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The present paper is devoted to the formation of sand patterns by laminar flows. It
focuses on the rhomboid beach pattern, formed during the backswash. A recent bedload
transport model, based on a moving-grains balance, is generalized in three dimensions
for viscous flows. It is coupled with the full incompressible Navier–Stokes equations, with
a free surface. A linear stability analysis then shows the simultaneous existence of three
types of instabilities, namely ripples, bars and longitudinal striations. The comparison of
the bar instability characteristics with laboratory rhomboid patterns indicates that the
latter could result from the non-linear evolution of unstable bars.

1. Introduction
When water flows above a granular layer, the interaction between sediment transport

and the fluid motion often leads to instability patterns such as ripples, dunes and bars
(see Allen 1982). This is well-known in rivers, where the flow is turbulent, but this is
true as well at lower Reynolds number. The most striking example of sediment pattern
generated by a laminar flow is the ubiquitous rhomboid beach pattern (see Woodford
1935; Devauchelle et al. 2008). One can observe the formation of these diamond-shaped
structures after the swash, when water returns to the sea through a thin film covering
the sand. The rhomboid pattern has been found also in geological records (Thompson
1949; Singh 1969), where it may be misinterpreted as the crossing of two successive sets
of ripples (Williamson 1887).

Probably due to their likeness, rhomboid beach patterns are generally associated with
stationary gravity-waves in super-critical flows. Woodford (1935) first suggested that
the sand simply could be marked by such waves, thus neglecting the coupling between
the sediment transport and the flow. This theory provides a relationship between the
pattern angle α and the Froude number Fr , namely α = arcsin(1/Fr). Most subsequent
contributions on the subject (Chang & Simons 1970; Allen 1982) are based on the same
idea. However, Devauchelle et al. (2008) showed experimentally that Woodford’s law
strongly overpredicts the pattern angle. Ikeda (1983) proposed that the rhomboid pattern
might result from the association of antidunes and longitudinal striations. This idea will
be addressed in the present paper (see section 3.3).

After their own experimental observations, Karcz & Kersey (1980) concluded that
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Figure 1. Various bedforms observed on the granular bed of a a laminar flume (Devauchelle
et al. 2008). The flow is from right to left. The pattern, observed through the water surface, is
enhanced by skimming light. The angle and wavelength of the rhomboid pattern varies with the
experimental parameters (picture (a) and (b)). Under certain conditions, a rhomboid pattern
may be associated to ripples (picture (c)). The width of the flume is 10 cm. (a) Large rhom-
boid pattern (Fr = 1.76, S = 0.03, Bo = 1.31 and Sh = 0.616). (b) Small rhomboid pattern
(Fr = 0.95, S = 0.015, Bo = 3.25 and Sh = 0.485). (c) Rhomboid pattern mixed with ripples
(Fr = 1.01, S = 0.015, Bo = 3.50 and Sh = 0.504). The definitions of the parameters are
provided in section 3.2.

a homogeneous rhomboid pattern forms spontaneously over an initially flat bed, thus
suggesting an absolute instability. In a first attempt to perform the stability analysis of
a granular bed submitted to erosion by a laminar film, Devauchelle et al. (2008) used
the Saint-Venant approximation to represent the water flow. These equations, written
for turbulent flows, are known to produce rhomboid patterns under certain conditions
(see Defina 2003; Hall 2006). Since the equations for laminar films are very similar to
their turbulent counterparts, the shallow-water theory also predicts that a bar instability
should develop. In turn, this instability could lead to diamond-shaped structures after
saturation, due to non-linear effects. Consequently, the rhomboid beach pattern can be
related to alternate bars in rivers (Callander 1969). However, the Saint-Venant equations
fail to predict the pattern angle better than the Woodford’s law does (although they
underpredict it instead). The results are even worse regarding the wavelength, but the
theory at least qualitatively agrees with the observation of Karcz & Kersey (1980) that
a uniform wavelength spontaneously emerges.

The main flaw of the Saint-Venant equations regarding bedforms is that they cannot
represent the phase lag between a bed perturbation and the velocity profile above it.
When establishing the Saint Venant equations, one supposes that the profile remains of
same shape (namely the Poiseuille parabolic shape). But due to the acceleration over the
crest of the ripple, the velocity profile is changed near the bed. This effect is responsible for
the formation of ripples (see Kennedy 1963; Charru & Mouilleron-Arnould 2002; Lagrée
2003), which appeared regularly during the experiments of Devauchelle et al. (2008)
(see also figure 1). This observation suggests that the shallow-water approximation is
inappropriate under such experimental conditions, and therefore should be replaced by



Journal of Fluid Mechanics 3

Figure 2. Schematic of the system and associated notations. A film of fluid with a free surface
flows over a granular layer. The main flow direction is denoted x, and its transverse and vertical
counterparts are y and z respectively. The sediment surface is represented by h(x, y, t), and the
fluid free surface by η(x, y, t). The whole frame is tilted with respect to gravity in the x direction,
so that the gravity acceleration g has components (gx, gz, 0) with −gx/gz = tan S, thus defining
the slope S. In section 3, the stability of a perturbation with wave vector k is analyzed. For the
sake of simplicity, we do not impose boundaries in the x and y directions.

the full Navier–Stokes equations in three dimensions. It is the subject of the present
contribution.

Coupling the water flow to the bed evolution requires a sediment transport model.
As long as bedload is the main transport mode, the grains motion is driven by the
water shear stress on the sediment surface only. Transport laws are generally written as
functions of the Shields parameter, which compares the tangential shear applied to the
bed to its normal counterparts (usually the weight of the upper grains layer, see Shields
(1936)). However, in order to avoid the instability of short-wavelength bedforms, one has
to introduce a saturation mechanism. This can be achieved by taking into account either
the bed slope effect or the time required for the particles flux to reach equilibrium (see
Lagrée 2000; Charru et al. 2004; Charru & Hinch 2006; Charru 2006). The present paper
generalizes the model proposed by Charru (2006) to three dimensions, thus retaining
both saturation mechanisms. As the full Navier–Stokes equations are employed, no strong
approximation about the flow remains. For this reason, the rhomboid pattern can provide
an experimental test for sediment transport models.

2. General model
We aim here to study the linear stability of an initially flat sediment layer, as a laminar

and steady film of water flows over it. For simplicity, we assume an infinite system both
in the direction x of the main slope and in the transverse direction y (see figure 2).
This is consistent with the usual configuration of sand beaches where rhomboid patterns
form, where the horizontal dimensions (say a few tens of meter) are far larger than the
typical depth D of the backswash film (a few millimeters). It may however be a crude
representation of the experiments of Devauchelle et al. (2008), performed in a 10 cm-wide
channel.
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2.1. Water flow

The flow in the bulk is given by the stationary and incompressible Navier–Stokes equa-
tions in three dimensions,

uk∂kui = −1
ρ
∂ip + gi + ν∂kkui, ∂kuk = 0 (2.1)

where u, p and ν are respectively the velocity, pressure and viscosity of water, and g is
the acceleration of gravity. The use of stationary flow equations is a common hypothesis
in geomorphology, which relies on the idea that the sediment transport time scale is
much larger than the flow one (see Colombini & Stocchino 2005). If we neglect both the
velocity of the upper layers of grains and the velocity of water through the same layer†,
we may impose the classical no-slip boundary condition at the sediment bed surface:

ui = 0 at z = h (2.2)

where z is the vertical direction‡, and h is the thickness of the sediment layer. At the free
surface, which elevation is denoted by η, both a kinematic and a dynamical boundary
conditions are imposed:

uz = ux∂xη + uy∂yη at z = η, σiknk = γκni at z = η (2.3)

where γ and n are respectively the surface tension of the fluid, and the unit vector normal
to the surface and pointing outwards. The free-surface curvature is referred to as κ, which
is linked to the surface elevation through the relation

κ =
∂xxη

(1 + (∂xη)2)3/2
+

∂yyη

(1 + (∂yη)2)3/2
. (2.4)

The stress tensor is denoted by σ, whereas τ is its viscous component only:

σik = τik − pδik, τik = ρν (∂iuk + ∂kui) . (2.5)

The flow model presented above is rather general for gravity-driven and laminar films.
The stability of such films, without any sediment transport, has been intensively studied,
and they were proven generally instable with respect to long-wavelength perturbations
(Yih 1963), leading to the formation of Kapitza waves (Kapitza 1948). Such films present
a wide variety of instable waves, stationary or not. Indeed, Kapitza waves are linearly
unstable in two dimensions, but one can expect three-dimensional structures to be also
linearly unstable (Lin & Chen 1997). One could claim that such purely hydrodynamic
waves generates the rhomboid pattern, in an extended version of the theory of Woodford
(1935). However, the present flow model is stationary, and thus cannot describe any
purely-fluid instability. Only in the next section on sediment transport will time enter
the picture. Consequently, the stability analysis of the present paper can only account for
a fully coupled sediment-flow interaction. During their experiments, Devauchelle et al.
(2008) observed both stationary and traveling hydraulic waves. None of them seemed to
interact much with the sediment patterns, which growed at a much slower time scale and
with different angle than these waves.

† The two assumptions are reasonable in the experiments. This can be evaluated by comparing
the measured flow depth to Nußelt’s prediction for a given water discharge.
‡ More precisely, z is the direction perpendicular to the (x, y)-plane, which is slightly tilted

in the x direction.
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2.2. Sediment transport
A sediment transport model based on a grains balance in the moving sediment layer was
first proposed by Lagrée (2000). It has been used for liquid flows (Valance & Langlois
2005) as well as for air flows (Valance & Rioual 1999; Sauermann et al. 2001; Andreotti
et al. 2002; Hersen 2004), and widely developed for viscous flows by Charru et al. (2004).
The latter authors were able to measure the individual grains velocities during bedload
transport. Their model for averaged transport is thus supported experimentally at each
step of its derivation. The last version of this theory has been adapted to gently slop-
ing beds (Charru & Hinch 2006; Charru 2006). Values are provided for the empirical
coefficients of the theory, that allow to fit the experimental data of Coleman & Eling
(2000). In the present section, we aim to generalize this model in three dimensions, by
following the reasoning of Charru (2006). We will end up with the remarkable result that
no additional coefficient is required to do so.

2.2.1. Moving particles conservation equation
Let us denote by n the density of transported particles per unit surface (as much as

possible, we use the notations of Charru (2006) in the following). Then the grains balance
in the bedload layer reads

∂n

∂t
= ṅe − ṅd − ∂qx

∂x
− ∂qy

∂y
, (2.6)

where ṅe, ṅd, and q denote respectively the rate of grains erosion from the fixed layer,
the deposition rate to the fixed layer and the horizontal grains flux. At first order, and
for small bed slopes, this equation does not differ from the flat-bed case, even though
the direction of q is no longer in the tilted (x, y)-plane†.

2.2.2. Particles deposition rate
The grains deposition rate due to gravity-induced sedimentation does not change when

extending the model to three dimensions. Provided the suspended particles concentration
n remains small enough, each particle behaves as if it were isolated. Due to gravity, it
falls down at the Stokes settling velocity Us, defined by

Us =
(ρs − ρ)‖g‖d2

s

18ρν
, (2.7)

where ds is the typical diameter of a sediment grain. Every suspended particle experiences
sedimentation. The associated flux is thus proportional to the number of suspended
particles n:

ṅd = cd
Us

ds
n, (2.8)

where cd is an empirical constant, set to 1/15 after Charru (2006).

2.2.3. Generalized Shields parameter
Originally, the Shields parameter was designed to compare the weight of a sediment

particle (corrected by its buoyancy) to the shear stress exerted by the fluid (Shields 1936),
that is:

Sh =
ρ‖τh‖

(ρs − ρ)‖g‖ds
, (2.9)

† For bedload on an arbitrary sediment surface, the flux q is tangent to the surface. In the
Exner equation, only its horizontal components qx and qy must be considered.
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where ρs is the density of the sediment. The tensor τh represents the horizontal viscous
stress. Now, if the local tilt of the sediment bed is to be considered, one has to compare the
normal stress component to the tangential one instead. It is the purpose of the following.

If nb is the unit vector normal to the sediment surface, then the viscous force exerted
on a surface of small area ε of the sediment surface reads

fν
i = τiknb

kε. (2.10)

If the pressure field is uniform at the grain scale, gravity is the only other force acting on
the moving grains layer, the thickness of which is denoted by cgds, where cg is assumed
to be constant (cg ≈ 0.108):

fg
i = (ρs − ρ)giεcgds. (2.11)

The total force f = fν + fg may then be separated into its normal and tangential
components:

fn = fknb
k, f t = f − fnnb. (2.12)

Note that fn is a negative quantity. In this frame, the natural generalization of Shields
parameter consists in writing

θ = −‖f
t‖

fn
. (2.13)

Through this definition of the Shields parameter, one recovers the two-dimensional theory
of Charru (2006) when considering a two-dimensional problem in the (x, z) plane. In that
sense, the present model is a generalization of the latter. The hypothesis that θ only
controls the intensity of the sediment flux relies on two basic assumptions:
• The effect of slope is isotropic with respect to x and y;
• The thickness cgds of the moving grains layer is constant.

The first assumption is reasonable in general, whereas we are not aware of any direct eval-
uation of the moving-grains layer thickness. Charru (2006) makes the second assumption
when stating that cg is a constant. As long as the bed is perfectly flat, the moving-grains
layer thickness itself can be a function of the Shields parameter as usually defined (that
is by equation (2.9)), and thus the intensity of the transport is a function of Sh only.
As soon as some slope is to be considered, it enters the picture as a new independent
parameter, and the above reasoning should not hold. However, Charru (2006) showed
that treating cg as a constant can lead to good results. We do the same here.

Finally, we only add the isotropic transport assumption to the model of Charru (2006).
It allows us to introduce no additional free parameter.

2.2.4. Particle erosion rate
As for the deposition rate, the erosion rate ṅe can be expressed exactly in the same

way as in Charru (2006). We usually consider that below a threshold value of the Shields
parameter denoted by θt, no particle can be suspended. Above this value, the simplest
model consists in assuming that the number of particles suspended by unit time and
surface is proportional to the excess Shields parameter, that is, proportional to Sh − θt.
In the present case, the same idea can be applied to the generalized Shields parameter θ.
We thus assume that ṅe is proportional to cgθ− θt. The constant cg appears only due to
our definition of θ. With these notations, the threshold value remains the one proposed
by Charru (2006), namely θt ≈ 0.091. The choice of the dimensional pre-factors then
fixes the empirical constant ce:

ṅe =
18ceUs

d3
s

(cgθ − θt), (2.14)
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Charru (2006) fixes ce to 0.0017, but this value has no impact on the pattern shape. In
the above relation, the slope influence on the tangential shear stress is embedded into
the definition of θ.

2.2.5. Particle horizontal flux
While they are suspended, the grains are transported by the water flow, thus generating

a horizontal sediment flux q. Charru et al. (2004) showed experimentally that, in a good
approximation, the average particle velocity is proportional to the vertical gradient of
the horizontal velocity, times the average flight height. The flux is then obtained by
multiplying this average velocity with the suspended particles concentration n:

qx = ncuds
∂ux

∂z
, qy = ncuds

∂uy

∂z
, (2.15)

where cu ≈ 0.1 is the third and last empirical parameter of the sediment transport law.
This hypothesis can be understood as a simplified version of Bagnold’s model of sediment
transport by rivers (Bagnold 1977).

2.2.6. Exner equation
The above system, from equation (2.6) to equation (2.15) could be solved without

further assumption. However, to remain consistent with the stationary flow model (see
section 2.1), we must drop the time derivative in the sediment balance equation (2.6).
Thus, the particle flow is considered stationary as well and we end up with the well-known
Exner equation (Exner 1925):

C∂th = −πd3
s

6
(∂xqx + ∂yqy) , (2.16)

where C is the bed compactness. One should bear in mind that the above equation, a
balance for the immobile grains, does not replace the balance (2.6) for mobile grains.
The latter is required to determine the moving particle density n, even under the quasi-
stationary approximation. In brief, one can determine the concentration of suspended
particles using (2.6) with the quasi-stationary approximation ∂n/∂t = 0. Then, the
equation (2.16) controls the topography evolution.

The Exner equation terminates the definition of our sediment transport model, and the
following section is devoted to the stability analysis of a flat bed within this framework.

3. Stability analysis
The present section aims to demonstrate that, under the experimental conditions where

rhomboid patterns where observed by Devauchelle et al. (2008), the model proposed
above is unstable. As stated in the introduction of this paper, it is our claim that the
rhomboid pattern can maintain its basic features (angle and wavelength) during its de-
velopment. In other words, we believe (but do not prove) that the non-linear effects al-
lowing for the bed perturbations to saturate do not modify significantly theses features.
If this is true, the results of the stability analysis can be compared to measurements
(see section 4), even though the latter concerns fully developed bedforms rather than
infinitesimal perturbations.

3.1. Base state and dimensions
The simplest base state for our system consists in a flat (but tilted) sediment bed, over
which flows a uniform Nußelt film of thickness D. This roughly corresponds both to the
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experiments (a rake was drawn over the granular bed before each run), and to the natural
initial condition on beaches (each swash event erases the remaining patterns before the
backswash).

The Nußelt film above the bed reads

u0
x =

gx

ν

(
zD − z2

2

)
, p0 = −ρgz(D − z), (3.1)

where the 0 superscript refers to the base state. The water velocity vanishes in both the
y and the z directions. If U , D and P respectively refer to the typical scales of the water
velocity, depth and pressure, we define

U =
gx

3ν
D2, D = D, P = −ρgzD. (3.2)

The non-dimensional base state then reads

u0
x = UU

( z

D

)
, p0 = PP

( z

D

)
, (3.3)

with

U(z̃) =
3z̃

2
(2− z̃), P (z̃) = (1− z̃). (3.4)

The tilde here denotes a non-dimensional height. In the following, all quantities are non-
dimensional, and the tilde will be dropped for clarity.

3.2. Perturbations
Let f refers to any quantity of interest for our problem. Decomposing it into a base-state
component F and a sine-wave perturbation of complex amplitude f∗(z) leads to

f(x, y, z, t) = F (z) + f∗(z)ei(k cos ϕ x+k sin ϕ y−ωt), (3.5)

where k, ϕ and ω are respectively the wave-vector norm, its angle with respect to the
x axis, and the pulsation of the perturbation. The non-dimensional wave vector is nor-
malized by D. In the same fashion, the time-scale T for the pulsation ω is given by the
Exner equation (2.16):

T =
6CD2

πldcdUsd2
sN

, (3.6)

where ld and N are respectively the deposition length defined by Charru (2006), and the
suspended concentration of the base flow:

ld =
3cuUd2

s

cdUsD , N =
18ce

cdd2
s

(cgΘ− θt). (3.7)

The deposition length, which corresponds to the order of magnitude of the average flight
length of a particle, introduces a space gap between the sediment flux and the shear
stress that generates it. This delay stabilizes the perturbations at short wavelengths (see
Charru & Mouilleron-Arnould 2002; Andreotti et al. 2002; Lagrée 2003).

3.2.1. Linearized flow equations
For small perturbations, the momentum- and mass-conservation equations for the fluid

(2.1) read

Fr2(iUk cosϕ ux + U ′uz) = −ik cos ϕ p +
S

3
(u′′x − k2ux), (3.8)

Fr2iUk cos ϕ uy = −ik sin ϕ p +
S

3
(u′′y − k2uy), (3.9)
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Fr2iUk cosϕ uz = −p′ +
S

3
(u′′z − k2uz), (3.10)

u′z + ik(cos ϕ ux + sin ϕ uy) = 0 (3.11)
where Fr = U/

√−gzD is the Froude number. The prime denotes derivation with respect
to the non-dimensional height z. The no-slip boundary condition (2.2) at the bed surface
in turn reads

ux + 3h = 0, uy = 0, uz = 0. (3.12)
At the free surface, the kinematic boundary condition imposes

uz =
3
2
ik cos ϕ η, (3.13)

whereas the dynamic boundary condition reads

−3η + u′x + ik cos ϕ uz = 0, ik sinϕ uz + u′y = 0, η − p +
2
3
Su′z = − k2

Bo
η, (3.14)

where Bo = −gzρD2/γ is the Bond number.

3.2.2. Linearized sediment transport equations
Let us define N as the concentration scale for n. Then, combining this definition with

the linearized grains balance relation for stationary sediment transport (2.6) leads to

Θ
Θ− θt/cg

θ∗ − n∗ − ld
3D ik

(
3n∗ + k cosϕ u∗x

′ + sin ϕ u∗y
′) = 0, (3.15)

where the generalized Shields parameter for the base state Θ reads

Θ =
Sh
cg

+ S =
3Uνρ

cgd|gz|D(ρs − ρ)
+ S. (3.16)

The perturbation θ∗ for the Shields parameter is given by equation (2.13):

θ∗ =
1
3

(
2θ̃2

(
u∗z
′ − 3ih∗k cos ϕ

)− 3ih∗k cos ϕ
(
1 + S2

)
+

Sh
cg

(
u∗x
′ + 2Su∗z

′ − 3h∗(1 + 3ik cos ϕ S)
) )

. (3.17)

Finally, the Exner equation (2.16) allows to close the linear system, as did equation (2.16)
for the complete model:

ωh∗ = k
(
3n∗ + cos ϕ u∗x

′ + sin ϕ u∗y
′) . (3.18)

3.3. General features of the bed stability
The system of ordinary differential equations (3.8), (3.9), (3.10) and (3.11) is linear. For
any wave vector k, it can thus be solved numerically by means of the linear shooting
method to fit the boundary conditions (3.12), (3.13) and (3.14). Likewise, once the sedi-
ment transport law is defined by its empirical parameters θt, cu/cd and cg (respectively
0.091, 0.9 and 0.108 in the present case), one can derive the complex pulsation ω from
equations (3.15), (3.17) and (3.18). Finally, for a given set of experimental parameters
S, Fr , Bo and Sh, the dispersion relation of our system is obtained.

3.3.1. Striations, ripples and bars
The dispersion relation for the bed perturbation provides informations about both

the velocity of sand waves and their stability. In the present paper, we will focus on
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Figure 3. Growth rate Im(ω) of the tree-dimensional instabilities of a granular bed submitted
to erosion by a laminar flow, as a function of the wave-vector norm k, and angle ϕ with respect
to the x direction. The blank domain corresponds to negative values of the growth rate, that is,
stable modes. In this typical example, three types of instabilities can develop. (a) longitudinal
striation (see Ikeda 1983; Karcz & Kersey 1980), which maximum growth rate lies at angle close
to π/2; (b) bar instability, which can occur at any value of the angle ϕ; (c) ripple instability,
which crests are perpendicular to the main flow direction, that is, ϕ = 0. The bar instability is
probably responsible for the initiation of rhomboid patterns. In this example, the parameters
have values Fr = 0.90, S = 0.015, Bo = 2.77 and Sh = 0.448. Each contour line corresponds
to an increment of 4.8 for the growth rate. The approximate values of the three maxima of this
figure are (a) 7, (b) 22 and (c) 53.

stability issues, since the associated predictions (pattern angle and wavelength) are easily
measured experimentally.

The growth rate of a typical example is plotted on figure 3. The existence of three
distinct maxima is the most striking feature of this dispersion relation. This is not always
the case. For other values of the parameters, any association of these three types of
maxima is possible, which can makes the distinction uneasy. Hereafter, we will refer to
the following denominations:
• Longitudinal striations correspond to maximum nearest to ϕ = π/2 (the mode (a)

on figure 3);
• Ripples correspond to a growth rate maximum lying on the k axis, that is, for ϕ = 0

(the mode (c) on figure 3);
• Bars correspond to any other maximum (the mode (b) on figure 3).

The value of the angle ϕ usually allows to discriminate between bars and longitudinal
striations, the latter being always unstable (in a reasonable range of parameter values).

Longitudinal striations where observed by Karcz & Kersey (1980) in experimental
laminar flumes, sometimes coexisting with rhomboid patterns. Such bedforms are named
ridges by these authors. They are also referred to as current lineations and associated to
sublayer streaks (Colombini & Parker 1995; Jackson 2006) or Görtler vortex (Langlois
2005). In turbulent flows, Ikeda (1983) suggests that longitudinal striations could mix
with ripples to form a rhomboid pattern. In laminar flows, his views are not supported
by the analysis developed in the present paper (see section 3.3.2). Ridges where also
produced during the experiment of Devauchelle et al. (2008), but they always remained
faint, and usually disappeared a few seconds after the run was started. Although we
are not aware of any previous contribution on the stability analysis of such longitudinal
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Figure 4. Complex velocities field for the bar instability (thick lines). The solid line represents
the real part of the velocity perturbation, whereas the dashed line represents its imaginary part.
The corresponding Saint-Venant velocities are represented by thin lines for comparison. The
shape of the perturbation in the full three dimensional case differs significantly from the Nußelt
parabola. These velocity profiles correspond to the maximum for the bar instability of figure 3,
that is, k = 1.5 and ϕ = 0.85.

patterns in laminar flows, we postpone their systematic study to future work, since the
present contribution focuses on rhomboid patterns.

The formation of sand ripples has received much attention, as an ubiquitous geomor-
phological pattern, since the early works of Exner (1925), Kennedy (1963) or Reynolds
(1965). The mechanism leading to the ripple instability is now clearly established. It is
similar in laminar (see Charru & Mouilleron-Arnould 2002; Lagrée 2003) and turbulent
flows (see Colombini 2004; Elbelrhiti et al. 2005). Its basics can be reduced to the (x, z)-
plane, that is, in the main flow and vertical directions. On the windward side of a bump,
the water inertia draws the flow lines closer together, and the velocity increases. The re-
verse occurs on the leeward side. The shear stress being a combined effect of the velocity
variation by the streamlines thinning, the net effect is that skin friction is larger on the
windward side than on the leeward side. Now, viscosity induces a slight asymmetry of
the flow, which makes the skin friction extremal just before the crest (Lagrée 2003). The
Exner equation (2.16) then indicates that deposition occurs just after the bump, thus
growing the perturbation and moving it forwards. This process being two-dimensional, it
can only create invariant structures in the transverse direction. The term ripples gener-
ally implies this y invariance, at least during the initiation stage. A second characteristic
of the ripple-formation mechanism is that the velocity profile is locally strongly accel-
erated near the bed and then differs strongly from the Poiseuille flow. This cannot be
represented by the Saint-Venant equations and needs some triple deck boundary layer
theories to be asymptotically modeled (Kouakou & Lagrée 2005). It explains why any
bed-stability analysis performed in the frame the shallow-water equations predicts stable
ripples at any wavelength (Devauchelle et al. 2008). Finally, ripples can grow in deep
water or in a pipe, that is, without any free surface (see Kuru et al. 1995).

The three criteria listed above allow one to distinguish theoretically between ripples
and sand bars. Contrary to ripples, bars require the influence of a free surface, and can be
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modeled by means of the Saint-Venant equations. Their wave vector is usually inclined
with respect to the main flow direction (see figure 3), and thus cannot be represented
in the (x, z)-plane only. To our knowledge, the first mathematical derivation of this
instability is due to Callander (1969), and was soon associated to river meandering,
although this point remains controversial (Ikeda et al. 1981; Blondeaux & Seminara 1985).
The most striking occurrence of the bar instability in Nature are the alternate bars in
rivers (Knaapen & Hulscher 2003), which results from the crossing of two bars instabilities
of angle ϕ and −ϕ. It has been demonstrated, both experimentally (Lajeunesse et al.
2008) and theoretically (Devauchelle et al. 2007), that laminar flumes are also prone
similar bars development. Langlois & Valance (2005) performed a linear stability analysis
comparable to the present one. However, their analysis was designed for a pipe flow, and
thus did not include a free-surface. As a consequence, their results are very similar to
ours as far as the ripple instability is concerned, but do not include any bar instability.

Bars and ripples may be distinguished as two limiting cases of sediment-flows instabil-
ity. However, in the range of parameters explored by Devauchelle et al. (2008) to study
rhomboid patterns, the two are mixed in a bar-type instability which presents some rip-
ples features. The figure 4 illustrates this point. The velocity field above a wavy bed
corresponding to the bar instability is obviously not parabolic, that is, is not propor-
tional to a Nußelt film. Instead, inertia controls the velocity profile as well as viscosity.
This explains why the Saint-Venant equations fail to predict quantitatively the angle of
the rhomboid pattern. The linear interaction between bars and ripples is discussed in the
following section.

3.3.2. Transition from bars to ripples
When the Froude number is high enough, bars present a large wavelength, and they

are very elongated in the flow direction (the angle ϕ is close to π/2). They are thus far
enough from the ripple instability not to interact with it. In that case, they can be roughly
modeled by the Saint-Venant equations. The opening angle predicted by these equations
approaches the experimental bedforms one as Fr increases (Devauchelle et al. 2008).
However, the rhomboid pattern wavelength is largely overpredicted by a shallow-water
model, even for large Froude numbers.

The present model provides an explanation for the failure of the Saint-Venant equations
as the Froude number decreases. The figure 5 shows the evolution of bar and ripple
instabilities with respect to the Froude number. Initially (Fr = 0.90 on figure 3 and
Fr = 0.86 on figure 5), the two instabilities are clearly distinct. Now, if the Froude number
is reduced to 0.7 and then to 0.5, the growth-rate maximum corresponding to the bar
instability slides towards smaller ϕ values, while the ripples maximum disappears. For
even lower Froude numbers, the maximum related to the bar instability has reached the
k-axis, and thus has become a ripple instability after the definitions of section 3.3.1. This
transition occurs sharply with respect to the Froude number, and can be generalized
to other values of the other parameters (provided they lie in the range where both
instabilities exist). During this process, the maximum corresponding to the longitudinal
striations does not evolve significantly.

The theory proposed by Ikeda (1983) to describe the formation of rhomboid patterns
in turbulent flumes must probably be rejected, at least in the laminar case. Indeed, the
growth rate maximum associated to longitudinal striations seems not to play an essential
role in the angle transition of the rhomboid pattern. On figures 3 and 5, it seems to remain
at the same place in the (k, ϕ)-plane, while the bar and ripple instabilities interact. It
would thus seem rather unnatural to interpret the bar instability as the superposition of
ripples and longitudinal striations.
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Figure 5. Transition from bars to ripples as the Froude number decreases. The longitudinal
striations seem not to be significantly affected by this transition. The other parameters are fixed
to S = 0.015, Bo = 2.77 and Sh = 0.448, as for figure 3. The transition induces a decrease in the
angle of the most instable mode. This behavior was qualitatively predicted by Woodford (1935),
without referring to this interaction between bars and ripples. Each contour line corresponds to
a increment of 2 for the growth rate.

This transition from bars to ripples is able to explain the angle transition of the
rhomboid pattern occurring at low Froude numbers. The following section is devoted to
the experimental evaluation of this hypothesis.

4. Comparison with flume-experiments data
The experimental apparatus used to reproduce the formation of rhomboid erosion

patterns is presented in details in Devauchelle et al. (2008). The following section aims
only at a brief and general description.

4.1. The experimental set-up
The experiments of Devauchelle et al. (2008) were performed in a small channel of length
240 cm and width 9.6 cm. The granular bed is made of silica beads of mean diameter
75 µm. The slope S in the flow direction x can be freely varied, as well as the water
outflow. The flow depth never exceeds a few millimeters. The special features of this
experiment are its small size, as well as the use of a mixture of glucose and water (the
mixture viscosity ν varies between 10−6 m2s−1 and 5.6 10−6 m2s−1) . These two charac-
teristics yields flows at low Reynolds number (generally a few tens, and always less than
500).

The surface tension γ of the water-glucose mixture was not measured during the exper-
iments (the mass ratio of glucose to water was varied up to 50%). However, the influence
of glucose on surface tension is fairly moderate (the surface tension of a 17% mixture
increases of less than 2%, and the surface tension of a 55% water-sucrose mixture in-
creases of about 5%, see Docoslis et al. (2000)). In the following, we will thus consider
that the surface tension of the mixture can be approached by the pure water value, that
is 74 10−3 Nm−1.
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Figure 6. Comparison between the three-dimensional model of the present paper, and the
experimental results of Devauchelle et al. (2008). The comparison concerns the geometrical
characteristics of the rhomboid pattern: opening angle α = π/2 − ϕ (in degrees) and non-di-
mensional wave number k. The sediment transport law employed here is a generalization in
three dimensions of the model initially proposed by Charru & Hinch (2006). We used the flow
parameters measured during the experiments for the stability analysis. The parameters of the
erosion law are provided by Charru (2006). No additional free parameter was required for our
analysis. On both plots, the solid line corresponds to the one-to-one relationship.

4.2. Experimental patterns and stability results
For each experimental run, the parameters Fr , Bo and Sh can be determined from the
measured quantities (slope S, water discharge and viscosity), under the assumption of
a Nußelt base sate. The associated dispersion relation is then determined as described
in section 3. In theory, one could just pick up the absolute maximum of the growth
rate, and compare its characteristics with measurements. However, in the present case,
the experimental procedure was designed to focus on rhomboid patterns. Devauchelle
et al. (2008) consequently measured only the angle and wavelength of rhomboid patterns,
even when ripples co-existed. Accordingly, the procedure here employed consisted in the
following steps:

(a) Computing numerically the dispersion relation for each experimental run (see fig-
ure 3);

(b) Determining manually the rough position of the maximum corresponding to the
bar instability;

(c) Refining numerically the position of this maximum.
Only seldom where longitudinal striations and bar instability difficult to distinguish on
the dispersion-relation plot. Taking into account the relative heights of the maxima when
comparing to measurements is not straightforward, since one should either measure the
growth rate, or be certain that all modes are equally excited during the preparation of
the sediment bed. Both would be challenging experimental problems.

The experimental results are compared to our stability analysis on figure 6. The open-
ing angle prediction is rather correct, given the measurement precision (about 10◦, the
pattern being usually fainter than it appears on figure 1). The wave number prediction is
less accurate, but gives the correct order of magnitude and tendency. Both results are far
more realistic than the ones obtained with the Saint-Venant approximation (Devauchelle
et al. 2008). The discrepancy between observed and theoretical angles at extreme values
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indicates the high sensitivity of the stability analysis with respect to both the experimen-
tal parameters and the transport law parameters. When the bar maximum gets close to
another local maximum (the one corresponding to longitudinal striations at low α, the
ripples one at high α), a slight change in the parameter values can induce its absorption
into this other maximum.

5. Discussion and conclusion
The present paper proposes a natural framework to model the stability of laminar films

with respect to sediment transport by bedload. It is shown that a generalization in three
dimensions of the transport law proposed by Charru & Hinch (2006) and Charru (2006)
can account for the beach rhomboid patterns initiation. It is thus fair to say that the
diamond-shaped structures commonly observed on beaches are the laminar counterparts
of alternate bars in rivers.

In return, since the rhomboid pattern is easily produced experimentally, it can be used
as a test case for sediment transport models. Their three-dimensional structures add
one more constraint on the bedload model (the opening angle) as compared to ripples.
Transport laws are a key issue in geomorphology, and the bed slope influence on bedload
remains a modeling challenge, especially in the transverse direction.

The sediment transport law successfully used here was derived from a grains balance
equation written for the bedload layer. This may indicates that laws for turbulent flows
similarly derived could improve our understanding of rivers bedforms generation. This is
the method used by Parker et al. (2003) to develop a new bedload transport model. To
the heavy experiments conduced by Francalanci & Solari (2006) in order to evaluate the
latter model, one could associate rhomboid pattern experiments, since these structures
can also develop in turbulent flows (Ikeda 1983; Morton 1978). Interpreting such an
experiment would require a tree-dimensional stability analysis, with a turbulent flow and
a free surface, similar to the one proposed by Besio et al. (2006) for marine sand banks.

A next step toward the understanding of the rhomboid beach pattern would be to
study its finite-amplitude behaviour, and particularly its saturation. Such an effort would
allow to draw two new constraints on the sediment transport laws, namely the bedforms
amplitude and velocity.

It is our pleasure to thank François Métivier, Clément Narteau, Stéphane Zaleski,
Philippe Claudin and Bruno Andreotti for fruitful discussions. We also wish to express
appreciation to Antonio Vieira and Yves Gamblin for the building of the experimental
set-up.
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