-
cation on several architectures to highlight architecture parameters
and components that influence algorithms performances. In order
to better understand performance differences between algorithms,
we also present in this study an analysis on how hardware parame-
ters influence the algorithmic performance in collision detection.

The rest of our paper is organized as follows: In Section 2 we re-
port related work on broad phase in collision detection and parallel
algorithms. Section 3 describes the technical context from sequen-
tial CPU algorithms to multi-GPU ones. In Section 4 we present our
solution of a dynamic algorithm adaptation. Results are presented
in Section 5. Section 6 presents the study on the influence of hard-
ware parameters on algorithmic performances. Then, we conclude
and open on future work on Sections 8.

/‘/ /'
X X

Figure 2: Example of the "Sweep and Prune” algorithm with a non-
overlapping condition (left) and an overlapping one (right).

2 RELATED WORK

Collision detection problem has been intensively studied for many
years in the virtual reality field [11, 17, 23]. Our review will focus
on the broad phase process in the collision detection pipeline and
parallel algorithms.

2.1 Broad Phase in Collision Detection

Testing all object pairs during an n-body simulation in a virtual en-
vironment tend to perform n” pairwise checks. For this reason, col-
lision detection is built like a pipeline [10] composed by two main
parts: broad and narrow phases. The principal goal of this pipeline
is to apply successive filters with a growing precision to determine
the presence or the absence of collisions.

The broad phase is in charge of an efficient and quick removal
of the object pairs that are not in collision. Several techniques have
been proposed to speed-up or improve algorithms. Brute force ap-
proach is based on the comparison of the overall bounding volumes
of objects. Because of its n> pairwise checks. This test is a bit
exhaustive in a sequential execution but is the most suitable for a
massive parallel one. In the bounding volume family many models
have been proposed, such as spheres, Axis-Aligned-Bounding-Box
(AABB) [4], Oriented-Bounding-Box (OBB) [6], discrete oriented
polytopes (k-DOP) and many others. Topological approach is based
on the positions of objects in relation to others. Methods proposed
to use spatial partitioning and divide space into unit cells: regular
grid, octree, Binary Space Partitioning (BSP) [18] or k-d tree struc-
ture [3].

In I-COLLIDE [5] used "Sweep and Prune”, a pseudo-dynamic
object collision pruning method that reduced 3D collision detection
between AABBs into three separate 1D problems. It is one of the
most used methods in the broad-phase algorithms because it pro-
vides an efficient pairs removal and it does not depend on the ob-
jects complexity. The sequential algorithm of "Sweep and Prune”
takes in input the overall objects of the environment and feeds in
output a collided object pairs list. AABBs appear, in general, as
perfect candidates for the algorithm because of their alignment on
the environment axis (cf. Figure 2). The algorithm is in charge of
the detection of overlaps between objects. A projection of higher
and upper bounds of each AABB is made on the three environment
axis. Three lists with overlapping pairs on each axis (x, y and z)
are then obtained. We can notice in related work two related but
different concepts on the way the "Sweep and Prune” operates in-
ternally: by starting from scratch each time or by updating internal
structures. The first type is called brute-force and the second type
persistent. Recently, the persistent algorithm has been enhanced by
using a segmented interval list combined with subdivision [25] and
it provides faster sequential execution in large scale virtual environ-
ments.

Off-line Computations

Deliniate fields
of Optimal
Performances

Create Curves

lest Algoritims of Performances

In-line Simulation

Control Find Most
Appropriate
Candidate

Switch Broad
Phase Algorithm

Simulation
Parameters

Figure 3: Off-line computations are performed to evaluate fields of
optimal performance of each algorithm. Results are then used during
the run-time process to switch the algorithm by a more appropriate
one.

2.2 Parallel Collision Detection

In the high performance computing field, parallel solutions of col-
lision detection algorithms are booming. We can distinguish two
main ways of research, the one focusing on GPU and the other on
CPU.

2.2.1 GPU-based Algorithms

Image-based algorithms have been proposed to exploit the growing
computational power of graphics hardware because it is very effi-
cient in rasterization of polygons. An advantage of using GPU is
the un-use of precomputed volumetric data structures and its use
with rigid or deformable objects. Image-space visibility queries
have been proposed to perform the broad phase process [8]. Cin-
der [15] is an algorithm exploiting GPU to implement a ray-casting
method to detect collision. GPU-based algorithms for self-collision
and cloth animation have also been introduced [7].

2.2.2 CPU-based Algorithms

Several algorithms have been proposed working on multi-
processors machines [14]. Depth-first traversal of bounding vol-
umes tree traversal (BVTT) [21] and parallel cloth simulation [20]
are good instances of this kind of work. Few papers also presented
multi-threading use on single processor (Lewis et al. [16] pro-
pose a multithreaded algorithm to simulate planetary rings). Broad
phase has also been developed on a Field-Programmable Gate Ar-
ray (FPGA) [26].

Few papers appeared dealing with new parallel collision detec-
tion algorithms using multi-cores. A new task splitting approach for
implicit time integration and collision handling on multi-cores ar-
chitecture has been proposed [24]. Tang et al. [22] propose to use a
hierarchical representation to accelerate collision detection queries
and an incremental algorithm exploiting temporal coherence, the
overall is distributed among multiple cores. They obtained a 4X-6X
speed-up on a 8-cores based on several deformable models. Kim et
al [12] propose to use a feature-based bounding volume hierarchy
(BVH) to improve the performance of continuous collision detec-
tion. They also propose novel task decomposition methods for their
BVH-based collision detection and dynamic task assignment meth-
ods. They obtained a 7X-8X speed-up using a 8-cores compared to
a single-core. Hermann et al. [9] propose a parallelization of inter-
active physical simulations. They obtain a 14X-16X speed-up on a
16-cores compared to a single-core. A first adaptive parallelization
of the pipeline stages have also been proposed running on a multi-
core architecture[2]. The broad and narrow phase are executed in
the same time using a buffer structure and the model enables to
dynamically adapt the threads repartition during the simulation.

300 7 CPU Time

GPU Time

250 A

0_/)(

0 50 100 150 200 250 300 350 400 450 500 550 600
Nb of Objects

Figure 4: Example of computation time spent by the broad phase
algorithm running on a CPU (green line) and GPU (orange line). Op-
timal performance fields we obtain are shown by the two areas. The
X value has to be determine to precisely know when GPU solution
becomes better, in terms of computation time, than CPU.

2.2.3 Hybrid-based Algorithms

More and more papers appear dealing with new hybrid solutions
that run on multi-core and multi-GPU architecture. Kim and al
[13] have presented an hybrid parallel continuous collision detec-
tion method HPCCD based on a bounding volume hierarchy. Re-
cently, Pabst and al[19] have presented a new hybrid CPU/GPU
method for rigid and deformable objects based on spatial subdivi-
sion. Broad and narrow phases are both executed on a multi-GPU
architecture.

2.3 Positionning

Related work shows that a lot of accurate and fast parallel adapta-
tion have been proposed for collision detection algorithm. But, as
previously mentioned, using the most accurate and fast algorithm in
a physical simulation with an unpredictable scenario evolution will
not necessarily provide best performances. Algorithms have to be
adapted during the simulation to to be as efficient as possible.

3 TECHNICAL CONTEXT

We present in this section the hardware-based algorithms we used
to dynamically adapt collision detection algorithms. We explain the
development and the adaptation of these algorithms on multi-cores,
single GPU and multi-GPUs architectures. To determine what we
call "fields of optimal performance”, we implemented several al-
gorithms running on different architectures. All of them are broad
phase algorithms based on the well-known ”Sweep and Prune” [5]
and it has been transformed in a generic way to work on each avail-
able computation units (Sequential CPU, Multi-cores, Single GPU
and Multi-GPUs). We work with the brute force method (cf Section
2.1) because it is the best candidate for the parallelization due to the
independence in computations. There is no internal structure to up-
date, we start from scratch each time. After projection on axis there
(n*—n)

are object pairs to test. Working with the persistent method
that updates internal structure is hard to parallelize because compu-
tations need to be made on the overall axis to check among upper
and lower bounds if there is an overlap or not. A way to parallelize
it is to separate axis computation, so it means to divide it by three
which is not really advantageous for parallelization.

All Objects

Dynamic Broad Phase

v v L2 v

Sequential = |Multi-Core
CPU CPU

Narrow Phase

Single GPU| Multi-GPU

Figure 5: Simplified view of our dynamic broad phase adaptation.
Input data are oriented to the most efficient broad phase algorithm.

3.1 Multi-core Algorithm

We proposed a novel approach to parallelize the ”Sweep and Prune”
algorithm on a multi-cores architecture [1]. The two main parts
of the algorithm have been parallelized, the one in charge of up-
dating bounding volumes and the other one in finding overlapping
bounding volumes pairs. There is a synchronization point required
between these two phases to merge computations of each cores.
Critical writing sections and threads idling have been avoided and
reduced by adding new data structure for each thread. The algo-
rithm is able to work on a n-core architecture reducing computation
time by almost 5X-6X on a 8-cores architecture.

3.2 Single GPU Algorithm

We developed a first implementation of the ”"Sweep and Prune” al-
gorithm on GPU. We use the brute force solution of the algorithm
and the CPU is only used to detect overlapping on each axis. Three
lists of lower and upper bounds of bounding volumes are then ob-
tain and transmitted to the GPU to be computed. The GPU is in
charge of extracting pairs common to all three lists. This work is
done by a CUDA! algorithm that assigns to each GPU threads a
kernel function in charge of extracting pairs in a smaller dataset.

3.3 Multi-GPU Algorithm

Recently, we developed a multi-GPUs version of the ”Sweep and
Prune” based on the single GPU one. To separate computations be-
tween GPU devices during the broad phase process we use spatial
subdivision technique and more precisely we divide space by num-
ber of GPUs. The spatial subdivision technique depends on the den-
sity distribution of objects in the environment. This dependence can
be explained by wanting to homogeneously balance GPU’s compu-
tation time.

4 DYNAMIC ALGORITHM ADAPTATION

We present in this section an analysis of off-line algorithmic per-
formances and how they can be used during in-line simulations to
perform an algorithmic dynamic adaptation.

4.1 Outline

An overview of our solution is illustrated on Figure 3, it is com-
posed of two parts, namely off-line computations and their use dur-
ing the in-line process. To illustrate our purpose, Figure 1 shows
an example of a complex scenario evolution. The simulation starts
with only few objects and then evolves quickly when user decides
to add, remove or break objects into thousands of pieces. In this
case, number of objects is not stable all along the simulation. Al-
gorithms need to be adapted to face these perturbations. Naively,

lwww.nvidia.com/object/cudahome.html

.
o
=}

1GPU| 2GPUs 3 GPUs 4 GPUs

-
//’
/“/ ..-"M.".;
il

——1GPU
——2GPUs
100 4 —— 3 GPUs
4 GPUs

.
=1
a8

X}
o
=}

w
=1
=1

Broad Phase Time (ms)
Ty

i~
o
=
#
I

0 1000 2000 3000 4000 5000 6000
Nb of Objects

Figure 6: Results of off-line simulations performed on a 4*Quadro FX
5800 platform. We measured time spent by 1, 2, 3 and 4 GPUs in
relation to the number of objects in the environment.

we can say that a GPU solution for a simulation with thousands of
object is the fastest way to compute the broad phase. We can also
say that a CPU solution is the best one with very few objects. But
we do not know exactly when one becomes better or worse than
the other. It is also essential to know how many GPUs provide best
performances and when one GPU needs to be included or removed
from the broad phase loop.

4.2 Off-line Simulations

Our analysis of off-line algorithmic performances consists in an ex-
traction of feature points to delimit fields of optimal performance of
broad phase algorithms. The "Sweep and Prune” algorithm is only
sensitive to the number of objects in the environment. It works with
bounding volumes of objects, so time spent to compute overlap-
ping between complex or simple objects is nearly the same. Based
on this observation, we propose to analyze and evaluate behavior of
each algorithm by varying the number of objects. These evaluations
are performed during off-line simulations. Figure 4 shows a sam-
ple output, we can see computation time of a CPU and GPU broad
phase algorithm in relation to the number of objects. This off-line
simulation has been performed on a dual-core with a Quadro FX
3600M. We note that each algorithm has its own behavior and, de-
pending on the number of objects, one of them is more appropriate
because it uses less time to compute overlapping pairs. Based on
an unpredictable scenario simulation as illustrated in Figure 1, we
would like the computation time to be constantly as short as pos-
sible. Looking at the graph we are well aware that it is difficult to
choose an algorithm better than everyone else but it is possible to
determine what kind of algorithm is the most appropriate candidate
for a specific range of number of objects.

We use a process of extraction of the intersection curves points.
These points delineate fields of optimal performance of each algo-
rithm. They are used during the in-line simulation by a module
in charge of controlling and switching the broad phase algorithm.
The computed intersection point between two curves is not exactly
the real intersection point because we do not have curves functions
(f,&) so we can not solve the equation (f(x) = g(x)) used to find
similar point(s). Each off-line simulation, performed to test one al-
gorithm, generates a data array with computation time information.
We proceed to a comparison of time information to build optimal
performance fields. Briefly, we have to determine the ”X” value

70
—4— 1 Thread

50 2 Threads Woad

-
4 Threads /

E s
]
£
= 40
4] /
w
_E 30 -
B 20 . /
o
S /

10 —

= -1 Thread 2 Threads 4 Threads
o
s0 100 150 200 250 300 350 400
Nb of Objects

Figure 7: Results of off-line simulations performed on a 4 cores plat-
form. We measured time spent by 1, 2 and 4 threads in relation to
the number of objects in the environment.

illustrated on Figure 4.

4.3 In-line Simulation

Results obtained with the extraction of optimal performance fields
are used during in-line simulation. Borders of these fields are stored
to be used during the broad phase switching process. We devel-
oped a module in charge of controlling number of objects in the
environment. This module is also in charge of switching the algo-
rithm by a more appropriate one when performance fields borders
are crossed. We include the switching module in the global applica-
tion and more precisely in the part in charge of the physical world.
To insure a switch in real-time during the algorithm transfer, each
algorithm takes in input the same data structure and gives in output
the same result data. Our module is illustrated on Figure 5.

5 RESULTS

Off-line simulations are required because algorithmic performances
are dependent on the run-time architecture. We used 3 different
platforms to test our solution, namely:

e Intel Core(x2) CPUX7900 @2.8GHz - Quadro FX 3600M
e Intel Xeon(x4) CPUX5472 @3.0GHz - 2 Quadro FX 4600
e Intel Xeon(x8) CPUX5482 @3.2GHz - 4 Quadro FX 5800

For example, figure 8 illustrates GPU results obtained on the
third platform. Each curve shows computation time in relation to
the number of objects. We can notice that the order, from the best
to the worse computation time, is totally inversed between the be-
ginning and the end.

Each curve has its own behavior compared to the number of ob-
jects in the environment. Unsurprisingly, using 4 GPUs to compute
broad phase with a hundred of objects appears to be the worse way
to proceed. Similarly, using only one single GPU for more than
4.000 Objects brings a loss of time. The interesting point is to no-
tice that each algorithm does have its best moment of use. After
measuring these results, we can cross curves data and find intersec-
tion points to delimit the field of optimal performance of each al-
gorithm. During the in-line simulation, we know now when pulling
out or adding a GPU in the broad phase loop.

Figure 7 presents CPU results obtained on the second platform.
As noticed in the GPU results, the order of the best to the worse
computation time is inversed between the beginning and the end.
We border fields of optimal performance of each algorithm to re-
veal their “best moment of use”. That shows that always using all

Quadro 3600M | Quadro 4600 | Quadro 5800
CPU->GPU (MB/s) 1856,12 24963 2463,36
GPU->CPU (MB/s) 559 52 227628 2309 6
Internal GPU (GB/s) 31,99 44 .36 71,11
Memory Size (MB) 512 768 4096
Clock Rate (GHz) 1,25 1,2 1,296
Nb of Processors 8 16 30
Nb of Cores 64 128 240

Figure 9: Hardware parameters of the three graphics cards used for
the comparison.

available cores is not recommended. We have to take into account
the number of objects.

A coupling of CPU and GPU results is also possible, but it is
difficult to present it graphically. However, this coupling is per-
formed during off-line simulations to determine fields of optimal
performance of every algorithms. Results show that CPU and GPU
results are different in terms on time dependence to the number of
objects.

6 HARDWARE PARAMETERS INFLUENCE

Off-line simulations allow to determine fields of optimal perfor-
mance of each broad phase algorithms. As previously shown, per-
formance curves are dependent on the run-time architecture, we
now study this dependency and how hardware parameters can in-
fluence algorithms performances. We analyze in this section the
influence of the variation of several hardware parameters on the al-
gorithms performances. The goal of the analysis is to know if it is
possible to find a link between positions of intersection points and
hardware parameters. In other words, it is possible to predict posi-
tion of those points without performing an off-line simulation just
by knowing values of hardware parameters.

We worked on three different kind of Nvidia? graphics cards
(Quadro FX 3600M, Quadro FX 4600, Quadro FX 5800) (cf. Fig-
ure 9). We measured time spent by the broad phase algorithms in
relation to the number of objects running on each kind of GPU.

The GPU bandwidth is a very important hardware parameter to
study and to take into account. We study three different bandwidths
values: from CPU to GPU, from GPU to CPU and the internal GPU
bandwidth. Tests were performed with the same size of transfered
data (33554432 Bytes = 32 MB). A low bandwidth can highly dis-
turb algorithms performances but we want to determine how the
bandwidth influences performances. Figure 9 presents parameters
values.

Figure 10 presents a comparison of the hardware parameters of
the Quadro FX 5800 and 4600 compared to the 3600M one. The
y axis shows how much higher is the parameter compared to the
other 3600M one. We can notice that the GPU clock rate and the
bandwidth between CPU and GPU do not influence computation
time of the broad phase. These two parameters are almost the same
between the three GPUs but computation time of the broad phase is
still better from one to the other and is decreasing. The bandwidth
between GPU and CPU is also similar between the two platform.
Algorithm time also seems not to be linked to this parameter. Mem-
ory size seems not to highly impact computation time because its
value is 1.5 higher on the 4600 and more than 4 times higher on the
5800, and speed-up on the algorithm is not as high as these values.
It is difficult to link other parameters with the algorithm time.

To precise the analysis, we proceed to a comparison between
the 5800 and the 4600, illustrated on Figure 11. It confirms the
fact that the clock rate, the bandwidth CPU-GPU and the GPU-
CPU one do not influence algorithm time. The broad phase time is

2www.nvidia.com

O Clock Rate

4+ |mcPu=cGPU
Internal GPU

3.5 —— [Nb of Cores

B Memory Size
3 T——BGPU->CPU
B Broad phase Time

X time higher

Quadro 4600 Quadro 5800

Nvidia Quadro FX

Figure 10: Comparison of the Quadro FX 5800 and 4600 parameters
in relation to the 3600M ones.

O Clock Rate

L CPU-=>GPU

O Intemal GPU

4 4OMNb of Cores

W Memory Size

3 1@m GPU-=CPU

W Broad phase Time

X time higher

MNvidia Quadro FX 5800

Figure 11: Comparison of the Quadro FX 5800 parameters in relation
to the 4600 ones.

1.5X much faster than on the 4600 graphics card and these previous
parameters did not change. The memory size of the GPU still seems
not to significantly influence the algorithm time. It also seems that
internal GPU bandwidth and the number of cores potentially impact
the broad phase time.

7 CONCLUSION

We have presented a first way to dynamically adapt broad phase col-
lision detection algorithms during simulations with unpredictable
scenarios. We have developed broad phase algorithm running on
several types of computer architectures (sequential CPU, multi-
cores, single GPU and multi-GPUs). In our approach, we propose
to determine fields of optimal performance for each broad phase
algorithm. We evaluate performances of algorithms on different ar-
chitectures in relation to the number of objects in the environment.
From performance curve of an algorithm we extract intersection
points with other curves to delineate the area where the algorithm
is optimal. Obtained results are then used during in-line simula-
tion to switch, in real time, the broad phase algorithm by a more
efficient one. The switching phase is provided by a module in the
application in charge of monitoring parameters of the simulation.
Our solution is generic because any algorithm can be included
in the off-line loop and compared to the others. Results show that
this dynamic adaptation of broad phase algorithms enables to use
the most efficient algorithm all along the simulation. We knew
that multi-GPU collision detection solution was totally unadapted
to small physical simulations like sequential CPU solution for large
scale simulations, but we are now able to know when one becomes

[p—
4 N
Optimal Results - 85&131::;?&5”“5
Our Results 7T
I— 6 T
i°7
z g
© 24 — £ 41
2 =
= 2
= 3 4+
1 2
1 4
0 T T T T O LARARR SRR R R I N NN RN R R R RN R RN R RN R RN NN R RN R RN AR R RRE]
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 1 7 13 19 25 31 37 43 49 55 1 67 73 79 85 91 97

Simulation steps

Simulation Steps

Figure 8: This figure shows two results of our dynamic algorithmic adaptation. The left graphic shows a multi-GPU result and the right one, a
multi-core result. The black line presents choices made by our model to add or remove a GPU or CPU core from the broad phase loop during
the simulation. The colored areas presents the optimal results obtained by reproducing the same simulation as the one made by the user but
forcing the use of a fixed number of processing unit (CPU or GPU). Tests were performed on 4*Quadro FX 5800 with Intel Xeon(x8) 3.2GHz.

better or worse than the other.

We also presented a study on the dependency between algorith-
mic performances and hardware architecture. We showed that few
parameters (clock rate, CPU-GPU bandwidth and GPU-CPU band-
width) do not influence the algorithm time. We also showed that
other parameters (internal GPU bandwidth and the number of cores)
seem to be closely linked to the broad phase time. Finally, GPU
memory size appears to be non really impactive to the algorithm
time.

There are many ways of optimization in the dynamic adaptation
of collision detection algorithms. Broad phase algorithms can still
be improved in terms of computation time and efficiency. Data and
task repartition is also a good way of improvement for these algo-
rithms that run on multi-core or multi-GPU architecture. Another
important and interesting way of improvement is the dynamic al-
gorithms adaptation during the narrow phase process. This step
is more complex because there are many parameters to take into
account during this phase (object complexity, hierarchies, proper-
ties...). Many analysis and implementations have to be done to
reveal the essential focus of adapting algorithms on the run-time
architecture.

ACKNOWLEDGEMENTS

The authors want to thank Florian Nouviale (INRIA Rennes) and
Colin Moore (Duke University, NC - USA) for their help in the
review process of english. This research is supported by the INSA
of Rennes (France) with the Bretagne region under project GriRV
N°4295.

REFERENCES

[1] Q. Avril, V. Gouranton, and B. Arnaldi. A broad phase collision de-
tection algorithm adapted to multi-cores architectures. In S. R. . A.
Shirai, editor, VRIC’10 Proceedings, pages 95-100, April 2010.

Q. Avril, V. Gouranton, and B. Arnaldi. Synchronization-free parallel
collision detection pipeline. In /CAT’2010, December 2010.

J. L. Bentley and J. H. Friedman. Data structures for range searching.
ACMCS, 11(4):397-409, 1979.

G. V. D. Bergen. Efficient collision detection of complex deformable
models using aabb trees. J. Graph. Tools, 2(4):1-13, 1997.

J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-collide:
An interactive and exact collision detection system for large-scale en-
vironments. In SI3D, pages 189-196, 218, 1995.

S. Gottschalk, M. Lin, and D. Manocha. Obbtree: A hierarchical struc-
ture for rapid interference detection. In Proceedings of the ACM Con-

[2

—

[3

[utr?

[4]
[5]

[6

=

ference on Computer Graphics, pages 171-180, New York, Aug. 4-9

1996. ACM.
[71 N. K. Govindaraju, M. C. Lin, and D. Manocha. Fast and reliable col-
lision detection using graphics processors. In COMPGEOM: Annual
ACM Symposium on Computational Geometry, 2005.
N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha. Cullide:
Interactive collision detection between complex models in large en-
vironments using graphics hardware. In M. Doggett, W. Heidrich,
W. Mark, and A. Schilling, editors, SSIGGRAPH/Eurographics Work-
shop on Graphics Hardware, pages 025-032, San Diego, California,
2003. Eurographics Association.
E. Hermann, B. Raffin, and F. Faure. Interactive physical simulation
on multicore architectures. In Eurographics Workshop on Parallel
and Graphics and Visualization, EGPGV’09, March, 2009, Munich,
Allemagne, 2009.
P. M. Hubbard. Collision detection for interactive graphics applica-
tions. [EEE Transactions on Visualization and Computer Graphics,
1(3):218-230, Sept. 1995. ISSN 1077-2626.
P. Jiménez, F. Thomas, and C. Torras. 3d collision detection: a survey.
Computers & Graphics, 25(2):269-285, 2001.
D. Kim, J.-P. Heo, and S. eui Yoon. Pccd: Parallel continuous collision
detection. Technical report, Dept. of CS, KAIST, 2008.
D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-E. Yoon. HPCCD: Hybrid
parallel continuous collision detection using CPUs and GPUs. Com-
put. Graph. Forum, 28(7):1791-1800, 2009.
Y. Kitamura and A. Smith. Parallel algorithms for real-time colliding
face detection. Robot and Human Communication, pages 211-218,
Nov. 07 1995.
D. Knott and D. K. Pai. Cinder: Collision and interference detection
in real-time using graphics hardware. In Graphics Interface, pages
73-80, 2003.
M. Lewis and B. L. Massingill. Multithreaded collision detection in
java. In H. R. Arabnia, editor, Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and Appli-
cations & Conference on Real-Time Computing Systems and Appli-
cations (PDPTA’06), volume 1, pages 583-592, Las Vegas, Nevada,
USA, June 2006. CSREA Press.
M. C. Lin and S. Gottschalk. Collision detection between geometric
models: a survey. In R. Cripps, editor, Proceedings of the Sth IMA
Conference on the Mathematics of Surfaces (IMA-98), volume VIII of
Mathematics of Surfaces, pages 37-56, Winchester, UK, Sept. 1998.
Information Geometers.
B. F. Naylor. Interactive solid geometry via partitioning trees. In
Graphics Interface 92, pages 11-18, May 1992.
S. Pabst, A. Koch, and W. Strafer. Fast and scalable cpu/gpu collision
detection for rigid and deformable surfaces. In Computer Graphics

[8]

[9]

[10]

(11]
[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Forum, volume 29, pages 1605-16212, July 2010.

A. Selle, J. Su, G. Irving, and R. Fedkiw. Robust high-resolution
cloth using parallelism, history-based collisions, and accurate friction.
IEEE Trans. Vis. Comput. Graph, 15(2):339-350, 2009.

A. Smith, Y. Kitamura, H. Takemura, and F. Kishino. A simple and
efficient method for accurate collision detection among deformable
polyhedral objects in arbitrary motion. Proc. IEEE Virtual Reality
Annual International Symposium, pages 136—145, March 1995.

M. Tang, D. Manocha, and R. Tong. Multi-core collision detection
between deformable models. In Computers & Graphics, 2008.

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strafer, and P. Volino. Collision detection for deformable objects.
Comput. Graph. Forum, 24(1):61-81, 2005.

B. Thomaszewski, S. Pabst, and W. Blochinger. Parallel techniques
for physically based simulation on multi-core processor architectures.
Computers & Graphics, 32(1):25-40, 2008.

D. J. Tracy, S. R. Buss, and B. M. Woods. Efficient large-scale sweep
and prune methods with AABB insertion and removal. In VR, pages
191-198. IEEE, 2009.

M. Woulfe, J. Dingliana, and M. Manzke. Hardware accelerated
broad phase collision detection for realtime simulations. 4th Workshop
in Virtual Reality Interactions and Physical Simulation (VRIPHYS)
(2007), pages 79-88, 9 Nov. 2007.

