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SINGULAR FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
AND EMISSIONS DERIVATIVES

RENÉ CARMONA, FRANÇOIS DELARUE, GILLES-EDOUARD ESPINOSA, AND NIZAR TOUZI

ABSTRACT. We introduce two simple models of forward-backward stochastic differential equations
with a singular terminal condition and we explain how and why they appear naturally as models for the
valuation of CO2 emission allowances. Single phase cap-and-trade schemes lead readily to terminal
conditions given by indicator functions of the forward component, and using fine partial differential
equations estimates, we show that the existence theory of these equations, as well as the properties of
the candidates for solution, depend strongly upon the characteristics of the forward dynamics. Finally,
we give a first order Taylor expansion and show how to numerically calibrate some of these models for
the purpose of CO2 option pricing.

1. INTRODUCTION

This paper is motivated by the mathematical analysis of the emissions markets, as implemented
for example in the European Union (EU) Emissions Trading Scheme (ETS). These market mecha-
nisms have been hailed by some as the most cost efficient way to control Green House Gas (GHG)
emissions They have been criticized by others for being a tax in disguise and adding to the burden
of industries covered by the regulation. Implementation of cap-and-trade schemes is not limited to
the implementation of the Kyoto protocol. The successful US acid rain program is a case in point.
However, a widespread lack of understanding of their properties, and misinformation campaigns by
advocacy groups more interested in pushing their political agendas than using the results of objective
scientific studies have muddied the water and add to the confusion. More mathematical studies are
needed to increase the understanding of these market mechanisms and raise the level of awareness of
their advantages as well as their shortcomings. This paper was prepared in this spirit.

In a first part, we introduce simple single-firm models inspired by the workings of the electric-
ity markets (remember that electric power generation is responsible for most of the CO2 emissions
worldwide). Despite the specificity of some assumptions, our treatment is quite general in the sense
that individual risk averse power producers choose their own utility functions. Moreover, the financial
markets in which they can trade emission allowances are not assumed to be complete.

While market incompleteness prevents us from identifying the optimal trading strategy of each
producer, we show that, independently of the choice of the utility function, the optimal production or
abatement strategy is what we expect by proving mathematically, and in full generality (i.e. without
assuming completeness of the markets), a folk theorem in environmental economics: the equilibrium
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allowance price equals the marginal abatement cost, and market participants implement all the abate-
ment measures whose costs are not greater than the cost of compliance (i.e. the equilibrium price of
an allowance).

The next section puts together the economic activities of a large number of producers and search
for the existence of an equilibrium price for the emissions allowances. Such a problem leads naturally
to a forward stochastic differential equation (SDE) for the aggregate emissions in the economy, and
a backward stochastic differential equation (BSDE) for the allowance price. However, these equa-
tions are ”coupled” since a nonlinear function of the price of carbon (i.e. the price of an emission
allowance) appears in the forward equation giving the dynamics of the aggregate emissions. This
feedback of the emission price in the dynamics of the emissions is quite natural. For the purpose of
option pricing, this approach was described in[4] where it was called detailed risk neutral approach.

Forward backward stochastic differential equations (FBSDEs) of the type considered in this sec-
tion have been studied for a long time. See for example [12], or [16]. However, the FBSDEs we need
to consider for the purpose of emission prices have an unusual pecularity: the terminal condition of
the backward equation is given by a discontinuous function of the terminal value of the state driven by
the forward equation. We use our first model to prove that this lack of continuity is not an issue when
the forward dynamics are strongly elliptic, in other words when the volatility of the forward SDE is
bounded from below. However, using our second equilibrium model, we also show that when the
forward dynamics are degenerate (even if they are hypoelliptic), discontinuities in the terminal con-
dition and lack of uniform ellipticity in the forward dynamics can conspire to produce point masses
in the terminal distribution of the forward component, at the locations of the discontinuities. This
implies that the terminal value of the backward component is not given by a deterministic function
of the forward component, for the forward scenarios ending at the locations of jumps in the terminal
condition, and justifies relaxing the definition of a solution of the FBSDE.

Even though we only present a detailed proof for a very specific model for the sake of definiteness,
we believe that our result is representative of a large class of models. Since from the point of view
of the definition of ”aggregate emissions”, the degeneracy of the forward dynamics is expected, and
this seemingly pathological result should not be overlooked. Indeed, it sheds new light on an absolute
continuity assumption made repeatedly in equilibrium analyses, even in discrete time models. See for
example [3] and [2]. This assumption was regarded as an annoying technicality, but in the light of the
results of this paper, it looks more intrinsic to these types of models. In any case, it fully justifies the
need to relax the definition of a solution of a FBSDE when the terminal condition of the forward part
jumps.

A vibrant market for options written on allowance futures/forward contracts has recently developed
and increased in liquidity. See for example [4] for details on these markets. Reduced formed models
have been proposed to price these options. See [4] or [5]. Several attempts have been made at
matching the smile (or lack thereof) contained in the quotes published daily by the exchanges. Section
5 develops the technology needed to price these options in the context of the equilibrium framework
developed in the present paper. We identify the option prices in terms of solutions of nonlinear partial
differential equations and we prove when the dynamics of the aggregate emissions are given by a
geometric Brownian motion, a Taylor expansion formula when the nonlinear abatement feedback is
small. We derive an explicit integral form for the first order Taylor expansion coefficient which can
easily be computed by Monte Carlo methods. We believe that the present paper is the first rigorous
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attempt to include the nonlinear feedback term in the dynamics of aggregate emissions for the purpose
of emissions option pricing.

The final section 6 illustrates numerically how the option prices computed from our equilibrium
model differ from the linear prices computed in [5],[18] and [4]. Furthermore, we show how the first
order Taylor approximation result of Section 5 can be used to compute numerically option prices and
efficiently fit the implied volatility smile present in recent option price quotes.

Acknowledgements: We would like to thank two anonymous referees for pointing out inconsisten-
cies in the original proofs of Theorem 1 and Proposition 3, and for comments which led to improve-
ments in the presentation of the results of the paper.

2. TWO SIMPLE MODELS OF GREEN HOUSE GAS EMISSION CONTROL

We first describe the optimization problem of a single power producer facing a carbon cap-and-
trade regulation. We assume that this producer is a small player in the market in the sense that his
actions have no impact on prices and that a liquid market for pollution permits exists. In particular, we
assume that the price of an allowance is given exogenously, and we use the notation Y = (Yt)0≤t≤T
for the (stochastic) time evolution of the price of an emission allowance. For the sake of simplicity
we assume that [0, T ] is a single phase of the regulation and that no banking or borrowing of the
certificates is possible at the end of the phase. For illustration purposes, we analyze two simple
models. Strangely enough, the first steps of these analyses, namely the identifications of the optimal
abatement and production strategies, do not require the full force of the sophisticated techniques of
optimal stochastic control.

2.1. Modeling First the Emissions Dynamics. We assume that the source of randomness in the
model is given by W = (Wt)0≤t≤T , a (possibly infinite) sequence of independent one-dimensional
Wiener processes W j = (W j

t )0≤t≤T . In other words, Wt = (W 0
t ,W

1
t , · · · ,W i

t , · · · ) for each fixed
t ∈ [0, T ]. All these Wiener processes are assumed to be defined on a complete probability space
(Ω,F ,P), and we denote by F = {Ft, t ≥ 0} the Brownian filtration they generate. Here, T > 0 is a
fixed time horizon representing the end of the regulation period.

We will eventually extend the model to include N firms, but for the time being, we consider only
the problem of one single firm whose production of electricity generates emissions of carbon dioxyde,
and we denote by Et the cumulative emissions up to time t of the firm. We also denote by Ẽt the
perception at time t (for example the conditional expectation) of what the total cumulative emission
ET will be at the end of the time horizon. Clearly, E and Ẽ can be different stochastic processes, but
they have the same terminal values at time T , i.e. ET = ẼT . We will assume that dynamics of the
proxy Ẽ for the cumulative emissions of the firm are given by an Itô process of the form:

(1) Ẽt =

∫ t

0
(bs − ξs)ds+

∫ t

0
σsdWs,

(so Ẽ0 = 0) where b represents the (conditional) expectation of what the rate of emission would be in
a world without carbon regulation, in other words in what is usually called Business As Usual, while
ξ is the instantaneous rate of abatement chosen by the firm. In mathematical terms, ξ represents the
control on emission reduction implemented by the firm. Clearly, in such a model, the firm only acts
on the drift of its perceived emissions. For the sake of simplicity we assume that the processes b and
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σ are adapted and bounded. Because of the vector nature of the Brownian motion W , the volatility
process σ is in fact a sequence of scalar volatility processes (σj)j≥0. For the purpose of this section,
we could use one single scalar Wiener process and one single scalar volatility process as long as we
allow the filtration F to be larger than the filtration generated by this single Wiener process. This fact
will be needed when we study a model with different firms.

Continuing on with the description of the model, we assume that the abatement decision is based
on a cost function c : R → R which is assumed to be continuously differentiable (C1 in notation),
strictly convex and satisfy Inada-like conditions:

(2) c′(−∞) = −∞ and c′(+∞) = +∞.
Note that (c′)−1 exists because of the assumption of strict convexity. Since c(x) can be interpreted
as the cost to the firm for an abatement rate of level x, without any loss of generality we will also
assume c(0) = min c = 0. Notice that (2) implies that limx→±∞ c(x) = +∞.

Remark 1. A typical example of abatement cost function is given by the quadratic cost function
c(x) = αx2 for some α > 0 used in [18], or more generally the power cost function c(x) = α|x|1+β

for some α > 0 and β > 0.

The firm controls its destiny by choosing its own abatement schedule ξ as well as the quantity θ of
pollution permits it holds through trading in the allowance market. For these controls to be admissible,
ξ and θ need only to be progressively measurable processes satisfying the integrability condition

(3) E
∫ T

0
[θ2
t + ξ2

t ]dt <∞.

We denote by A the set of admissible controls (ξ, θ). Given its initial wealth x, the terminal wealth
XT of the firm is given by:

(4) XT = Xξ,θ
T = x+

∫ T

0
θtdYt −

∫ T

0
c(ξt)dt− ETYT .

Recall that we use the notation Yt for the price of an emission allowance at time t. Recall also that
at this stage, we are not interested in the existence or the formation of this price. We merely assume
the existence of a liquid and frictionless market for emission allowances, and that Yt is the price at
which each firm can buy or sell one allowance at time t. The risk preferences of the firm are given by
a utility function U : R → R, which is assumed to be C1, increasing, strictly concave and satisfying
the Inada conditions:

(5) (U)′(−∞) = +∞ and (U)′(+∞) = 0.

The optimization problem of the firm can be written as the computation of:

(6) V (x) = sup
(ξ,θ)∈A

EU(Xξ,θ
T )

where E denotes the expectation under the historical measure P, and A is the set of abatement and
trading strategies (ξ, θ) admissible to the firm. The following simple result holds.

Proposition 1. The optimal abatement strategy of the firm is given by:

ξ∗t = [c′]−1(Yt).
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Remark 2. Notice that the optimal abatement schedule is independent of the utility function. The
beauty of this simple result is its powerful intuitive meaning: given a price Yt for an emission al-
lowance, the firm implements all the abatement measures which make sense economically, namely all
those costing less than the current market price of one allowance (i.e. one unit of emission).

Proof. If we rewrite the last term in the expression (4) of the terminal wealth by replacing ET by ẼT ,
a simple integration by parts gives:

ETYT = YT

(∫ T

0
btdt+

∫ T

0
σtdWt

)
− YT

∫ T

0
ξtdt

= YT

(∫ T

0
btdt+

∫ T

0
σtdWt

)
−
∫ T

0
Ytξtdt−

∫ T

0

(∫ t

0
ξsds

)
dYt

so that XT = Aθ̃T +Bξ
T with

Aθ̃T =

∫ T

0
θ̃tdYt − YT

(∫ T

0
btdt+

∫ T

0
σtdWt

)
where the modified control θ̃ is defined by θ̃t = θt +

∫ t
0 ξsds, and

Bξ
T = x−

∫ T

0
[c(ξt)− Ytξt]dt.

Notice thatBξ depends only upon ξ without depending upon θ̃ whileAθ̃ depends only upon θ̃ without
depending upon ξ. The set A of admissible controls is equivalently described by varying the couples
(θ, ξ) or (θ̃, ξ), so when computing the maximum

sup
(θ,ξ)∈A

E{U(XT )} = sup
(θ̃,ξ)∈A

E{U(Aθ̃T +Bξ
T )}

one can perform the optimizations over θ̃ and ξ separately, for example by fixing θ̃ and optimizing
with respect to ξ before maximizing the result with respect to θ̃. The proof is complete once we notice
that U is increasing and that for each t ∈ [0, T ] and each ω ∈ Ω, the quantity Bξ

T is maximized by
the choice ξ∗t = (c′)−1(Yt). �

Remark 3. The above result argues neither existence nor uniqueness of an optimal admissible set
(ξ∗, θ∗) of controls. We believe that once the optimal rate of abatement ξ∗ is implemented, the optimal
investment strategy θ∗ should hedge the financial risk created by the implementation of the abatement
strategy. This fact can be proved using the classical tools of portfolio optimization in the case of
complete market models. Indeed, if we introduce the convex dual Ũ of U defined by:

Ũ(y) := sup
x
{U(x)− xy}

and the function I by I = (U ′)−1 so that Ũ(y) = U ◦ I(y) − yI(y) and if we denote by E and EQ

respectively the expectations with respect to P and the unique equivalent measure Q under which Y
is a martingale (we write Zt its volatility given by the martingale representation theorem), then from
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the a.s. inequality

U(Xξ,θ
T )− ydQ

dP
Xξ,θ
T ≤ U ◦ I

(
y
dQ
dP

)
− ydQ

dP
I

(
y
dQ
dP

)
,

valid for any admissible (ξ, θ), and y ∈ R, we get

EU(Xξ,θ
T ) ≤ EU ◦ I

(
y
dQ
dP

)
+ yEQ

[
Xξ,θ
T − I

(
y
dQ
dP

)]
after taking expectations under P. Computing EQXξ,θ

T by integration by parts we get:

EU(Xξ,θ
T ) ≤ EU ◦ I

(
y
dQ
dP

)
+ y

[
x− EQ

∫ T

0
[c ◦ (c′)−1(Yt) + Yt(bt− (c′)−1(Yt)) + σtZtdt]

−EQI

(
y
dQ
dP

)]
if we use the optimal rate of abatement. So if we choose y = ŷ ∈ R as the unique solution of:

EQI

(
ŷ
dQ
dP

)
= x− EQ

∫ T

0
c ◦ (c′)−1(Yt) + Yt(bt − (c′)−1(Yt)) + σtZtdt.

it follows that

EQX ξ̂,θ
T = EQI

(
ŷ
dQ
dP

)
,

and finally, if the market is complete, the claim I
(
ŷj dQdP

)
is attainable by a certain θ∗. This completes

the proof.

2.2. Modeling the Electricity Price First. We consider a second model for which again, part of the
global stochastic optimization problem reduces to a mere path-by-path optimization. As before, the
model is simplistic, especially in the case of a single firm in a regulatory environment with a liquid
frictionless market for emission allowances. However, this model will become very informative later
on when we consider N firms interacting on the same market, and we try to construct the allowance
price Yt by solving a Forward-Backward Stochastic Differential Equation (FBSDE). The model con-
cerns an economy with one production good (say electricity) whose production is the source of a
negative externality (say GHG emissions). Its price (Pt)0≤t≤T evolves according to the following Itô
stochastic differential equation:

(7) dPt = µ(Pt)dt+ σ(Pt)dWt

where the deterministic functions µ and σ are assumed to be C1 with bounded derivatives. At each
time t ∈ [0, T ], the firm chooses its instantaneous rate of production qt and its production costs are
c(qt) where c is a function c : R+ ↪→ R which is assumed to be C1 and strictly convex. With these
notations, the profits and losses from the production at the end of the period [0, T ], are given by the
integral: ∫ T

0
[Ptqt − c(qt)]dt.

The emission regulation mandates that at the end of the period [0, T ], the cumulative emissions of
each firm be measured, and that one emission permit be redeemed per unit of emission. As before,
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we denote by (Yt)0≤t≤T the process giving the price of one emission allowance. For the sake of sim-
plicity, we assume that the cumulative emissions Et up to time t are proportional to the production in
the sense that Et = εQt where the positive number ε represents the rate of emission of the production
technology used by the firm, and Qt denotes the cumulative production up to and including time t:

Qt =

∫ t

0
qsds.

At the end of the time horizon, the cost incurred by the firm because of the regulation is given by
ETYT = εQTYT . The firm may purchase allowances: we denote by θt the amount of allowances
held by the firm at time t. Under these conditions, the terminal wealth of the firm is given by:

(8) XT = Xq,θ
T = x+

∫ T

0
θtdYt +

∫ T

0
[Ptqt − c(qt)]dt− εQTYT

where as before, we used the notation x for the initial wealth of the firm. The first integral in the
right hand side of the above equation gives the proceeds from trading in the allowance market, the
next term gives the profits from the production and the sale of electricity, and the last term gives the
costs of the emission regulation. We assume that the risk preferences of the firm are given by a utility
function U : R→ R, which is assumed to be C1, increasing, strictly concave and satisfying the Inada
conditions (5) stated earlier. The optimization problem of the firm can be written as:

(9) V (x) = sup
(q,θ)∈A

EU(Xq,θ
T )

where E denotes the expectation under the historical measure P, and A is the set of admissible
production and trading strategies (q, θ). As before, for these controls to be admissible, q and θ need
only be adapted processes satisfying the integrability condition

(10) E
∫ T

0
[θ2
t + q2

t ]dt <∞.

Proposition 2. The optimal production strategy of the firm is given by:

q∗t = (c′)−1(Pt − εYt).

Remark 4. As before, the optimal production strategy q∗ is independent of the risk aversion (i.e. the
utility function) of the firm. The intuitive interpretation of this result is clear: once a firm observes
both prices Pt and Yt, it computes the price for which it can sell the good minus the price it will have
to pay because of the emission regulation, and the firm uses this corrected price to choose its optimal
rate of production in the usual way.

Proof. A simple integration by part (notice that Et is of bounded variations) gives:

(11) QTYT =

∫ T

0
YtdQt +

∫ T

0
QtdYt =

∫ T

0
Ytqtdt+

∫ T

0
QtdYt,

so that XT = Aθ̃T +Bq
T with

Aθ̃T =

∫ T

0
θ̃tdYt with θ̃t = θt − ε

∫ t

0
qsds
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which depends only upon θ̃ and

Bq
T = x+

∫ T

0
[(Pt − εYt)qt − c(qt)]dt,

which depends only upon q without depending upon θ̃. Since the set A of admissible controls is
equivalently described by varying the couples (q, θ̃) or (q, θ̃), when computing the maximum

sup
(q,θ)∈A

E{U(XT )} = sup
(θ̃,ξ)∈A

E{U(Aθ̃T +Bq
T )}

one can perform the optimizations over q and θ̃ separately, for example by fixing θ̃ and optimizing
with respect to q before maximizing the result with respect to θ̃. The proof is complete once we notice
that U is increasing and that for each t ∈ [0, T ] and each ω ∈ Ω, the quantity Bq

T is maximized by
the choice q∗t = (c′)−1(Pt − εYt). �

3. ALLOWANCE EQUILIBRIUM PRICE AND A FIRST SINGULAR FBSDE

The goal of this section is to extend the first model introduced in section 2 to an economy with N
firms, and solve for the allowance price.

3.1. Switching to a Risk Neutral Framework. As before, we assume that Y = (Yt)t∈[0,T ] is the
price of one allowance in a one-compliance period cap-and-trade model, and that the market for
allowances is frictionless and liquid. Y is a martingale for a measure Q equivalent to the historical
measure P. Because we are in a Brownian filtration,

dQ
dP

= exp

[∫ T

0
αtdWt −

1

2

∫ T

0
|αt|2dt

]
for some sequence α = (αt)t∈[0,T ] of adapted processes. By Girsanov’s theorem, the process W̃ =

(W̃t)t∈[0,T ] defined by

W̃t = Wt −
∫ t

0
αsds

is a Wiener process for Q so that equation (1) giving the dynamics of the perceived emissions of a
firm now reads:

dẼt = (b̃t − ξt)dt + σtdW̃t

under Q, where the new drift b̃ is defined by b̃t = bt + σtαt for all t ∈ [0, T ].

3.2. Market Model with N Firms. We now consider an economy comprising N firms labelled by
{1, · · · , N}, and we work in the risk neutral framework for allowance trading discussed above. When
a specific quantity such as cost function, utility, cumulative emission, trading strategy, . . . depends
upon a firm, we use a superscript i to emphasize the dependence upon the i-th firm. So in equilibrium
(i.e. whenever each firm implements its optimal abatement strategy), for each firm i ∈ {1, · · · , N}
we have

dẼit = {b̃it − [(ci)′]−1(Yt)}dt+ σitdW̃t
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with Ẽi0 = 0. Consequently, the aggregate perceived emission Ẽ defined by

Ẽ =
N∑
i=1

Ẽit

satisfies
dẼt =

(
bt − f(Yt)

)
dt+ σtdW̃t,

where

bt =

N∑
i=1

b̃it, σt =

N∑
i=1

σit and f(x) =

N∑
i=1

[(ci)′]−1(x).

Again, since we are in a Brownian filtration, it follows from the martingale representation theorem
that there exists a progressively measurable process Z = (Zt)t∈[0,T ] such that

dYt = ZtdW̃t and E
[ ∫ T

0
|Zt|2dt

]
<∞.

Furthermore, we assume the existence of deterministic continuous functions [0, T ] × R 3 (t, e) ↪→
b(t, e) and [0, T ] 3 t ↪→ σ(t) such that bt = b(t, Et) and σt = σ(t), for all t ∈ [0, T ], Q-a.s.

Consequently, the processes Ẽ, Y , and Z satisfy a system of Forward Backward Stochastic Differen-
tial Equations (FBSDEs for short) which we restate for the sake of later reference:

(12)

{
dẼt =

(
b(t, Ẽt)− f(Yt)

)
dt+ σ(t)dW̃t, Ẽ0 = 0

dYt = ZtdWt, YT = λ1[Λ,+∞)(ẼT ).

Notice that since all the cost functions ci are strictly convex, f is strictly increasing. We shall make
the following additional assumptions:

b(t, e) is Lipschitz in e uniformly in t,(13)
σ ∈ L2([0, T ], dt) and inf [0,T ] σ

2 > 0,(14)
f is Lipschitz continuous (and strictly increasing).(15)

We denote by H0 the collection of all progressively measurable processes on [0, T ] × R, and we
introduce the subsets:

H2 :=
{
Z ∈ H0; E

∫ T

0
|Zs|2ds <∞

}
and S2 :=

{
Y ∈ H0; E[ sup

0≤t≤T
|Ys|2] <∞

}
.

3.3. Solving the Singular Equilibrium FBSDE. The purpose of this subsection is to prove exis-
tence and uniqueness of a solution to FBSDE (12).

Theorem 1. Under assumptions (13) to (15), for any λ > 0 and Λ ∈ R, FBSDE (12) admits a
unique solution (Ẽ, Y, Z) ∈ S2 × S2 × H2. Moreover, Ẽt is non-increasing with respect to λ and
non-decreasing with respect to Λ.

Proof. For any function ϕ, we write FBSDE(ϕ) for the FBSDE (12) when the indicator function
appearing in the terminal condition in the backward component of (12) is replaced by ϕ.
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(i) We first prove uniqueness. Let (Ẽ, Y, Z) and (Ẽ′, Y ′, Z ′) be two solutions of FBSDE (12).
Clearly it is sufficient to prove that Y = Y ′. Let us set:

δEt := Ẽt − Ẽ′t, δYt := Yt − Y ′t , δZt := Zt − Z ′t, and βt :=
b(t, Ẽt)− b(t, Ẽ′t)

δẼt
1{δẼt 6=0}.

Notice that (βt)0≤t≤T is a bounded process. By direct calculation, we see that

d(BtδEtδYt) = −BtδYt
(
f(Yt)− f(Y ′t )

)
dt+BtδEtδZtdW̃t where Bt := e−

∫ t
0 βsds.

Since δE0 = 0 and δET δYT = (ẼT − Ẽ′T )
(
g(ẼT )− g(Ẽ′T )

)
≥ 0, because g is nondecreasing, this

implies that

E
[ ∫ T

0
BtδYt

(
f(Yt)− f(Y ′t )

)
dt
]
≤ 0.

Since Bt > 0 and f is (strictly) increasing, this implies that δY = 0 dt ⊗ dQ−a.e. and therefore
Y = Y ′ by continuity.

(ii) We next prove existence. Let (gn)n≥1 be an increasing sequence of smooth non-decreasing
functions with gn ∈ [0, 1] and gn −→ g := 1(Λ,∞).
(ii-1) Since gn is smooth, the existence of a solution (Ẽn, Y n, Zn) ∈ S2 × S2 × H2 of FBSDE(gn)
follows from classical results (see [12] or [6]). Moreover Y n

t = un(t, Ẽnt ) for some deterministic
function un that takes values in [0, λ]. Since the sequence (gn)n≥1 is increasing, it follows from
Theorem 8.1 of [13] that the sequence of functions (un)n≥1 is non-decreasing. We may then define:

u(t, e) := lim
n→∞

↑ un(t, e), t ∈ [0, T ], e ∈ R+.

From Theorem 8.1 of [13], it also follows that, for each fixed n, un is non-decreasing in λ and non-
increasing in Λ. Therefore the same monotonicity properties hold for u.

By Theorem 1.3 in [7], for any ε > 0, un is locally Lipschitz in e uniformly in t on [0, T − ε],
uniformly in n. Then, the limit function u is locally Lipschitz in e, uniformly in t on any [0, T − ε].

Notice that the process Ẽn solves the (forward) stochastic differential equation

dẼnt =
(
b(t, Ẽnt )− f ◦ un(t, Ẽnt )

)
dt+ σ(t)dW̃t,

where here and in the following, we use the notation f ◦ u for the composition of the functions f and
u. Since f is increasing and the sequence (un)n≥1 is non-decreasing, it follows from the comparison
theorem for (forward) stochastic differential equations that the sequence of processes (Ẽn)n≥1 is
non-increasing. We may then define:

Êt := lim
n→∞

↓ Ẽnt for all t ∈ [0, T ).

Notice also that, for the same reason, for each n, Ẽn is non-increasing in λ and non-decreasing in Λ,
so that the same holds true for Ê.
(ii-2) To identify the dynamics of the limiting process Ê, we introduce the process Ẽ defined on [0, T )
as the unique strong solution of the stochastic differential equation

dẼt = (b− f ◦ u)(t, Ẽt)dt+ σ(t)dW̃t.
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The fact that the function u is bounded and locally Lipschitz, together with our assumptions on b
and f guarantee the existence of such a strong solution. Moreover, the Girsanov change of mea-
sure argument given below implies that this strong solution does not explode. Since un(t, e) =

λE[gn(ẼnT )|Ẽnt = e], and gn is non-decreasing, un(t, .) is non-decreasing, for any n, and the same
holds for u. We then use the fact that Ẽn ≥ Ẽ (from the classical comparison result for SDEs)
together with the increase of un(t, .) to compute, using Itô’s formula, that:

(Ẽnt − Ẽt)2 = 2

∫ t

0
(Ẽns − Ẽs)

(
(b− f ◦ un)(s, Ẽns )− (b− f ◦ u)(s, Ẽs)

)
ds

≤ C

∫ t

0

∣∣Ẽns − Ẽs∣∣2ds+ 2

∫ t

0
(Ẽns − Ẽs)(f ◦ u− f ◦ un)(s, Ẽs)ds

≤ (C + 1)

∫ t

0

∣∣Ẽns − Ẽs∣∣2ds+

∫ t

0

∣∣(f ◦ u− f ◦ un)(s, Ẽs)
∣∣2ds

by the Lipschitz property of the coefficient b. Then

sup
u≤t

(Ẽnu − Ẽu)2 ≤ (C + 1)

∫ t

0
sup
u≤s

∣∣Ẽnu − Ẽu∣∣2ds+

∫ t

0

∣∣(f ◦ u− f ◦ un)(s, Ẽs)
∣∣2ds,

and taking expectations, we see that

E
[

sup
u≤t

(Ẽnu − Ẽu)2
]
≤ (C + 1)

∫ t

0
E
[

sup
u≤s

(
Ẽnu − Ẽu

)2]
ds+ εn

where εn := E
[ ∫ T

0

∣∣(f ◦ u − f ◦ un)(s, Ẽs)
∣∣2ds] −→ 0, by the dominated convergence theorem.

Therefore it follows from the Gronwall’s inequality that Ẽn −→ Ẽ in S2, and as a consequence,
Ê = Ẽ.
(ii-3) Since f is bounded on [0,Λ], we may introduce an equivalent measure Q̃ ∼ Q under which the
process Bt := W̃t − σ−1f ◦ u(t, Ẽt), t ∈ [0, T ] is a Brownian motion. Then Ẽ solves the stochastic
differential equation

(16) dẼt = b(t, Ẽt)dt+ σ(t)dBt.

By (14), the function σ(.)2 is bounded away from zero on [0, T ]. Then, the law of ẼT under Q̃ has a
density with respect to the Lebesgue measure, and the same holds true under the equivalent measure
Q. Consequently, it follows from (16) that

(17) Q[ẼT = Λ] = 0,

which implies that we can use g = 1(Λ,∞) instead of 1[Λ,∞) in (12). Moreover, we also have:

(18) lim
n→∞

Q[ẼnT > Λ|Ft] = Q[ẼT > Λ|Ft]

for each t < T . The fact that gn ≤ g implies:

Y n
t = λEt[gn(ẼnT )] ≤ λEt[g(ẼnT )] −→ λEt[g(ẼT )]

as n → ∞ by (18). On the other hand, since ẼnT ≥ ẼT , it follows from the non-decrease of gn, the
dominated convergence theorem, and (18) that

Y n
t = Et[gn(ẼnT )] ≥ Et[gn(ẼT )] −→ Et[g(ẼT )].
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Hence Y n
t −→ Yt := λEt[g(ẼT )]. Now, let Z ∈ H2 be such that

Yt = λg(ẼT )−
∫ T

t
ZsdWs, t ∈ [0, T ].

Notice that Y takes values in [0, λ], and therefore Y ∈ S2. Similarly, using the increase and the
decrease of the sequences (un)n and (En)n respectively, together with the increase of un(t, .) and
u(t, .), we see that for t ∈ [0, T ]:

u(t, Ẽt) = lim
n→∞

un(t, Ẽt) ≤ lim inf
n→∞

un(t, Ẽnt ) ≤ lim sup
n→∞

un(t, Ẽnt ) ≤ lim
n→∞

u(t, Ẽnt ) = u(t, Ẽt).

Since Y n
t = un(t, Ẽnt ), this shows that Yt = u(t, Ẽt) on [0, T ), and the proof is complete. �

Impact on the model for emission control. As expected, the previous result implies that the tougher
the regulation (i.e. the larger λ and/or the smaller Λ), the higher the emission reductions (the lower
Ẽt). In particular, in the absence of regulation which corresponds to λ = 0, the aggregate level of
emissions is at its highest.

4. ENLIGHTENING EXAMPLE OF A SINGULAR FBSDE

We saw in the previous section that when the forward dynamics are non-degenerate, the terminal
condition of the backward equation can be a discontinuous function of the terminal value of the
forward component without threatening existence or uniqueness of a solution to the FBSDE. In this
section, we show that this is not the case when the forward dynamics are degenerate, even if they are
hypoelliptic and the solution of the forward equation has a density. We explained in the introduction
why this seemingly pathological mathematical property should not come as a surprise in the context
of equilibrium models for cap-and-trade schemes.

Motivated by the second model given in subsection 2.2, we consider the FBSDE:

(19)


dPt = dWt,

dEt =
(
Pt − Yt

)
dt,

dYt = ZtdWt, 0 ≤ t ≤ T,
with the terminal condition

(20) YT = 1[Λ,∞)(ET ),

for some real number Λ. Here, (Wt)t∈[0,T ] is a one-dimensional Wiener process. This unrealistic
model corresponds to quadratic costs of production, and choosing appropriate units for the penalty λ
and the emission rate ε to be 1. Our interest in this model is the outcome of its mathematical analysis,
not its realism! We prove the following unexpected result.

Theorem 2. Given (p, e) ∈ R2, there exists a unique progressively measurable triple (Pt, Et, Yt)0≤t≤T
satisfying (19) together with the initial conditions P0 = p and E0 = e, and

(21) 1(Λ,∞)(ET ) ≤ YT ≤ 1[Λ,∞)(ET ).

Moreover, the marginal distribution of Et is absolutely continuous with respect to the Lebesgue mea-
sure for any 0 ≤ t < T , but has a Dirac mass at Λ when t = T . In other words:

P{ET = Λ} > 0.
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In particular, (Pt, Et, Yt)0≤t≤T may not satisfy the terminal condition P{YT = 1[Λ,∞)(ET )} = 1.
However, the weaker form (21) of terminal condition is sufficient to guarantee uniqueness.

Before we engage in the technicalities of the proof we notice that the transformation

(22) (Pt, Et)0≤t≤T ↪→ (Ēt = Et + (T − t)Pt)0≤t≤T

maps the original FBSDE (19) into the simpler one

(23)

{
dĒt = −Ytdt+ (T − t)dWt,

dYt = ZtdWt,

with the same terminal condition YT = 1[Λ,∞)(ĒT ). Moreover, the dynamics of (Et)0≤t≤T can
be recovered from those of (Ēt)0≤t≤T since (Pt)0≤t≤T in (19) is purely autonomous. In particular,
except for the proof of the absolute continuity of Et for t < T , we restrict our analysis to the proof
of Theorem 2, for Ē solution of (23) since E and Ē have the same terminal values at time T .

We emphasize that system (23) is doubly singular at maturity time T : the diffusion coefficient of
the forward equation vanishes as t tends to T and the boundary condition of the backward equation
is discontinuous at point Λ. Together, both singularities make the emission process accumulate a
non-zero mass at time T and at point Λ. This phenomenon must be seen as a stochastic residual of
the shock wave observed in the inviscid Burgers equation

(24) ∂tv(t, e)− v(t, e)∂ev(t, e) = 0, t ∈ [0, T ), e ∈ R,

with v(T, e) = 1[Λ,+∞)(e) as boundary condition. (As explained below, equation (24) is the first-
order version of the second-order equation associated with (23).)

Indeed, it is well-known that the characteristics of (24) may meet at time T and at point Λ. By
analogy, the trajectories of the forward process in (23) may hit Λ at time T with a non-zero probability,
then producing a Dirac mass. In other words, the shock phenomenon behaves like a trap into which
the process (Et)0≤t≤T (or equivalently the process (Ēt)0≤t≤T ) may fall with a non-zero probability.
It is then well-understood that the noise plugged into the forward process (Ēt)0≤t≤T may help it to
escape the trap. For example, we saw in Section 3 that the emission process did not see the trap in
the uniformly elliptic setting. In the current framework, the diffusion coefficient vanishes in a linear
way as time tends to the maturity: it decays too fast to prevent almost every realization of the process
from falling into the trap.

As before, we prove existence of a solution to (23) by first smoothing the singularity in the ter-
minal condition, solving the problem for a smooth terminal condition, and obtaining a solution to
the original problem by a limiting argument. However, in order to prove the existence of a limit, we
will use PDE a priori estimates and compactness arguments instead of comparison and monotonicity
arguments. We call mollified equation the system (23) with a terminal condition

(25) YT = φ(ĒT ),

given by a Lipschitz non-decreasing function φ from R to [0, 1] which we view as an approximation
of the indicator function appearing in the terminal condition (20).
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4.1. Lipschitz Regularity in Space.

Proposition 3. Assume that the terminal condition in (23) is given by (25) with a Lipschitz non-
decreasing function φ with values in [0, 1]. Then, for each (t0, e) ∈ [0, T ]× R, (23) admits a unique
solution (Ēt0,et , Y t0,e

t , Zt0,et )t0≤t≤T satisfying Ēt0,et0
= e and Y t0,e

T = φ(Ēt0,eT ) . Moreover, the map-
ping

(t, e) ↪→ v(t, e) = Y t,e
t

is [0, 1]-valued, is of class C1,2 on [0, T )×R and has Hölder continuous first-order derivative in time
and first and second-order derivatives in space.

Moreover, the Hölder norms of v, ∂ev, ∂2
e,ev and ∂tv on a given compact subset of [0, T ) × R do

not depend upon the smoothness of φ provided φ is [0, 1]-valued and non-decreasing. Specifically, the
first-order derivative in space satisfies

(26) 0 ≤ ∂ev(t, e) ≤ 1

T − t
, t ∈ [0, T ).

In particular, e ↪→ v(t, e) is non-decreasing for any t ∈ [0, T ).
Finally, for a given initial condition (t0, e), the processes (Y t0,e

t )t0≤t≤T and (Zt0,et )t0≤t<T , solu-
tion to the backward equation in (23) (with φ as boundary condition), are given by:

(27) Y t0,e
t = v(t, Ēt0,et ), t0 ≤ t ≤ T ; Zt0,et = (T − t)∂ev(t, Ēt0,et ), t0 ≤ t < T.

Proof. The problem is to solve the system

(28)

{
dĒt = −Ytdt+ (T − t)dWt,

dYt = ZtdWt,

with ξ = φ(ĒT ) as terminal condition and (t0, e) as initial condition. The drift in the first equation,
i.e. (t, y) ∈ [0, T ] × R ↪→ −y, is decreasing in y, and Lipschitz continuous, uniformly in t. By
Theorem 2.2 in Peng and Wu [15] (with G = 1, β1 = 0 and β2 = 1 therein), we know that equation
(28) admits at most one solution. Unfortunately, Theorem 2.6 in Peng and Wu (see also Remark 2.8
therein) does not apply to prove existence directly.

To prove existence, we use a variation of the induction method in Delarue [6]. By Theorem 1.1 in
[6], existence and uniqueness are known to hold in small time. Specifically, we can find some small
positive real δ, possibly depending on the Lipschitz constant of φ, such that (28) admits a unique
solution for T − t0 ≤ δ. Remember that the initial condition is Ēt0 = e. As a consequence, we can
define the value function v : (t0, e) ∈ [T−δ, T ]×R ↪→ Y t0,e

t0
. By Corollary 1.5 in [6], it is known to be

Lipschitz in space uniformly in time as long as the time parameter remains in [T−δ, T ]. The diffusion
coefficient T − t in (28) being uniformly bounded away from 0 on the interval [0, T − δ], by Theorem
2.6 in [6], (28) admits a unique solution on [t0, T−δ]. Therefore, we can construct a solution to (28) in
two steps: we first solve (28) on [t0, T−δ] with Ēt0 = e as initial condition and v(T−δ, ·) as terminal
condition, the solution being denoted by (Ēt, Yt, Zt)t0≤t≤T−δ; then, we solve (28) on [T − δ, T ] with
the previous ĒT−δ as initial condition and with φ as terminal condition, the solution being denoted
by (Ē′t, Y

′
t , Z

′
t)T−δ≤t≤T . We already know that Ē′T−δ matches ĒT−δ. To patch (Ēt, Yt, Zt)t0≤t≤T−δ

and (Ē′t, Y
′
t , Z

′
t)T−δ≤t≤T into a single solution over the whole time interval [t0, T ], it is sufficient

to check the continuity property YT−δ = Y ′T−δ as done in Delarue [6]. This continuity property
is a straightforward consequence of Corollary 1.5 in [6]: on [T − δ, T ], (Y ′t )T−δ≤t≤T has the form
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Y ′t = v(t, Ē′t). In particular, Y ′T−δ = v(T − δ, Ē′T−δ) = v(T − δ, ĒT−δ) = YT−δ. This proves the
existence of a solution to (28) with Ēt0 = e as initial condition.

We conclude that, for any (t0, e), (28) admits a unique solution (Ēt0,et , Y t0,e
t , Zt0,et )t0≤t≤T satisfy-

ing Ēt0,et0
= e and Y t0,e

T = φ(Ēt0,eT ). In particular, the value function v : (t0, e) ↪→ Y t0,e
t0

(i.e. the
value at time t0 of the solution (Yt)t0≤t≤T under the initial condition Ēt0 = e) can be defined on the
whole [0, T ]× R.

From Corollary 1.5 in [6] and the discussion above, we know that the mapping e ↪→ v(t, e) is
Lipschitz continuous when T − t is less than δ and that, for any t0 ∈ [0, T ], Y t0,e

t has the form
Y t0,e
t = v(t, Ēt0,et ) when T − t is less than δ. In particular, on any [0, T − δ′], δ′ being less than δ,

(28) may be seen as a uniformly elliptic FBSDE with a Lipschitz boundary condition. By Theorem
2.1 in Delarue and Guatteri [8] (together with the discussion in Section 8 therein), we deduce that v
belongs to C0([0, T ] × R,R) ∩ C1,2([0, T ) × R,R), that t ↪→ ‖∂ev(t, ·)‖∞ is bounded on the whole
[0, T ] and that t ↪→ ‖∂2

eev(t, ·)‖∞ is bounded on every compact subset of [0, T )1. Moreover, (27)
holds.

By the martingale property of (Y t0,e
t )t0≤t≤T , it is well-seen that v is [0, 1]-valued. To prove that it

is non-decreasing (with respect to e), we follow the proof of Theorem 1. We notice that (Ēt0,et )t0≤t≤T
satisfies the SDE:

dĒt0,et = −v(t, Ēt0,et )dt+ (T − t)dWt, t0 ≤ t ≤ T,

which has a Lipschitz drift with respect to the space variable. In particular, for e ≤ e′, Ēt0,eT ≤ Ēt0,e
′

T ,
so that v(t0, e) = E[φ(Ēt0,eT )] ≤ E[φ(Ēt0,e

′

T )] = v(t0, e
′).

We now establish (26). For t0 ≤ t ≤ T , the forward equation in (28) has the form

(29) Ēt0,et = e−
∫ t

t0

v(s, Ēt0,es )ds+

∫ t

t0

(T − s)dWs.

Since v is C1 in space on [0, T ) × R with bounded Lipschitz first-order derivative, we can apply
standard results on the differentiability of stochastic flows (see for example Kunita’s monograph [10]).
We deduce that, for almost every realization of the randomness and for any t ∈ [t0, T ), the mapping
e ↪→ Ēt0,et is differentiable and

(30) ∂eĒ
t0,e
t = 1−

∫ t

t0

∂ev(s, Ēt0,es )∂eĒ
t0,e
s ds.

In particular,

(31) ∂eĒ
t0,e
t = exp

(
−
∫ t

t0

∂ev(s, Ēt0,es )ds

)
.

Since v is non-decreasing, we know that ∂ev ≥ 0 on [0, T )×R so that ∂eĒ
t0,e
t belongs to [0, 1]. Since

∂ev is also bounded on the whole [0, T )×R, we deduce by differentiating the right-hand side in (29)

1Specifically, Theorem 2.1 in [8] says that v belongs to C0([0, T ) × R,R) and that t ↪→ ‖∂ev(t, ·)‖∞ is bounded on
every compact subset of [0, T ). In fact, by Corollary 1.5 in Delarue [6], we know that v belongs to C0([T − δ, T ]× R,R)
and that t ↪→ ‖∂ev(t, ·)‖∞ is bounded on [T − δ, T ] for δ small enough.
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with t = T that ∂eĒ
t0,e
T exists as well and that ∂eĒ

t0,e
T = limt→T ∂eĒ

t0,e
t ∈ [0, 1]. To complete the

proof of (26), we then notice that for any t ∈ [t0, T ],

d
[
(T − t)Y t0,e

t − Ēt0,et

]
= (T − t)dY t0,e

t − (T − t)dWt = (T − t)[Zt0,et − 1]dWt,

so that taking the expectations we get:

(T − t0)v(t0, e)− e = −E
[
Ēt0,eT

]
.

Now, differentiating with respect to e, we have:

(T − t0)∂ev(t0, e) = 1− E
[
∂eĒ

t0,e
T

]
≤ 1,

which concludes the proof of (26).
It now remains to investigate the Hölder norms (both in time and space) of v, ∂ev, ∂2

eev and ∂tv.
We first deal with v itself. For 0 < t < s < T ,

v(s, e)− v(t, e) = v(s, e)− v(s, Ēt,es ) + v(s, Ēt,es )− v(t, e)

= v(s, e)− v(s, Ēt,es ) + Y t,e
s − Y

t,e
t

= v(s, e)− v(s, Ēt,es ) +

∫ s

t
Zt,er dBr.

From (26), we deduce

|v(s, e)− v(t, e)| ≤ 1

T − s
E
∣∣Ēt,es − e∣∣+ E

[∣∣∣∣∫ s

t
Zt,er dBr

∣∣∣∣]
≤ 1

T − s

[
s− t+

(∫ s

t
(T − r)2dr

)1/2]
+ E

[∫ s

t
|Zt,er |2dr

]1/2

≤ 1

T − s

[
s− t+

(∫ s

t
(T − r)2dr

)1/2]
+ (s− t)1/2,

since Zt,er = (T − r)∂ev(r, Ēt,er ) ∈ [0, 1]. So for ε > 0, v is 1/2-Hölder continuous in time t ∈
[0, T − ε], uniformly in space and in the smoothness of φ.

Now, by Theorem 2.1 in Delarue and Guatteri [8], we know that v satisfies the PDE

∂tv(t, e) +
(T − t)2

2
∂2
eev(t, e)− v(t, e)∂ev(t, e) = 0, t ∈ [0, T ), e ∈ R,(32)

with φ as boundary condition. On [0, T − ε] × R, ε > 0, equation (32) is a non-degenerate second-
order PDE of dimension 1 with −v as drift, this drift being C1/2,1-continuous independently of the
smoothness of φ. By well-known results in PDEs (so called Schauder estimates, see for example
Theorem 8.11.1 in Krylov [9]), for any small η > 0, the C(3−η)/2,3−η-norm of v on [0, T − ε]× R is
independent of the smoothness of φ. �

Remark 5. As announced, equation (32) is of Burgers type. In particular, it has the same first-order
part as equation (24).
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4.2. Boundary Behavior. Still in the framework of a terminal condition given by a smooth (i.e.
non-decreasing Lipschitz) function with values in [0, 1], we investigate the shape of the solution as t
approaches T .

Proposition 4. Assume that there exists some real Λ+ such that φ(e) = 1 on [Λ+,+∞). Then, there
exists a universal constant c > 0 such that for any δ > 0

(33) v
(
t,Λ+ + T − t+ δ

)
≥ 1− exp

(
−c δ2

(T − t)3

)
, 0 ≤ t < T.

In particular, v(t, e)→ 1 as t↗ T uniformly in e in compact subsets of (Λ+,+∞).
Similarly, assume that there exists an interval (−∞,Λ−] such that φ(e) = 0 on (−∞,Λ−]. Then,

for any δ > 0,

(34) v(t,Λ− − δ) ≤ exp
(
−c δ2

(T − t)3

)
.

In particular, v(t, e)→ 0 as t↗ T uniformly in e in compact subsets of (−∞,Λ−).

Proof. We only prove (33), the proof of (34) being similar. To do so, we fix (t0, e) ∈ [0, T )× R and
consider the following system {

dE−t = −dt+ (T − t)dWt

dY −t = Z−t dWt, t0 ≤ t ≤ T,

with E−t0 = e as initial condition for the forward equation and Y −T = φ(E−T ) as terminal condition
for the backward part. The solution (Ēt0,et , Y t0,e

t , Zt0,et )t0≤t≤T given by Proposition 3 with Ēt0,et0
= e

and Y t0,e
T = φ(Ēt0,eT ) satisfies Y t0,e

t ∈ [0, 1] for any t ∈ [t0, T ] so that E−t ≤ Ēt0,et almost surely for
t ∈ [t0, T ]. Now, since φ is non-decreasing, φ(E−T ) ≤ φ(Ēt0,eT ) almost surely, namely Y −t0 ≤ Y t0,e

t0
.

Setting v−(t0, e) = Y −t0 , recall that Y −t0 is deterministic, we see that:

(35) v−(t0, e) ≤ v(t0, e) ≤ 1.

Now, since

v−(t0, e) = E
[
φ(E−T )

]
= E

[
φ

(
e− (T − t0) +

∫ T

t0

(T − s)dWs

)]
with φ ≥ 1[Λ+,+∞), by choosing e = Λ+ + (T − t0) + δ as in the statement of Proposition 4 we get:

E
[
φ(E−T )

]
= E

[
φ

(
Λ+ + δ +

∫ T

t0

(T − s)dWs

)]
≥ P

{
Λ+ + δ +

∫ T

t0

(T − s)dWs ≥ Λ+

}
= P

{∫ T

t0

(T − s)dWs ≥ −δ
}

= 1− P
{∫ T

t0

(T − s)dWs ≤ −δ
}

and we complete the proof by applying standard estimates for the decay of the cumulative distribution
function of a Gaussian random variable. Note indeed that var(

∫ T
t0

(T − s)dWs) = (T − t0)3/3 if we
use the notation var(ξ) for the variance of a random variable ξ. �
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The following corollary elucidates the boundary behavior between Λ− and Λ+ + (T − t) with Λ−

and Λ+ as above.

Corollary 1. Choose φ as in Proposition 4. If there exists an interval [Λ+,+∞) on which φ(e) = 1,
then for α > 0 and e < Λ+ + (T − t) + (T − t)1+α we have:

(36) v(t, e) ≥ e− Λ+

T − t
− exp

(
− c

(T − t)1−2α

)
− (T − t)α,

for the same c as in the statement of Proposition 4.
Similarly, if there exists an interval (−∞,Λ−] on which φ(e) = 0, then for α > 0 and e >

Λ− − (T − t)1+α we have:

(37) v(t, e) ≤ e− Λ−

T − t
+ exp

(
− c

(T − t)1−2α

)
+ (T − t)α.

Proof. We first prove (36). Since v(t, ·) is 1/(T − t) Lipschitz continuous, we have:

v
(
t,Λ+ + (T − t) + (T − t)1+α

)
− v(t, e) ≤ Λ+ − e+ (T − t) + (T − t)1+α

T − t

=
Λ+ − e
T − t

+ 1 + (T − t)α.

Therefore,

v(t, e) ≥ v
(
t,Λ+ + (T − t) + (T − t)1+α

)
− 1− (T − t)α − Λ+ − e

T − t
,

and applying (33)

v(t, e) ≥ e− Λ+

T − t
− exp

(
−c(T − t)2α−1

)
− (T − t)α.

For the upper bound, we use the same strategy. We start from

v(t, e)− v
(
t,Λ− − (T − t)1+α

)
≤ e− Λ−

T − t
+ (T − t)α,

so that

v(t, e) ≤ e− Λ−

T − t
+ exp

(
−c(T − t)2α−1

)
+ (T − t)α.

�

4.3. Existence of a Solution. We now establish the existence of a solution to (23) with the original
terminal condition. We use a compactness argument giving the existence of a value function for the
problem.

Proposition 5. There exists a continuous function v : [0, T )× R ↪→ [0, 1] satisfying
(1) v belongs to C1,2([0, T )× R,R) and solves the PDE (32),
(2) v(t, ·) is non-decreasing and 1/(T − t)-Lipschitz continuous for any t ∈ [0, T ),
(3) v satisfies (33) and (34) with Λ− = Λ+ = Λ,
(4) v satisfies (36) and (37) with Λ− = Λ+ = Λ,
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and for any initial condition (t0, e) ∈ [0, T )× R, the strong solution (Ēt0,et )t0≤t<T of

(38) Ēt = e−
∫ t

t0

v(s, Ēs)ds+

∫ t

t0

(T − s)dWs, t0 ≤ t < T,

is such that (v(t, Ēt0,et ))t0≤t<T is a martingale with respect to the filtration generated by W .

Proof. Choose a sequence of [0, 1]-valued smooth non-decreasing functions (φn)n≥1 such that φn(e) =
0 for e ≤ Λ− 1/n and φn(e) = 1 for e ≥ Λ + 1/n, n ≥ 1, and denote by (vn)n≥1 the corresponding
sequence of functions given by Proposition 3. By Proposition 3, we can extract a subsequence, which
we will still index by n, converging uniformly on compact subsets of [0, T ) × R. We denote by v
such a limit. Clearly, v satisfies (1) in the statement of Proposition 5. Moreover, it also satisfies (2)
because of Proposition 3, (3) by Proposition 4, and (4) by Corollary 1. Having Lipschitz coefficients,
the stochastic differential equation (38) has a unique strong solution on [t0, T ) for any initial condition
Ēt0 = e. If we denote the solution by (Ēt0,et )t0≤t<T , Itô’s formula and the PDE (32), imply that the
process (v(t, Ēt0,et ))t0≤t<T is a local martingale. Since it is bounded, it is a bona fide martingale. �

We finally obtain the desired solution to the FBSDE in the sense of Theorem 2.

Proposition 6. v and (Ēt0,et )t0≤t<T being as above and setting

Y t0,e
t = v(t, Ēt0,et ), Zt0,et = (T − t)∂ev(t, Ēt0,et ), t0 ≤ t < T,

the process (Ēt0,et )t0≤t<T has an a.s. limit Ēt0,eT as t tends to T . Similarly, the process (Y t0,e
t )t0≤t<T

has an a.s. limit Y t0,e
T as t tends to T and the extended process (Y t0,e

t )t0≤t≤T is a martingale with
respect to the filtration generated by W . Morever, P-a.s., we have:

(39) 1(Λ,∞)(Ē
t0,e
T ) ≤ Y t0,e

T ≤ 1[Λ,∞)(Ē
t0,e
T ).

and

(40) Y t0,e
T = Y t0,e

t0
+

∫ T

t0

Zt0,et dWt,

Notice that Zt0,et is not defined for t = T .

Proof. The proof is straightforward now that we have collected all the necessary ingredients. We start
with the extension of (Ēt0,et )t0≤t<T up to time T . The only problem is to extend the drift part in (38),
but since v is non-negative and bounded, it is clear that the process(∫ t

t0

v(s, Ēt0,es )ds

)
t0≤t<T

is almost-surely increasing in t, so that the limit exists. The extension of (Y t0,e
t )t0≤t<T up to time T

follows from the almost-sure convergence theorem for positive martingales.
To prove (39), we apply (3) in the statement of Proposition 5. If Ēt0,eT = limt→T Ē

t0,e
t > Λ,

then we can find some δ > 0 such that Ēt0,et > Λ + (T − t) + δ for t close to T , so that Y t0,e
t =

v(t, Ēt0,et ) ≥ 1 − exp[−cδ2/(T − t)3] for t close to T , i.e. Y t0,e
T ≥ 1. Since Y t0,e

T ≤ 1, we deduce
that

Ēt0,eT > Λ⇒ Y t0,e
T = 1.
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In the same way,

Ēt0,eT < Λ⇒ Y t0,e
T = 0.

This proves (39). Finally (40) follows from Itô’s formula. Indeed, by Itô’s formula and (32),

Y t0,e
t = Y t0,e

t0
+

∫ t

t0

Zt0,es dWs, t0 ≤ t < T.

By definition, Zt0,es = (T −s)∂ev(s, Ēt0,es ), t0 ≤ s < T . By Point (2) in the statement of Proposition
5, it is in [0, 1]. Therefore, the Itô integral ∫ T

t0

Zt0,es dWs

makes sense as an element of L2(Ω,P). This proves (40). �

4.4. Improved Gradient Estimates. Using again standard results on the differentiability of sto-
chastic flows (see again Kunita’s monograph [10]) we see that formulae (30) and (31) still hold in
the present situation of a discontinuous terminal condition. We also prove a representation for the
gradient of v of Malliavin-Bismut type.

Proposition 7. For t0 ∈ [0, T ), ∂ev(t0, e) admits the representation

(41) ∂ev(t0, e) = 2(T − t0)−2E
[

lim
δ→0

v
(
T − δ, Ēt0,eT−δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
.

In particular, there exists some constant A > 0 such that

(42) sup
|e|>A

sup
0≤t≤T

∂ev(t, e) < +∞.

Proof. For δ > 0, Proposition 6 yields

E
[
v
(
T − δ, Ēt0,eT−δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
= E

[∫ T−δ

t0

Zt0,et dWt

∫ T

t0

∂eĒ
t0,e
t dWt

]
= E

[∫ T−δ

t0

(T − t)∂ev
(
t, Ēt0,et

)
∂eĒ

t0,e
t dt

]
.

By the bounds we have on ∂ev and (∂eĒ
t0,e
t )t0≤t<T , we can exchange the symbols E and

∫
. We

obtain:

E
[
v
(
T − δ, Ēt0,eT−δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
=

∫ T−δ

t0

(T − t)E
[
∂e
[
v
(
t, Ēt0,et

)]]
dt.

Similarly, we can exchange the symbols E and ∂e, so that

E
[
v
(
T − δ, Ēt0,eT−δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
=

∫ T−δ

t0

(T − t)∂e
[
E
[
v
(
t, Ēt0,et

)]]
dt.
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Since (v(t, Ēt0,et ))t0≤t≤T−δ is a martingale, we deduce:

E
[
v
(
T − δ, Ēt0,eT−δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
= ∂ev(t0, e)

∫ T−δ

t0

(T − t)dt

=
1

2
(T − δ − t0)(T + δ − t0)∂ev(t0, e).

Letting δ tend to zero and applying dominated convergence, we complete the proof of the representa-
tion formula of the gradient.

To derive the bound (42), we emphasize that, for e away from Λ (say for example e � Λ), the
probability that (Ēt0,et )t0≤t≤T hits Λ is very small and decays exponentially fast as T − t0 tends to
0. On the complement, i.e. for supt0≤t≤T Ē

t0,e
t < Λ, we know that v(t, Ēt0,et ) tends to 0 as t tends

to T . Specifically, following the proof of Proposition 4, there exists a universal constant c′ > 0 such
that for any e ≤ Λ− 1 and t0 ∈ [0, T )

(T − t0)2∂ev(t0, e) ≤ 2(T − t0)1/2P1/2
{

sup
t0≤t≤T

Ēt0,et ≥ Λ
}

≤ 2(T − t0)1/2P1/2
{

Λ− 1 + sup
t0≤t≤T

∫ t

t0

(T − s)dWs ≥ Λ
}

≤ 2(T − t0)1/2P1/2
{

sup
t0≤t≤T

∫ t

t0

(T − s)dWs ≥ 1
}

≤ 2(T − t0)1/2 exp
(
− c′

(T − t0)3

)
,

the last line following from maximal inequality (IV.37.12) in Rogers and Williams [17].
The same argument holds for e > Λ + 2 by noting that (41) also holds for v − 1. �

Remark 6. The stochastic integral in the Malliavin-Bismut formula (41) is at most of order (T −
t0)1/2. Therefore, the typical resulting bound we obtain for ∂ev(t, e) in the neighborhood of (T,Λ) is
(T − t)−3/2. Obviously, it is less accurate than the bound given by Propositions 3 and 5. This says
that the Lipschitz smoothing of the singularity of the boundary condition obtained in Propositions 3
and 5, namely ∂ev(t, e) ≤ (T − t)−1, follows from the first-order Burgers structure of the PDE (32)
and that the diffusion term plays no role in it. This a clue to understand why the diffusion process Ē
feels the trap made by the boundary condition. On the opposite, the typical bound for ∂ev(t, e) we
would obtain in the uniformly elliptic by applying a Malliavin-Bismut formula (see Exercice 2.3.5 in
Nualart [14]) is of order (T − t)−1/2, which is much better than (T − t)−1.

Nevertheless, the following proposition shows that the diffusion term permits to improve the bound
obtained in Propositions 3 and 5. Because of the noise plugged into Ē, the bound (T − t)−1 cannot
be achieved. This makes a real difference with the inviscid Burgers equation (24) which admits

(t, e) ∈ [0, T )× R ↪→ ψ
(e− Λ

T − t
)
,

as solution, with ψ(e) = 1 ∧ e+ for e ∈ R. (See for example (10.12’) in Lax [11].)

We thus prove the following stronger version of Propositions 3 and 5:

Proposition 8. For any (t0, e) ∈ [0, T )× R, it holds (T − t0)∂ev(t0, e) < 1.
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Proof. Given (t0, e) ∈ [0, T ) × R, we consider (Ēt0,et , Y t0,e
t , Zt0,et )t0≤t≤T as in the statement of

Proposition 6. As in the proof of Proposition 3, we start from

d
[
(T − t)Y t0,e

t − Ēt0,et

]
= (T − t)dY t0,e

t − (T − t)dWt = (T − t)[Zt0,et − 1]dWt, t0 ≤ t < T.

Therefore, for any initial condition (t0, e),

(T − t0)v(t0, e)− e = −E
[
Ēt0,eT

]
.

Unfortunately, we do not know whether Ēt0,eT is differentiable with respect to e. Anyhow,

(T − t0)∂ev(t0, e) = 1− lim
h→0

h−1E
[
Ēt0,e+hT − Ēt0,eT

]
= 1− lim

h→0
h−1 lim

t↗T
E
[
Ēt0,e+ht − Ēt0,et

]
≤ 1− lim

h→0
lim
t↗T

inf
|u|≤h

E
[
∂eĒ

t0,e+u
t

]
Using (31), the non-negativity of ∂ev and Fatou’s lemma,

(T − t0)∂ev(t0, e) ≤ 1− lim
h→0

lim
t↗T

inf
|u|≤h

E
[
exp

(
−
∫ t

t0

∂ev(s, Ēt0,e+us )ds

)]
≤ 1− lim

h→0
inf
|u|≤h

E
[
exp

(
−
∫ T

t0

∂ev(s, Ēt0,e+us )ds

)]
≤ 1− E

[
exp

(
− lim
h→0

sup
|u|≤h

∫ T

t0

∂ev(s, Ēt0,e+us )ds

)]
.

Consequently, in order to prove that (T − t0)∂ev(t0, e) < 1, it is enough to prove that the limit
superior

(43) lim
h→0

sup
|u|≤h

∫ T

t0

∂ev(t, Ēt0,e+ut )dt

is finite with a non-zero probability. To do so, the Lipschitz bound given by Proposition 3 is not
sufficient since the integral of the bound is divergent. To overcome this difficulty, we use (42): with
non-zero probability, the values of the process (Ēt)t0≤t≤T at the neighborhood of T may be made as
large as desired. Precisely, for A as in Proposition 7, it is sufficient to prove that there exists δ > 0

small enough such that P{inf |h|≤1 infT−δ≤t≤T Ē
t0,e+h
t > A} > 0. For δ > 0, we deduce from the

boundedness of the drift in (38) that

P
{

inf
|h|≤1

inf
T−δ≤t≤T

Ēt0,e+ht > A
}
≥ P

{
e− 1− (T − t0) + inf

T−δ≤t≤T

∫ t

t0

(T − s)dWs > A

}
.

By independence of the increments of the Wiener integral, we get

P
{

inf
|h|≤1

inf
T−δ≤t≤T

Ēt0,e+ht > A
}

≥ P
{
e− 1− (T − t0) +

∫ T−δ

t0

(T − s)dWs > 2A

}
P
{

inf
T−δ≤t≤T

∫ t

T−δ
(T − s)dWs > −A

}
.
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The first probability in the above right-hand side is clearly positive for T − δ > t0. The second one
is equal to

P
{

inf
T−δ≤t≤T

∫ t

T−δ
(T − s)dWs > −A

}
= 1− P

{
sup

T−δ≤t≤T

∫ t

T−δ
(T − s)dWs ≥ A

}
.

Using maximal inequality (IV.37.12) in Rogers and Williams [17], the above right hand-side is always
positive. By (42), we deduce that, with non-zero probability, the limit superior in (43) is finite. �

4.5. Distribution of Ēt for t0 ≤ t ≤ T . We finally claim:

Proposition 9. Keep the notation of Propositions 5 and 6 and choose some starting point (t0, e) ∈
[0, T )× R and some p ∈ R. Then, for every t ∈ [t0, T ), the law of the variable

Et0,e,pt = Ēt0,et − (T − t)P pt = Ēt0,et − (T − t)
[
p+Wt

]
,

obtained by transformation (22), is absolutely continuous with respect to the Lebesgue measure. At
time t = T , it has a Dirac mass at point Λ.

Proof. Obviously, we can assume p = 0, so that Pt = Wt. (For simplicity, we will write Et0,et for
Et0,e,pt .) We start with the absolute continuity of Et0,et at time t < T . Since v is smooth away from
T , we can compute the Malliavin derivative of Et0,et . (See Theorem 2.2.1 in Nualart [14].) It satisfies

DsE
t0,e
t = t−s−

∫ t

s
∂ev
(
r, Et0,er +(T−r)Wr

)
DsE

t0,e
r dr−

∫ t

s
(T−r)∂ev

(
r, Et0,er +(T−r)Wr

)
dr,

for t0 ≤ s ≤ t. In particular,

DsE
t0,e
t =

∫ t

s

[[
1− (T − r)∂ev

(
r, Et0,er + (T − r)Wr

)]
× exp

(
−
∫ t

r
∂ev
(
u,Et0,eu + (T − u)Wu

)
du

)]
dr.

(44)

By Proposition 8, we deduce that DsE
t0,e
t > 0 for any t0 ≤ s ≤ t. By Theorem 2.1.3 in Nualart [14],

we deduce that the law of Et0,et has a density with respect to the Lebesgue measure.
To prove the existence of a point mass at time T , it is enough to focus on Ēt0,eT since the latter is

equal to Et0,eT . We prove the desired result by comparing the stochastic dynamics of Ēt0,eT to the time
evolution of solutions of simpler stochastic differential equations. With the notation used so far, Ēt0,et

is a solution of the SDE

(45) dĒt = −v(t, Ēt)dt+ (T − t)dWt

so it is natural to compare the solution of this SDE to solutions of SDEs with similar drifts. Following
Remark 5, we are going to do so by comparing v with the solution of the inviscid Burgers equation
(24). To this effect we use once more the function ψ defined by ψ(e) = 1∧ e+ introduced earlier. As
said in Remark 6, the function ψ((e− Λ)/(T − t)) is a solution of the Burgers equation (24) which,
up to the diffusion term (which decreases to 0 like (T − t)2 when t ↗ T ), is the same as the PDE
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satisfied by v. Using (33) and (34) with Λ− = Λ+ = Λ and δ = (T − t)5/4, and (36) and (37) with
Λ− = Λ+ = Λ and α = 1/4, we have

(46)
∣∣v(t, e)− ψ

(e− Λ

T − t
)∣∣ ≤ C(T − t)1/4,

for some universal constant C. We now compare (45) with

(47) dX±t = −ψ
(X±t − Λ

T − t
)
dt± C(T − t)1/4dt+ (T − t)dWt, t0 ≤ t < T,

with X±t0 = e as initial conditions. Clearly,

(48) X−t ≤ Ē
e,t0
t ≤ X+

t , t0 ≤ t < T.

Knowing that ψ(x) = xwhen 0 ≤ x ≤ 1, we anticipate that scenarios satisfying 0 ≤ X±t −Λ ≤ T−t
can be viewed as solving the SDEs

dZ±t = −Z
±
t − Λ

T − t
dt± C(T − t)1/4dt+ (T − t)dWt,

with Z±t0 = e as initial conditions. This remark is useful because these SDEs have explicit solutions:

(49) Z±t = Λ + (T − t)
[
Wt −Wt0 ∓ 4C(T − t)1/4 ± 4C(T − t0)1/4 +

e− Λ

T − t0
]
, t0 ≤ t ≤ T.

We define the event F by:

F =

{
sup

t0≤t≤T
|Wt −Wt0 | ≤

1

8

}
and we introduce the quantities e(t0) and ē(t0) defined by

e(t0) = Λ +
1

4
(T − t0) and ē(t0) = Λ +

3

4
(T − t0)

so that
1

4
≤ e− Λ

T − t0
≤ 3

4

whenever e(t0) ≤ e ≤ ē(t0). For such a choice of e, since

Z± − Λ

T − t
= Wt −Wt0 ∓ 4C(T − t)1/4 ± 4C(T − t0)1/4 +

e− Λ

T − t0
,

it is easy to see that if we choose t0 such that T − t0 is small enough for 32C(T − t0)1/4 < 1 to hold,
then

∀t ∈ [t0, T ], 0 ≤ Z−t − Λ

T − t
≤ Z+

t − Λ

T − t
≤ 1.

on the event F . This implies that (X±t )t0≤t<T and (Z±t )t0≤t<T coincide on F , and consequently that
X+
T = X−T = Λ and hence Ēt0,eT = Λ on F by (48). This completes the proof for these particular

choices of t0 and e. In fact, the result holds for any e and any t0 ∈ [0, T ). Indeed, since Ēt0,et
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has a strictly positive density at any time t ∈ (t0, T ), so that, if we choose t1 ∈ (t0, T ) so that
32C(T − t1)1/4 < 1, then using the Markov property we get

P
{
Ēt0,eT = Λ

}
≥
∫ ē(t1)

e(t1)
P
{
Ēt1,e

′

T = Λ
}
P
{
Ēt0,et1

∈ de′
}
> 0

which completes the proof in the general case. �

Remark 7. We emphasize that the expression for DsE
t0,e
t given in (44) can vanish with a non-zero

probability when replacing t by T . Indeed, the integral∫ T

r
∂ev
(
u,Et0,eu + (T − u)Wu

)
du

may explode with a non-zero probability since the derivative ∂ev(u, e) is expected to behave like
(T − u)−1 as u tends to T and e to Λ. Indeed, v is known to behave like the solution of the Burgers
equation when close to the boundary, see (46). As a consequence, we expect ∂ev to behave like the
gradient of the solution of the Burgers equation. The latter is singular in the neighborhood of the final
discontinuity and explodes like (T − u)−1 in the cone formed by the characteristics of the equation.

However, in the uniformly elliptic setting, the integral above is always bounded since ∂ev(u, ·) is
at most of order (T − u)−1/2 as explained in Remark 6.

4.6. Uniqueness. Our proof of uniqueness is based on a couple of comparison lemmas.

Lemma 1. Let φ be a non-decreasing smooth function with values in [0, 1] greater than 1[Λ,+∞), and
w be the solution of the PDE (32) with φ as terminal condition. Then, any solution (Ē′t, Y

′
t , Z

′
t)t0≤t≤T

of (23) starting from Ē′t0 = e and satisfying 1(Λ,+∞)(Ē
′
T ) ≤ Y ′T ≤ 1[Λ,+∞)(Ē

′
T ) also satisfies

w(t, Ē′t) ≥ Y ′t , t0 ≤ t ≤ T.

Similarly, if φ is less than 1(Λ,+∞), then

w(t, Ē′t) ≤ Y ′t , t0 ≤ t ≤ T.

Proof. Applying Itô’s formula to (w(t, Ē′t)t0≤t≤T , we obtain

d
[
w(t, Ē′t)− Y ′t

]
=
(
w(t, Ē′t)− Y ′t

)
∂ew(t, Ē′t)dt+

[
(T − t)∂ew(t, Ē′t)− Z ′t

]
dWt.

Therefore,

d

{[
w(t, Ē′t)−Y ′t

]
exp

(
−
∫ t

t0

∂ew(s, Ē′s)ds

)}
= exp

(
−
∫ t

t0

∂ew(s, Ē′s)ds

)[
(T−t)∂ew(t, Ē′t)−Z ′t

]
dWt.

In particular,

w(t, Ē′t)− Y ′t = exp

(∫ t

t0

∂ew(s, Ē′s)ds

)
E
[
exp

(
−
∫ T

t0

∂ew(s, Ē′s)ds

)[
w(T, Ē′T )− Y ′T

]
|Ft
]
,

which completes the proof. �

The next lemma can be viewed as a form of conservation law.
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Lemma 2. Let (χn)n≥1 be a non-increasing sequence of non-decreasing smooth functions match-
ing 0 on some intervals (−∞,Λ−,n)n≥1 and 1 on some intervals (Λ+,n,+∞)n≥1 and converging
towards 1[Λ,+∞), then the associated solutions (wn)n≥1, given by Proposition 3 converge towards v
constructed in Proposition 5.

The conclusion remains true if (χn)n≥1 is a non-decreasing sequence converging towards 1(Λ,+∞).

Proof. Each wn is a solution of the PDE (32) which is conservative. Considering vn as in the proof
of Proposition 5, we have for any n,m ≥ 1∫

R
(wn − vm)(t, e)de =

∫
R

(χn − φm)(e)de, t ∈ [0, T ).

Notice that the integrals are well-defined because of Proposition 4. Since φm(e) → 1[Λ,+∞)(e) as
m→ +∞ for e 6= Λ, we deduce that∫

R
(wn − v)(t, e)de =

∫
R

[
χn(e)− 1[Λ,+∞)(e)

]
de, t ∈ [0, T ).

Since the right hand side converges towards 0 as n tends to +∞, so does the left hand side, but since
wn(t, e) ≥ v(t, e) by Lemma 1 (choosing (Ē′, Y ′, Z ′) = (Ēt0,e, Y t0,e, Zt0,e)), we must also have:

lim
n→+∞

∫
R
|wn(t, e)− v(t, e)|de = 0.

Since (wn(t, ·))n≥1 is equicontinuous (by Proposition 3), we conclude that wn(t, e) → v(t, e). The
proof is similar if χn ↗ 1(Λ,+∞). �

To complete the proof of uniqueness, consider a sequence (χn)n≥1 as in the statement of Lemma
2. For any solution (Ē′t, Y

′
t , Z

′
t)t0≤t≤T of (23) with Ē′t0 = e, Lemma 1 yields

wn(t, Ē′t) ≥ Y ′t , t ∈ [t0, T ).

Passing to the limit, we deduce that

v(t, Ē′t) ≥ Y ′t , t ∈ [t0, T ).

Choosing a non-increasing sequence (χn)n≥1, instead, we obtain the reverse inequality, and hence,
we conclude that Y ′t = v(t, Ē′t) for t ∈ [t0, T ). By uniqueness to (38), we deduce that Ē′t = Ēt0,et , so
that Y ′t = Y t0,e

t . We easily deduce that Z ′t = Zt0,et as well.

Remark 8. We conjecture that the analysis performed in this section can be extended to more general
conservation laws than Burgers equation. The Burgers case is the simplest one since the correspond-
ing forward - backward stochastic differential equation is purely linear.

5. NONLINEAR PDES AND OPTION PRICING

In this section, we consider the problem of option pricing in the framework of the first equilibrium
model introduced in this paper.
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5.1. PDE Characterization. Back to the risk neutral dynamics of the (perceived) emissions given
by (12), we assume that the emissions of the business as usual scenario are modeled by a geometric
Brownian motion, so that b(t, e) = be and σ(t, e) = σe. As explained in the introduction, this model
has been used in most of the early reduced form analyses of emissions allowance forward contracts
and option prices (see[5] and [4] for example). The main thrust of this section is to include the
impact of the allowance price Y on the dynamics of the cumulative emissions. As we already saw in
the previous section, this feedback f(Ys) is the source of a nonlinearity in the PDE whose solution
determines the price of an allowance. Throughout this section, we assume that under the pricing
measure (martingale spot measure) the cumulative emissions and the price of a forward contract on
an emission allowance satisfy the forward-backward system:

(50)

{
Et = E0 +

∫ t
0 (bEs − f(Ys))ds+

∫ t
0 σEsdW̃s

Yt = λ 1[Λ,∞)(ET )−
∫ T
t ZtdW̃t.

The solution Yt of the backward equation is constructed as a function Yt = v(t, Et) of the solution of
the forward equation where the function v is a classical solution of the nonlinear partial differential
equation

(51)

{
∂tv(t, e) + (be− f(v(t, e)))∂ev(t, e) + 1

2σ
2e2∂2

eev(t, e) = 0, (t, e) ∈ [0, T )× R+

v(T, .) = λ1[Λ,∞).

The price at time t < τ of a European call option with maturity τ < T and strike K on an allowance
forward contract maturing at time T is given by the expectation

Et,e{(Yτ −K)+} = Et,e{(v(τ, Eτ )−K)+}.
which can as before, be written as a function V (t, Et) of the current value of the cumulative emissions.
We use the notation Et,e for the conditional expectation given that Et = e. Once the function v is
known and/or computed, for exactly the same reasons as above, the function V appears as the classical
solution of the linear partial differential equation:

(52)

{
∂tV (t, e) + (be− f(v(t, e)))∂eV (t, e) + 1

2σ
2e2∂2

eeV (t, e) = 0, (t, e) ∈ [0, τ)× R+

V (τ, .) = (v(τ, .)−K)+,

which, given the knowledge of v is a linear partial differential equation. Notice that in the case f ≡ 0
of infinite abatement costs, except for the fact that the coefficients of the geometric Brownian motion
were assumed to be time dependent, the above option price is the same as the one derived in [4].

5.2. Small Abatement Asymptotics. Examining the PDEs (51) and (52), we see that there are two
main differences with the classical Black-Scholes framework. First, the underlying contract price is
determined by the nonlinear PDE (51). Second, the option pricing PDE (52) involves the nonlinear
term f(v(t, e)), while still being linear in terms of the unknown function V . Because the function v
is determined by the first PDE (51), this nonliearity is inherent to the model, and one cannot simply
reduce the PDE to the Black-Scholes equation.

In order to understand the departure of the option prices from those of the Black-Scholes model,
we introduce a small parmater ε ≥ 0, and take the abatement rate to be of the form f = εf0 for
some fixed non-zero increasing continuous function f0. We denote by vε and V ε the corresponding
prices of the allowance forward contract and the option. Here, what we call Black-Scholes model
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corresponds to the case f ≡ 0. Indeed, in this case, both (51) and (52) reduce to the linear Black-
Scholes PDE, differing only through their boundary conditions. This model was one of the models
used in [4] for the purpose of pricing options on emission allowances based on price data exhibiting
no implied volatility smile. Our starting point is the characterization of the emission allowance price
and the corresponding option price by the PDEs (51) and (52):

(53)

{
−∂tvε − (be− εf0(vε))∂ev

ε − 1
2σ

2e2∂2
eev

ε = 0, on [0, T )× R+

vε(T, .) = λ1[Λ,∞),

and

(54)

{
−∂tV ε − (be− εf(vε))∂eV

ε − 1
2σ

2e2∂2
eeV

ε = 0 on [0, τ)× R+,

V ε(τ, .) = (vε(τ, .)−K)+.

for every ε ≥ 0. For ε = 0, the nonlinear feedback given by the abatement rate disappears and we
easily compute that

v0(t, e) = λEt,e
[
1[Λ,∞)(E

0
T )
]

= λΦ

(
ln(e/Λe−b(T−t))

σ
√
T − t

− σ
√
T − t
2

)
(55)

V 0(t, e) = Et,e
[
(v0(τ, E0

τ )−K)+
]
, 0 ≤ t ≤ τ,(56)

where E0 is a geometric Brownian motion:

(57) dE0
t = E0

t [bdt+ σdW̃t].

used as a proxy for the cumulative emissions in business as usual, and where we use the notation
Et,e to denote the conditional expectation given that E0

t = e. See for example [4] for details and
complements. The main technical result of this section is the following first order Taylor expansion
of the option price.

Proposition 10. As ε→ 0, we have

V ε(t, s) = V 0(t, s)+ε Et,e
[
1[Λ,∞)(v

0(τ, E0
τ ))

∫ T

t
f0(v0(s, E0

s ))∂ev
0(s ∨ τ, E0

s∨τ )
E0
s∨τ
E0
s

ds

]
+◦(ε),

where ε−1 ◦ (ε) −→ 0 as ε→ 0.

In preparation for the proof of this result, we isolate the main steps in separate lemmas.

Lemma 3.

lim
ε↘0

vε = v0 and lim
ε↘0

∂ev
ε = ∂ev

0,(58)

uniformly on compact subsets of [0, T )× R+.

Proof. By definition, the function vε is a classical solution of

(59) −∂tvε(t, e) + F ε
(
e, vε(t, e), ∂ev

ε(t, e), ∂2
eev

ε(t, e)
)

= 0,

where

F ε(e, r, p, γ) := −(be− εf0(r))p− 1

2
σ2e2γ.
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Let
v := lim inf

(ε,t′,e′)→(0,t,e)
vε(t′, e′) and v := lim sup

(ε,t′,e′)→(0,t,e)
vε(t′, e′)

be the relaxed semi-limits of vε, which are finite because vε is locally bounded in (ε, t, e). Since
F ε(e, r, p, γ) is jointly continuous in all of its arguments (including ε), it follows from the stability
of viscosity solutions (see for example [1]), that the functions v and v are viscosity supersolution and
subsolution of the limit equation

(60) −∂tv(t, e) + F 0
(
e, v(t, e), ∂ev(t, e), ∂2

eev(t, e)
)

= 0

which happens to be linear. Moreover, by construction we have v(T, .) ≥ 1(Λ,∞) and v(T, .) ≤
1[Λ,∞). Arguying as in the proof of the Feynman-Kac representation, it follows from Itô’s formula
(after convenient localization) that v ≥ v0 and v ≤ v0. Since v ≤ v, by definition, this implies that
v = v = v0. Since vε decreases to v0 as ε ↘ 0, uniform convergence on compact sets follows from
Dini’s theorem.

To obtain the convergence of ∂evε towards ∂ev, we use the smoothness of vε (implied by classical
uniform parabolic regularity) to see that ∂evε is a classical solution of the equation

−∂t(∂evε) + F ε
(
e, ∂ev

ε, D(∂ev
ε), D2(∂ev

ε)
)
− (b− εf ′0(vε)∂ev

ε
)
∂ev

ε − σ2eD(∂ev
ε) = 0,

and we proceed as above. �

Lemma 4.

(61) lim
ε↘0

V ε = V 0 and lim
ε↘0

∂eV
ε = ∂eV

0,

uniformly on compact subsets of [0, τ)× R+ and for each (t, e) ∈ [0, τ)× R+

∂eV
0(t, e) = Et,e

[
E0
τ

E0
t

1[K,∞)(v
0(τ, E0

τ ))∂ev
0(τ, E0

τ )

]
Proof. We argue as above by taking the limit ε↘ 0 in the viscosity sense. In the present case V ε is a
classical solution of

−∂tV ε(t, e) +Gε
(
t, e, ∂eV

ε(t, e), ∂2
eeV

ε(t, e)
)

= 0

where

Gε(t, e, p, γ) :=
[
be− εf0

(
vε(t, e)

)]
p− 1

2
σ2e2γ.

Since vε −→ v0 uniformly on compact sets, and f0 is monotone and continuous, the proof of Lemma
3 above applies in the present situation.

The convergence result for ∂eV ε is obtained by first differentiating the equation satisfied by V ε,
which is justified by classical parabolic regularity, and then using the same argument as above. No-
tice that the expression of ∂eV 0 is, as expected, obtained by differentiating V 0 in (56) inside the
expectation operator. �

In preparation for the next result, for ε > 0 we define

(62) uε(t, e) :=
vε(t, e)− v0(t, e)

ε
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Lemma 5.

lim
ε↘0

uε(t, e) = u0(t, e) := Et,e
[∫ T

t
f0(v0(s, E0

s ))∂ev
0(s, E0

s )ds

]
,

uniformly on compact subsets of [0, T )× R+.

Proof. Since vε is a classical solution of equation (53), plain computations show that uε is a classical
solution of the equation

uε(T, .) = 0, −∂tuε + Lε
(
t, e,Duε, D2uε

)
= 0,

where L is the linear operator defined by:

Lε(t, e, p, γ) := −bep+ f0

(
vε(t, e)

)
∂ev

ε(t, e)− 1

2
σ2e2γ.

Using the stability result of viscosity solutions together with the Feynman-Kac representation as in
the proof of Lemma 3 above, the convergence result of Lemma 3 provides the limit equation:

u0(T, .) = 0, ∂tu
0(t, e) + beDu0(t, e) +

1

2
σ2e2D2u0(t, e) = f0(v0(t, e))∂ev

0(t, e) = 0.

The representation of the solution u0 as the expectation appearing in the statement of the lemma is
given by the Feynman-Kac as long as we can show that the expectation makes sense. This is indeed
the case since f0 is nondecreasing and continuous, v0 ≤ λ, so that we have:

Et,e
[∫ T

t

∣∣f0(v0(s, E0
s ))∂ev

0(s, E0
s )
∣∣ds] ≤ f0(λ)Et,e

[∫ T

t
|∂ev0(s, E0

s )| ds
]
.(63)

Now, observe that by Itô’s formula:

Et,e
[
v0(T,ET )2 − v0(t, e)2

]
= 2Et,e

[∫ T

t
v0(s, Es)

(
∂tv

0 + be∂ev
0 +

1

2
σ2e2∂2

eev
0

)
(s, Es)ds

]
+ Et,e

[∫ T

t
|∂ev0(s, Es)|2σ2E2

sds

]
= Et,e

[∫ T

t
|∂ev0(s, Es)|2σ2E2

sds

]
because of the PDE satisfied by v0. Then Et,e

[∫ T
t |∂ev(s, Es)|2σ2E2

sds
]
≤ 2λ2, implying that (63)

is finite by the Cauchy-Schwarz inequality. �

Proof of Proposition 10. For each ε > 0 we define:

U ε(t, e) :=
V ε(t, e)− V 0(t, e)

ε
.

Since V ε is a classical solution of (54), it follows that U ε is a classical solution of:

−∂tU ε −Hε
(
t, e,DU ε, D2U ε

)
= 0, on [0, τ)× R+

with

Hε(t, e, p, γ) := −bep− 1

2
σ2e2γ + f0(vε(t, e)∂eV

ε(t, e) for (t, e) ∈ [0, τ)× R+
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satisfying the terminal condition

U ε(τ, .) =
(vε(τ, .)−K)+ − (v0(τ, .)−K)+

ε
.

Using the convergence results of lemmas 3, 4 and 5, together with the stability of viscosity solutions
and the Feynlan Kac representation for the limiting linear PDE, we see that U ε −→ U0 uniformly on
compacts, where U0 is the unique solution of

−∂tU0 − be∂eU0 − 1

2
σ2e2∂2

eeU
0 − f0(v0)∂eV

0 = 0 for (t, e) ∈ [0, τ)× R+

satisfying the terminal condition

U0(τ, .) = u0(τ, .)1[K,∞)(v
0(τ, .)).

By the Feynman-Kac representation of such a solution, we have:

U0(t, e) = Et,e
[∫ τ

t
f0(v0(s, E0

s ))∂eV
0(s, E0

s )ds+ u0(τ, E0
τ )1[K,∞)(v

0(τ, E0
τ ))

]
,

and the required result is obtained by replacing ∂eV 0 and u0 by their expressions from Lemmas 4 and
5 respectively, and using the tower property of conditional expectations. �

6. NUMERICAL RESULTS

In this section we provide the following numerical evidence of the accuracy of the small abatement
asymptotic formula derived above:

(1) We compute numerically vε with high accuracy, and we then compute values of V ε using
the values of vε so computed. We used an explicit finite difference monotone scheme (see
for example [1]. The results are reproduced in Figure 1 We plotted V ε against vε in order to
show how the option price depends upon the value of the underlying allowance.

(2) We compare the previous numerical results with the first order Taylor expansion which can
easily be computed as it only involves the Monte Carlo computation of an expectation.
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CENTRE DE MATHÉMATIQUES APPLIQUÉES, ECOLE POLYTECHNIQUE, UMR CNRS 7641, 91128 PALAISEAU

CEDEX, FRANCE
E-mail address: gilles-edouard.espinosa@polytechnique.org

CENTRE DE MATHÉMATIQUES APPLIQUÉES, ECOLE POLYTECHNIQUE, UMR CNRS 7641, 91128 PALAISEAU

CEDEX, FRANCE
E-mail address: nizar.touzi@polytechnique.edu


