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Introduction

Cytochrome P450 enzymes (P450s) are a class of enzymes which can catalyze a wide range of reactions including aliphatic and aromatic hydroxylation, epoxidation, oxidative phenolic coupling, heteroatom oxidations, and dealkylations, often in a regio-and stereoselective manner. [START_REF] Cryle | Reactions catalyzed by bacterial cytochromes P450[END_REF] This diversity makes them interesting candidates as biocatalysts for industrial applications, however, it also renders the search for suitable substrate-enzyme pairs a tedious task. [START_REF] Cryle | Reactions catalyzed by bacterial cytochromes P450[END_REF][START_REF] Mansuy | The great diversity of reactions catalyzed by cytochromes P450[END_REF][START_REF] Urlacher | Biotransformations using prokaryotic P450 monooxygenases[END_REF][START_REF] Guengerich | Cytochrome P450 enzymes in the generation of commercial products[END_REF][START_REF] Kelly | Cytochrome P450 biodiversity and biotechnology[END_REF][START_REF] Rabe | Engineering and assaying of cytochrome P450 biocatalysts[END_REF] The amino acid sequences of P450 enzymes can be much more diverse then their reactivities, and still, P450 enzymes, which have distinctively different primary structures, may display similar reactivities. For example, a variety of diverse P450 enzymes can bind and/or convert fatty acid substrates. Besides other bacterial P450 enzymes, fatty acid conversion can also be facilitated by the thermostable P450 CYP119A1 from the thermophilic organism Sulfolobus acidocaldarius. This enzyme is considered a potentially powerful biocatalyst, as it displays high stability and activity even under harsh process conditions.

Besides the hydroxylation of lauric acid, [START_REF] Koo | Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119[END_REF] it is also able to catalyze the epoxidation of styrene, [START_REF] Koo | The active site of the thermophilic CYP119 from Sulfolobus solfataricus[END_REF][START_REF] Rabe | Characterization of the peroxidase activity of CYP119, a thermostable P450 from Sulfolobus acidocaldarius[END_REF] the electrochemical reduction of nitrite, nitric oxide, and nitrous oxide, as well as the electrochemical dehalogenation of CCl 4 to yield CH 4 . [START_REF] Immoos | Electrocatalytic reductions of nitrite, nitric oxide, and nitrous oxide by thermophilic cytochrome P450 CYP119 in film-modified electrodes and an analytical comparison of its catalytic activities with myoglobin[END_REF][START_REF] Blair | High-temperature electrocatalysis using thermophilic P450 CYP119: dehalogenation of CCl4 to CH4[END_REF] CYP119A1 has been cloned and overexpressed, [START_REF] Wright | Cloning of a potential cytochrome P450 from the archaeon Sulfolobus solfataricus[END_REF] its molecular structure has been determined by X-ray crystallography, [START_REF] Yano | Preliminary characterization and crystal structure of a thermostable cytochrome P450 from Thermus thermophilus[END_REF][START_REF] Park | Crystallization and preliminary X-ray diffraction analysis of a cytochrome P450 (CYP119) from Sulfolobus solfataricus[END_REF][START_REF] Park | Thermophilic cytochrome P450 (CYP119) from Sulfolobus solfataricus: high resolution structure and functional properties[END_REF] its catalytic mechanism has been investigated in detail, [START_REF] Denisov | Characterization of the oxygenated intermediate of the thermophilic cytochrome P450 CYP119[END_REF][START_REF] Kellner | Kinetic characterization of compound I formation in the thermostable cytochrome P450 CYP119[END_REF][START_REF] Nishida | Thermophilic cytochrome P450 enzymes[END_REF][START_REF] Lampe | Ligand-Induced Conformational Heterogeneity of Cytochrome P450 CYP119 Identified by 2D NMR Spectroscopy with the Unnatural Amino Acid (13)C-p-Methoxyphenylalanine[END_REF][START_REF] Newcomb | X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative[END_REF][START_REF] Sheng | Spectra and Kinetic Studies of the Compound I Derivative of Cytochrome P450 119[END_REF][START_REF] Sheng | Kinetic Isotope Effects in Hydroxylation Reactions Effected by Cytochrome P450 Compounds I Implicate Multiple Electrophilic Oxidants for P450-Catalyzed Oxidations[END_REF] and several artificial several electron donor systems have been established. [START_REF] Puchkaev | CYP119 plus a Sulfolobus tokodaii strain 7 ferredoxin and 2-oxoacid:ferredoxin oxidoreductase constitute a hightemperature cytochrome P450 catalytic system[END_REF][START_REF] Puchkaev | The Sulfolobus solfataricus electron donor partners of thermophilic CYP119: an unusual non-NAD(P)H-dependent cytochrome P450 system[END_REF] However, the catalytic turn-over of all substrates known to be converted by CYP119A1 is fairly low, and therefore none of those might represent the endogenous substrate of this enzyme.

Motivated by its potential as biocatalyst and the unknown natural substrate of CYP119A1, we reasoned that comparison of reactivity patterns of bacterial P450 enzymes should contribute to a more fundamental understanding of this class of enzymes. For comparison of CYP119A1 we chose three other bacterial P450 enzymes, the P450 domain of CYP102A1 (BMP), CYP152A1 (P450 bsβ ), and CYP101A1 (P450 cam ), which have been extensively studied as potential biocatalysts. [START_REF] Yun | The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities[END_REF][START_REF] Matsunaga | Enzymatic Reaction of Hydrogen Peroxide-Dependent Peroxygenase Cytochrome P450s: Kinetic Deuterium Isotope Effects and Analyses by Resonance Raman Spectroscopy[END_REF][START_REF] Bell | Engineering the CYP101 system for in vivo oxidation of unnatural substrates[END_REF] With respect to fatty acid substrates, CYP119A1 is known to hydroxylate fatty acids at the ω-1 to ω-3 position, [START_REF] Koo | Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119[END_REF] thereby showing similar behaviour as CYP102A1. [START_REF] Koo | Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119[END_REF][START_REF] Fulco | P450BM-3 and other inducible bacterial P450 cytochromes: biochemistry and regulation[END_REF][START_REF] Yeom | The role of Thr268 in oxygen activation of cytochrome P450BM-3[END_REF][START_REF] Oliver | A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation[END_REF] In contrast, CYP152A1 regioselectively hydroxylates fatty acids either at the alpha or beta position, [START_REF] Lee | Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies[END_REF] while CYP101A1 appears to be unable to convert fatty acids at all. [START_REF] Koo | Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119[END_REF][START_REF] Oliver | A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation[END_REF][START_REF] Matsunaga | Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid beta-hydroxylating cytochrome P450[END_REF] However, it is reported here for the first time that all four enzymes share a peroxidase reactivity against the fluorogenic substrate Amplex Red in the presence of hydrogen peroxide, following the so-called peroxide shunt pathway. In the case of CYP152A1 this observation is in aggreement with the expectation because this enzyme utilizes hydrogen peroxide in the physiological reaction, [START_REF] Matsunaga | Enzymatic Reaction of Hydrogen Peroxide-Dependent Peroxygenase Cytochrome P450s: Kinetic Deuterium Isotope Effects and Analyses by Resonance Raman Spectroscopy[END_REF][START_REF] Matsunaga | Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid beta-hydroxylating cytochrome P450[END_REF] while the other three P450s usually depend on the presence of molecular oxygen and NAD(P)H to perform reactions. Moreover, it was recently shown that the presence of fatty acid molecules can modulate the peroxidation activity of CYP152A1, [START_REF] Matsunaga | Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes[END_REF][START_REF] Shoji | Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSbeta[END_REF] and variations in the length of the fatty acid enabled conclusions on the accessibility of the enzyme's active site. It has also been shown that eucaryotic P450 enzymes may contain a fatty acid binding site [START_REF] Schoch | Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site[END_REF] and that their acitivity can be modulated by phospholipids. [START_REF] Kim | Membrane properties induced by anionic phospholipids and phosphatidylethanolamine are critical for the membrane binding and catalytic activity of human cytochrome P450 3A4[END_REF] We therefore reasoned that assaying the peroxidase activity of aforementioned bacterial P450 enzymes in the presence of various fatty acids should be readily facilitated in microplates in order to analyze reactivity patterns and gain basic knowledge on the enzymes.

Since especially long chain fatty acids are poorly soluble in aqueous solutions, organic cosolvents are usually employed, and since it is known that cosolvents can significantly influence the activity of P450 enzymes, [START_REF] Zhao | Activity of human P450 2D6 in biphasic solvent systems[END_REF][START_REF] Easterbrook | Effects of organic solvents on the activities of cytochrome P450 isoforms, UDP-dependent glucuronyl transferase, and phenol sulfotransferase in human hepatocytes[END_REF][START_REF] Gillam | Engineering cytochrome p450 enzymes[END_REF] we investigated their effect as well. Indeed, we found that both fatty acids and cosolvents strongly affected peroxidase activity and the obtained reactivity patterns suggest similarities between CYP119A1 and BMP. The experimental setup presented here allows to screen samples in a high-throughput format, thus enabling us to investigate over 100 different enzyme/additive/solvent combinations. Recombinant P450 bsß (CYP152A1) was expressed from Escherichia coli M15 (pREP4) using the plasmid pQE-30tBSb, which was kindly donated from Dr. Isamu Matsunaga. [START_REF] Matsunaga | Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450[END_REF] The enzyme containing a C-terminal hexahistidine tail was overexpressed in E.coli M15 and purified by affinity chromatography, as reported earlier. [START_REF] Matsunaga | Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450[END_REF][START_REF] Ipe | Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts[END_REF][START_REF] Torres | Evaluation of cytochrome P450(BSbeta) reactivity against polycyclic aromatic hydrocarbons and drugs[END_REF] Recombinant CYP119A1 was expressed in E. coli BL21(DE3) as previously described. [START_REF] Rabe | Characterization of the peroxidase activity of CYP119, a thermostable P450 from Sulfolobus acidocaldarius[END_REF] The enzyme contained a C-terminal hexahistidine tail, which was used for purification by affinity chromatography, as reported earlier. [START_REF] Rabe | Characterization of the peroxidase activity of CYP119, a thermostable P450 from Sulfolobus acidocaldarius[END_REF] Cloning of BMP (P450 domain of CYP102A1)

The genomic DNA of Bacillus megaterium strain (DSM 32) was isolated using the InstaGene instructions with an annealing temperature of 56°C. The PCR-product was cloned by recombination into the pDONR221 vector in a BP reaction, carried out following the supplier's instructions (Invitrogen). Successful cloning and integrity of the resulting plasmid pENTR221-CYP102A1 was confirmed by sequence analysis. This entry vector was then recombined with pET-DEST42 in a LR reaction to yield the expression vector pET-EXP42-CYP102A1.

Cloning of CYP101A1

The genomic DNA of Pseudomonas putida strain (DSM 4475) was isolated using the InstaGene Matrix Kit from Biorad. The PCR to amplify the encoding region of CYP101A1 was carried out using the forward primer 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTCTAAGGAGGATAGAACCATGACGA CTGAAACCATACAAAGC and the reverse primer 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTGTACCGCTTTGGTAGTCGCC. PCR was carried out with Iproof High Fidelity DNA Polymerase (Biorad) using standard reaction conditions according to supplier's instructions with an annealing temperature of 58° C. The PCR-product was used to create the pET-EXP42-CYP101A1 expression vector in the same manner as described for CYP102A1.

Overexpression and purification of BMP and CYP 101

For protein expression of BMP and CYP101A1 overnight cultures of the corresponding E.coli Bl21 (DE3) cells were started in LB-broth containing 100 µg/ml ampicillin. A part of the overnight culture was added to a 3 l culture of LB-broth containing 100 µg/ml ampicillin and 0,5 mM aminolevulinic acid. The OD 600 value at T 0 was adjusted to 0.1. The culture was incubated at 37° C with 180 rpm shaking. When the culture reached OD 600 0.5 -0. Fractions showing absorbance at 417 nm were pooled and concentrated using a concentrating device with a 10-kDa cut-off membrane (Vivaspin).

The proteins were judged to be pure by SDS-PAGE. We note that the absorption spectra of all four P450 enzymes used in this study were identical to previously published UV-VIS data, thereby indicating that the active site of all proteins was empty and did not contain any ligands introduced during heterologous expression or purification procedures. Whenever an organic solvent was included, the substrate conversion was corrected for the effect of the solvent on the fluorescence measurement determined by the addition of 10% of the solvent to resorufin solutions of known concentrations (see Fig. S2).

Results and Discussion

Since only little is known about the modulation of peroxidase activity of bacterial cytochromes by fatty acids, [START_REF] Shoji | Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSbeta[END_REF] we compared the enzymes CYP119A1, BMP, CYP152A1 and CYP101A1, all of which are considered as potential candidates for biocatalytic applications. [START_REF] Puchkaev | The Sulfolobus solfataricus electron donor partners of thermophilic CYP119: an unusual non-NAD(P)H-dependent cytochrome P450 system[END_REF][START_REF] Matsunaga | Enzymatic Reaction of Hydrogen Peroxide-Dependent Peroxygenase Cytochrome P450s: Kinetic Deuterium Isotope Effects and Analyses by Resonance Raman Spectroscopy[END_REF][START_REF] Bell | Engineering the CYP101 system for in vivo oxidation of unnatural substrates[END_REF][START_REF] Di Nardo | Wild-type CYP102A1 as a biocatalyst: turnover of drugs usually metabolised by human liver enzymes[END_REF] The four enzymes reveal low sequence homology (Table 1), despite the fact that some similarities in terms of fatty acid hydroxylation are evident. Both CYP119A1 and BMP oxidize lauric acid mainly at the ω-1 position, [START_REF] Koo | Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119[END_REF][START_REF] Oliver | A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation[END_REF] CYP152A1

hydroxylates fatty acids at either alpha or beta position, [START_REF] Lee | Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies[END_REF] while CYP101A1 seems unable to convert fatty acids. Thus, it was interesting to investigate whether the peroxidation reaction depicted in Fig. 1 is influenced by the presence of fatty acids and/or organic cosolvents. In this reaction the fluorogenic substrate Amplex Red is oxidized to the highly fluorescent product resorufin by the P450 enzyme in the presence of H 2 O 2 . Since Amplex Red offers greater sensitivity in fluorescence detection than other substrates, such as guiacol, the reaction can be easily monitored in a multiwell plate reader, thus offering the opportunity of highthroughput analysis of a variety of reaction conditions.

We initially investigated the peroxidase activity of the four enzymes in the absence of fatty acid modulators or cosolvents. To investigate all four enzymes under comparable conditions, we used the artificial oxygen donor hydrogen peroxide, although P450 BM-3 and CYP101A1 might as well be activated by their natural NADPH-dependent redox partners. This approach also enabled us to keep the complexity of the reaction mixture as low as possible.

Employment of an NADPH regeneration system would render the comparison of the data rather difficult if not impossible since influences of cosolvents and the fatty acids on the CYP119A1 is more active at elevated temperatures, all reactions were performed at 25°C, in order to allow for convenient use of a multiplate reader and thus screen conditions for the four enzymes under comparable conditions in a high-throughput format. As shown in Fig. 2, all four enzymes reveal a significant activity with Amplex Red as the substrate. CYP152A1

displayed by far the highest peroxidase activity, which might reflect the fact that the other three enzymes usually require NAD(P)H-dependent electron donor systems to work efficiently. [START_REF] Koo | Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119[END_REF][START_REF] Koga | Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida[END_REF][START_REF] Ruettinger | Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium[END_REF] Nonetheless, all four enzymes under investigation were sufficiently active to be reliably analyzed by the Amplex Red microplate assay.

Since long chain fatty acids have a low solubility in aqueous solutions, we carefully studied the literature on the conversion of fatty acids by P450 enzymes to identify a suitable cosolvent. The survey revealed that a large variety of cosolvents has been described, including acetonitrilee, [START_REF] Alterman | Fatty acid discrimination and omega-hydroxylation by cytochrome P450 4A1 and a cytochrome P4504A1/NADPH-P450 reductase fusion protein[END_REF] acetone, [START_REF] Appel | A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes[END_REF] DMSO, [START_REF] Lentz | Substrate specificity of native and mutated cytochrome P450 (CYP102A3) from Bacillus subtilis[END_REF] or ethanol, [START_REF] Matsunaga | Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450[END_REF] in addition to a variety of pure buffers, such as TRIS-HCl, [START_REF] Green | Expression, purification and characterization of cytochrome P450 Biol: a novel P450 involved in biotin synthesis in Bacillus subtilis[END_REF] MOPS, [START_REF] Gustafsson | Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium[END_REF] potassium carbonate, [START_REF] Rock | A method for determining two substrates binding in the same active site of cytochrome P450BM3: an explanation of high energy omega product formation[END_REF] or alkaline solution [START_REF] Wang | Probing the active sites of rat and human cytochrome P450 2E1 with alcohols and carboxylic acids[END_REF] (for a detailed survey, see table S1 in the supporting information). Notably, Schwaneberg et al. have recently shown that cosolvents can also enter the active site and bind to the iron, which in turn modulates the enzymatic activity. [START_REF] Kuper | Understanding a mechanism of organic cosolvent inactivation in heme monooxygenase P450 BM-3[END_REF] We therefore decided to also include a systematic variation of cosolvents in our study, by using either methanol, ethanol, isopropanol or acetonitrile.

It is shown in Fig. 3 that the peroxidase activity of the four enzymes is affected to a different extent by the presence of the cosolvent. CYP119A1 showed a general increase in activity due to the presence of cosolvents, while CYP152A1 was inhibited by cosolvents. CYP119A1 and BMP revealed highest activities in the presence of isopropanol. BMP and CYP101A1 revealed either inhibition or activation, depending on the cosolvent. As such, both enzymes were inhibited by methanol and ethanol, whereas they displayed the highest activity in the presence of isopropanol and acetonitrile, respectively. Since no general trend is obvious in 3, the data suggest that the cosolvent indeed influences the mechanism of catalysis, rather than simply affecting, for instance, solubility of reaction components. We also confirmed that the fatty acids do not interfere with the fluorescence read-out of our assay (see Fig. S2). These results also emphasize the importance of cosolvents, thereby indicating that experimental details on preparation of stock solutions and dilution steps should be carefully documented in published protocols. Regrettably, this has not always been the case in previous work (Table S1).

Realizing that the cosolvent can largely impact the peroxidase activity, we decided to test all four enzymes against 28 possible combinations, obtained from seven fatty acids with chain lengths varying from C 10 to C 16 and the four cosolvents (Fig. 4). For CYP119A1 (Fig. 4a), we observed that the presence of longer fatty acid chains led to an increased rate of resorufin generation, revealing a peak activity at lauric acid (C 12 ). In this case, the cosolvent had only little effect. However, the presence of ethanol increased the stimulatory effect of fatty acids longer than 11 carbon atoms. Moreover, the optimal chain length in the presence of acetonitrile was C 14 . The conversion of Amplex Red by CYP119A1 was enhanced by a factor of ≥ 38, when lauric acid and isopropanol were added to the reaction mixture. We further confirmed that the effect is concentration dependent (Fig. S3). It should be noted that concentration exceeding 2 mM can not be realized because the fatty acids are not soluble above this concentration. These results suggest that the different size and nature of cosolvent molecules plays an important role in the fatty acid modulation, which can be explained by the fact that the cosolvent is either situated in the enzyme's active site or that it generally enhances the enzymatic activity by effecting its tertiary structure.

BMP (Fig. 4b) also revealed an increase in Amplex Red conversion in the presence of fatty acids. Similar to CYP119A1, the highest peroxidase activity was observed in the presence of lauric acid, however, the peak activity was much sharper than that observed for CYP119A1.

Modulation of BMP was always highest with lauric acid, regardless of the cosolvent, and in In case of CYP152A1 (Fig. 4c), we observed a decrease in peroxidase activity with increasing chain length of the fatty acid. This result is in agreement with the previous study of Watanabe and coworkers, who found that fatty acids with chain lengths of more than seven carbon atoms, inhibited the oxidation of guaiacol. [START_REF] Shoji | Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSbeta[END_REF] They explained that competitive inhibition occurs due to increased blocking of the active site, which sterically hinders the access of the peroxidase substrate. [START_REF] Matsunaga | Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes[END_REF][START_REF] Shoji | Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSbeta[END_REF] Consequently, hydroxylation of the fatty acid takes place instead of the peroxidation reaction when the fatty acid chain is sufficiently long. [START_REF] Matsunaga | Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes[END_REF] Furthermore the data in Fig. 4 also indicate a decrease in peroxidase activity from methanol to ethanol to isopropanol. This effect can not be explained by simple denaturation of the enzyme, because in this case, it should be observed for all fatty acids. Instead, the data clearly indicate different effects. For example the addition of methanol alone led to almost no change in the activity of CYP152A1, while the acitivity dropped by almost 70% when both methanol and lauric acid were present. The addition of isopropanol alone led to a decrease of 50%, but in this case the addition of lauric acid only leads to a minor decrease in activity (Fig. 4c).

The enzyme CYP101A1 revealed only small changes in its activity in the presence of the various fatty acids in the four cosolvents. Maximum relative changes were only of about a factor of 3 (e.g., C 12 in acetonitrile as compared to the reaction mixture lacking fatty acid or cosolvent), while they were up to 38-fold the other enzymes (see above). Yet, a low general tendency of increased activity in the presence of acetonitrile was evident.

Comparison of the reactivity patterns shown in Fig. 4, suggests some similarity between CYP119A1 and BMP in their response towards the addition of fatty acids. Both patterns reveal a distinctive increase in reactivity with increasing chain length, and a general peak activity at C 12 . Given the fact that these two enzymes both catalyze hydroxylation of lauric acid at the ω-1 position, the similarity in their reactivity patterns suggests that in both cases the ω-end of the fatty acid is dipping into the active center, while the carboxyl group is either located somewhere inside the substrate entry channel or on the enzyme's surface. The resulting increase in hydrophobicity at the active site obviously gives rise to the altered reactivity against Amplex Red. To support this hypothetical mode of action, we generated data by comparing CYP119A1 peroxidase activity in the presence of either lauric acid, dodecane, dodecanol or 12-hydroxylauric acid (Fig. 5). These data clearly indicate that the hydrophobic ω-end is important for the activation of the enzyme, because neither dodecanol nor 12-hydroxylauric acid led to a comparable increase in peroxidase activity as obtained with lauric acid as modulator. The lack of increased activity in the presence of dodecane and dodecanol also supports the presence of a binding site to stabilize the lauric acid ligand by its carboxyl headgroup. Therefore, the data provide a hint that CYP119A1 has a binding site for the carboxyl group, similar as it is in the case for BMP. This assumption is supported by differences in UV/vis spectra obtained from the ligand-free CYP119A1 and the enzyme after incubation with the four aforementioned compounds (Fig. S4). Only in case of lauric acid the typical low-spin to high-spin conversion was observed, thus suggesting that lauric acid indeed enters the binding site of CYP119A1.

Conclusions

In conclusion, we employed a high-throughput microplate assay to demonstrate that the peroxidase activity of CYP119A1, BMP, CYP152A1 and CYP101A1 can be modulated to a different extent by the presence of fatty acids of different chain lengths and organic cosolvents. In particular, the results indicated that lauric acid and isopropanol increase the reactivity of BMP and CYP119A1 by a factor of 11 or 38, respectively. Although CYP152A1 without any effectors showed the highest reactivity of all combinations tested, the optimized reactivity of CYP119A1 reaches 90% of the value of CYP152A1. In contrast to BMP and CYP119A1, CYP152A1 is largely inhibited by fatty acids and cosolvents, while these of this study may also hint towards a role of fatty acids as activators for CYP enzymes [START_REF] Kim | Membrane properties induced by anionic phospholipids and phosphatidylethanolamine are critical for the membrane binding and catalytic activity of human cytochrome P450 3A4[END_REF] in addition to being mere substrates. 

  Chemicals. KH 2 PO 4 , K 2 HPO 4 and hydrogen peroxide were obtained from Sigma. Amplex Red (10-Acetyl-3,7-dihydroxyphenoxazine, sold under the name of Ampliflu Red), resorufin, capric acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, DMSO and 2-Propanol (p.a) were from Fluka. Methanol (p.a.) was from Roth and ethanol (p.a.) from Merck. HPLC-grade acetonitrile was purchased at Fischer, IPTG at Gerbu and ampicillin at Applichem.
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 7 IPTGwas added to a final concentration of 0.5 mM and incubation was continued at 25 °C overnight. Cells were harvested by centrifugation for 10 min at 8000 rpm at 4° C and subsequently resuspended in 50 mM Tris buffer, 150 mM NaCl, 10 mM Imidazol, pH 8.0, and centrifuged. Since the enzymes were hexa-His-tagged by expression from pET-DEST42, the soluble fraction was passed through a Ni-NTA column and washed with 50 mM Tris buffer, 150 mM NaCl, 20 mM Imidazol, pH 8.0. The protein was eluted from the column using 50 mM Tris buffer, 250 mM Imidazol, pH 8.0. Eluted proteins were subjected to size exclusion chromatography on a Superdex S 200 column (Amersham Pharmacia Biotech). The elution was monitored at A 417 and A 280 .

  regeneration system would have to be separately tested as well. Although

  Fig.3, the data suggest that the cosolvent indeed influences the mechanism of catalysis, rather

  addition of isopropanol, lauric acid increased the peroxidation activity about 11-fold.

  weakly the activity of CYP101A1. The strong effects of the cosolvent observed here are of general importance for P450 biocatalysis because the often hydrophobic substrates are usually added as solution in organic solvents. It is obvious that the influence of particular cosolvents has to be specificially tested and a proper choice might increase the enzymatic activity and thereby reaction yields in biocatalysis. Moreover, comparison of reactivity patterns observed here suggested similarities in the binding site of CYP119A1 and BMP, and additional experiments provided evidence that the fatty acid penetrates the active site of CYP119A1 with its hydrophobic end in close proximity to the heme center. The results
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 12345 Figure 1. Conversion of Amplex Red to Resorufin by a P450 enzyme using hydrogen peroxide as the oxygen donor.

  

  

  

  

Table 1 :

 1 Similarity and identity (in brackets) of the P450 enzymes compared in this study.The values were calculated using the EMBOSS Pairwise Alignment Algorithms, applying the Needleman-Wunsch algorithm with a gap open penalty of 10.0, a gap extention penalty of 0.5 and Blosum62 as matrix.

	Similarity		
	(Identity)		
		32,8	35,4	36,9
		(19,7)	(16,6)	22,2)
	32,8		32,4	34,3
	(19,7)		(20,6)	(19,7)
	35,4	32,4		30,6
	(16,6)	(20,6)		(18,7)
	36,9	34,3	30,6
	(22,2)	(19,7)	(18,7)
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