
HAL Id: hal-00555591
https://hal.science/hal-00555591v1

Preprint submitted on 13 Jan 2011 (v1), last revised 10 Sep 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Singular Forward-Backward Stochastic Differential
Equations and Emissions Derivatives

René Carmona, François Delarue, Gilles-Edouard Espinosa, Nizar Touzi

To cite this version:
René Carmona, François Delarue, Gilles-Edouard Espinosa, Nizar Touzi. Singular Forward-Backward
Stochastic Differential Equations and Emissions Derivatives. 2010. �hal-00555591v1�

https://hal.science/hal-00555591v1
https://hal.archives-ouvertes.fr


SINGULAR FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

AND EMISSIONS DERIVATIVES

RENÉ CARMONA, FRANCOIS DELARUE, GILLES-EDOUARD ESPINOSA, AND NIZAR TOUZI

ABSTRACT. We introduce two simple models of forward-backward stochastic differential equations

with a singular terminal condition and we explain how and why they appear naturally as models for the

valuation of CO2 emission allowances. Single phase cap-and-trade schemes lead readily to terminal

conditions given by indicator functions of the forward component, and using fine partial differential

equations estimates, we show that the existence theory of these equations, as well as the properties of

the candidates for solution, depend strongly upon the characteristics of the forward dynamics. Finally,

we give a first order Taylor expansion and show how to numerically calibrate some of these models for

the purpose of CO2 option pricing.

1. INTRODUCTION

This paper is motivated by the mathematical analysis of the emissions markets, as implemented

for example in the European Union (EU) Emissions Trading Scheme (ETS). These market mecha-

nisms have been hailed by some as the most cost efficient way to control Green House Gas (GHG)

emissions They have been criticized by others for being a tax in disguise and adding to the burden

of industries covered by the regulation. Implementation of cap-and-trade schemes is not limited to

the implementation of the Kyoto protocol. The successful US acid rain program is a case in point.

However, a widespread lack of understanding of their properties, and misinformation campaigns by

advocacy groups more interested in pushing their political agendas than using the results of objective

scientific studies have muddied the water and add to the confusion. More mathematical studies are

needed to increase the understanding of these market mechanisms and raise the level of awareness of

their advantages as well as their shortcomings. This paper was prepared in this spirit.

In a first part, we introduce simple single-firm models inspired by the workings of the electric-

ity markets (remember that electric power generation is responsible for most of the CO2 emissions

worldwide). Despite the specificity of some assumptions, our treatment is quite general in the sense

that individual risk averse power producers choose their own utility functions. Moreover, the financial

markets in which they can trade emission allowances are not assumed to be complete.

While market incompleteness prevents us from identifying the optimal trading strategy of each

producer, we show that, independently of the choice of the utility function, the optimal production or

abatement strategy is what we expect by proving mathematically, and in full generality (i.e. without

assuming completeness of the markets), a folk theorem in environmental economics: the equilibrium
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2 RENÉ CARMONA, FRANCOIS DELARUE, GILLES-EDOUARD ESPINOSA, AND NIZAR TOUZI

allowance price equals the marginal abatement cost, and market participants implement all the abate-

ment measures whose costs are not greater than the cost of compliance (i.e. the equilibrium price of

an allowance).

The next section puts together the economic activities of a large number of producers and search

for the existence of an equilibrium price for the emissions allowances. Such a problem leads naturally

to a forward stochastic differential equation (SDE) for the aggregate emissions in the economy, and

a backward stochastic differential equation (BSDE) for the allowance price. However, these equa-

tions are ”coupled” since a nonlinear function of the price of carbon (i.e. the price of an emission

allowance) appears in the forward equation giving the dynamics of the aggregate emissions. This

feedback of the emission price in the dynamics of the emissions is quite natural. For the purpose of

option pricing, this approach was described in[4] where it was called detailed risk neutral approach.

Forward backward stochastic differential equations (FBSDEs) of the type considered in this sec-

tion have been studied for a long time. See for example [11], or [14]. However, the FBSDEs we need

to consider for the purpose of emission prices have an unusual pecularity: the terminal condition of

the backward equation is given by a discontinuous function of the terminal value of the state driven by

the forward equation. We use our first model to prove that this lack of continuity is not an issue when

the forward dynamics are strongly elliptic, in other words when the volatility of the forward SDE is

bounded from below. However, using our second equilibrium model, we also show that when the

forward dynamics are degenerate (even if they are hypoelliptic), discontinuities in the terminal con-

dition and lack of uniform ellipticity in the forward dynamics can conspire to produce point masses

in the terminal distribution of the forward component, at the locations of the discontinuities. This

implies that the terminal value of the backward component is not given by a deterministic function

of the forward component, for the forward scenarios ending at the locations of jumps in the terminal

condition, and justifies relaxing the definition of a solution of the FBSDE.

Even though we only present a detailed proof for a very specific model for the sake of definiteness,

we believe that our result is representative of a large class of models. Since from the point of view

of the definition of ”aggregate emissions”, the degeneracy of the forward dynamics is expected, and

this seemingly pathological result should not be overlooked. Indeed, it sheds new light on an absolute

continuity assumption made repeatedly in equilibrium analyses, even in discrete time models. See for

example [3] and [2]. This assumption was regarded as an annoying technicality, but in the light of the

results of this paper, it looks more intrinsic to these types of models. In any case, it fully justifies the

need to relax the definition of a solution of a FBSDE when the terminal condition of the forward part

jumps.

A vibrant market for options written on allowance futures/forward contracts has recently developed

and increased in liquidity. See for example [4] for details on these markets. Reduced formed models

have been proposed to price these options. See [4] or [5]. Several attempts have been made at

matching the smile (or lack thereof) contained in the quotes published daily by the exchanges. Section

6 develops the technology needed to price these options in the context of the equilibrium framework

developed in the present paper. We identify the option prices in terms of solutions of nonlinear partial

differential equations and we prove when the dynamics of the aggregate emissions are given by a

geometric Brownian motion, a Taylor expansion formula when the nonlinear abatement feedback is

small. We derive an explicit integral form for the first order Taylor expansion coefficient which can

easily be computed by Monte Carlo methods. We believe that the present paper is the first rigorous
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attempt to include the nonlinear feedback term in the dynamics of aggregate emissions for the purpose

of emissions option pricing.

The final section 7 illustrates numerically how the option prices computed from our equilibrium

model differ from the linear prices computed in [5],[16] and [4]. Furthermore, we show how the first

order Taylor approximation result of Section 6 can be used to compute numerically option prices and

efficiently fit the implied volatility smile present in recent option price quotes.

2. TWO SIMPLE MODELS OF GREEN HOUSE GAS EMISSION CONTROL

We first describe the optimization problem of a single power producer facing a carbon cap-and-

trade regulation. We assume that this producer is a small player in the market in the sense that his

actions have no impact on prices and that a liquid market for pollution permits exists. In particular, we

assume that the price of an allowance is given exogenously, and we use the notation Y = (Yt)0≤t≤T

for the (stochastic) time evolution of the price of an emission allowance. For the sake of simplicity

we assume that [0, T ] is a single phase of the regulation and that no banking or borrowing of the

certificates is possible at the end of the phase. For illustration purposes, we analyze two simple

models. Strangely enough, the first steps of these analyses, namely the identifications of the optimal

abatement and production strategies, do not require the full force of the sophisticated techniques of

optimal stochastic control.

2.1. Modeling First the Emissions Dynamics. We assume that the source of randomness in the

model is given by W = (Wt)0≤t≤T , a (possibly infinite) sequence of independent one-dimensional

Wiener processes W j = (W j
t )0≤t≤T . In other words, Wt = (W 0

t ,W
1
t , · · · ,W i

t , · · · ) for each fixed

t ∈ [0, T ]. All these Wiener processes are assumed to be defined on a complete probability space

(Ω,F ,P), and we denote by F = {Ft, t ≥ 0} the Brownian filtration they generate. Here, T > 0 is a

fixed time horizon representing the end of the regulation period.

We will eventually extend the model to include N firms, but for the time being, we consider only

the problem of one single firm whose production of electricity generates emissions of carbon dioxyde,

and we denote by Et the cumulative emissions up to time t of the firm. We also denote by Ẽt the

perception at time t (for example the conditional expectation) of what the total cumulative emission

ET will be at the end of the time horizon. Clearly, E and Ẽ can be different stochastic processes, but

they have the same terminal values at time T , i.e. ET = ẼT . We will assume that dynamics of the

proxy Ẽ for the cumulative emissions of the firm are given by an Itô process of the form:

(1) Ẽt =

∫ t

0
(bs − ξs)ds+ σtWt,

(so Ẽ0 = 0) where b represents the (conditional) expectation of what the rate of emission would be in

a world without carbon regulation, in other words in what is usually called Business As Usual, while

ξ is the instantaneous rate of abatement chosen by the firm. In mathematical terms, ξ represents the

control on emission reduction implemented by the firm. Clearly, in such a model, the firm only acts

on the drift of its perceived emissions. For the sake of simplicity we assume that the processes b and

σ are adapted and bounded. Because of the vector nature of the Brownian motion W , the volatility

process σ is in fact a sequence of scalar volatility processes (σj)j≥0. For the purpose of this section,

we could use one single scalar Wiener process and one single scalar volatility process as long as we
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allow the filtration F to be larger than the filtration generated by this single Wiener process. This fact

will be needed when we study a model with different firms.

Continuing on with the description of the model, we assume that the abatement decision is based

on a cost function c : R → R which is assumed to be continuously differentiable (C1 in notation),

non-decreasing strictly convex and satisfy Inada-like conditions:

(2) c′(−∞) = −∞ and c′(+∞) = +∞.

Note that (c′)−1 exists because of the assumption of strict convexity. Since c(x) can be interpreted

as the cost to the firm for an abatement rate of level x, without any loss of generality we will also

assume c(0) = min c = 0. Notice that (2) implies that limx→±∞ c(x) = +∞.

Remark 1. A typical example of abatement cost function is given by the quadratic cost function

c(x) = αx2 for some α > 0 used in [16], or more generally the power cost function c(x) = α|x|1+β

for some α > 0 and β > 0.

The firm controls its destiny by choosing its own abatement schedule ξ as well as the quantity θ of

pollution permits it holds through trading in the allowance market. For these controls to be admissible,

ξ and θ need only to be progressively measurable processes satisfying the integrability condition

(3) E

∫ T

0
[θ2t + ξ2t ]dt <∞.

We denote by A the set of admissible controls (ξ, θ). Given its initial wealth x, the terminal wealth

XT of the firm is given by:

(4) XT = Xξ,θ
T = x+

∫ T

0
θtdYt −

∫ T

0
c(ξt)dt− ETYT

Recall that we use the notation Yt for the price of an emission allowance at time t. Recall also that

at this stage, we are not interested in the existence or the formation of this price. We merely assume

the existence of a liquid and frictionless market for emission allowances, and that Yt is the price at

which each firm can buy or sell one allowance at time t. The risk preferences of the firm are given by

a utility function U : R → R, which is assumed to be C1, increasing, strictly concave and satisfying

the Inada conditions:

(5) (U)′(−∞) = +∞ and (U)′(+∞) = 0.

The optimization problem of the firm can be written as the computation of:

(6) V (x) = sup
(ξ,θ)∈A

EU(Xξθ
T )

where E denotes the expectation under the historical measure P, and A is the set of abatement and

trading strategies (ξ, θ) admissible to the firm. The following simple result holds.

Proposition 1. The optimal abatement strategy of the firm is given by:

ξ∗t = [c′]−1(Yt).
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Remark 2. Notice that the optimal abatement schedule is independent of the utility function. The

beauty of this simple result is its powerful intuitive meaning: given a price Yt for an emission al-

lowance, the firm implements all the abatement measures which make sense economically, namely all

those costing less than the current market price of one allowance (i.e. one unit of emission).

Proof. If we rewrite the last term in the expression (4) of the terminal wealth by replacing ET by ẼT ,

a simple integration by parts gives:

ETYT = YT

(∫ T

0
btdt+

∫ T

0
σtdWt

)

− YT

∫ T

0
ξtdt

= YT

(∫ T

0
btdt+

∫ T

0
σtdWt

)

−
∫ T

0
Ytξtdt−

∫ T

0

(∫ t

0
ξsds

)

dYt

so that XT = Aθ̃
T +Bξ

T with

Aθ̃
T =

∫ T

0
θ̃tdYt − YT

(∫ T

0
btdt+

∫ T

0
σtdWt

)

where the modified control θ̃ is defined by θ̃t = θt +
∫ t
0 ξsds, and

Bξ
T = x−

∫ T

0
[c(ξt) + Yt(bt − ξt)]dt.

Notice thatBξ depends only upon ξ without depending upon θ̃ whileAθ̃ depends only upon θ̃ without

depending upon ξ. The set A of admissible controls is equivalently described by varying the couples

(θ, ξ) or (θ̃, ξ), so when computing the maximum

sup
(θ,ξ)∈A

E{U(XT )} = sup
(θ̃,ξ)∈A

E{U(Aθ̃
T +Bξ

T )}

one can perform the optimizations over θ̃ and ξ separately, for example by fixing θ̃ and optimizing

with respect to ξ before maximizing the result with respect to θ̃. The proof is complete once we notice

that U is increasing and that for each t ∈ [0, T ] and each ω ∈ Ω, the quantity Bξ
T is maximized by

the choice ξ∗t = (c′)−1(Yt). �

Remark 3. The above result argues neither existence nor uniqueness of an optimal admissible set

(ξ∗, θ∗) of controls. We believe that once the optimal rate of abatement ξ∗ is implemented, the optimal

investment strategy θ∗ should hedge the financial risk created by the implementation of the abatement

strategy. This fact can be proved using the classical tools of portfolio optimization in the case of

complete market models. Indeed, if we introduce the convex dual Ũ of U defined by:

Ũ(y) := sup
x
{U(x)− xy}

and the function I by I = (U ′)−1 so that Ũ(y) = U ◦ I(y) − yI(y) and if we denote by E and EQ

respectively the expectations with respect to P and the unique equivalent martingale measure Q then

from the a.s. inequality

U(Xξ,θ
T )− y

dQ

dP
Xξ,θ

T ≤ U ◦ I
(

y
dQ

dP

)

− y
dQ

dP
I

(

y
dQ

dP

)

.
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valid for any admissible (ξ, θ), and y ∈ R, we get

EU(Xξ,θ
T ) ≤ EU ◦ I

(

y
dQ

dP

)

+ yEQ

[

Xξ,θ
T − I

(

y
dQ

dP

)]

.

after taking expectations under P. Computing EQXj,ξ,θ
T by integration by part we get:

EU(Xξ,θ
T ) ≤ EU ◦ Ij

(

y
dQ

dP

)

+ y

[

x− EQ

∫ T

0
c ◦ (c′)−1(Yt) + Yt(bt− (c′)−1(Yt)) + σtZtdt

−EQI

(

y
dQ

dP

)]

if we use the optimal rate of abatement. So if we choose y = ŷ ∈ R as the unique solution of:

EQI

(

ŷ
dQ

dP

)

= x− EQ

∫ T

0
c ◦ (c′)−1(Yt) + Yt(b

j
t − (c′)−1(Yt)) + σtZtdt.

it follows that

EQX ξ̂,θ
T = EQI

(

ŷ
dQ

dP

)

,

and finally, if the market is complete, the claim Ij
(

ŷj dQdP

)

is attainable by a certain θ̂. This completes

the proof. �

2.2. Modeling the Electricity Price First. We consider a second model for which again, part of the

global stochastic optimization problem reduces to a mere path-by-path optimization. As before, the

model is simplistic, especially in the case of a single firm in a regulatory environment with a liquid

frictionless market for emission allowances. However, this model will become very informative later

on when we consider N firms interacting on the same market, and we try to construct the allowance

price Yt by solving a Forward-Backward Stochastic Differential Equation (FBSDE). The model con-

cerns an economy with one production good (say electricity) whose production is the source of a

negative externality (say GHG emissions). Its price (Pt)0≤t≤T evolves according to the following Itô

stochastic differential equation:

(7)
dPt

Pt
= µ(Pt)dt+ σ(Pt)dWt

where the deterministic functions µ and σ are assumed to be C1 with bounded derivatives. At each

time t ∈ [0, T ], the firm chooses its instantaneous rate of production qt and its production costs are

c(qt) where c is a function c : R+ →֒ R which is assumed to be C1 and strictly convex. With these

notations, the profits and losses from the production at the end of the period [0, T ], are given by the

integral:
∫ T

0
[Ptqt − c(qt)]dt.

The emission regulation mandates that at the end of the period [0, T ], the cumulative emissions of

each firm be measured, and that one emission permit be redeemed per unit of emission. As before,

we denote by (Yt)0≤t≤T the process giving the price of one emission allowance. For the sake of sim-

plicity, we assume that the cumulative emissions Et up to time t are proportional to the production in
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the sense that Et = ǫQt where the positive number ǫ represents the rate of emission of the production

technology used by the firm, and Qt denotes the cumulative production up to and including time t:

Qt =

∫ t

0
qsds.

At the end of the time horizon, the cost incurred by the firm because of the regulation is given by

ETYT = ǫQTYT . The firm may purchase allowances: we denote by θt the amount of allowances

held by the firm at time t. Under these conditions, the terminal wealth of the firm is given by:

(8) XT = Xq,θ
T = x+

∫ T

0
θtdYt +

∫ T

0
[Ptqt − c(qt)]dt− ǫQTYT

where as before, we used the notation x for the initial wealth of the firm. The first integral in the

right hand side of the above equation gives the proceeds from trading in the allowance market, the

next term gives the profits from the production and the sale of electricity, and the last term gives the

costs of the emission regulation. We assume that the risk preferences of the firm are given by a utility

function U : R → R, which is assumed to be C1, increasing, strictly concave and satisfying the Inada

conditions (5) stated earlier. The optimization problem of the firm can be written as:

(9) V (x) = sup
(q,θ)∈A

EU(Xiq,θ
T )

where as before, E denotes the expectation under the historical measure P, and A is the set of admis-

sible production and trading strategies (q, θ). As before, for these controls to be admissible, q and θ
need only be adapted processes satisfying the integrability condition

(10) E

∫ T

0
[θ2t + q2t ]dt <∞.

Proposition 2. The optimal production strategy of the firm is given by:

q∗t = (c′)−1(Pt − ǫYt).

Remark 4. As before, the optimal production strategy q∗ is independent of the risk aversion (i.e. the

utility function) of the firm. The intuitive interpretation of this result is clear: once a firm observes

both prices Pt and Yt, it computes the price for which it can sell the good minus the price it will have

to pay because of the emission regulation, and the firm uses this corrected price to choose its optimal

rate of production in the usual way.

Proof. A simple integration by part (notice that Et is of bounded variations) gives:

(11) QTYT =

∫ T

0
YtdQt +

∫ T

0
QtdYt =

∫ T

0
Ytqtdt+

∫ T

0
QtdYt,

so that XT = Aθ̃
T +Bq

T with

Aθ̃
T =

∫ T

0
θ̃tdYt with θ̃t = θt − ǫ

∫ t

0
qsds

which depends only upon θ̃ and

Bq
T = x−

∫ T

0
[(Pt − ǫYt)qt − c(qt)]dt,
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which depends only upon q without depending upon θ̃. Since the set A of admissible controls is

equivalently described by varying the couples (q, θ̃) or (q, θ̃), when computing the maximum

sup
(q,θ)∈A

E{U(XT )} = sup
(θ̃,ξ)∈A

E{U(Aθ̃
T +Bq

T )}

one can perform the optimizations over q and θ̃ separately, for example by fixing θ̃ and optimizing

with respect to q before maximizing the result with respect to θ̃. The proof is complete once we notice

that U is increasing and that for each t ∈ [0, T ] and each ω ∈ Ω, the quantity Bq
T is maximized by

the choice q∗t = (c′)−1(Pt − ǫYt). �

3. ALLOWANCE EQUILIBRIUM PRICE AND A FIRST SINGULAR FBSDE

The goal of this section is to extend the first model introduced in section 2 to an economy with N
firms, and solve for the allowance price.

3.1. Switching to a Risk Neutral Framework. As before, we assume that Y = (Yt)t∈[0,T ] is the

price of one allowance in a one-compliance period cap-and-trade model, and that the market for

allowances is frictionless and liquid. Y is a martingale for a measure Q equivalent to the historical

measure P. Because we are in a Brownian filtration,

dQ

dP
= exp

[∫ T

0
αt · dWt −

1

2

∫ T

0
|αt|2dt

]

for some sequence α = (αt)t∈[0,T ] of adapted processes. By Girsanov’s theorem, the process W̃ =

(W̃t)t∈[0,T ] defined by

W̃t =Wt −
∫ t

0
αsds

is a Wiener process for Q so that equation (1) giving the dynamics of the perceived emissions of a

firm now reads:

dẼt = (b̃t − ξt)dt + σt · dW̃t

under Q, where the new drift b̃ is defined by b̃t = bt + σtαt for all t ∈ [0, T ].

3.2. Market Model with N Firms. We now consider an economy comprising N firms labelled by

{1, · · · , N}, and we work in the risk neutral framework for allowance trading discussed above. When

a specific quantity such as cost function, utility, cumulative emission, trading strategy, . . . depends

upon a firm, we use a superscript i to emphasize the dependence upon the i-th firm. So in equilibrium

(i.e. whenever each firm implements its optimal abatement strategy), for each firm i ∈ {1, · · · , N}
we have

dẼi
t = {b̃jt − [(ci)′]−1(Yt)}dt+ σitdW̃t

with Ẽi
0 = 0. Consequently, the aggregate perceived emission Ẽ defined by

Ẽ =

N
∑

i=1

Ẽi
t

satisfies

dẼt = [bt − f(Yt)]dt+ σtdW̃t
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where

bt =

N
∑

i=1

b̃it, σt =

N
∑

i=1

σit and f(x) =

N
∑

i=1

[(ci)′]−1(x).

Again, since we are in a Brownian filtration, the martingale representation theorem gives the existence

of a sequence Z = (Zt)t∈[0,T ] of adapted processes such that

dYt = ZtdW̃t

under Q as well. Furthermore for each i ∈ {1, · · · , N}, we assume the existence of deterministic

continuous functions [0, T ] ∋ t →֒ bi(t) and [0, T ] ∋ t →֒ σi(t) such that

• ∀t ∈ [0, T ], bit = bi(t)Ei
t or ∀t ∈ [0, T ], bit = bi(t), and

• ∀t ∈ [0, T ], σit = σi(t).

Consequently, the processes Ẽ, Y , and Z satisfy a system of Forward Backward Stochastic Differen-

tial Equations (FBSDEs for short) which we restate for the sake of later reference:

(12)

{

dEt = [b(t, Et)− f(Yt)]dt+ σ(t)dWt, E0 = 0

dYt = ZtdWt, YT = λ1[Λ,+∞)(ET ),

where b(t, Et) = b(t)Eβ
t with β ∈ {0, 1}. Notice that since all the original cost functions ci are

strictly convex, f is increasing. We shall also assume that f is locally Lipschitz. Furthermore, we

assume that b(t) ≥ 0 whenever β = 1.

3.3. Solving the Singular Equilibrium FBSDE. The purpose of this subsection is to prove exis-

tence and uniqueness of a solution to this FBSDE.

Theorem 1. Under the above assumptions on the drift and the diffusion term of the forward dynamics,

for any λ > 0 and Λ ∈ R, the FBSDE (12) admits a unique solution (E, Y, Z). Moreover, Yt is

nondecreasing in λ and nonincreasing in Λ.

Proof. Let (ψn)n≥0 be a monotone sequence of smooth functions with values in [0, 1] and such that

ψn ց ψ := λ1[Λ,+∞) pointwise. For each fixed n ≥ 0, we denote by (Ẽn, Y n, Zn) ∈M2 the unique

solution of the FBSDEs obtained by replacing in (12) the terminal condition YT = λ1[Λ,+∞)(ẼT ) by

Y n
T = ψn(Ẽ

n
T ). Standard comparison results for solutions of FBSDEs (see for example [?]) imply

that if m ≥ n then Y m ≤ Y n. These comparison results can also be used to prove that for any fixed

n ≥ 0, Y n is nondecreasing w.r.t λ and nonincreasing w.r.t Λ. As a consequence, we can define:

Yt := lim
n→∞

Y n
t

as the almost sure limit of a monotone sequence. Moreover, since the solutions are square integrable,

we have:

Y n
t = E

Q
t ψn(E

n
T )

which shows that for each n ≥ 0, the solutions Y n take values in [0, λ], and so does Y .

We will now define candidates Ẽ and Z and prove that (Ẽ, Y, Z) is the unique solution of (12), for

the three different cases considered.
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Let us define the process A by:

At :=

∫ t

0
b(s)ds+

∫ t

0
σ(u)dW̃u,

so that for any n we have:

Ẽn
t = At −

∫ t

0
f(Y n

s )ds.

Since f is increasing and continuous, we can use the monotone convergence theorem to conclude

that, for any t ∈ [0, T ], as n→ ∞, Ẽn
t converges a.s to Ẽt defined by:

Ẽt = At −
∫ t

0
f(Ys)ds,

or in differential form

dẼt = {b(t)− f(Yt)}dt+ σ(t)dW̃t,

together with the initial condition Ẽ0 = 0. Moreover we have:

Y n
t = E

Q
t ψn(Ẽ

n
T ),

where for any n, ψn is bounded by λ, and as a consequence, so is Y . Since b is bounded on [0, T ]
and σ is bounded away from 0 on the same interval, we can define a probability measure P+ by its

density

dP+

dP
= exp

[

−
∫ T

0

b(t)− f(Yt)

σ(t)
dBt − 1

2

∫ T

0

(

b(t)− f(Yt)

σ(t)

)2

dt

]

.

The measure P+ is equivalent to P and by Girsanov’s theorem, the process W+ defined by

W+
t = Bt +

∫ t

0

b(u)− f(Yu)

σ(u)
du

is a Wiener process under P+. The fact that dẼt = σ(t)dW+
t implies that ẼT is a Gaussian random

variable under P+ and hence that P{ẼT = Λ} = 0. Using Dini’s theorem, the convergence of ψn is

uniform on any compact subset of (−∞,Λ) or (Λ,∞), so that ψn(Ẽ
n
T ) converges almost surely to

ψ(ẼT ). Since each ψn is bounded, we can apply Lebesgue’s dominated convergence theorem for n
fixed and conclude that

Yt = E
Q
t ψ(ẼT ),

In particular, YT = ψ(ẼT ) and Y is a bounded martingale. Since we work in a Brownian filtration,

the martingale representation theorem implies the existence of Z ∈M2 such that:

dYt = −ZtdBt.

In this way, we constructed a solution (Ẽ, Y, Z) of the FBSDE (12).

Finally, we prove that the solution of FBSDE (12) is unique.

Since for each i, (ci)′ is increasing and locally Lipschitz, for any compact set K ⊂ R, there exists

k > 0, such that for any t ∈ [0, T ], any x, x′ ∈ K:

(x− x′)(f(x)− f(x′)) ≥ k|x− x′|2,
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and for any x, x′ ∈ R:

(x− x′)(f(x)− f(x′)) ≥ 0.

Recalling that ψ(x) = λ1[Λ,+∞)(x), we also have, for any x, x′:

(13) (x− x′)(ψ(x)− ψ(x′)) ≥ 0.

Let (Ẽ1, Y 1, Z1) and (Ẽ2, Y 2, Z2) be two solutions of (12). Applying Itô’s formula to (Ẽ1 −
Ẽ2).(Y 1 − Y 2), we get:

(Ẽ1
T − Ẽ2

T )(Y
1
T − Y 2

T )− (Ẽ1
0 − Ẽ2

0)(Y
1
0 − Y 2

0 ) = (Ẽ1
T − Ẽ2

T )(ψ(Ẽ
1
T )− ψ(Ẽ2

T ))

= −
∫ T

0
(Y 1

t − Y 2
t )(f(Y

1
t )− f(Y 2

t ))dt−
∫ T

0
(Z1

t − Z2
t )(Ẽ

1
t − Ẽ2

t )dW̃t,

so that using Ẽ1,2
0 = 0, and taking expectations under Q, we get:

EQ

∫ T

0
(Y 1

t − Y 2
t )(f(Y

1
t )− f(Y 2

t ))dt ≤ 0.

Using (13) we get:

kEQ

∫ T

0
|Y 1

t − Y 2
t |21{Y 1

t
,Y 2

t
∈K}dt ≤ EQ

∫ T

0
(Y 1

t − Y 2
t )(f(Y

1
t )− f(Y 2

t ))dt ≤ 0,

and consequently, dQ× dt-a.e we have:

Y 1
1{Y 1∈K} = Y 2

1{Y 2∈K}.

Since K was chosen arbitrarily, we get Y 1 = Y 2. A classical uniqueness result for SDEs implies that

Ẽ1 = Ẽ2, and the uniqueness in the martingale representation theorem brings also that Z1 = Z2. �

Impact on the emissions. As expected, the previous result implies that the more constraining the

tax rules are (the larger λ, the smaller Λ), the higher the emission reductions (the higher f(Yt)). In

particular, in the absence of regulation which corresponds to λ = 0, the aggregate level of emissions

is at its highest.

4. ENLIGHTENING EXAMPLE OF A SINGULAR FBSDE

We saw in the previous section that when the forward dynamics are non-degenerate, the terminal

condition of the backward equation can be a discontinuous function of the terminal value of the

forward component without threatening existence or uniqueness of a solution to the FBSDE. In this

section, we show that this is not the case when the forward dynamics are degenerate, even if they are

hypoelliptic and the solution of the forward equation has a density. We explained in the introduction

why this seemingly pathological mathematical property should not come as a surprise in the context

of equilibrium models for cap-and-trade schemes.

Motivated by the second model given in subsection 2.2, we consider the FBSDE:

(14)











dPt = dWt,

dEt =
(

Pt − Yt
)

dt,

dYt = ZtdWt, 0 ≤ t ≤ T,



12 RENÉ CARMONA, FRANCOIS DELARUE, GILLES-EDOUARD ESPINOSA, AND NIZAR TOUZI

with the terminal condition

(15) YT = 1[Λ,∞)(ET ),

for some real number Λ. Here, (Wt)t∈[0,T ] is a one-dimensional Wiener process. This unrealistic

model corresponds to quadratic costs of production, and choosing appropriate units for the penalty λ
and the emission rate ǫ to be 1. Our interest in this model is the outcome of its mathematical analysis,

not its realism! We prove the following unexpected result.

Theorem 2. Given (p, e) ∈ R2, there exists a unique progressively measurable triple (Pt, Et, Yt)0≤t≤T

satisfying (14) together with the initial conditions P0 = p and E0 = e, and

(16) 1(Λ,∞)(ET ) ≤ YT ≤ 1[Λ,∞)(ET ).

Moreover, the marginal distribution of Et is absolutely continuous with respect to the Lebesgue mea-

sure for any 0 ≤ t < T , but has a Dirac mass at Λ when t = T . In other words:

P{ET = Λ} > 0.

In particular, (Pt, Et, Yt)0≤t≤T may not satisfy the terminal condition P{YT = 1[Λ,∞)(ET )} = 1.

However, the weaker form (16) of terminal condition is sufficient to guarantee uniqueness.

Before we engage in the technicalities of the proof we notice that the transformation

(17) (Pt, Et)0≤t≤T →֒ (Ēt = Et + (T − t)Pt)0≤t≤T

maps the original FBSDE (14) into the simpler one

(18)

{

dĒt = −Ytdt+ (T − t)dWt,

dYt = ZtdWt,

with the same terminal condition ĒT = ET . Moreover, the dynamics of (Et)0≤t≤T can be recovered

from those of (Ēt)0≤t≤T since (Pt)0≤t≤T in (14) is purely autonomous. In particular, except for the

proof of the absolute continuity of Et for t < T , we restrict our analysis to the proof of Theorem 2,

for Ē solution of (18) since E and Ē have the same terminal values at time T .

We emphasize that system (18) is doubly singular at maturity time T : the diffusion coefficient of

the forward equation vanishes as t tends to T and the boundary condition of the backward equation

is discontinuous at point Λ. Together, both singularities make the emission process accumulate a

non-zero mass at time T and at point Λ. This phenomenon must be seen as a stochastic residual of

the shock wave observed in the inviscid Burgers equation

(19) ∂tv(t, e)− v(t, e)∂ev(t, e) = 0, t ∈ [0, T ), e ∈ R,

with v(T, e) = 1[Λ,+∞)(e) as boundary condition. (As explained below, equation (19) is the first-

order version of the second-order equation associated with (18).)

Indeed, it is well-known that the characteristics of (19) may meet at time T and at point Λ. By

analogy, the trajectories of the forward process in (18) may hit Λ at time T with a non-zero probability,

then producing a Dirac mass. In other words, the shock phenomenon behaves like a trap into which

the process (Et)0≤t≤T (or equivalently the process (Ēt)0≤t≤T ) may fall with a non-zero probability.

It is then well-understood that the noise plugged into the forward process (Ēt)0≤t≤T may help it to

escape the trap. For example, we saw in Section 3 that the emission process did not see the trap in
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the uniformly elliptic setting. In the current framework, the diffusion coefficient vanishes in a linear

way as time tends to the maturity: it decays too fast to prevent almost every realization of the process

from falling into the trap.

As before, we prove existence of a solution to (18) by first smoothing the singularity in the ter-

minal condition, solving the problem for a smooth terminal condition, and obtaining a solution to

the original problem by a limiting argument. However, in order to prove the existence of a limit, we

will use PDE a priori estimates and compactness arguments instead of comparison and monotonicity

arguments. We call mollified equation the system (18) with a terminal condition

(20) YT = φ(ĒT ),

given by a Lipschitz non-decreasing function φ from R to [0, 1] which we view as an approximation

of the indicator function appearing in the terminal condition (15).

4.1. Lipschitz Regularity in Space.

Proposition 3. Assume that the terminal condition in (18) is given by (20) with a Lipschitz non-

decreasing function φ with values in [0, 1]. Then, for each (t0, e) ∈ [0, T ]× R, (18) admits a unique

solution (Ēt0,e
t , Y t0,e

t , Zt0,e
t )t0≤t≤T satisfying Ēt0,e

t0
= e and Y t0,e

T = φ(Ēt0,e
T ) . Moreover, the map-

ping

(t, e) →֒ v(t, e) = Y t,e
t

is [0, 1]-valued, is of class C1,2 on [0, T )×R and has Hölder continuous first-order derivative in time

and first and second-order derivatives in space.

Moreover, the Hölder norms of v, ∂ev, ∂2e,ev and ∂tv on a given compact subset of [0, T ) × R do

not depend upon the smoothness of φ provided φ is [0, 1]-valued and non-decreasing. Specifically, the

first-order derivative in space satisfies

(21) 0 ≤ ∂ev(t, e) ≤
1

T − t
, t ∈ [0, T ).

In particular, e →֒ v(t, e) is non-decreasing for any t ∈ [0, T ).

Finally, for a given initial condition (t0, e), the processes (Y t0,e
t )t0≤t≤T and (Zt0,e

t )t0≤t<T , solu-

tion to the backward equation in (18) (with φ as boundary condition), are given by:

(22) Y t0,e
t = v(t, Ēt0,e

t ), t0 ≤ t ≤ T ; Zt0,e
t = (T − t)∂ev(t, Ē

t0,e
t ), t0 ≤ t < T.

Proof. The problem is to solve the system

(23)

{

dĒt = −Ytdt+ (T − t)dWt,

dYt = ZtdWt,

with ξ = φ(ĒT ) as terminal condition and (t0, e) as initial condition. The drift in the first equation,

i.e. (t, y) ∈ [0, T ] × R →֒ −y, is decreasing in y, and Lipschitz continuous, uniformly in t. By

Theorem 2.2 in Peng and Wu [13] (with G = 1, β1 = 0 and β2 = 1 therein), we know that equation

(23) admits at most one solution. Unfortunately, Theorem 2.6 in Peng and Wu (see also Remark 2.8

therein) does not apply to prove existence directly.
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To recover assumption (H2.3) in Theorem 2.6 in [13], we first consider the system

(24)

{

dĒt = −Ytdt− (T − t)dt+ (T − t)dŴt,

dYt = −Ztdt+ ZtdŴt,

where Ŵt = Wt + t, 0 ≤ t ≤ T . By Girsanov’s theorem, the process (Ŵt)0≤t≤T is a Brownian

motion under the probability measure P̂ given by

dP̂

dP
= exp

(

−WT − 1

2
T
)

.

Following the notation used in Definition 2.1 in [13] (with G = 1), the coefficients of (24) may be

summarized by

A(t, e, y, z) =





−z
−y − (T − t)
T − t



 ,

so thatA satisfies (H2.3) in [13] withG = 1, β1 = 0, β2 = 1 and µ1 = 0. By Theorem 2.6 in [13], we

deduce that, for each initial condition (t0, e), (24) admits a unique solution (Ēt0,e
t , Y t0,e

t , Zt0,e
t )t0≤t≤T

satisfying Ēt0,e
t0

= e and Y t0,e
T = φ(Ēt0,e

T ). Obviously, the solution is defined on the probability space

(Ω,F , P̂). In particular, it is adapted to the filtration generated by (Wt)0≤t≤T . Using the boundedness

of the boundary condition Y t0,e
T = φ(Ēt0,e

T ), it is standard to prove that (Y t0,e
t )t0≤t≤T is bounded.

We then deduce that (Ēt0,e
t )t0≤t≤T is a bona fide semi-martingale under P and that (Y t0,e

t )t0≤t≤T is a

bounded martingale under P. Moreover, the triple (Ēt0,e
t , Y t0,e

t , Zt0,e
t )t0≤t≤T satisfies (23) P-almost

surely, as required.

The connection between (23) and (24) also permits to apply the comparison principle in Wu and

Xu [17]. By Theorem 3.1 in Wu and Xu [17] applied to (24) (with G = 1, β1 = µ1 = 0 and

β2 = 1 in Assumption 2.2 therein), the value function v : (t0, e) →֒ Y t0,e
t0

(i.e. the value at time t0
of the solution under the initial condition Ēt0 = e) is non-decreasing. By the martingale property of

(Y t0,e
t )t0≤t≤T under P, v is [0, 1]-valued.

By Corollary 1.5 in Delarue [6], we know that, for T − t0 small enough, the mapping e →֒ v(t0, e)

is Lipschitz continuous and that Y t0,e
t has the form Y t0,e

t = v(t, Ēt0,e
t ), t0 ≤ t ≤ T . Actually, the

initial condition of the process (Ēt)t0≤t≤T in Corollary 1.5 in [6] may be random. In particular, for

T − t0 possibly large and T − t small enough, we can always apply Corollary 1.5 in [6] to the triple

(Ēt0,e
s , Y t0,e

s , Zt0,e
s )t≤s≤T seen as the solution to (23) with Ēt0,e

t as initial condition at time t, so that

Y t0,e
t has the form Y t0,e

t = v(t, Ēt0,e
t ) for T − t small enough. We deduce that, for T − t0 possibly

large and T − t small enough, the triple (Ēt0,e
s , Y t0,e

s , Zt0,e
s )t0≤s≤t solves (23) with Yt = v(t, Ēt)

as boundary condition. In particular, on [t0, t], (23) may be seen as a uniformly elliptic FBSDE

with a Lipschitz boundary condition. By Theorem 2.1 in Delarue and Guatteri [7] (together with the

discussion in Section 8 therein), we deduce that v belongs to C0([0, T ]×R,R)∩C1,2([0, T )×R,R),
that t →֒ ‖∂ev(t, ·)‖∞ is bounded on the whole [0, T ] and that t →֒ ‖∂2eev(t, ·)‖∞ is bounded on

every compact subset of [0, T )1. Moreover, (22) holds.

1Specifically, Theorem 2.1 in [7] says that v belongs to C0([0, T ) × R,R) and that t →֒ ‖∂ev(t, ·)‖∞ is bounded on

every compact subset of [0, T ). In fact, by Corollary 1.5 in Delarue [6], we know that v belongs to C0([T − δ, T ]× R,R)
and that t →֒ ‖∂ev(t, ·)‖∞ is bounded on [T − δ, T ] for δ small enough.
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We now establish (21). For t0 ≤ t ≤ T , the forward equation in (23) has the form

(25) Ēt0,e
t = e−

∫ t

t0

v(s, Ēt0,e
s )ds+

∫ t

t0

(T − s)dWs.

Since v is C1 in space on [0, T ) × R with bounded Lipschitz first-order derivative, we can apply

standard results on the differentiability of stochastic flows (see for example Kunita’s monograph [9]).

We deduce that, for almost every realization of the randomness and for any t ∈ [t0, T ), the mapping

e →֒ Ēt0,e
t is differentiable and

(26) ∂eĒ
t0,e
t = 1−

∫ t

t0

∂ev(s, Ē
t0,e
s )∂eĒ

t0,e
s ds.

In particular,

(27) ∂eĒ
t0,e
t = exp

(

−
∫ t

t0

∂ev(s, Ē
t0,e
s )ds

)

.

Since v is non-decreasing, we know that ∂ev ≥ 0 on [0, T )×R so that ∂eĒ
t0,e
t belongs to [0, 1]. Since

∂ev is also bounded on the whole [0, T )×R, we deduce by differentiating the right-hand side in (25)

with t = T that ∂eĒ
t0,e
T exists as well and that ∂eĒ

t0,e
T = limt→T ∂eĒ

t0,e
t ∈ [0, 1]. To complete the

proof of (21), we then notice that for any t ∈ [t0, T ],

d
[

(T − t)Y t0,e
t − Ēt0,e

t

]

= (T − t)dY t0,e
t − (T − t)dWt = (T − t)[Zt0,e

t − 1]dWt,

so that taking the expectations we get:

(T − t0)v(t0, e)− e = −E
[

Ēt0,e
T

]

.

Now, differentiating with respect to e, we have:

(T − t0)∂ev(t0, e) = 1− E
[

∂eĒ
t0,e
T

]

≤ 1,

which concludes the proof of (21).

It now remains to investigate the Hölder norms (both in time and space) of v, ∂ev, ∂2eev and ∂tv.

We first deal with v itself. For 0 < t < s < T ,

v(s, e)− v(t, e) = v(s, e)− v(s, Ēt,e
s ) + v(s, Ēt,e

s )− v(t, e)

= v(s, e)− v(s, Ēt,e
s ) + Y t,e

s − Y t,e
t

= v(s, e)− v(s, Ēt,e
s ) +

∫ s

t
Zt,e
r dBr.

From (21), we deduce

|v(s, e)− v(t, e)| ≤ 1

T − s
E
∣

∣Ēt,e
s − e

∣

∣+ E

[∣

∣

∣

∣

∫ s

t
Zt,e
r dBr

∣

∣

∣

∣

]

≤ 1

T − s

[

s− t+

(∫ s

t
(T − r)2dr

)1/2]

+ E

[∫ s

t
|Zt,e

r |2dr
]1/2

≤ 1

T − s

[

s− t+

(∫ s

t
(T − r)2dr

)1/2]

+ (s− t)1/2,
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since Zt,e
r = (T − r)∂ev(r, Ē

t,e
r ) ∈ [0, 1]. So for ǫ > 0, v is 1/2-Hölder continuous in time t ∈

[0, T − ǫ], uniformly in space and in the smoothness of φ.

Now, by Theorem 2.1 in Delarue and Guatteri [7], we know that v satisfies the PDE

∂tv(t, e) +
(T − t)2

2
∂2eev(t, e)− v(t, e)∂ev(t, e) = 0, t ∈ [0, T ), e ∈ R,(28)

with φ as boundary condition. On [0, T − ǫ] × R, ǫ > 0, equation (28) is a non-degenerate second-

order PDE of dimension 1 with −v as drift, this drift being C1/2,1-continuous independently of the

smoothness of φ. By well-known results in PDEs (so called Schauder estimates, see for example

Theorem 8.11.1 in Krylov [8]), for any small η > 0, the C(3−η)/2,3−η-norm of v on [0, T − ǫ]× R is

independent of the smoothness of φ. �

Remark 5. As announced, equation (28) is of Burgers type. In particular, it has the same first-order

part as equation (19).

4.2. Boundary Behavior. Still in the framework of a terminal condition given by a smooth (i.e.

non-decreasing Lipschitz) function with values in [0, 1], we investigate the shape of the solution as t
approaches T .

Proposition 4. Assume that there exists some real Λ+ such that φ(e) = 1 on [Λ+,+∞). Then, there

exists a universal constant c > 0 such that for any δ > 0

(29) v
(

t,Λ+ + T − t+ δ
)

≥ 1− exp
(

−c δ2

(T − t)3
)

, 0 ≤ t < T.

In particular, v(t, e) → 1 as tր T uniformly in e in compact subsets of (Λ+,+∞).
Similarly, assume that there exists an interval (−∞,Λ−] such that φ(e) = 0 on (−∞,Λ−]. Then,

for any δ > 0,

(30) v(t,Λ− − δ) ≤ exp
(

−c δ2

(T − t)3
)

.

In particular, v(t, e) → 0 as tր T uniformly in e in compact subsets of (−∞,Λ−).

Proof. We only prove (29), the proof of (30) being similar. To do so, we fix (t0, e) ∈ [0, T )× R and

consider the following system
{

dE−
t = −dt+ (T − t)dWt

dY −
t = Z−

t dWt, t0 ≤ t ≤ T,

with E−
t0

= e as initial condition for the forward equation and Y −
T = φ(E−

T ) as terminal condition

for the backward part. The solution (Ēt0,e
t , Y t0,e

t , Zt0,e
t )t0≤t≤T given by Proposition 3 with Ēt0,e

t0
= e

and Y t0,e
T = φ(Ēt0,e

T ) satisfies Y t0,e
t ∈ [0, 1] for any t ∈ [t0, T ] so that E−

t ≤ Ēt0,e
t almost surely for

t ∈ [t0, T ]. Now, since φ is non-decreasing, φ(E−
T ) ≤ φ(Ēt0,e

T ) almost surely, namely Y −
t0

≤ Y t0,e
t0

.

Setting v−(t0, e) = Y −
t0

, recall that Y −
t0

is deterministic, we see that:

(31) v−(t0, e) ≤ v(t0, e) ≤ 1.
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Now, since

v−(t0, e) = E
[

φ(E−
T )
]

= E

[

φ

(

e− (T − t0) +

∫ T

t0

(T − s)dWs

)]

with φ ≥ 1[Λ+,+∞), by choosing e = Λ+ + (T − t0) + δ as in the statement of Proposition 4 we get:

E
[

φ(E−
T )
]

= E

[

φ

(

Λ+ + δ +

∫ T

t0

(T − s)dWs

)]

≥ P

{

Λ+ + δ +

∫ T

t0

(T − s)dWs ≥ Λ+

}

= P

{∫ T

t0

(T − s)dWs ≥ −δ
}

= 1− P

{∫ T

t0

(T − s)dWs ≤ −δ
}

and we complete the proof by applying standard estimates for the decay of the cumulative distribution

function of a Gaussian random variable. (Note indeed that V(
∫ T
t0
(T − s)dWs) = (T − t0)

3/3.) �

The following corollary elucidates the boundary behavior between Λ− and Λ+ + (T − t) with Λ−

and Λ+ as above.

Corollary 1. Choose φ as in Proposition 4. If there exists an interval [Λ+,+∞) on which φ(e) = 1,

then for α > 0 and e < Λ+ + (T − t) + (T − t)1+α we have:

(32) v(t, e) ≥ e− Λ+

T − t
− exp

(

− c

(T − t)1−2α

)

− (T − t)α,

for the same c as in the statement of Proposition 4.

Similarly, if there exists an interval (−∞,Λ−] on which φ(e) = 0, then for α > 0 and e >
Λ− − (T − t)1+α we have:

(33) v(t, e) ≤ e− Λ−

T − t
+ exp

(

− c

(T − t)1−2α

)

+ (T − t)α.

Proof. We first prove (32). Since v(t, ·) is 1/(T − t) Lipschitz continuous, we have:

v
(

t,Λ+ + (T − t) + (T − t)1+α
)

− v(t, e) ≤ Λ+ − e+ (T − t) + (T − t)1+α

T − t

=
Λ+ − e

T − t
+ 1 + (T − t)α.

Therefore,

v(t, e) ≥ v
(

t,Λ+ + (T − t) + (T − t)1+α
)

− 1− (T − t)α − Λ+ − e

T − t
,

and applying (29)

v(t, e) ≥ e− Λ+

T − t
− exp

(

−c(T − t)2α−1
)

− (T − t)α.
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For the upper bound, we use the same strategy. We start from

v(t, e)− v
(

t,Λ− − (T − t)1+α
)

≤ e− Λ−

T − t
+ (T − t)α,

so that

v(t, e) ≤ e− Λ−

T − t
+ exp

(

−c(T − t)2α−1
)

+ (T − t)α.

�

4.3. Existence of a Solution. We now establish the existence of a solution to (18) with the original

terminal condition. We use a compactness argument giving the existence of a value function for the

problem.

Proposition 5. There exists a continuous function v : [0, T )× R →֒ [0, 1] satisfying

(1) v belongs to C1,2([0, T )× R,R) and solves the PDE (28),

(2) v(t, ·) is non-decreasing and 1/(T − t)-Lipschitz continuous for any t ∈ [0, T ),
(3) v satisfies (29) and (30) with Λ− = Λ+ = Λ,

(4) v satisfies (32) and (33) with Λ− = Λ+ = Λ,

and for any initial condition (t0, e) ∈ [0, T )× R, the strong solution (Ēt0,e
t )t0≤t<T of

(34) Ēt = e−
∫ t

t0

v(s, Ēs)ds+

∫ t

t0

(T − s)dWs, t0 ≤ t < T,

is such that (v(t, Ēt0,e
t ))t0≤t<T is a martingale with respect to the filtration generated by W .

Proof. Choose a sequence of [0, 1]-valued smooth non-decreasing functions (φn)n≥1 such that φn(e) =
0 for e ≤ Λ− 1/n and φn(e) = 1 for e ≥ Λ+1/n, n ≥ 1, and denote by (vn)n≥1 the corresponding

sequence of functions given by Proposition 3. By Proposition 3, we can extract a subsequence, which

we will still index by n, converging uniformly on compact subsets of [0, T ) × R. We denote by v
such a limit. Clearly, v satisfies (1) in the statement of Proposition 5. Moreover, it also satisfies (2)

because of Proposition 3, (3) by Proposition 4, and (4) by Corollary 1. Having Lipschitz coefficients,

the stochastic differential equation (34) has a unique strong solution on [t0, T ) for any initial condition

Ēt0 = e. If we denote the solution by (Ēt0,e
t )t0≤t<T , Itô’s formula and the PDE (28), imply that the

process (v(t, Ēt0,e
t ))t0≤t<T is a local martingale. Since it is bounded, it is a bona fide martingale. �

We finally obtain the desired solution to the FBSDE in the sense of Theorem 2.

Proposition 6. v and (Ēt0,e
t )t0≤t<T being as above and setting

Y t0,e
t = v(t, Ēt0,e

t ), Zt0,e
t = (T − t)∂ev(t, Ē

t0,e
t ), t0 ≤ t < T,

the process (Ēt0,e
t )t0≤t<T has an a.s. limit Ēt0,e

T as t tends to T . Similarly, the process (Y t0,e
t )t0≤t<T

has an a.s. limit Y t0,e
T as t tends to T and the extended process (Y t0,e

t )t0≤t≤T is a martingale with

respect to the filtration generated by W . Morever, P-a.s., we have:

(35) 1(Λ,∞)(Ē
t0,e
T ) ≤ Y t0,e

T ≤ 1[Λ,∞)(Ē
t0,e
T ).
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and

(36) Y t0,e
T = Y t0,e

t0
+

∫ T

t0

Zt0,e
t dWt,

Notice that Zt0,e
t is not defined for t = T .

Proof. The proof is straightforward now that we have collected all the necessary ingredients. We start

with the extension of (Ēt0,e
t )t0≤t<T up to time T . The only problem is to extend the drift part in (34),

but since v is non-negative and bounded, it is clear that the process
(∫ t

t0

v(s, Ēt0,e
s )ds

)

t0≤t<T

is almost-surely increasing in t, so that the limit exists. The extension of (Y t0,e
t )t0≤t<T up to time T

follows from the almost-sure convergence theorem for positive martingales.

To prove (35), we apply (3) in the statement of Proposition 5. If Ēt0,e
T = limt→T Ē

t0,e
t > Λ,

then we can find some δ > 0 such that Ēt0,e
t > Λ + (T − t) + δ for t close to T , so that Y t0,e

t =

v(t, Ēt0,e
t ) ≥ 1 − exp[−cδ2/(T − t)3] for t close to T , i.e. Y t0,e

T ≥ 1. Since Y t0,e
T ≤ 1, we deduce

that

Ēt0,e
T > Λ ⇒ Y t0,e

T = 1.

In the same way,

Ēt0,e
T < Λ ⇒ Y t0,e

T = 0.

This proves (35). Finally (36) follows from Itô’s formula. Indeed, by Itô’s formula and (28),

Y t0,e
t = Y t0,e

t0
+

∫ t

t0

Zt0,e
s dWs, t0 ≤ t < T.

By definition, Zt0,e
s = (T −s)∂ev(s, Ēt0,e

s ), t0 ≤ s < T . By Point (2) in the statement of Proposition

5, it is in [0, 1]. Therefore, the Itô integral
∫ T

t0

Zt0,e
s dWs

makes sense as an element of L2(Ω,P). This proves (36). �

4.4. Improved Gradient Estimates. Using again standard results on the differentiability of stochas-

tic flows (see again Kunita’s monograph [9]) we see that formulae (26) and (27) still hold in the present

situation of a discontinuous terminal condition. We also prove a representation for the gradient of v
of Malliavin-Bismut type.

Proposition 7. For t0 ∈ [0, T ), ∂ev(t0, e) admits the representation

(37) ∂ev(t0, e) = 2(T − t0)
−2E

[

lim
δ→0

v
(

T − δ, Ēt0,e
T−δ

)

∫ T

t0

∂eĒ
t0,e
t dWt

]

.

In particular, there exists some constant A > 0 such that

(38) sup
|e|>A

sup
0≤t≤T

∂ev(t, e) < +∞.
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Proof. For δ > 0, Proposition 6 yields

E

[

v
(

T − δ, Ēt0,e
T−δ

)

∫ T

t0

∂eĒ
t0,e
t dWt

]

= E

[∫ T−δ

t0

Zt0,e
t dWt

∫ T

t0

∂eĒ
t0,e
t dWt

]

= E

[∫ T−δ

t0

(T − t)∂ev
(

t, Ēt0,e
t

)

∂eĒ
t0,e
t dt

]

.

By the bounds we have on ∂ev and (∂eĒ
t0,e
t )t0≤t<T , we can exchange the symbols E and

∫

. We

obtain:

E

[

v
(

T − δ, Ēt0,e
T−δ

)

∫ T

t0

∂eĒ
t0,e
t dWt

]

=

∫ T−δ

t0

(T − t)E
[

∂e
[

v
(

t, Ēt0,e
t

)]]

dt.

Similarly, we can exchange the symbols E and ∂e, so that

E

[

v
(

T − δ, Ēt0,e
T−δ

)

∫ T

t0

∂eĒ
t0,e
t dWt

]

=

∫ T−δ

t0

(T − t)∂e
[

E
[

v
(

t, Ēt0,e
t

)]]

dt.

Since (v(t, Ēt0,e
t ))t0≤t≤T−δ is a martingale, we deduce:

E

[

v
(

T − δ, Ēt0,e
T−δ

)

∫ T

t0

∂eĒ
t0,e
t dWt

]

= ∂ev(t0, e)

∫ T−δ

t0

(T − t)dt =
1

2
(T − δ − t0)

2∂ev(t0, e).

Letting δ tend to zero and applying dominated convergence, we complete the proof of the representa-

tion formula of the gradient.

To derive the bound (38), we emphasize that, for e away from Λ (say for example e ≪ Λ), the

probability that (Ēt0,e
t )t0≤t≤T hits Λ is very small and decays exponentially fast as T − t0 tends to

0. On the complement, i.e. for supt0≤t≤T Ē
t0,e
t < Λ, we know that v(t, Ēt0,e

t ) tends to 0 as t tends

to T . Specifically, following the proof of Proposition 4, there exists a universal constant c′ > 0 such

that for any e ≤ Λ− 1 and t0 ∈ [0, T )

(T − t0)
2∂ev(t0, e) ≤ 2(T − t0)

1/2P1/2
{

sup
t0≤t≤T

Ēt0,e
t ≥ Λ

}

≤ 2(T − t0)
1/2P1/2

{

Λ− 1 + sup
t0≤t≤T

∫ T

t0

(T − s)dWs ≥ Λ
}

≤ 2(T − t0)
1/2P1/2

{

sup
t0≤t≤T

∫ T

t0

(T − s)dWs ≥ 1
}

≤ 2(T − t0)
1/2 exp

(

− c′

(T − t0)3
)

,

the last line following from maximal inequality (IV.37.12) in Rogers and Williams [15].

The same argument holds for e > Λ + 2 by noting that Eq. (37) also holds for v − 1. �

Remark 6. The stochastic integral in the Malliavin-Bismut formula (37) is at most of order (T −
t0)

1/2. Therefore, the typical resulting bound we obtain for ∂ev(t, e) in the neighborhood of (T,Λ) is

(T − t)−3/2. Obviously, it is less accurate than the bound given by Propositions 3 and 5. This says

that the Lipschitz smoothing of the singularity of the boundary condition obtained in Propositions 3

and 5, namely ∂ev(t, e) ≤ (T − t)−1, follows from the first-order Burgers structure of the PDE (28)
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and that the diffusion term plays no role in it. This a clue to understand why the diffusion process Ē
feels the trap made by the boundary condition. On the opposite, the typical bound for ∂ev(t, e) we

would obtain in the uniformly elliptic by applying a Malliavin-Bismut formula (see Exercice 2.3.5 in

Nualart [12]) is of order (T − t)−1/2, which is much better than (T − t)−1.

Nevertheless, the following proposition shows that the diffusion term permits to improve the bound

obtained in Propositions 3 and 5. Because of the noise plugged into Ē, the bound (T − t)−1 cannot

be achieved. This makes a real difference with the inviscid Burgers equation (19) which admits

(t, e) ∈ [0, T )× R →֒ ψ
(e− Λ

T − t

)

,

as solution, with ψ(e) = 1 ∧ e+ for e ∈ R. (See for example (10.12’) in Lax [10].)

We thus prove the following stronger version of Propositions 3 and 5:

Proposition 8. For any (t0, e) ∈ [0, T )× R, it holds (T − t0)∂ev(t0, e) < 1.

Proof. Given (t0, e) ∈ [0, T ) × R, we consider (Ēt0,e
t , Y t0,e

t , Zt0,e
t )t0≤t≤T as in the statement of

Proposition 6. As in the proof of Proposition 3, we start from

d
[

(T − t)Y t0,e
t − Ēt0,e

t

]

= (T − t)dY t0,e
t − (T − t)dWt = (T − t)[Zt0,e

t − 1]dWt, t0 ≤ t < T.

Therefore, for any initial condition (t0, e),

(T − t0)v(t0, e)− e = −E
[

Ēt0,e
T

]

.

Unfortunately, we do not know whether Ēt0,e
T is differentiable with respect to e. Anyhow,

(T − t0)∂ev(t0, e) = 1− lim
h→0

h−1E
[

Ēt0,e+h
T − Ēt0,e

T

]

= 1− lim
h→0

h−1 lim
tրT

E
[

Ēt0,e+h
t − Ēt0,e

t

]

≤ 1− lim
h→0

lim
tրT

inf
|u|≤h

E
[

∂eĒ
t0,e+u
t

]

Using (27), the non-negativity of ∂ev and Fatou’s lemma,

(T − t0)∂ev(t0, e) ≤ 1− lim
h→0

lim
tրT

inf
|u|≤h

E

[

exp

(

−
∫ t

t0

∂ev(s, Ē
t0,e+u
s )ds

)]

≤ 1− lim
h→0

inf
|u|≤h

E

[

exp

(

−
∫ T

t0

∂ev(s, Ē
t0,e+u
s )ds

)]

≤ 1− E

[

exp

(

− lim
h→0

sup
|u|≤h

∫ T

t0

∂ev(s, Ē
t0,e+u
s )ds

)]

.

Consequently, in order to prove that (T − t0)∂ev(t0, e) < 1, it is enough to prove that the limit

superior

(39) lim
h→0

sup
|u|≤h

∫ T

t0

∂ev(t, Ē
t0,e+u
t )dt

is finite with a non-zero probability. To do so, the Lipschitz bound given by Proposition 3 is not

sufficient since the integral of the bound is divergent. To overcome this difficulty, we use (38): with

non-zero probability, the values of the process (Ēt)t0≤t≤T at the neighborhood of T may be made as

large as desired. Precisely, for A as in Proposition 7, it is sufficient to prove that there exists δ > 0
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small enough such that P{inf |h|≤1 infT−δ≤t≤T Ē
t0,e+h
t > A} > 0. For δ > 0, we deduce from the

boundedness of the drift in (34) that

P
{

inf
|h|≤1

inf
T−δ≤t≤T

Ēt0,e+h
t > A

}

≥ P

{

e− 1− (T − t0) + inf
T−δ≤t≤T

∫ t

t0

(T − s)dWs > A

}

.

By independence of the increments of the Wiener integral, we get

P
{

inf
|h|≤1

inf
T−δ≤t≤T

Ēt0,e+h
t > A

}

≥ P

{

e− 1− (T − t0) +

∫ T−δ

t0

(T − s)dWs > 2A

}

P

{

inf
T−δ≤t≤T

∫ t

T−δ
(T − s)dWs > −A

}

.

The first probability in the above right-hand side is clearly positive for T − δ > t0. The second one

is equal to

P

{

inf
T−δ≤t≤T

∫ t

T−δ
(T − s)dWs > −A

}

= 1− P

{

sup
T−δ≤t≤T

∫ t

T−δ
(T − s)dWs ≥ A

}

.

Using maximal inequality (IV.37.12) in Rogers and Williams [15], the above right hand-side is always

positive. By (38), we deduce that, with non-zero probability, the limit superior in (39) is finite. �

4.5. Distribution of Ēt for t0 ≤ t ≤ T . We finally claim:

Proposition 9. Keep the notation of Propositions 5 and 6 and choose some starting point (t0, e) ∈
[0, T )× R and some p ∈ R. Then, for every t ∈ [t0, T ), the law of the variable

Et0,e,p
t = Ēt0,e

t − (T − t)P p
t = Ēt0,e

t − (T − t)
[

p+Wt

]

,

obtained by transformation (17), is absolutely continuous with respect to the Lebesgue measure. At

time t = T , it has a Dirac mass at point Λ.

Proof. Obviously, we can assume p = 0, so that Pt = Wt. (For simplicity, we will write Et0,e
t for

Et0,e,p
t .) We start with the absolute continuity of Et0,e

t at time t < T . Since v is smooth away from

T , we can compute the Malliavin derivative of Et0,e
t . (See Theorem 2.2.1 in Nualart [12].) It satisfies

DsE
t0,e
t = t−s−

∫ t

s
∂ev
(

r, Et0,e
r +(T−r)Wr

)

DsE
t0,e
r dr−

∫ t

s
(T−r)∂ev

(

r, Et0,e
r +(T−r)Wr

)

dr,

for t0 ≤ s ≤ t. In particular,

DsE
t0,e
t =

∫ t

s

[

[

1− (T − r)∂ev
(

r, Et0,e
r + (T − r)Wr

)]

× exp

(

−
∫ t

r
∂ev
(

u,Et0,e
u + (T − u)Wu

)

du

)]

dr.

(40)

By Proposition 8, we deduce that DsE
t0,e
t > 0 for any t0 ≤ s ≤ t. By Theorem 2.1.3 in Nualart [12],

we deduce that the law of Et0,e
t has a density with respect to the Lebesgue measure.

To prove the existence of a point mass at time T , it is enough to focus on Ēt0,e
T since the latter is

equal to Et0,e
T . We prove the desired result by comparing the stochastic dynamics of Ēt0,e

T to the time
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evolution of solutions of simpler stochastic differential equations. With the notation used so far, Ēt0,e
t

is a solution of the SDE

(41) dĒt = −v(t, Ēt)dt+ (T − t)dWt

so it is natural to compare the solution of this SDE to solutions of SDEs with similar drifts. Following

Remark 5, we are going to do so by comparing v with the solution of the inviscid Burgers equation

(19). To this effect we use once more the function ψ defined by ψ(e) = 1∧ e+ introduced earlier. As

said in Remark 6, the function ψ((e− Λ)/(T − t)) is a solution of the Burgers equation (19) which,

up to the diffusion term (which decreases to 0 like (T − t)2 when t ր T ), is the same as the PDE

satisfied by v. Using (29) and (30) with Λ− = Λ+ = Λ and δ = (T − t)5/4, and (32) and (33) with

Λ− = Λ+ = Λ and α = 1/4, we have

∣

∣v(t, e)− ψ
(e− Λ

T − t

)∣

∣ ≤ C(T − t)1/4,

for some universal constant C. We now compare (41) with

(42) dX±
t = −ψ

(X±
t − Λ

T − t

)

dt± C(T − t)1/4 + (T − t)dWt, t0 ≤ t < T,

with X±
t0

= e as initial conditions. Clearly,

(43) X−
t ≤ Ēe,t0

t ≤ X+
t , t0 ≤ t < T.

Knowing that ψ(x) = xwhen 0 ≤ x ≤ 1, we anticipate that scenarios satisfying 0 ≤ X±
t −Λ ≤ T−t

can be viewed as solving the SDEs

dZ±
t = −Z

±
t − Λ

T − t
dt± C(T − t)1/4 + (T − t)dWt,

with Z±
t0
= e as initial conditions. This remark is useful because these SDEs have explicit solutions:

(44) Z±
t = Λ+ (T − t)

[

Wt −Wt0 ∓ 4C(T − t)1/4 ± 4C(T − t0)
1/4 +

e− Λ

T − t0

]

, t0 ≤ t ≤ T.

We define the event F by:

F =

{

sup
t0≤t≤T

|Wt −Wt0 | ≤
1

8

}

and we introduce the quantities e(t0) and ē(t0) defined by

e(t0) = Λ +
1

4
(T − t0) and ē(t0) = Λ +

3

4
(T − t0)

so that
1

4
≤ e− Λ

T − t0
≤ 3

4

whenever e(t0) ≤ e ≤ ē(t0). For such a choice of e, since

Z± − Λ

T − t
=Wt −Wt0 ∓ 4C(T − t)1/4 ± 4C(T − t0)

1/4 +
e− Λ

T − t0
,
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it is easy to see that if we choose t0 such that T − t0 is small enough for 32C(T − t0)
1/4 < 1 to hold,

then

∀t ∈ [t0, T ], 0 ≤ Z−
t − Λ

T − t
≤ Z+

t − Λ

T − t
≤ 1.

on the event F . This implies that (X±
t )t0≤t<T and (Z±

t )t0≤t<T coincide on F , and consequently that

X+
T = X−

T = Λ and hence Ēt0,e
T = Λ on F by (43). This completes the proof for these particular

choices of t0 and e. In fact, the result holds for any e and any t0 ∈ [0, T ). Indeed, since Ēt0,e
t

has a strictly positive density at any time t ∈ (t0, T ), so that, if we choose t1 ∈ (t0, T ) so that

32C(T − t1)
1/4 < 1, then using the Markov property we get

P
{

Ēt0,e
T = Λ

}

≥
∫ ē(t1)

e(t1)
P
{

Ēt1,e′

T = Λ
}

P
{

Ēt0,e
t1

∈ de′
}

> 0

which completes the proof in the general case. �

Remark 7. We emphasize that the expression we have for DsE
t0,e
t in (40) might vanish with a non-

zero probability when replacing t by T . Indeed, the integral
∫ T

r
∂ev
(

u,Et0,e
u + (T − u)Wu

)

du

may explode with a non-zero probability since the derivative ∂ev(u, e) is expected to behave like

(T − u)−1 as u tends to T and e to Λ.

On the opposite, this quantity is always bounded in the uniformly elliptic setting since ∂ev(u, ·) is

at most of order (T − u)−1/2 as explained in Remark 6.

4.6. Uniqueness. Our proof of uniqueness is based on a couple of comparison lemmas.

Lemma 1. Let φ be a non-decreasing smooth function with values in [0, 1] greater than 1[Λ,+∞), and

w be the solution of the PDE (28) with φ as terminal condition. Then, any solution (Ē′
t, Y

′
t , Z

′
t)t0≤t≤T

of (18) starting from Ē′
t0 = e and satisfying 1(Λ,+∞)(Ē

′
T ) ≤ Y ′

T ≤ 1[Λ,+∞)(Ē
′
T ) also satisfies

w(t, Ē′
t) ≥ Y ′

t , t0 ≤ t ≤ T.

Similarly, if φ is less than 1(Λ,+∞), then

w(t, Ē′
t) ≤ Y ′

t , t0 ≤ t ≤ T.

Proof. Applying Itô’s formula to (w(t, Ē′
t)t0≤t≤T , we obtain

d
[

w(t, Ē′
t)− Y ′

t

]

=
(

w(t, Ē′
t)− Y ′

t

)

∂ew(t, Ē
′
t)dt+

[

(T − t)∂ew(t, Ē
′
t)− Z ′

t

]

dWt.

Therefore,

d

{

[

w(t, Ē′
t)−Y ′

t

]

exp

(

−
∫ t

t0

∂ew(s, Ē
′
s)ds

)}

= exp

(

−
∫ t

t0

∂ew(s, Ē
′
s)ds

)

[

(T−t)∂ew(t, Ē′
t)−Z ′

t

]

dWt.

In particular,

w(t, Ē′
t)− Y ′

t = exp

(∫ t

t0

∂ew(s, Ē
′
s)ds

)

E

[

exp

(

−
∫ T

t0

∂ew(s, Ē
′
s)ds

)

[

w(T, Ē′
T )− Y ′

T

]

|Ft

]

,

which completes the proof. �
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The next lemma can be viewed as a form of conservation law.

Lemma 2. Let (χn)n≥1 be a non-increasing sequence of non-decreasing smooth functions match-

ing 0 on some intervals (−∞,Λ−,n)n≥1 and 1 on some intervals (Λ+,n,+∞)n≥1 and converging

towards 1[Λ,+∞), then the associated solutions (wn)n≥1, given by Proposition 3 converge towards v
constructed in Proposition 5.

The conclusion remains true if (χn)n≥1 is a non-decreasing sequence converging towards 1(Λ,+∞).

Proof. Each wn is a solution of the PDE (28) which is conservative. Considering vn as in the proof

of Proposition 5, we have for any n,m ≥ 1

∫

R

(wn − vm)(t, e)de =

∫

R

(χn − φm)(e)de, t ∈ [0, T ).

Notice that the integrals are well-defined because of Proposition 4. Since φm(e) → 1[Λ,+∞)(e) as

m→ +∞ for e 6= Λ, we deduce that

∫

R

(wn − v)(t, e)de =

∫

R

[

χn(e)− 1[Λ,+∞)(e)
]

de, t ∈ [0, T ).

Since the right hand side converges towards 0 as n tends to +∞, so does the left hand side, but since

wn(t, e) ≥ v(t, e) by Lemma 1 (choosing (Ē′, Y ′, Z ′) = (Ēt0,e, Y t0,e, Zt0,e)), we must also have:

lim
n→+∞

∫

R

|wn(t, e)− v(t, e)|de = 0.

Since (wn(t, ·))n≥1 is equicontinuous (by Proposition 3), we conclude that wn(t, e) → v(t, e). The

proof is similar if χn ր 1(Λ,+∞). �

To complete the proof of uniqueness, consider a sequence (χn)n≥1 as in the statement of Lemma

2. For any solution (Ē′
t, Y

′
t , Z

′
t)t0≤t≤T of (18) with Ē′

t0 = e, Lemma 1 yields

wn(t, Ē′
t) ≥ Y ′

t , t ∈ [t0, T ).

Passing to the limit, we deduce that

v(t, Ē′
t) ≥ Y ′

t , t ∈ [t0, T ).

Choosing a non-increasing sequence (χn)n≥1, instead, we obtain the reverse inequality, and hence,

we conclude that Y ′
t = v(t, Ē′

t) for t ∈ [t0, T ). By uniqueness to (34), we deduce that Ē′
t = Ēt0,e

t , so

that Y ′
t = Y t0,e

t . We easily deduce that Z ′
t = Zt0,e

t as well.

Remark 8. Lemma 2 clearly benefits from the conservative structure of Burgers equation (19): the

conservative property is the key argument for uniqueness and permits to handle the singular boundary

condition despite the Dirac mass of the forward process.
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5. A GENERAL EXISTENCE AND UNIQUENESS THEOREM FOR SINGULAR FBSDES

We here go further in the analysis of existence and uniqueness of FBSDEs driven both by a degen-

erate forward process and a singular boundary condition. In the previous section, we understood from

the linear case that the notion of solution had to be reformulated to keep existence and uniqueness

preserved.

Below, we prove a similar existence and uniqueness result for systems of the form

dPt = µ(Pt)dt+ σ(Pt)dWt,

dEt = −f(Pt, Yt)dt

dYt = ZtdWt, 0 ≤ t ≤ T,

(45)

with YT = 1[Λ,+∞)(ET ) as boundary condition.

In comparison with Subsection 2.2 (and more specifically (7)), we here understand µ and σ as the

coefficients of the dynamics of the price of electricity and not as the coefficients of the dynamics

of the logarithm of the price. The corresponding function f is f(p, y) = −(c′)−1(p − ǫy) with the

same notations as in Subsection 2.2. We also notice that the boundary condition 1[Λ,+∞) can be here

changed into λ1[Λ,+∞) by using an obvious change of variable, so that Eq. (45) may cover the model

in Subsection 2.2.

Unless specified, the standing assumptions on the coefficients in the whole section are:

(A.) We say that the coefficients µ, f and σ satisfy Assumption (A) if there exists a constant L ≥ 1
such that

(A.1) µ and σ are at most of L-linear growth, i.e. are bounded by p ∈ R 7→ L(1 + |p|), and are

L-Lipschitz continuous,

(A.2) for any y ∈ R, the function p ∈ R 7→ f(p, y) is L-Lipschitz continuous and is less than

p ∈ R 7→ L(1+ |p|+ |y|); for any p ∈ R, the function y 7→ f(p, y) is increasing and L−1|y− y′|2 ≤
(y− y′)[f(p, y)− f(p, y′)] ≤ L|y− y′|2, y, y′ ∈ R. (In particular, f is L-Lipschitz continuous in y.)

Remark 9. The strict monotonicity property of f must be understood as a strict convexity property

of the primitive of f , as typically assumed in the theory of scalar conservation laws.

Theorem 3. Given an initial condition (p, e) ∈ R2, there exists a unique progressively-measurable

triple (Pt, Et, Yt)0≤t≤T satisfying (45) together with the initial conditions P0 = p and E0 = e and

the boundary condition

(46) P
{

1(Λ,∞)(ET ) ≤ YT ≤ 1[Λ,∞)(ET )
}

= 1.

We let the reader notice that Theorem 3 applies to Eq. (14) and thus provides an existence and

uniqueness result for it. Anyhow, nothing is here said about the existence of a Dirac mass at maturity

time: we postpone this question to future works.

Despite the similarity between Theorems 2 and 3, we have decided to split the linear case (14) and

the more general one (45) into two different sections for pedagogical reasons: in the whole analysis

performed in Sections 4 and 5, we understand the linear case as the typical example and thus feel it

to deserve a specific discussion. Below, we will shorten the arguments when similar to the ones used

in the linear case.
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5.1. Existence via mollifying. Excatly as we did in the linear case, the analysis relies on a mollifying

argument. Indeed, we here handle first the case when the boundary condition is a non-decreasing

smooth function φ with values in [0, 1] and the dynamics of P and E are driven by additional noises

of small variance ε2 ∈ (0, 1).
Specifically, we here call mollified equation the system

dPt = b(Pt)dt+ σ(Pt)dWt + εdW ′
t ,

dEt = −f(Pt, Yt)dt+ εdBt,

dYt = ZtdWt + Z ′
tdWt +ΥtdBt, 0 ≤ t ≤ T,

(47)

with YT = φ(ET ) as boundary condition, (Wt)0≤t≤T , (W ′
t)0≤t≤T and (Bt)0≤t≤T , standing for three

independent Brownian motion. Here, (Zt, Z
′
t,Υt)0≤t≤T stands for the representation term of the

martingale (Yt)0≤t≤T w.r.t. the filtration generated by (Wt,W
′
t , Bt)0≤t≤T .

For any initial condition (t0, p0, e0) ∈ [0, T ] × R2, Eq. (47) is known to be uniquely solvable,

see Delarue [6]. Moreover, the value function v : (t0, p0, e0) 7→ Y t0,p0,e0
t0

∈ [0, 1] is of class C1,2 on

[0, T ]× R2, with bounded and continuous derivatives, and satisfies the PDE:

(48) ∂tv(t, p, e)+Lpv(t, p, e)+
ε2

2
∂2ppv(t, p, e)+

ε2

2
∂2eev(t, p, e)−f

(

p, v(t, p, e)
)

∂ev(t, p, e) = 0,

with v(T, p, e) = φ(e) as boundary condition, Lp here standing for the differential operator

Lp = µ(·) ∂
∂p

+
1

2
σ2(·) ∂

2

∂p2
.

The solution to (47) then satisfies: Yt = v(t, Pt, Et),Zt = ∂pv(t, Pt, Et)σ(Pt),Z
′
t = ε∂pv(t, Pt, Et)

and Υt = ε∂ev(t, Pt, Et), 0 ≤ t ≤ T .

To mimic Section 4, we need several a prirori estimates on v. The first one is similar to (21):

Proposition 10. Consider the mollified Eq. (47). Then,

(49) ∀(t, p, e) ∈ [0, T )× R2, 0 ≤ ∂ev(t, p, e) ≤
L

T − t
.

Moreover, theL∞-norm of ∂ev on the whole [0, T ]×R2 can be bounded independently of the viscosity

paramater ε.

Proof. To prove (49), we can assume the coefficients to be continuously differentiable. (If (49) holds

in the continuously differentiable setting, it is shown to hold in the initial framework as well by a

mollifying argument.) In that case, L−1 ≤ ∂yf ≤ L. The point then consists in differentiating the

processes E and Y w.r.t. the initial condition.

Precisely, consider an initial condition (t0, p, e) ∈ [0, T ] × R2. As in (25), we can consider the

derivative process (∂eE
t0,p,e
t )t0≤t≤T . By Pardoux and Peng [?], we can also consider the deriva-

tive processes (∂eY
t0,p,e
t )t0≤t≤T , (∂eZ

t0,p,e
t )t0≤t≤T , (∂e(Z

′
t)
t0,p,e)t0≤t≤T and (∂eΥ

t0,p,e
t )t0≤t≤T . Of

course, ∂eY
t0,p,e
t = ∂ev(t, P

t0,p
t , Et0,p,e

t )∂eE
t0,p,e
t . It is plain to see that (below, we will get rid of the

index (t0, p, e) to simplify the notations)

d
[

∂eEt

]

= −∂yf
(

Pt, Yt
)

∂eYtdt

= −∂yf
(

Pt, Yt
)

∂ev(t, Pt, Et)∂eEtdt, t0 ≤ t ≤ T,
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so that

∂eEt = exp

(

−
∫ t

t0

∂yf(Ps, Ys)∂ev(s, Ps, Es)ds

)

, t0 ≤ t ≤ T,

which is bounded from above and from below by a positive constant, uniformly in time and random-

ness. Now, we can compute

d
[

∂eYt
]

= ∂eZtdWt + ∂eZ
′
tdW

′
t + ∂eΥtdBt, t0 ≤ t ≤ T.

Taking the expectation (note that (∂eZt)t0≤t≤T , (∂eZ
′
t)t0≤t≤T and (∂eΥt)t0≤t≤T belong to the space

L2([t0, T ] × Ω,P ⊗ dt), we deduce that ∂eYt0 = E[∂eYT ] = E[∂eφ(ET )∂eET ] ≥ 0, so that

∂ev(t0, p, e) ≥ 0.

To get the upper bound, we compute

d
[

∂eEt

]−1
= ∂yf(Pt, Yt)∂eYt

[

∂eEt]
−2dt, t0 ≤ t ≤ T,

so that

d
[

∂eYt(∂eEt)
−1
]

= (∂eEt)
−1
[

∂eZtdWt + ∂eZ
′
tdW

′
t + ∂eΥtdBt

]

+ ∂yf(Pt, Yt)
[

∂eYt
]2[
∂eEt]

−2dt.

Taking the expectation and using the lower bound for ∂yf , we deduce that

d
(

E
[

∂eYt(∂eEt)
−1
])

≥ L−1E
([

∂eYt
]2[
∂eEt]

−2
)

dt.

By Cauchy-Schwarz inequality, we obtain

d
(

E
[

∂eYt(∂eEt)
−1
])

≥ L−1
[

E
([

∂eYt
][

∂eEt]
−1
)]2

dt, t0 ≤ t ≤ T.

Without loss of generality, we can assume that ∂ev(t0, p, e) 6= 0. (Otherwise, the upper bound for

the derivative is obvious.) Therefore, ∂eYt0(∂eEt0)
−1 = ∂ev(t0, p, e) 6= 0. We then consider the first

time τ when the continous function E
[

∂eYt(∂eEt)
−1
]

hits zero. For t ∈ [t0, τ ∧ T ), we write

d
(

E
[

∂eYt(∂eEt)
−1
])

[

E
([

∂eYt
][

∂eEt]−1
)]2 ≥ L−1dt,

i.e.
[

∂eYt0(∂eEt0)
−1
]−1 −

(

E
[

∂eYt(∂eEt)
−1
])−1 ≥ L−1(t− t0).

We then understand that the function t ∈ [t0, T ] 7→ E[∂eYt(∂eEt)
−1] cannot vanish. (Otherwise, the

left-hand side is −∞ since explosion can only occur in +∞). Therefore, we can let t tend to T to

deduce that
[

∂eYt0(∂eEt0)
−1
]−1 ≥ L−1(T − t0),

which completes the first part of the proof.

The second part of the proof is a straightforward consequence of Delarue [6]: in small time, i.e.

for t close T , the Lipschitz constant of v(t, ·) can be bounded in terms of the Lipschitz constants of

the coefficients and of the boundary condition. For t away from T , the result follows from the first

part of the statement directly.

�

We now estimate the gradient in the direction p and then derive the regularity in time:
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Proposition 11. Consider the mollified Eq. (47). Then, for any (t, p, e) ∈ [0, T )× R2,

(50)
∣

∣∂pv(t, p, e)
∣

∣ ≤ L2 exp(LT ).

As a consequence, for any δ ∈ (0, T ) and any finite interval I , the 1/2-Hölder norm of the function

t ∈ [0, T − δ] 7→ v(t, p, e), p ∈ I and e ∈ R, is bounded in terms of δ, I and L only.

Proof. Again, we can assume the coefficients to continuously differentiable. (If (50) holds in the

continuously differentiable setting, it is shown to hold in the initial framework as well by a mollifying

argument.) The idea then consists in differentiating the equation satisfied by v with respect to p.

We define the 2-dimensional differential operator

[

L∂
pe(h)

]

(t, p, e) =
(

Lph
)

(t, p, e) +
ε2

2
∂2pph(t, p, e) +

ε2

2
∂2eeh(t, p, e)

+
1

2
∂p(σ

2)(p)∂ph(t, p, e)− f
(

p, v(t, p, e)
)

∂eh(t, p, e)

+ ∂pµ(p)h(t, p, e)− ∂yf
(

p, v(t, p, e)
)

∂ev(t, p, e)h(t, p, e).

Then, the function (t, p, e) ∈ [0, T ]× R2 7→ ∂v(t, p, e) satisfies the PDE

(51) ∂t
[

∂pv
]

(t, p, e) + L∂
pe

[

∂pv
]

(t, p, e)− ∂pf
(

p, v(t, p, e)
)

∂ev(t, p, e) = 0,

with the boundary condition

∂pv(T, p, e) = 0, (p, e) ∈ R2.

Using the increasing property of f w.r.t. y,

∂t
[

L2 exp
(

L(T − t)
)]

+ L∂
pe

[

L2 exp
(

L(T − t)
)]

− ∂pf
(

p, v(t, p, e)
)

∂ev(t, p, e)

= exp
(

L(T − t)
){

−L3 + ∂pµ(p)L
2

[

−∂yf
(

p, v(t, p, e)
)

L2 − exp
(

−L(T − t)
)

∂pf
(

p, v(t, p, e)
)]

∂ev(t, p, e)
}

≤ exp
(

L(T − t)
){

−L3 + L× L2 +
[

−L−1L2 + L
]

∂ev(t, p, e)
}

≤ 0.

We deduce that (t, p, e) 7→ L2 exp(L(T − t)) is a subsolution of the PDE (51) with a non-negative

boundary condition. By the maximum principle, we deduce that ∂pv(t, p, e) is always less than

L2 exp(L(T − t)). This proves the upper bound in (50). The proof of the lower bound is similar.

The end of the proof is similar to the proof of Hölder continuity in Proposition 3.

�

We now provide a similar (but less precise) analysis as in Proposition 4:

Proposition 12. Consider the mollified Eq. (47) with φ(e) = 1 for e ≥ Λ + δ and φ(e) = 0 for

e ≤ Λ− δ for some δ > 0. Then, for any t < T , for any p ∈ R,

lim
e→+∞

v(t, p, e) = 1, lim
e→−∞

v(t, p, e) = 0, lim
e→±∞

∂v

∂e
(t, p, e) = 0.

Specifically, for any ρ > 0 and q ≥ 1, there exists a constant C(ρ, q) ≥ 1, depending on ρ, L and

T only (and in particular being independent of δ, ε and the choice of the approximating sequence of
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the boundary condition) such that

∀p ∈ [−ρ, ρ], e− (Λ + δ)

T − t
≥ C(ρ, q) ⇒ v(t, p, e) ≥ 1− [C(ρ, q)]−1

(e− (Λ + δ)

L(T − t)

)−q
,

e− (Λ− δ)

T − t
≤ −C(ρ, q) ⇒ v(t, p, e) ≤ [C(ρ, q)]−1

(Λ− δ − e

L(T − t)

)−q
.

(52)

Proof. Since we here consider the mollified framework, v is known to be the (bounded) solution of

a nonlinear PDE with Lipschitz continuous coefficients, with a smooth boundary condition and with

a uniformly elliptic diffusion matrix. In particular, for any finite interval I , the L∞-norms and the

moduli of continuity of the functions v, ∂tv, ∂ev, ∂pv, ∂2p,pv, ∂2e,ev and ∂2p,ev are uniformly controlled

on [0, T ]× I × R, see footnote2, i.e. the functions (vn : (t, p, e) ∈ [0, T ]× R2 7→ v(t, p, n+ e))n≥0

together with their first-order derivatives in time and space and second-order derivatives in space are

bounded and equicontinuous on compact sets. Clearly, any possible limit (t, p, e) ∈ [0, T ] × R2 7→
v∞(t, p, e) of the sequence (vn)n≥0 as n tends to +∞ satisfies the PDE (48) but with 1 as boundary

condition. Obviously, it means that the sequence of functions (vn)n≥0 tends to 1 as n tends to +∞.

As a by-product, the sequence of the derivatives tends to 0. The analysis is similar when n tends to

−∞.

We now turn to the proof of (52). We will prove the lower bound only (that is for e≫ Λ). The other

bound can be proven in a similar way. For a given starting point (t0, p, e) ∈ [0, T )×R2, we consider

the solution (P t0,p
t , Et0,p,e

t , Y t0,e,p
t )t0≤t≤T to (47). (Again, we will forget the superscrit (t0, p, e).)

Since the function v is known to be [0, 1]-valued, we can follow the proof of Proposition 4 and

consider

dE−
t = −f(Pt, 1)dt, t0 ≤ t ≤ T ; E−

t0
= e.

Since f is increasing, it is clear that Et ≥ E−
t for any t ∈ [t0, T ], so that

v(t0, p, e) ≥ P{E−
T ≥ Λ + δ}

= P

{∫ T

t0

f(Ps, 1)ds ≤ e− (Λ + δ)

}

≥ P

{

L(T − t0)
(

1 + sup
t0≤s≤T

|Ps|
)

≤ e− (Λ + δ)

}

= 1− P

{

sup
t0≤s≤T

|Ps| >
e− (Λ + δ)

L(T − t0)
− 1

}

.

Under the linear growth assumption (A.2), it is well known that supt0≤s≤T |Ps| has finite q-moments,

for any q ≥ 1. The proof is easily completed.

�

Considering a sequence of smooth boundary conditions (φn)n≥1 such that φn(e) = 1 for e ≥
Λ + 1/n and φn(e) = 0 for e ≤ Λ − 1/n and letting the viscosity tend to zero, we deduce the

existence part in Theorem 3 by a similar compactness argument as the one used in the proof of

Proposition 5:

Proposition 13. Forget the mollified setting and go back to the original Eq. (45). Then, there exists

a continuous function v : [0, T )× R2 → [0, 1] satisfying

2We emphasize that the estimates are kept invariant by translation of e, but they may not be kept invariant by translation

of p because of the possibly linear growth of the coefficients in p.
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(1) v(t, ·) is L/(T − t)-Lipschitz continuous w.r.t. e for any t ∈ [0, T ),
(2) v(t, ·) is L2 exp(LT )-Lipschitz continuous w.r.t. p for any t ∈ [0, T ),
(3) limt→T v(t, p, e) = 1 uniformly in p in compact subsets of R and in e in compact subsets

of (Λ,+∞) and limt→T v(t, p, e) = 0 uniformly in p in compact subsets of R and in e in

compact subsets of (−∞,Λ),

and for any initial condition (t0, p, e) ∈ [0, T )× R2, the strong solution (Et0,p,e
t )t0≤t<T of

Et = e−
∫ t

t0

f
(

P t0,p
s , v(s, P t0,p

s , Es)
)

ds, t0 ≤ t < T,

is such that (v(t, P t0,p
t , Et0,p,e

t ))t0≤t<T is a [0, 1]-valued martingale w.r.t. the filtration generated by

W , where (P t0,p
t )t0≤t≤T is the solution of the forward equation in (45). Moreover, P-almost surely,

1(Λ,+∞)(E
t0,p,e
T ) ≤ lim

t→T
v(t, P t0,p

t , Et0,p,e
t ) ≤ 1[Λ,+∞)(E

t0,p,e
T ).

5.2. Uniqueness via conservation law. We start with the analogue of Lemma 1:

Lemma 3. Let (Pt, E
′
t, Y

′
t )t0≤t≤T , t0 ∈ [0, T ), be a solution of Eq. (45) with

P
{

1(Λ,+∞)(E
′
T ) ≤ Y ′

T ≤ 1[Λ,+∞)(E
′
T )
}

= 1,

as boundary condition. Consider also (wε,n)ε∈(0,1),n∈N a family of solutions associated with a non-

increasing sequence of mollified boundary conditions (χn)n∈N such that χn ց 1[Λ,+∞). (In partic-

ular, χn ≥ 1[Λ,+∞).) Then, the limit w (on [0, T )×R2) of any converging subsequence of the family

(wε,n)ε∈(0,1),n∈N as ε tends to 0 and n to +∞ satisfies

w(t, Pt, E
′
t) ≥ Y ′

t , t ∈ [t0, T ).

Similarly, if (χn)n∈N is a non-decreasing sequence of mollified boundary conditions such that χn ր
1(Λ,+∞), then w(t, Pt, E

′
t) ≤ Y ′

t , t ∈ [t0, T ).

Proof. We prove the first part only. (The proof of the second part is similar.) The proof is a variation

of the proof of Lemma 1. We here apply Itô’s formula to (Y ε,n
t = wε,n(t, P ε

t , E
′
t+εBt))t0≤t≤T where

dP ε
t = µ(P ε

t )dt + σ(P ε
t )dWt + εdW ′

t , with P ε
0 = P ′

0. Using the PDE (48) satisfied by wε,n, we

obtain

dY ε,n
t =

[

f
(

P ε
t , v

ε,n(t, P ε
t , E

′
t + εBt)

)

− f
(

Pt, Y
′
t

)]

∂ew
ε,n(t, P ε

t , E
′
t + εBt)dt

+ ∂pw
ε,n(t, P ε

t , E
′
t + εBt)

(

dWt + εdW ′
t

)

+ ε∂ew
ε,n(t, P ε

t , E
′
t + εBt)dBt

=
[

f
(

P ε
t , Y

ε,n
t

)

− f
(

Pt, Y
′
t

)]

∂ew
ε,n(t, P ε

t , E
′
t + εBt)dt+ dM ε,n

t ,

where (M ε,n
t )t0≤t≤T stands for a martingale process w.r.t. the filtration generated by (Wt)t0≤t≤T ,

(W ′
t)t0≤t≤T and (Bt)t0≤t≤T . Up to a modification of (M ε,n

t )t0≤t≤T , we deduce

d
[

Y ε,n
t − Y ′

t

]

=
[

f
(

P ε
t , Y

ε,n
t

)

− f
(

Pt, Y
′
t

)]

∂ew
ε,n(t, P ε

t , E
′
t + εBt)dt+ dM ε,n

t .

Apply now Itô’s formula with the function y 7→ (y−)2 = (min(y, 0))2. Recall to do so that f is

increasing, that ∂ew
ε,n is non-negative and that both Y ε,n and Y ′ are [0, 1]-valued. We obtain

d
[

(Y ε,n
t − Y ′

t )
−]2 ≥ −2L sup

ε′∈(0,1)
‖∂ewε′,n‖∞|P ε

t − Pt|dt+ dM ε,n
t , t0 ≤ t ≤ T,
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for a new choice of (M ε,n
t )t0≤t≤T . Letting ε tend to 0 and applying the second part in Proposition

10, we deduce that

lim sup
ε→0

E
[

(Y ε,n
t − Y ′

t )
−
]2 ≤ lim sup

ε→0
E
[

(Y ε,n
T − Y ′

T )
−
]2

= E
[

(χn(E′
T )− Y ′

T )
−
]2

= 0.

By Propositions 10 and 11, the family (wε,n)ε∈(0,1),n∈N is equicontinuous on compact subsets of

[0, T )× R2. For any possible limit w of the family, the result follows.

�

Lemma 4. Consider two sequences of mollified boundary conditions (χn
i )n∈N, i = 1, 2, both con-

verging towards 1 on (Λ,+∞) and to 0 on (−∞,Λ). (The limit at point e = Λ doesn’t matter.)

Assume that there exists a constant δ > 0 such that, for any n ≥ 1 and i ∈ {1, 2}, χn
i (e) = 0

(resp. χn
i (e) = 1) if e − Λ ≤ −δ (resp. e − Λ ≥ δ). Consider also the associated families

(wε,n
i )ε∈(0,1),n∈N, i = 1, 2, of solutions to the PDE (48), ε standing for the viscosity parameter. Then,

for any (t, p) ∈ [0, T )× R,

lim
ε→0

lim
n→+∞

∫

R

[

wε,n
2 (t, p, e)− wε,n

1 (t, p, e)
]

de = 0.

Proof. For a finite interval Im = [−m,m], m ∈ N, we set

W ε,m,n
i (t, p) =

∫

Im

wε,n
i (t, p, e)de.

By integration of the PDE (48), it satisfies the PDE

∂tW
ε,m,n
i (t, p) +

(

Lp +
ε2

2
∂2pp
)[

W ε,m,n
i

]

(t, p) +
ε2

2

[

∂ew
ε,n
i (t, p,m)− ∂ew

ε,n
i (t, p,−m)

]

− F
(

p, wε,n
i (t, p,m)

)

+ F
(

p, wε,n
i (t, p,−m)

)

= 0,

where F (p, v) =

∫ v

0
f(p, r)dr.

In particular, we can give a probabilistic representation of Wi(t, p, e) in terms of the process

(P ε
s )t≤s≤T , solution of dP ε

s = µ(P ε
s )ds+ σ(P ε

s )dWs + εdW ′
s, P ε

t = p:

W ε,m,n
i (t, p) = E

[

W ε,m,n
i (T, P ε

T )
]

+ E

∫ T

t

[

ε2

2

[

∂ew
ε,n
i (s, P ε

s ,m)− ∂ew
ε,n
i (s, P ε

s ,−m)
]

−
[

F
(

P ε
s , w

ε,n
i (s, P ε

s ,m)
)

− F
(

P ε
s , w

ε,n
i (s, P ε

s ,−m)
)]

]

ds

= T ε,m,n
i (1) + T ε,m,n

i (2).

Examinate how T ε,m,n
i (2) behaves as m tends to +∞. Have in mind that for every pair (ε, n) of

mollifying parameters, ∂ew
ε,n
i is bounded on the whole domain and tends to 0 as e tends to infinity.

(See Proposition 12.) Similarly, wε,n
i is bounded on the whole domain and tends 0 (resp. 1) as e tends

to −∞ (resp. +∞). By dominated convergence, we deduce that

lim
m→+∞

T ε,m,n
i (2) = E

∫ T

t

[

F
(

P ε
s , 1
)

− F
(

P ε
s , 0
)]

ds
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so that the limit is independent of i. In particular, the limit of the difference T ε,m,n
2 (2)− T ε,m,n

1 (2) is

zero (as m tends to +∞).

Deal now with T ε,m,n
i (1). Clearly,

W ε,m,n
i (T, p, e) =

∫ m

−m
χn
i (e)de,

is independent of p, so that the limit of the difference is

lim
m→+∞

[

T ε,m,n
2 (1)− T ε,m,n

1 (1)
]

=

∫

R

(

χn
2 − χn

1

)

(e)de.

Finally, we get that

lim
n→+∞

∫

R

[

wε,n
2 (t, p, e)− wε,n

1 (t, p, e)
]

de = lim
n→+∞

lim
m→+∞

[

W ε,m,n
2 (t, p)−W ε,m,n

1 (t, p)
]

= lim
n→+∞

∫

R

(

χn
2 − χn

1

)

(e)de = 0.

(Note the integral of wε,n
1 − wε,n

2 on the whole R is well-defined by (52).)

�

We are now ready to prove uniqueness in Theorem 3. Consider a non-increasing mollifying se-

quence (χn)n≥0 converging towards 1[Λ,+∞), i.e. χn ց 1[Λ,+∞) (in particular χn(e) = 1 for e > Λ),

such that χn(e) = 0 for e < Λ − δ, for some constant δ > 0. Denote by (wε,n)ε∈(0,1),n∈N the as-

sociated family of solutions with this mollifying sequence. From Lemma 3, we know that for any

possible limit w of the family (wε,n)ε∈(0,1),n∈N as ε tends to 0 and n tends to +∞

w(t, p, e) ≥ v(t, p, e),

where v is given by Proposition 13. (Choose indeed as solution in Lemma 3 the solution given by

Proposition 13.) Lemma 4 (with χn
1 = χn and χ2

n = φn, with φn as in the proof of Proposition 13)

says that the integral (w.r.t. e) of the difference w − v is zero for any (t, p), so that w and v are the

same.

Now, for any solution (Pt, E
′
t, Y

′
t )0≤t≤T of Eq. (45), Lemma 3 says that

v(t, Pt, E
′
t) = w(t, Pt, E

′
t) ≥ Y ′

t , 0 ≤ t ≤ T.

The lower bound is obtained in a similar way and the end of the proof is then similar to the one in the

linear case.

�

6. NONLINEAR PDES AND OPTION PRICING

In this section, we consider the problem of option pricing in the framework of the first equilibrium

model introduced in this paper.
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6.1. PDE Characterization. Back to the risk neutral dynamics of the (perceived) emissions given

by (12), we assume that the emissions of the business as usual scenario are modeled by a geometric

Brownian motion, so that b(t, e) = be and σ(t, e) = σe. As explained in the introduction, this model

has been used in most of the early reduced form analyses of emissions allowance forward contracts

and option prices (see[5] and [4] for example). The main thrust of this section is to include the

impact of the allowance price Y on the dynamics of the cumulative emissions. As we already saw in

the previous section, this feedback f(Ys) is the source of a nonlinearity in the PDE whose solution

determines the price of an allowance. Throughout this section, we assume that under the pricing

measure (martingale spot measure) the cumulative emissions and the price of a forward contract on

an emission allowance satisfy the forward-backward system:

(53)

{

Et = E0 +
∫ t
0 (bEs − f(Ys))ds+

∫ t
0 σEsdW̃s

Yt = λ 1[Λ,∞)(ET )−
∫ T
t ZtdW̃t.

The solution Yt of the backward equation is constructed as a function Yt = v(t, Et) of the solution of

the forward equation where the function v is a classical solution of the nonlinear partial differential

equation

(54)

{

∂tv(t, e) + (be− f(v(t, e)))∂ev(t, e) +
1
2σ

2e2∂2eev(t, e) = 0, (t, e) ∈ [0, T )× R+

v(T, .) = λ1[Λ,∞).

The price at time t < τ of a European call option with maturity τ < T and strike K on an allowance

forward contract maturing at time T is given by the expectation

Et,e{(Yτ −K)+} = Et,e{(v(τ, Eτ )−K)+}.
which can as before, be written as a function V (t, Et) of the current value of the cumulative emissions.

We use the notation Et,e for the conditional expectation given that Et = e. Once the function v is

known and/or computed, for exactly the same reasons as above, the function V appears as the classical

solution of the linear partial differential equation:

(55)

{

∂tV (t, e) + (be− f(v(t, e)))∂eV (t, e) + 1
2σ

2e2∂2eeV (t, e) = 0, (t, e) ∈ [0, τ)× R+

V (τ, .) = (v(τ, .)−K)+,

which, given the knowledge of v is a linear partial differential equation. Notice that in the case f ≡ 0
of infinite abatement costs, except for the fact that the coefficients of the geometric Brownian motion

were assumed to be time dependent, the above option price is the same as the one derived in [4].

6.2. Small Abatement Asymptotics. Examining the PDEs (54) and (55), we see that there are two

main differences with the classical Black-Scholes framework. First, the underlying contract price is

determined by the nonlinear PDE (54). Second, the option pricing PDE (55) involves the nonlinear

term f(v(t, e)), while still being linear in terms of the unknown function V . Because the function v
is determined by the first PDE (54), this nonliearity is inherent to the model, and one cannot simply

reduce the PDE to the Black-Scholes equation.

In order to understand the departure of the option prices from those of the Black-Scholes model,

we introduce a small parmater ǫ ≥ 0, and take the abatement rate to be of the form f = ǫf0 for

some fixed non-zero increasing continuous function f0. We denote by vǫ and V ǫ the corresponding

prices of the allowance forward contract and the option. Here, what we call Black-Scholes model
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corresponds to the case f ≡ 0. Indeed, in this case, both (54) and (55) reduce to the linear Black-

Scholes PDE, differing only through their boundary conditions. This model was one of the models

used in [4] for the purpose of pricing options on emission allowances based on price data exhibiting

no implied volatility smile. Our starting point is the characterization of the emission allowance price

and the corresponding option price by the PDEs (54) and (55):

(56)

{

−∂tvǫ − (be− ǫf0(v
ǫ))∂ev

ǫ − 1
2σ

2e2∂2eev
ǫ = 0, on [0, T )× R+

vǫ(T, .) = λ1[Λ,∞),

and

(57)

{

−∂tV ǫ − (be− ǫf(vǫ))∂eV
ǫ − 1

2σ
2e2∂2eeV

ǫ = 0 on [0, τ)× R+,

V ǫ(τ, .) = (vǫ(τ, .)−K)+.

for every ǫ ≥ 0. For ǫ = 0, the nonlinear feedback given by the abatement rate disappears and we

easily compute that

v0(t, e) = λEt,e

[

1[Λ,∞)(E
0
T )
]

= λΦ

(

ln(e/Λe−b(T−t))

σ
√
T − t

− σ
√
T − t

2

)

(58)

V 0(t, e) = Et,e

[

(v0(τ, E0
τ )−K)+

]

, 0 ≤ t ≤ τ,(59)

where E0 is a geometric Brownian motion:

(60) dE0
t = E0

t [bdt+ σdW̃t].

used as a proxy for the cumulative emissions in business as usual, and where we use the notation

Et,e to denote the conditional expectation given that E0
t = e. See for example [4] for details and

complements. The main technical result of this section is the following first order Taylor expansion

of the option price.

Proposition 14. As ǫ→ 0, we have

V ǫ(t, s) = V 0(t, s)+ǫ Et,e

[

1[Λ,∞)(v
0(τ, E0

τ ))

∫ T

t
f0(v

0(s, E0
s ))∂ev

0(s ∨ τ, E0
s∨τ )

E0
s∨τ

E0
s

ds

]

+◦(ǫ),

where ǫ−1 ◦ (ǫ) −→ 0 as ǫ→ 0.

In preparation for the proof of this result, we isolate the main steps in separate lemmas.

Lemma 5.

lim
ǫց0

vǫ = v0 and lim
ǫց0

∂ev
ǫ = ∂ev

0,(61)

uniformly on compact subsets of [0, T )× R+.

Proof. By definition, the function vǫ is a classical solution of

(62) −∂tvǫ(t, e) + F ǫ
(

e, vǫ(t, e), ∂ev
ǫ(t, e), ∂2eev

ǫ(t, e)
)

= 0,

where

F ǫ(e, r, p, γ) := −(be− ǫf0(r))p−
1

2
σ2e2γ.
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Let

v := lim inf
(ǫ,t′,e′)→(0,t,e)

vǫ(t′, e′) and v := lim sup
(ǫ,t′,e′)→(0,t,e)

vǫ(t′, e′)

be the relaxed semi-limits of vǫ, which are finite because vǫ is locally bounded in (ǫ, t, e). Since

F ǫ(e, r, p, γ) is jointly continuous in all of its arguments (including ǫ), it follows from the stability

of viscosity solutions (see for example [1]), that the functions v and v are viscosity supersolution and

subsolution of the limit equation

(63) −∂tv(t, e) + F 0
(

e, v(t, e), ∂ev(t, e), ∂
2
eev(t, e)

)

= 0

which happens to be linear. Moreover, by construction we have v(T, .) ≥ 1(Λ,∞) and v(T, .) ≤
1[Λ,∞). Arguying as in the proof of the Feynman-Kac representation, it follows from Itô’s formula

(after convenient localization) that v ≥ v0 and v ≤ v0. Since v ≤ v, by definition, this implies that

v = v = v0. Since vǫ decreases to v0 as ǫ ց 0, uniform convergence on compact sets follows from

Dini’s theorem.

To obtain the convergence of ∂ev
ǫ towards ∂ev, we use the smoothness of vǫ (implied by classical

uniform parabolic regularity) to see that ∂ev
ǫ is a classical solution of the equation

−∂t(∂evǫ) + F ǫ
(

e, ∂ev
ǫ, D(∂ev

ǫ), D2(∂ev
ǫ)
)

− (b− ǫf ′0(v
ǫ)∂ev

ǫ
)

∂ev
ǫ − σ2eD(∂ev

ǫ) = 0,

and we proceed as above. �

Lemma 6.

(64) lim
ǫց0

V ǫ = V 0 and lim
ǫց0

∂eV
ǫ = ∂eV

0,

uniformly on compact subsets of [0, τ)× R+ and for each (t, e) ∈ [0, τ)× R+

∂eV
0(t, e) = Et,e

[

E0
τ

E0
t

1[K,∞)(v
0(τ, E0

τ ))∂ev
0(τ, E0

τ )

]

Proof. We argue as above by taking the limit ǫց 0 in the viscosity sense. In the present case V ǫ is a

classical solution of

−∂tV ǫ(t, e) +Gǫ
(

t, e, ∂eV
ǫ(t, e), ∂2eeV

ǫ(t, e)
)

= 0

where

Gǫ(t, e, p, γ) :=
[

be− ǫf0
(

vǫ(t, e)
)]

p− 1

2
σ2e2γ.

Since vǫ −→ v0 uniformly on compact sets, and f0 is monotone and continuous, the proof of Lemma

5 above applies in the present situation.

The convergence result for ∂eV
ǫ is obtained by first differentiating the equation satisfied by V ǫ,

which is justified by classical parabolic regularity, and then using the same argument as above. No-

tice that the expression of ∂eV
0 is, as expected, obtained by differentiating V 0 in (59) inside the

expectation operator. �

In preparation for the next result, for ǫ > 0 we define

(65) uǫ(t, e) :=
vǫ(t, e)− v0(t, e)

ǫ
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Lemma 7.

lim
ǫց0

uǫ(t, e) = u0(t, e) := Et,e

[∫ T

t
f0(v

0(s, E0
s ))∂ev

0(s, E0
s )ds

]

,

uniformly on compact subsets of [0, T )× R+.

Proof. Since vǫ is a classical solution of equation (56), plain computations show that uǫ is a classical

solution of the equation

uǫ(T, .) = 0, −∂tuǫ + Lǫ
(

t, e,Duǫ, D2uǫ
)

= 0,

where L is the linear operator defined by:

Lǫ(t, e, p, γ) := −bep+ f0
(

vǫ(t, e)
)

∂ev
ǫ(t, e)− 1

2
σ2e2γ.

Using the stability result of viscosity solutions together with the Feynman-Kac representation as in

the proof of Lemma 5 above, the convergence result of Lemma 5 provides the limit equation:

u0(T, .) = 0, ∂tu
0(t, e) + beDu0(t, e) +

1

2
σ2e2D2u0(t, e) = f0(v

0(t, e))∂ev
0(t, e) = 0.

The representation of the solution u0 as the expectation appearing in the statement of the lemma is

given by the Feynman-Kac as long as we can show that the expectation makes sense. This is indeed

the case since f0 is nondecreasing and continuous, v0 ≤ λ, so that we have:

Et,e

[∫ T

t

∣

∣f0(v
0(s, E0

s ))∂ev
0(s, E0

s )
∣

∣ds

]

≤ f0(λ)Et,e

[∫ T

t
|∂ev0(s, E0

s )| ds
]

.(66)

Now, observe that by Itô’s formula:

Et,e

[

v0(T,ET )
2 − v0(t, e)2

]

= 2Et,e

[∫ T

t
v0(s, Es)

(

∂tv
0 + be∂ev

0 +
1

2
σ2e2∂2eev

0

)

(s, Es)ds

]

+ Et,e

[∫ T

t
|∂ev0(s, Es)|2σ2E2

sds

]

= Et,e

[∫ T

t
|∂ev0(s, Es)|2σ2E2

sds

]

because of the PDE satisfied by v0. Then Et,e

[

∫ T
t |∂ev(s, Es)|2σ2E2

sds
]

≤ 2λ2, implying that (66)

is finite by the Cauchy-Schwarz inequality. �

Proof of Proposition 14. For each ǫ > 0 we define:

U ǫ(t, e) :=
V ǫ(t, e)− V 0(t, e)

ǫ
.

Since V ǫ is a classical solution of (57), it follows that U ǫ is a classical solution of:

−∂tU ǫ −Hǫ
(

t, e,DU ǫ, D2U ǫ
)

= 0, on [0, τ)× R+

with

Hǫ(t, e, p, γ) := −bep− 1

2
σ2e2γ + f0(v

ǫ(t, e)∂eV
ǫ(t, e) for (t, e) ∈ [0, τ)× R+
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satisfying the terminal condition

U ǫ(τ, .) =
(vǫ(τ, .)−K)+ − (v0(τ, .)−K)+

ǫ
.

Using the convergence results of lemmas 5, 6 and 7, together with the stability of viscosity solutions

and the Feynlan Kac representation for the limiting linear PDE, we see that U ǫ −→ U0 uniformly on

compacts, where U0 is the unique solution of

−∂tU0 − be∂eU
0 − 1

2
σ2e2∂2eeU

0 − f0(v
0)∂eV

0 = 0 for (t, e) ∈ [0, τ)× R+

satisfying the terminal condition

U0(τ, .) = u0(τ, .)1[K,∞)(v
0(τ, .)).

By the Feynman-Kac representation of such a solution, we have:

U0(t, e) = Et,e

[∫ τ

t
f0(v

0(s, E0
s ))∂eV

0(s, E0
s )ds+ u0(τ, E0

τ )1[K,∞)(v
0(τ, E0

τ ))

]

,

and the required result is obtained by replacing ∂eV
0 and u0 by their expressions from Lemmas 6 and

7 respectively, and using the tower property of conditional expectations. �

7. NUMERICAL RESULTS

In this section we provide the following numerical evidence of the accuracy of the small abatement

asymptotic formula derived above:

(1) We compute numerically vǫ with high accuracy, and we then compute values of V ǫ using

the values of vǫ so computed. We used an explicit finite difference monotone scheme (see

for example [1]. The results are reproduced in Figure 1 We plotted V ǫ against vǫ in order to

show how the option price depends upon the value of the underlying allowance.

(2) We compare the previous numerical results with the first order Taylor expansion which can

easily be computed as it only involves the Monte Carlo computation of an expectation.
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