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Abstract

A nonlinear compartmental model is developed for the HIV detection system in Cuba
with different types of detections, some random and others non-random. We analyze the
dynamics of this system, compute the reproduction numbers, and use the data from the
Cuban HIV/AIDS epidemic between 1986-2008 to fit the model. We obtain estimates for
the detection-related parameters during two separate time periods to reflect the timeline
of the implementation of various types of searches. We also estimate the magnitude of
Cuban HIV epidemic and the mean time for detecting a person infected with HIV. The
reproduction numbers for each time period are also computed from the sets of values of the
parameters. We found that random screening is most important as a mean of surveillance,
since there will always be an epidemic if the averaged total number of infections by an
infective detected through random screening exceeds one. Moreover, local asymptotic
stability for DFE can be achieved if (i) random screening is sufficiently effective and
(ii) infection by detected HIV-positive individuals is minimal. Our results highlight the
importance of education for the known infectious for the purpose of preventing further
infection. If the average number of infections by a known infective exceeds unity (due
to inefficient detection by random screening or lack of behavior change by the known
infectious), the endemic equilibrium is always unstable and it is possible for the total
number of infectious would increase without bound, if the initial infective population sizes
are large and outside the domain of attraction of the disease-free equilibrium (DFE). On
the other hand, if it is less than one, then either the DFE or the endemic equilibrium is
globally asymptotically stable, leading to a more manageable epidemic for public health
purposes, even if the disease is not eradicated. Fitting the 1986-2008 HIV data to obtain
the model parameter estimates indicates that the HIV epidemic in Cuba is currently
approaching an endemic equilibrium.
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1 Introduction

The Cuban HIV/AIDS program was established in 1983 and the detection of the first HIV-
positive person in Cuba, a heterosexual male returning from travel abroad, took place in
December 1985. The first AIDS case was diagnosed in Cuba in April 1986 and passed away
later that month, which signaled the official start of the AIDS epidemic in the country.

The Cuban HIV/AIDS epidemic has the lowest prevalence rate in the Caribbean region,
which has the second highest prevalence rate of HIV/AIDS in the world after Sub-Saharan
Africa [14]. Cuba, an archipelago in the Caribbean Basin, is formed by the island of Cuba
and several smaller islands, with 11.2 million inhabitants and 6.1 million of age 15-49. Life
expectancy is 75 years and 80 years for men and women, respectively [17], the highest in
Latin America. The UNAIDS Epidemiological Fact Sheet on HIV and AIDS for Cuba (2008
update) reports, for Cuba, an HIV prevalence of less than 0.1 % for adults.

The Cuban HIV/AIDS program includes a detection system that allows for detection
of HIV-positive cases from several sources. Some of these sources were initiated at the
beginning of the program, while others were introduced later and some have been discontinued
in time. Since 1993, this detection system is composed of 6 major sources. These were
random screenings of blood donors, persons that were treated for other sexually transmitted
infections, persons admitted to a hospital with a suspicion of HIV infection or subject to
specific procedures like dialysis, and persons volunteered to be tested. In addition, detection
also came from persons having received a recommendation for HIV testing from his/her
general practitioner (family doctor) and through sexual partner tracing. Other minor sources
include testing of all pregnant women and prison inmates that were implemented for some
time intervals during this period [5].

¿From 1986 up to 2008 more than 34 million tests were performed, in recent years since
2002, the total number of tests performed has stabilized to 1.6-1.7 million test every year
[18]. Since 1990, each time a person is tested for HIV, she/he is informed that such a test
is going to be performed. From 1986, in keeping with the ”partner notification program”, a
person tested to be HIV-positive is invited to give names and contact details of his/her sexual
partners during the past two years. These partners are then traced and a recommendation
for voluntary HIV testing is made. The detection system has changed over the years. For
example, during the period 1986-1999, the partner notification and contact tracing detected
30.7% of the new HIV infections while the Family Doctors Program detected only 8.9% of
new infections reported. From 2000 and up to September 2008, the family doctors were
responsible for the detection of 31.7% of the new cases while contact tracing detected 20.4%
of the new cases. From this information we can deduce that the detection system is not
static in terms of the contribution to the detection of new HIV cases. Before 1999 the most
important contribution was from the contact tracing and partner notification program, while
after 1999 the family doctors play a dominant role in the detection system.

In a 2006 paper by Rapatski et al. [16] the authors propose that the coefficients in the
model presented by two of the present authors in 2002 [4] should be considered as nonconstant.
With the data up to the year 2008 now available to us, we will now focus on modeling this
change in the detection system by dividing the course of Cuban HIV/AIDS epidemic into
two periods of 1986-1999 and 1999-2008 (with the model-generated values for 1999 using
1986-1999 data are used as initial values for the second period), and introducing model
parameters that will differentiate the detection by the family doctors from contact tracing
and other (random) searches. In this sense the present paper updates its predecessor by
taking into account the significant changes that have occurred during the period 1986-2008
in the detection system for HIV/AIDS in Cuba.
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2 The model

As noted earlier, the primary objective of the Cuban Program to control the HIV/AIDS
epidemic is the active search of persons infected with HIV long before they show any signs
of AIDS. Our focus is not to model how new infections by HIV are generated, but how the
HIV-infected persons are detected. We will consider the following variables and parameters.

Model Variables:

1. X(t) the number of HIV infected persons that do not know they are infected at time t,

2. Y (t) the number of HIV infected persons that know they are infected at time t,

3. Z(t) the number of persons with AIDS at time t.

Model Parameters:

1. λ the rate of recruitment of new HIV infected persons infected by X,

2. λ′ the rate of recruitment of new HIV infected persons infected by Y ,

3. k1 the rate at which the unknown HIV infected persons are detected by the system,
independently of other HIV-positive persons (through ”random” screening),

4. k2 the rate at which unknown HIV-infected persons are detected by the system through
contact tracing,

5. k3 the rate at which unknown HIV infected persons are detected by the system, through
the doctor,

6. β the rate at which the undetected HIV-positive persons develop AIDS, reciprocal of
the mean incubation

7. β′ the rate at which the detected HIV-positive persons develop AIDS, the reciprocal of
the mean time it takes to go from Y to Z,

8. µ the mortality rate of the sexually active population,

9. µ′ the mortality rate of the population with AIDS.

The model flow diagram is given in Figure 1.
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Figure 1: Model flow diagram.
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The dynamics is described by the following system:

dX

dt
= σX − k3X

2 − k2XY + λ′Y,

dY

dt
= (k1 + k3X)X − γ′Y + k2X Y, (1)

dZ

dt
= βX + β′Y − µ′Z.

with γ = β + µ, σ = λ− k1 − γ, γ′ = β′ + µ and we consider the system only in the region
D = {X ≥ 0, Y ≥ 0, Z ≥ 0}. It is clear that D is positively invariant under the flow induced
by (1).

We give the following remarks regarding model (1):

1. In (1) there are three ways for individuals to go from ”unknown HIV infected” (X)
to ”known HIV infected” (Y ). One is through the nonlinear term k2XY for contact
tracing, where the individual is found through his contacts with persons that are known
to live with HIV. The term k3X

2 models the detection through family doctors. The
third way they can be detected is through the term k1X which models all the other
”random” ways of searching for seropositives. It is important to note that 1/k1 can be
viewed as the mean time from infection to detection for the persons found through a
random screening. Alternatively, we could express all manners in which an unknown
infective can be detected to be in the general form of ”F (X,Y )X”, where F (X,Y ) is a
recruitment function from the class X into the class Y . For our present study we will
take the function F (X,Y ) as a polynomial of degree 1: k1 + k2Y + k3X.

2. Previous study indicates that detection by contact tracing k2XY takes a long time,
with a mean time to find an infected contact of 54.3 months [4] (the mean time from
detection to AIDS in Cuba is 86.8 months [4]). Of course variations are high, some
persons have very few contacts and are easy to locate, others have a large number of
contacts of which some are almost impossible to locate. Some persons have a lot of
”casual” contacts and they do not remember enough information on these contacts to
make it possible to find them, others have less contacts but with a better knowledge
of their full names and sometimes even addresses that makes it possible for the Health
System to find them. Some contacts, even if they are found, refuse to be tested for
HIV. In general of more than 15000 contacts (or 80 % of all reported contacts) have
been traced and tested. In general we try, as a first approximation, to find the value
of k2, and its overall impact on the time it takes for a person living with HIV to be
detected. The term k2XY must be taken as an approximation of a more general term
k2F (X,Y ) that could be further investigated in the future [10].

3. The term k3X
2 models the detection through family doctors. We take the term with

X2 because this detection indicates a kind of social interaction with persons that have
an active sexual life that could put them at risk of infection with HIV. In such cases,
the family doctors would advise these persons that they think are at risk to take a
test to determine if they are HIV-infected. This source of detection has increased in
importance in the detection system through the years and is not a random search in
the population.

4. We assume that the known HIV-infected persons are infectious, but at a much lower rate
than those that do not know they are infected due to education or change of behavior.
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This has been shown, using Cuban HIV data of 1986-2000, that the infection rate of
the known HIV-infected persons is about 5% of that of persons who did not yet know
that they are infected [4]. In this case the infection rate of known HIV-positives λ′ will
be taken as a fraction of the infection rate of the undetected HIV-positive persons λ.

5. The progression to AIDS is modeled linearly, which could conceivably be modeled in a
more general way. However, for the Cuban data the best fit to an incubation curve is
still an exponential.

6. We assume that once a person develops AIDS it is no longer infectious.

We first consider the folllowing two cases;
Case 1. If λ′ − γ′ = 0, the system has a disease-free equilibrium P0 = (0, 0, 0) if σ + k1 =
λ− γ 6= 0 and a set of endemic equilibria P ∗ = (X∗ , Y ∗ , Z∗) of the form (λ′ − k2X

∗)Y ∗ +

(σ + k3X
∗)X∗ = 0 and Z∗ = βX∗+β′Y ∗

µ′
if σ + k1 = λ− γ = 0.

Case 2. If λ′ − γ′ 6= 0, the system has two equilibria, P0 = (0, 0, 0) is the disease-free
equilibrium and P ∗ = (X∗ , Y ∗ , Z∗) is the endemic equilibrium, where

X∗ =
A

B
, Y ∗ = X∗ ×

C1

C2
, Z∗ =

βX∗ + β′Y ∗

µ′
. (2)

with A = σ γ′ + λ′k1, C1 = σ + k1 = λ− γ, C2 = γ′ − λ′ and B = k2C1 + k3C2 .

Set

R1 =
λ′

γ′
,R2 =

λ

γ
and R0 = λ/(k1γ) + λ′k1/[γ

′(k1 + γ)] =
k1

k1 + γ
R1 +

γ

k1 + γ
R2. (3)

A, C1 and C2 can be rewritten as

A = γ′(k1 + γ)(R0 − 1), C1 = γ(R2 − 1), ,and C2 = γ′(1−R1).

The parameters R0, R1 and R2 will play a significant role in the analysis of the behaviour of
trajectories for (7).

Since Case 1 requires specific values of the parameters and hence is of little practical impor-
tance, we shall suppose in what follows that λ′ − γ′ 6= 0.

The endemic equilibrium is feasible (i.e. P ∗ ∈ D) if and only if

A×B = (R0 − 1)
(

γk2(R2 − 1) + γ′k3(1−R1)
)

> 0 and (4)

C1 × C2 = γγ′(R2 − 1)(1 −R1) > 0 (5)

More precisely, the endemic equilibrium is feasible if and only if

R0 − 1, R2 − 1 and 1−R1 (6)

have the same sign.

The Jacobian matrix of the linear approximation of the system in a neighborhood of an
equilibrium point P = (X,Y,Z) is given by

J(X,Y,Z) =





σ − 2k3X − k2Y λ′ − k2X 0
k1 + 2k3X + k2Y −γ′ + k2X 0

β β′ −µ′



 .
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There is one eigenvalue −µ′ that is always strictly negative, which is associated with the
variable Z, to study the stability of the equilibria of system (1), we only need to consider the
system

dX

dt
= σX − k3X

2 − k2XY + λ′Y,

dY

dt
= (k1 + k3X)X − γ′Y + k2X Y. (7)

in the region D′ = {(X,Y ) |X ≥ 0, Y ≥ 0} ⊂ D. D′, which is positively invariant under the
flow induced by (7). We will denote J1 the Jacobian matrix for the system (7) that is formed
by the first two rows and columns of the matrix J(X,Y,Z). Moreover, we will also denote
Q0 = (0, 0) and Q∗ = (X∗, Y ∗) to be the respective disease-free and endemic equilibria in D′.

3 Local stability of Q0 and Q∗.

3.1 Local Stability for the point Q0.

The Jacobian matrix at the point Q0 is given by:

J1(Q0) =

(

σ λ′

k1 −γ′

)

Q0, and therefore P0, is locally asymptotically stable (LAS for short) if and only if the trace
of J1 is strictly negative and its determinant strictly positive, i.e.

Q0 LAS ⇐⇒ σ − γ′ < 0 and − (σγ′ + k1λ
′) > 0

⇐⇒ σ − γ′ < 0 and A < 0

⇐⇒ R0 < 1.

When R0 > 1, Q0 is unstable as a saddle equilibrium point.

3.2 Local Stability for the point Q∗.

Remember that Q∗ is

X∗ =
γ′(k1 + γ)

B
(R0 − 1), Y ∗ = X∗

C1

C2
=
X∗

γ′
λ− γ

1−R1
=
X∗

γγ′
R2 − 1

1−R1
.

Q∗, and therefore P ∗, is LAS if and only if it exits (i.e. (4) and (5) are satisfied or equivalently
iff (6) is satisfied), the trace of J1(Q

∗) is strictly negative and its determinant strictly positive,
i.e. Q∗ exists and

τ1 = Tr(J1(Q
∗)) = σ − γ′ + k2(X

∗ − Y ∗)− 2k3X
∗ < 0 and ∆1 = det(J1(Q

∗)) > 0. (8)

After some straight forward calculations we obtain that ∆1 = A and condition ∆1 > 0 is
equivalent to R0 > 1. Thus when Q0 is LAS, if Q∗ exists, it is unstable.Subsequently, when
R0 > 1, we have also R2 > 1 and R1 < 1 to ensure X∗ > 0, and Y ∗ > 0.
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Let us suppose R0 > 1, R1 < 1 and R2 > 1. Then x = X∗ > 0 and y = Y ∗ > 0 and

xyτ1 = (σx− k3x
2 − k2xy)y − γ′xy − k3x

2y + k2x
2y

= −λ′y2 − k3x
2y + [y(k2x− γ′)]x, since σx− k3x

2 − k2xy = −λ′y by (7.1)

= −λ′y2 − k3x
2y − (k1x+ k3x

2)x, since y(k2x− γ′) = −k1x− k3x
2 by (7.2) (9)

which is negative and hence τ1 < 0. Finally, Q∗ exists and is LAS iff R0 > 1 and R1 < 1 and
R2 > 1.

Remark: Q0 being LAS implies that either Q∗ does not exist in our domain, which is the
case if either B > 0 (X∗ does not exists) or B < 0 and (R2 − 1)(1 −R1) < 0 (Y ∗ does not
exists); or Q∗ exists, where R2 < 1 and R1 > 1, but Q∗ is unstable.

4 Global stability of Q0 and Q∗.

Lemma 1 There are no periodic orbits in D′.

Proof:

Let g : (X,Y ) 7−→ 1
XY

, then ∂
∂X

{g(X,Y )X ′}+ ∂
∂Y

{g(X,Y )Y ′} = −
(

λ′

X2 + k3
Y

+ k1+k3X
Y 2

)

keeps the same sign in D′, and using the Dulac criteria we conclude that there are no periodic
orbits in the set. �

∀t ≥ 0 and ∀k ≥ 0, we set Pt = (X(t), Y (t)) and Pk = (X(tk), Y (tk)) with t0 = 0.

4.1 Global stability of Q0.

Theorem 1

If R0 < 1 and R1 < 1 then Q0 is globally asymptotically stable (GAS for short) in D′.
Moreover, when R0 > 1, Q0 is unstable.

Proof:

Q0 is the unique equilibrium point in D′. Let V be the function defined on D′ by

∀(X,Y ) ∈ D′, V (X,Y ) = γ′X + λ′Y.

V is a Lyapunov function for the point Q0 on D′ and ∀(X,Y ) ∈ D′,

V ′(X,Y ) = γ′X [(k1 + γ)(R0 − 1) + (k3X + k2Y )(R1 − 1)] . (10)

R1 < 1 then V ′(X,Y ) < 0 for all (X,Y ) ∈ D′. Moreover, V ′(X,Y ) = 0 iff X = 0, or R0 = 1
and R1 = 1. Along the axis {X = 0}, X ′ ≥ 0, we conclude that the largest invariant subset
in {(X,Y ) ∈ D′ | V ′(X,Y ) = 0} is the singleton {Q0}, and from LaSalle’s invariant principle
we conclude that Q0 is GAS in D′.
We have shown previously that if R0 > 1, Q0 is a saddle equilibrium point. Therefore, Q0 is
unstable when R0 > 1. �

Theorem 2

If R0 < 1,R1 > 1 and R2 < 1, then the basin of attraction of Q0 is a triangle formed by the
axes and a line that goes through the point Q∗ and has slope

−
λ2 + γ′ − k2X

∗

λ′ − k2X∗
.
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Proof:

Q∗ is a saddle point with a stable and an unstable manifold both of dimension 1. Let λ1 be
the positive eigenvalue, λ1 be the negative eigenvalue and Es the eigenspace associated to λ1
and W s the manifold that is tangent to Q∗ + Es at each point. Es is the straight line with
slope

−
λ2 + γ′ − k2X

∗

λ′ − k2X∗
.

We know that

1. λ′ − k2X
∗ = λ′B−k2A

B
= γ′(R1−1)(k2σ−λ′k3)

B
> 0 because R1 − 1 > 0 and both σ and B

are negative.

2. γ′ − k2X
∗ = γ′B−k2A

B
= γ′(1 − R1)(k1k2 + γ′k3 > 0 because 1 − R1 < 0 and B < 0.

Then λ2 + γ′ − k2X
∗ > 0.

Hence the slope is negative. This means that there is a triangular region formed by the axes
and Es that forms the basin of Q0. A trajectory that starts in this region can not leave the
region because the vector field at the axes points inwards and it cannot cross Es. Therefore
this region is invariant and all trajectories starting inside the region must have Q0 as it is a
ω-limit set. �

Theorem 3

Suppose that R0 > 1, R1 > 1 and R2 > 1. Then Q0 is unstable, Q∗ does not exist and
trajectories are unbounded.

Proof:

We have seen before that when R0 > 1, Q0 is unstable, and (6) implies that Q∗ is in D′.
Let N = X + Y . Then N ′ = X ′ + Y ′ = γ(R2 − 1)X + γ′(R1 − 1)Y . Denote a =
min(γ(R2−1), γ′(R1−1)). Then a > 0 and N ′ ≥ a(X+Y ) = aN so we have N(t) ≥ N(0)eat,
therefore N is not bounded. �

LetX ′ = f(X,Y ), Y ′ = g(X,Y ), ϕ : x 7−→ x
k3x− σ

λ′ − k2x
if λ′−k2x 6= 0 and ψ : x 7−→ x

k3x+ k1
γ′ − k2x

if γ′ − k2x 6= 0. Let us note by Cϕ and Cψ the curves that represent the functions ϕ and ψ.
Then

X ′ = f(X,Y ) =

{

(λ′ − k2X)(Y − ϕ(X)) if λ′ − k2X 6= 0

X(σ − k3X) otherwise,
(11)

and

Y ′ = g(X,Y ) =

{

(γ′ − k2X)(ψ(X) − Y ) if γ′ − k2X 6= 0

X(k1 + k3X) otherwise.
(12)

Let x such that λ′ − k2x 6= 0 and γ′ − k2x 6= 0, then we have

ψ(x) − ϕ(x) = x
−Bx+A

(λ′ − k2x)(γ′ − k2x)
(13)

Theorem 4 Suppose that R0 > 1, R1 > 1 and R2 < 1. Then Q0 is unstable, Q∗ does not
exist and trajectories are unbounded.

Proof:

In this case, we have σ < 0, λ′ > γ′ and λ ≤ γ, A = γ′(k1 + γ)(R0 − 1) > 0 and B =
γk2(R2 − 1) + γ′k3(1 −R1) < 0. Then we have −Bx+ A > 0, ∀x ≥ 0. Also, we have seen
before that when R0 > 1, Q0 is unstable, and (6) leads that Q∗ is not in D′.
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Lemma 2

• If 0 < x < γ′

k2
, then 0 < ϕ(x) < ψ(x).

• If γ′

k2
< x < λ′

k2
, then ψ(x) < 0 < ϕ(x).

• If x > λ′

k2
, then ϕ(x) < ψ(x) < 0.

The proof follows directly from (13).
Remark: When ϕ and ψ are both nonnegative, Cϕ ∩ Cψ = {Q0}.

For (x, y) ∈ D′, we set

D1={(x, y), x > 0, 0 < y < ϕ(x)},D2={(x, y), x > 0, ϕ(x) < y < ψ(x)},D3={(x, y), 0 ≤ x <
γ′

k2
, y > ψ(x)}

and have the following lemma.

Lemma 3

1. If Pt ∈ D1 then X ′ < 0 and Y ′ > 0. Moreover, by continuity, if Pt ∈ Cϕ, X
′ = 0 and

Y ′ > 0.

2. If Pt ∈ D2, then X
′ > 0 and Y ′ > 0. Moreover, by continuity, if Pt ∈ Cψ, X

′ > 0 and
Y ′ = 0, if Pt ∈ Cϕ, X

′ = 0 and Y ′ > 0.

3. If Pt ∈ D3, then X
′ > 0 and Y ′ < 0. Moreover, by continuity, if Pt ∈ Cψ, X

′ > 0 and
Y ′ = 0.

For proof of Lemma 3:, see Lemma 2 and (13).

First, we remark that by Lemma 3, D2 is positively invariant under the flow induced by (7),
but the trajectories leave all bounded subregions since we have for Y =M, Y ′ > 0, ∀M > 0.
By using Lemma 3, wa have the following cases:

1. If P0 ∈ D1, then X decreases and Y increases and the trajectory must cross Cϕ at a
time t1 > 0 and enter region D2. But in this region, X also increases and the trajectory
follows the curve Cϕ. Subsequently, X(t) −→

t→+∞

λ′

k2
.

2. If P0 ∈ D2, we have the same conclusion as in the previous case.

3. If P0 ∈ D3, then X increases and Y decreases, hence the trajectory must cross Cψ at a
time t1 > 0 and enter region D2. Thus we have the same conclusion as previous cases. �

4.2 Global stability of Q∗.

In this subsection we suppose that R0 > 1, R1 < 1, and R2 > 1. Then Q∗ exists and is LAS
and Q0 is unstable.

Lemma 4

1. X∗ ∈]0, γ′

k2
[.
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2. X∗ ∈































]0, λ′

k2
[ if σ

k3
< 0 < λ′

k2

] σ
k3
, λ′

k2
[ if 0 < σ

k3
< λ′

k2

] λ
′

k2
, σ
k3
[ if λ′

k2
< σ

k3
< γ′

k2

] λ
′

k2
, γ′

k2
[ if γ′

k2
< σ

k3

Proof:

First observe that λ > γ, λ′ < γ′, and B = k2γ(R2 − 1) + k3γ
′(1−R1) > 0. Hence we have

X∗ −
γ′

k2
=
γ′(R1 − 1)(k1k2 + γ′k3)

k2B
,

X∗ −
λ′

k2
=
γ′(1−R1)(k2σ − λ′k3)

k2B
,

X∗ −
σ

k3
=

(λ− γ)(λ′k3 − σk2)

k3B
. �

Recall thatX ′ and Y ′ can be rewritten as in (11) and (12), respectively. Also (13) is equivalent
to

ψ(x)− ϕ(x) = xB
X∗ − x

(λ′ − k2x)(γ′ − k2x)
. (14)

The sign of this difference is the sign of the product (X∗ − x)(λ′ − k2x)(γ
′ − k2x). When ϕ

and ψ are both nonnegative, Cϕ ∩ Cψ = {Q0, Q
∗}. We now give the main theorems for the

global stability of Q∗.

Theorem 5 Suppose that R0 > 1, R1 < 1, and R2 > 1. If σ ≤ 0, then Q∗ is GAS in D′.

Proof:

For (x, y) ∈ D′ set

D1,1 = {x > X∗, 0 < y < ψ(x)} D1,2 = {0 < x < X∗, 0 < y < ϕ(x)}
D1 = D1,1 ∪D1,2 D2 = {0 < x < X∗, ϕ(x) < y < ψ(x)}

D3,1 = {X∗ < x < λ′

k2
, ψ(x) < y < ϕ(x)} D3,2 = { λ

′

k2
< x < γ′

k2
, y > ψ(x)}

D3 = D3,1 ∪D2,2 D4,1 = {0 < x < X∗, y > ψ(x)}

D4,2 = {X∗ < x < λ′

k2
, y > ϕ(x)} D4 == D4,1 ∪D4,2

We now give a lemma which will be used in the proof of Theorem 5.

Lemma 5 Suppose σ ≤ 0.

(1) • If 0 < x < λ′

k2
, then ϕ(x) ≥ 0 and ψ(x) ≥ 0.

• If λ′

k2
< x < γ′

k2
, then ϕ(x) ≤ 0 and ψ(x) ≥ 0.

• If x > γ′

k2
then ϕ(x) ≤ 0, and ψ(x) ≤ 0.

(2) In ]0, γ′

k2
[, we have

ψ(x)− ϕ(x)















> 0 if 0 < x < X∗ or λ′

k2
< x < γ′

k2

= 0 if x = X∗

< 0 if X∗ < x < λ′

k2
.

(3) • If Pt ∈ D1, then X ′ < 0 and Y ′ > 0. Moreover, by continuity, if Pt ∈ Cψ (D1),
X ′ < 0 and Y ′ = 0, if Pt ∈ Cϕ (D2), X

′ = 0 and Y ′ > 0.

• If Pt ∈ D2, then X
′ > 0 and Y ′ > 0. Moreover, by continuity, if Pt ∈ Cψ, X

′ > 0
and Y ′ = 0, if Pt ∈ Cϕ, X

′ = 0 and Y ′ > 0.
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• If Pt ∈ D3, then X
′ < 0 and Y ′ < 0. Moreover, by continuity, if Pt ∈ Cψ, X

′ < 0
and Y ′ = 0 and if Pt ∈ Cϕ, X

′ = 0 and Y ′ < 0.

• If Pt ∈ D4, then X ′ > 0 and Y ′ < 0. Moreover, by continuity, if Pt ∈ Cψ (D4,1),
X ′ > 0 and Y ′ = 0, if Pt ∈ Cϕ (D4,2), X

′ = 0 and Y ′ < 0.

The proof of Lemma 5 follows from Lemma 4 and (14).
We first remark that by Lemma 5, D2 is a bounded region, positively invariant under

the flow induced by (7). D3 is also positively invariant under the same flow and trajectory
entering D3 delimits a bounded subregion of D3, which becomes positively invariant. Indeed,
on the line Y =M, Y ′ < 0, ∀M > Y ∗. Moreover D2 ∩D3 = {Q∗}.

By using Lemma 5, wa have the following situations:

1. If P0 ∈ D1, then X decreases and Y increases and at a time t1 > 0, the trajectory must
cross Cψ and enter region D3 or cross Cϕ and enter the bounded positively invariant
region D2 containing only Q∗ (noting that Q0 is unstable). If the trajectory enters
region D3, D3 ∩ {x > 0, Y = Y (t1)} determines a positively invariant subregion of
D3 and its contains only Q∗. By Lemma 1 there are no periodic orbits, then the
Poincaré-Bendixson Theorem entails that Pt tends towards Q

∗.

2. If P0 ∈ D2 or P0 ∈ D3 we have the same conclusion as in the previous case.

3. If P0 ∈ D4 then X increases and Y decreases and at a time t1 > 0, the trajectory must
cross Cϕ and enter region D3 or cross Cψ and enter region D2. The first case allows us
to conclude that Pt tends towards Q

∗. �

Next, for σ > 0, we consider three separate cases. The proof of the following theorem for
the first case where σ

k3
< λ′

k2
is similar to the proof of Theorem 5.

Theorem 6 Suppose that R0 > 1, R1 < 1, and R2 > 1. If σ > 0 and σ
k3
< λ′

k2
, then Q∗ is

GAS in D′.

For the second case of γ′

k2
< σ

k3
, we have the following theorem:

Theorem 7 Suppose that R0 > 1, R1 < 1 and R2 > 1. If σ > 0 and γ′

k2
< σ

k3
, then Q∗ is

GAS in D′.

Proof:

For (x, y) ∈ D′ set

D1,1 = {X∗ < x < γ′

k2
, ϕ(x) < y < ψ(x)} D1,2 = { γ

′

k2
< x < σ

k3
, y > ϕ(x)}

D1,3 = {x ≥ σ
k3
, y > 0} D1 = D1,1 ∪D1,2 ∪D1,3

D2,1 = {0 < x < X∗, y < ψ(x)} D2,2 = {X∗ < x < γ′

k2
, y < ϕ(x)}

D2 = D2,1 ∪D2,2 D3,1 = { λ
′

k2
< x < X∗, y > ϕ(x)}

D3,2 = {X∗ < x < γ′

k2
, y > ψ(x)} D3 = D3,1 ∪D3,2

D4,1 = {x < λ′

k2
, y > ψ(x)} D4,2 = { λ

′

k2
< x < X∗, ψ(x) < y < ϕ(x)}

D4 = D4,1 ∪D4,2

Lemma 6 Suppose σ > 0 and γ′

k3
< σ

k3
.

(i) • If 0 < x < λ′

k2
, then ϕ(x) ≤ 0 and ψ(x) ≥ 0.
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• If λ′

k2
< x < γ′

k2
, then ϕ(x) ≥ 0 and ψ(x) ≥ 0.

• If γ′

k2
< x < σ

k3
, then ϕ(x) ≥ 0 and ψ(x) ≤ 0.

• If x > σ
k3
, then ϕ(x) ≤ 0 and ψ(x) ≤ 0.

(ii) For x > 0, we have

ψ(x) − ϕ(x)















> 0 if 0 < x < λ′

k2
or X∗ < x < γ′

k2

= 0 if x = X∗

< 0 if λ′

k2
< x < X∗ or x > γ′

k2
.

(iii) • If Pt ∈ D1, then X
′ < 0 and Y ′ > 0. Moreover, by continuity, if Pt ∈ Cψ, X

′ < 0
and Y ′ = 0, if Pt ∈ Cϕ, X

′ = 0 and Y ′ > 0.

• If Pt ∈ D2, then X
′ > 0 and Y ′ > 0. Moreover, by continuity, if Pt ∈ Cψ, X

′ > 0
and Y ′ = 0, if Pt ∈ Cϕ, X

′ = 0 and Y ′ > 0.

• If Pt ∈ D3, then X
′ < 0 and Y ′ < 0. Moreover, by continuity, if Pt ∈ Cψ, X

′ < 0
and Y ′ = 0, if Pt ∈ Cϕ, X

′ = 0 and Y ′ < 0.

• If Pt ∈ D4, then X
′ > 0 and Y ′ < 0. Moreover, by continuity, if Pt ∈ Cψ, X

′ > 0
and Y ′ = 0 and if Pt ∈ Cϕ, X

′ = 0 and Y ′ < 0.

Proof: See Lemma 4 and (14). �
By using Lemma 6, wa have the following situations:

• If P0 ∈ D4 then X increases and Y decreases and at a time t1 > 0, the trajectory must
cross Cψ and enter D2.

• If P0 ∈ D3 then X decreases and Y decreases and at a time t1 > 0, the trajectory must
cross Cϕ and enter D4.

• If P0 ∈ D2 then X increases and Y increases and at a time t1 > 0, the trajectory must
cross Cϕ and enter D1.

• If P0 ∈ D1, then X decreases and Y increases and at a time t1 > 0, the trajectory must
cross Cψ and enter D3 with X

∗ < X1 < X0 and Y0 < Y1. In D3, X and Y both decrease
and at a certain time t2 > t1, the trajectory must cross Cϕ and enter D4 with X2 < X∗

and Y2 < Y1. In D4, X increases and Y decreases and at a certain time t3 > t2, the
trajectory must cross Cψ and enter D2 with X2 < X3 < X∗ and Y3 < Y2. In D2, X
increases and Y increases and at a certain time t4 > t3, the trajectory must cross Cϕ and
enter D1 with X∗ < X4 < X1 and Y3 < Y4 < Y2. This establishes a circulation flow.
The trajectory stays inside a rectangle of vertices {(X1, Y2), (X1, Y3), (X2, Y2), (X2, Y3)}
and as there are no closed orbits the ω-limit set is the point Q∗. �

To complete the the global stability analysis of Q∗, we only need the following theorem
for the remaining case where λ′

k2
< σ

k3
≤ γ′

k2
, the proof of which is similar to that of Theorem

7:

Theorem 8 Suppose that R0 > 1, R1 < 1 and R2 > 1. If σ > 0 and λ′

k2
< σ

k3
≤ γ′

k2
, then Q∗

is GAS in D′.

Using Theorems 5-8 together, we conclude that as long as R0 > 1, R1 < 1 and R2 > 1,
Q∗ is always GAS in D′.
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5 Conclusions

In this work, we have identified three threshold parameters of epidemiological importance,
namely R0, R1, and R2, for the dynamic behavior of the system in question. A summary
of their respective roles in the asymptotic state of the system is given in Table 1. Previous
modeling studies of HIV with secondary reproduction numbers includes [7, 8, 9, 12].

Table 1: Asymptotic states for the model. ”GAS” denotes equilibrium is globally asymptoti-
cally stable, ”LAS” denotes it is locally asymptotically stable and ”NE” denotes equilibrium
does not exist in the domain

.
R0 R1 R2 Q0 Q∗ (X,Y ) →

< 1 < 1 < 1 GAS NE Q0

< 1 < 1 > 1 GAS NE Q0

< 1 > 1 < 1 LAS unstable Q0 or unbounded

> 1 < 1 > 1 unstable GAS Q∗

> 1 > 1 < 1 unstable NE unbounded

> 1 > 1 > 1 unstable NE unbounded

The biological interpretations of these parameters are discussed as follows. R0 = λ/(k1 +
γ) + λ′k1/[γ

′(k1 + γ)] gives the number of infections by an infective who is detected via
random screening; R1 = λ′/(β′ + µ) is the number of infections caused by an infective after
he/she has been tested positive for HIV; and R2 =

λ
γ
is the number of infections caused by an

infective that is not detected during asymptomatic period, i.e., if an infective either develops
AIDS-related illness or pass away before progression to AIDS.

We note that R0 can be considered as the basic reproduction number, if we consider
the detection of HIV-positive individuals in Cuba as part of disease surveillance instead of
an intervention measure, especially in light of the realistic model assumption that those
detected to be HIV-positive can still infected others, albeit at a lower level, before the onset
of AIDS-defined illnesses [4]. Moreover, R0 determines whether the DFE (Q0) is locally
asymptotically stable, as is the typical role of a basic reproduction number. R1 and R2

are secondary reproduction numbers, which help us to determine the asymptotic behavior
of the system, often relating to the endemic equilibrium. In the present model, whether R1

is larger than unity determines the existence of an unstable endemic equilibrium Q∗ when
R0 < 1. When R0 > 1, R1 < 1 in combination with R2 > 1 ensure the existence of a globally
asymptotically stable equilibrium Q∗.

Serving as the threshold parameters for the model system, these reproduction numbers
have obvious and epidemiologically meaningful interpretation. For the proposed model of de-
tection and surveillance of HIV epidemic in Cuba, our results indicate that random screening
is most important as a mean of surveillance, since whether the number of infections due to an
infective detected through random determines whether the DFE is (locally) asymptotically
stable. In other words, if the averaged total number of infections by an infective detected
through random screening exceeds one, then there will always be an epidemic. On the other
hand, local asymptotic stability for DFE can be achieved (i.e., R0 can be brought down to
less than one) if: (i) random screening is sufficiently effective (k1 large), and (ii) infection by
detected HIV-positive individuals is minimal (λ′ small).

Our results further highlight the importance of the education for the known infectious, in
light of the second threshold parameter R1 = λ′/γ′. If the known infectious do not change
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through education to practice less risky sexual habits and their infection rate is still high
(i.e., λ′ sufficiently large) so that the average number of infections by a known infective (R1)
exceeds unity, the endemic equilibrium is always unstable and there is always a possibility
for the total number of infectious (i.e., X + Y ) to increase without bound. This is true even
when R0 < 1, provided that the initial population sizes are outside the domain of attraction
of the DFE. This scenario of adverse impact of public health measures, which had been shown
previously to be theoretically possible in [1, 7, 13], is only possible if k1 is sufficiently small
compared to γ, knowing that R0 is a convex combination of R1 and R2 (see Equation (3)). In
other words, an ill-designed detection system might adversely lead to the epidemic increasing
without bounded if (i) random screening if not comprehensive enough (k1 too small); (ii)
lack of education program to change behavior (λ′ too high); and (iii) the prevalence is too
high when the system is first implemented (initial infective populations outside of the domain
of attraction of the DFE). This result further highlights the importance of universal testing
in high-prevalence regions [6, 11]. On the other hand, if through adequate education to
change behavior of the known infectious (so that λ′ is sufficiently low) the average number
of infections by a known infective is less than one, then either the DFE Q0 or the endemic
equilibrium Q∗ is globally asymptotically stable, leading to a more manageable epidemic for
the public health purposes, even if the disease is not eradicated.

5.1 Application to the Cuban HIV/AIDS data.

The modeling results are clearly relevant to our understanding of the current state of the HIV
epidemic in Cuba. We will use the model (1) to fit the data of the known HIV positives and
AIDS cases in Cuba. We have divided the period 1986-2008 into two different time periods,
namely 1986-1999 and 1999-2008, to take into account the introduction of the family doctors
in the detection system. In each period we have parameters that can be estimated from the
data. These are β, β′, µ, µ′ and X(0). Y (0) and Z(0) are known. In previous work ([15], [3],
[4], [12]) estimates for λ and λ′ have been obtained.

The family doctors program had actually started after 1990, but only as a pilot project
where the family doctors typically did not prescribe HIV testing. It is only after 1999 that
detection through the family doctors started to take on an important role in the yearly
detection figures, arriving at more than 30% of new detections in a year. Another significant
difference between the two periods chosen is λ′. In the first years (1986-1999) the sanatorial
system played an important role in preventing HIV transmission from persons that had been
detected. Hence we suppose that there is practically no transmission from the persons living
with HIV (Y ) and assume λ′ = 0 for the first period.

We fitted the model to the data to obtain values for k1, k2 and k3 by minimizing an
error function. As traditional optimization methods failed to work properly we used a ge-
netic algorithm approach to find an initial point for starting the optimization method using
a gradient method. To compute standard errors for the parameters, 200 fitting runs were
made using different values of the known parameters, taken randomly from their confidence
interval. Using PET a software written on MATLAB, we obtain the least-square estimates for
the unknown model parameters (k1, k2 and k3), for each of the two periods of the Cuban HIV
epidemic from 1986 to 2008, by fitting the Cuban HIV data of the persons known to live with
HIV to the model as described previously. The model fit for Y (t) is given in Figure 2. Here
the resulting numbers for 1999 obtained from the first stage of estimation using data from
1986-1999 was used as initial values for the second stage of estimation using the 1999-2008
data. The estimated mean values of the parameters k1, k2, and k3 for each of the two peri-
ods with 95% confidence intervals, obtained from the 100 best fits, are given in Tables 2 and 3.

14



0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

X(t)

Y
(t

)

Phase plane portrait 1986−2008

 

 

fitted model
data

Figure 2: Phase plane portrait for the years 1986-2008. The dots (XModel(t), YData(t)) are
the real data, the solid line (XModel(t), YModel(t)) denotes the model-generated curve.

Table 2: Estimated mean values with the 95% confidence intervals for parameters k1 and
k2 in the period 1986-1999 (k3 = 0). UCI and LCI denote the respective upper and lower
bounds for the 95% confidence intervals.

.
k1 k2

Mean 0.1347 2.381 × 10−5

LCI 0.1345 2.366 × 10−5

UCI 0.1349 2396 × 10−5

We can also computed the theoretical values of the number of the unknown persons living
with HIV, X(t), from the estimation results. The theoretical values of X(t) from 1999 to
2008 are given in Figure 3. By comparing the estimation results for the two periods, we
conclude that detection by random screening (k1) improved significantly after 1999, perhaps
reflecting the steeper increase in reported cases after 2000 (see Figure 2), while detection
via contact tracing (k2) was at similar level throughout the whole course of the epidemic.
Detection by family doctors (k3) was slightly higher than that of contact tracing after 1999
but of similar magnitude. Both the analytical result (of the dynamics) and the data-fitting
parameter estimates indicate that random screening was the most effective route of detec-
tion, while contact tracing and family played mainly secondary roles, as had been previously
proposed in [11]. The estimates of the model parameters also allow us to calculate the three
reproduction numbers, R0, R1, and R2, with the 95% confidence intervals for each of the
two time periods which are given in Table 4.

As we can see, for both time periods the Cuba HIV epidemic is in the case of R0 > 1,
R1 < 1 and R2 > 1. Q0 is unstable and Q∗ is globally asymptotically stable with the tra-
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Table 3: Estimated mean values with the 95% confidence intervals for parameters k1, k2 and
k3 in the period 1999-2008. UCI and LCI denote the respective upper and lower bounds for
the 95% confidence intervals.

.
k1 k2 k3

Mean 0.2195 2.728 × 10−5 6.801 × 10−5

LCI 0.2192 2.725 × 10−5 6.783 × 10−5

UCI 0.2198 2.732 × 10−5 6.818 × 10−5
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Figure 3: Model-generated curve for unknown HIV-infected in Cuba during 1986-2008.

jectories approaching Q∗ asymptotically. Hence we can conclude that the HIV epidemic in
Cuba is tending (in the long term) towards an endemic steady state which we can estimate
from our parameters using the expression obtained from our modeling for P ∗ = (X∗, Y ∗, Z∗)
given in Equation (2). That is, assuming no drastic changes in the prevention, transmission,
detection, or treatment of HIV in Cuba in the long term future, there could be, eventually,
around 2700 persons living with HIV that do not know they are infected. Further noting from
Figure 3 that the theoretical number of unknown persons living with HIV from the model is
around 2400, we speculate with optimism that, at the endemic steady state, the number of
persons living with HIV that represent the main core for the transmission of the epidemic in
Cuba will not increase drastically in the long term future.

The assumption that the parameter do not change in the long term is not a very real one,
taking into account that every year new information is gained on the virus and there is ample
research on treatment, vaccines and other aspects that affect the dynamics of the epidemic.
For example existing therapy reduces the probability of transmission for HIV, in terms of
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Table 4: Estimated mean values with the 95% confidence intervals for R0, R1, and R2. UCI
and LCI denote the respective upper and lower bounds for the 95% confidence intervals.

.
1986-1999 1999-2008
LCI UCI LCI UCI

R0 1.824 1.837 1.858 1.859

R1 0 0 0.762 0.765

R2 4.446 4.665 4.428 4.434

our model this means that coefficient λ′ is reduced and this will make R1 smaller, changing
the value of the asymptotic point. But therapy delays the onset of AIDS, this means that
β′ gets smaller, also changing R1 but making it bigger. So long term predictions (as in the
case of asymptotic behavior) make sense only as an indicator of how is the epidemic going
to behave. In this sense in table 1, we see that if R1 > 1 trajectories could be unbounded,
and this would mean that the epidemic is out of control. It is very important to manage the
value of R1.

Rapatski et al. [16] pointed out the need to consider the parameters that appear in models
for the HIV-AIDS epidemic to be varying with time. We are approaching this point of view
in another ongoing work, but we realize that there are several problems with the approach
of nonconstant coefficients, and this is due (from our point of view) to the fact that there
is independent estimation for the number of undetected persons living with HIV. That is
why in this paper we chose to use parameters that are constant or are step functions (with
2 steps for now) that also produce a change in the model itself, changing the recruitment
function from X to Y , F (X,Y ), from a linear polynomial in Y for the period 86-99, to a
linear polynomial in X and Y for the period 99-2008.
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