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STOCHASTIC ANALYSIS FOR THE COMPLEX MONGE-AMPÈREEQUATION(AN INTRODUCTION TO KRYLOV'S APPROACH)FRANÇOIS DELARUELaboratoire J.-A. Dieudonné, Université de Nie Sophia-Antipolis, Par Valrose,06108 Nie Cedex 02, FraneWe here gather in a single note several original probabilisti works devoted to the analysisof the C1,1 regularity of the solution to the possibly degenerate omplex Monge-Ampèreequation. The whole analysis relies on a probabilisti writing of the solution as the valuefuntion of a stohasti optimal ontrol problem. Suh a representation has been introduedby Gaveau [3℄ in the late 70's and used in an exhaustive way by Krylov in a series of paperspublished in the late 80's up to the �nal paper [7℄ in whih the C1,1-estimate is eventuallyestablished. All the arguments we here use follow from these seminal works.Nota Bene. This is an expanded version of the notes I prepared for a series of letures Idelivered in LATP, Marseille, in deember 2009.1. IntrodutionBakground. This Chapter is devoted to the stohasti analysis of the possibly degener-ate Monge-Ampère equation and spei�ally to the probabilisti proof of the C1,1-estimateof the solutions under some suitable assumption.For a omplete review of the stakes of suh a result, we refer the reader to Chapters 0 and1 by V. Guedj and A. Zeriahi: we here fous on the probabilisti ounterpart only and keepsilent about the geometri motivations that are hidden behind.The idea of understanding the omplex Monge-Ampère equation from a probabilisti pointof view goes bak to the earlier paper by Gaveau [3℄ in the late 70's. Therein, the solutionis shown to write as the value funtion of a stohasti optimal ontrol problem, i.e. as theminimal value of some averaged ost omputed along the trajetories of di�erent di�usionproesses evolving inside the underlying domain.In some sense, this representation formula is a ompat (or losed) representation formulathat appears as a generalization of the Kolmogorov formula for the heat equation: the so-lution of the heat equation may be expressed as some averaged value omputed along thetrajetories of the Brownian motion. Brownian motion might be understood as follows: atany given time and at any given position, the di�usive partile at hand moves at random,independently of the past and in an isotropi way. Atually, Kolmogorov formula extendsto linear (say to simplify purely) seond-order partial di�erential equations with a variabledi�usion oe�ient: the solution is then understood as some averaged value omputed alongthe solution of a di�erential equation of stohasti type driven by the oe�ient of the PDEat hand. This appears as a stohasti method of harateristis: at any given time and atany given position, the di�usive partile assoiated with the stohasti di�erential equation1



moves at random, independently of the past, but in a non-isotropi way; the most likelydiretions are given by the main eigenvetors of the di�usion matrix at the urrent point.In the ase of Monge-Ampère, the story might read as follows: at any given time and atany given position, the partile at hand moves at random, independently of the past, andthe di�usion oe�ient is hosen among all the possible di�usion oe�ient of determinant1 aording to some loal optimization riterion or, equivalently, to some loal ost.Purpose of the Note. In his paper, Gaveau managed to derive some Hölder ontinuityproperty of the solution to Monge-Ampère from the probabilisti formulation, but the ex-haustive use of the formula for the analysis of the regularity of the derivatives goes bak toKrylov. The referene paper on the subjet is [7℄: the solution is shown to be C1,1 on thewhole domain (i.e. up to the boundary) under some suitable assumption that may inludethe degenerate ase. Basially, it applies to a muh more general framework than the Monge-Ampère one: it applies to a general lass of Hamilton-Jaobi-Bellman equations, i.e. to ageneral lass of equations summarizing the dynamis of the value funtion of some stohastioptimization problem.Atually, the paper [7℄ is not self-ontained. It must be seen as the onlusion of a seriesof papers initiated in the 80's: see, among others, [5℄, [6℄, [8℄ and, �nally, [7℄. This note isan attempt to gather in a single manusript most of the ingredients of the whole proof, atleast in the spei� ase of Monge-Ampère: from the basi rules of stohasti alulus to thedetailed omputations of the �nal estimate of the �rst- and seond-order derivatives.However, the proof we here provide is a bit di�erent from the original one and mayappear as less straightforward. In some sense, the objetive is here both mathematialand. . . pedagogial: the idea is both to provide an almost omplete and self-ontained proofof the C1,1 estimate and to explain to the reader the way we are following to reah it.A Short Review of the Strategy. The arguments used by Krylov have been developedsine the 70's. Some of them may be found in the seminal work by Malliavin [11℄ and[12℄, even if used di�erently. In short, Malliavin initiated a program to prove by meansof stohasti arguments only the Sum of Squares Theorem by Hörmander: Sum of SquaresTheorem provides some su�ient ondition on the Lie algebra generated by the vetor �eldsof a possibly degenerate di�usion matrix to let the orresponding operator be hypoellipti.The program onsists in an exhaustive analysis of the stohasti �ow generated by theassoiated di�erential equation of stohasti type. (For the purely Laplae operator, the �owis trivial sine the urrent di�usion proess redues to a Brownian motion plus a startingpoint.) A part of the problem is then to investigate the regularity of the �ow.In the urrent framework, the main idea of Krylov onsists in reduing the analysis of the
C1,1 regularity of the solution to Monge-Ampère to a long-run analysis of the derivatives ofthe �ow of the di�usion proesses behind. Roughly speaking, the point is to ontrol the �rst-and seond-order derivatives of the �ow both in time and in the optimization parameter. At�rst sight, it turns out to be really hallenging. By the way, it is in some sense: statedunder this form, the objetive may not be reahable. Here is the key-point of the proof:the required long-run estimate of the derivatives of order one and two of the �ow maybe relaxed aording to the underlying seond-order di�erential struture. As an example,the analysis may bene�t from some uniform elliptiity (or non-degeneray) property: when2



applied to a non-degenerate linear seond-order partial di�erential equation instead of theMonge-Ampère equation, the original required long-run estimate of the derivatives of the�ow an be relaxed to a muh more less restritive version (and in fat an almost beanelled) thanks to the non-degeneray assumption itself. (The argument is explained inthe note.) In the ase of Monge-Ampère, the equation may degenerate, but the analysismay bene�t from the desription of the boundary: if the domain is stritly pseudo-onvex,the original required long-run estimate of the derivatives of the �ow an be relaxed as well(but annot be anelled); that is, strit pseudo-onvexity plays the role of a weak non-degeneray assumption. Finally, the analysis may also bene�t from the Hamilton-Jaobi-Bellman formulation, i.e. from the writing of the Monge-Ampère equation as an equationderiving from a stohasti optimization problem: the struture is indeed kept invariant undersome transformations of the optimization parameters. As explained below, this may also helpto redue the long-run onstraint on the derivatives of the �ow.As mentioned, the way the required long-run onstraint on the derivatives of the �ow isrelaxed is detailed in the note. At least, we may here speify the keyword only: perturbation.Indeed, the strategy is ommon to the Malliavin point of view and onsists of a well-hosenperturbation of the original probabilisti representation. This is a general meta-priniple instohasti analysis: from a probabilisti point of view, regularity properties are understoodthrough the reation of the stohasti system under onsideration to an external perturba-tion.Main Result. In the end, the result we here prove is the following:Theorem 1.1. Let (A) stand for the assumption:
• D is a bounded domain of Cd, d ≥ 1, desribed by some C4 funtion ψ in the neigh-borhood of D̄, i.e.

D :=
{
z ∈ Cd : ψ(z) > 0

}
.

• The funtion ψ is assumed to be plurisuperharmoni in the neighborhood of D̄, i.e.
∀a ∈ H+

d : Trace(a) = 1, ∀z ∈ D̄, Trace
(
aD2

z,z̄ψ(z)
)
< 0,where H+

d stands for the set of non-negative Hermitian matries of size d× d.
• The funtion ψ is non-singular in the neighborhood of the boundary of D, i.e.

∃δ > 0, ∀z ∈ ∂D, |Dzψ(z)| ≥ δ.

• f and g are two funtions of lass C2 and C4 on D̄ with values in R+ and R respe-tively.Then, under Assumption (A), there exists a funtion u from D̄ to R, of lass C1,1 onthe whole D̄ (i.e. with Lipshitz �rst-order derivatives on the losure of the domain D),plurisubharmoni, i.e.
∀a ∈ H+

d : Trace(a) = 1, a.e. z ∈ D, Trace
(
aD2

z,z̄u(z)
)
≥ 0,and(1.1) det1/d

(
D2
z,z̄u(z)

)
=
f(z)

d
a.e. z ∈ D, u(z) = g(z), z ∈ ∂D,3



i.e. u satis�es the Monge-Ampère equation on D with fd (up to some normalizing onstant)as soure term and g as boundary ondition. (Compare with Chapter 0, Setion 1, by V.Guedj.)Pay attention that Theorem 1.1 does not reover Theorem 1.3.1 in Chapter 1 by V. Guedjand A. Zeriahi (that holds for the ball only) sine the boundary ondition therein is C1,1 only.Organization of the Note. The note is organized as follows. In Setion 2, we explain thebasi optimization priniple on whih the whole proof relies. In Setions 3 and 4, we intro-due the Kolmogorov representation of the Dirihlet problem with onstant oe�ients bymeans of the Brownian motion. We then give a short overview of the basi rules of stohas-ti alulus. In Setion 5, we introdue the probabilisti representation of Monge-Ampère,as originally onsidered by Gaveau. The program for the analysis of the representation isexplained in Setion 6. Setion 7 is a short presentation of the di�erentiability properties ofthe �ow of a stohasti di�erential equation. In Setion 8, we give a �rst sketh of the proofof the C1-regularity. As explained therein, it fails for the seond-order derivatives. The rightargument is given in Setion 9.Useful Notation. Below, the gradient of a funtion is understood as a row vetor and forany pair of vetors (x, y) (of the same dimension d) with real or omplex oordinates, thenotation 〈x, y〉 stands for ∑d
i=1 xiyi.2. Hamilton-Jaobi-Bellman FormulationWe here introdue the Hamilton-Jaobi-Bellman formulation of the Monge-Ampère equa-tion.2.1. Optimization Problem. Generally speaking, Hamilton-Jaobi-Bellman equations de-sribe the dynamis � in spae only for a stationary problem and in time as well for an evo-lution equation � of the value funtion of an optimal (possibly stohasti) ontrol problem.In the spei� ase of Monge-Ampère, the Hamilton-Jaobi-Bellman formulation followsfrom a simple Lemma taken from the original artile by Gaveau [3℄:Lemma 2.1. Given a non-negative Hermitian matrix H of size d × d, the determinant of

H is the solution of the minimization problem:
det1/d(H) =

1

d
inf

{
Trace[aH ] ; a ∈ H+

d , det(a) = 1
}
.Proof. Up to a diagonalization, we may assume H to be diagonal. Denoting by (λ1, . . . , λd)its (non-negative real) eigenvalues, we obtain for some a ∈ H+

d

Trace[aH ] =
d∑

i=1

ai,iλi.Noting that the elements (ai,i)1≤i≤d are non-negative, the standard inequality between thearithmeti and geometri means yields
1

d
Trace[aH ] ≥

( d∏

i=1

ai,iλi
)1/d

= det1/d(H)
( d∏

i=1

ai,i
)1/d

.4



Finally, Hadamard inequality says that Trace[aH ] ≥ d det1/d(H), that is
inf{Trace[aH ]; a ∈ H+

d , det(a) = 1} ≥ d det1/d(H).To prove the equality between both quantities, we hoose ai,i = λ−1
i det1/d(H) (and ai,jequal to zero for i and j di�erent) when H is non-degenerate (so that the in�mum thenreads as a minimum). In the degenerate ase, it is su�ient to hoose ai,i = ε when λi > 0and ai,i = N when λi = 0, with ε small and N large to be hosen so that the determinantbe equal to 1 (again, ai,j is set equal to 0 for i and j di�erent). �Lemma 2.1 suggests us to write, at least formally, Monge-Ampère Eq. (1.1) under theform:(2.1) sup

a∈H+

d
, det(a)=1

[
−Trace[aD2

z,z̄u](z)
]
+ f(z) = 0, z ∈ D.(With the same boundary ondition.) This formulation makes the family of di�usion oper-ators (Trace[aD2

z,z̄·])a∈H+

d
, det(a)=1 appear.Roughly speaking, an equation driven by an in�mum (or a supremum) taken over a familyof seond-order operators is alled a seond-order Hamilton-Jaobi-Bellman equation.2.2. First-Order Case. We �rst explain how minimization (or maximization) may a�eta family of �rst-order partial di�erential equations. In suh a ase, the resulting equation isalled a �rst-order Hamilton-Jaobi-Bellman equation. Consider to this end a very simpleone-dimensional evolution problem:(2.2) Dtu(t, x) − sup
a∈R, |a|=1

[
aDxu

]
(t, x) = 0, (t, x) ∈ (0,+∞) × R,with a given regular boundary ondition u(0, ·) = u0(·). This is a non-linear equation with

Dtu(t, x) −
∣∣Dxu

∣∣(t, x) = 0, (t, x) ∈ (0,+∞) × R,as expliit form.The purpose is here to understand how the method of harateristis may write for suhan equation. When the parameter or ontrol a is frozen, the equation(2.3) Dtu(t, x) − aDxu(t, x) = 0, (t, x) ∈ (0,+∞) × R,is a simple transport equation with −a as onstant veloity, whose solution is expliitlyknown:
u(t, x) = u0(x+ at), (t, x) ∈ [0,+∞) × R.Said di�erently, the initial shape u0 is translated at veloity −a: as an example, the valueof u at time t and a point −at is u0(0). Said di�erently, the mapping t ≥ 0 7→ u(t, x− at) isonstant.Here, the linear mapping t ≥ 0 7→ x+at is alled a bakward harateristi of the transportequation (2.3).Go now bak to the general ase. We understand that the supremum in Eq. (2.2) favoursthe veloity �elds of same sign as the loal spatial variation of the solution. Said di�erently,the possible harateristis must now be sought among paths driven by positive or negative5



speed aording to the values of the gradient of the solution of the PDE. We thus onsiderpaths of the form(2.4) xt = x0 +

∫ t

0

asds, t ≥ 0,where (at)t≥0 is a (measurable) funtion with values in {−1, 1} and x0 is an arbitrary initialondition. The whole point is then to understand the behavior of the solution to the PDEalong all these trajetories. To do so, wa may di�erentiate, at least formally, u along some
(xt)t≥0 as in (2.4). For a given time T > 0 and some t ∈ [0, T ], we write

d

dt

[
u(T − t, xt)

]
= −Dtu(T − t, xt) + atDxu(T − t, xt)

= −|Dxu|(T − t, xt) + atDxu(T − t, xt) ≤ 0,by taking into aount the equality |at| = 1. Therefore,
u(T, x0) ≥ u0

(
x0 +

∫ T

0

asds

)
,that is(2.5) u(T, x0) ≥ sup

(at)0≤t≤T :|at|=1

[
u0

(
x0 +

∫ T

0

asds

)]
.Now, the formal hoie (at = sign[Dxu(T − t, xt)])t≥0 says that equality might hold. Wethus derive as a (possible) losed representation formula of u:(2.6) u(T, x0) = sup

(at)0≤t≤T :|at|=1

[
u0(x

a
T )

]
,with

xat = x0 +

∫ t

0

asds, t ≥ 0.The argument is here formal only. However, it suggests some possible losed representationfor the solution of Eq. (2.2) as the value funtion of a deterministi ontrol problem: the so-alled ontrol parameter is of the form (at)t≥0 with |at| = 1, t ≥ 0, and the resulting ontrolledpath is of the form (xat )t≤0. We stress out that the supremum in (2.2) is kept preserved inthe representation formula (2.6). This follows from a maximum priniple argument: by themaximum priniple, the solution to (2.2) is above the solution to any linear transport PDEwith the same initial ondition u0 and with a (possibly time-dependent) veloity �eld ofnorm 1. (See (2.5).)We also emphasize that the theory of visosity solutions provides a rigorous framework tothe formal argument we have here given. (See for example Chapter 2, Lemma 2.1, in themonograph by Barles [1℄.)2.3. Seond-Order Equations. Go now bak to the Hamilton-Jaobi-Bellman formulation(2.1). In omparison with the previous subsetion, we may distinguish two main di�erenes.On the hand, Eq. (2.1) has a soure term. On the other hand, the underlying operator is ofseond-order. (The reader may also notie that the equation is also stationary and that it isset on a bounded domain of the spae only. We will ome bak to these two points later.)6



Plugging a soure term (say f in the right-hand side) in the Hamilton-Jaobi formulation(2.2) would not really modify the analysis we just performed. In a suh a ase, the rightform of (2.6) would be(2.7) u(T, x0) = sup
(at)0≤t≤T :|at|=1

[
u0(x

a
T ) +

∫ T

0

f(xat )dt

]
.(That is, the soure term would be integrated along the ontrolled trajetories.)Replaing the �rst-order operator by a seond-order one is atually muh more di�ult tounderstand. To do so, the �rst point onsists in going bak to the frozen problem withoutany optimization, i.e. to the ase when the di�usion oe�ient in (2.1) is given by some�xed a ∈ H+

d , and then in seeking for the right harateristis in that framework.Under this form, the problem is not well-posed. The whole point is the following: for aseond-order operator, there are no true harateristis; the only possible way to obtain alosed formula for the solution onsists in introduing an additional parameter, i.e. somerandomness, and then in onsidering random harateristis. This follows from some salefators: there is no way to balane, in a single di�erentiation, �rst-order terms in time andin spae and seond-order terms in spae. More preisely, to balane �rst-order terms intime and seond-order terms in spae, the point is to introdue some harateristis withunbounded variation and, in fat, harateristis that are not absolutely ontinuous w.r.t.the Lebesgue measure. Randomness may be useless for the onstrution of suh trajetories:as we will see below, randomness permits to get rid of some parasiti terms of order one bya simple integration w.r.t. to the underlying probability measure.The typial ase is the purely Laplae one. When a mathes the identity matrix Id,the operator Trace[D2
z,z̄·] admits the omplex Brownian motion of dimension d as randomharateristi. Atually, Trace[D2

z,z̄·] may be expanded in real oordinates as
Trace[D2

z,z̄·] =
1

4

[
∆x,x + ∆y,y

]
,so that it is equivalent to onsider the real Brownian motion of dimension 2d as randomharateristi: Brownian motion is the right stohasti proess assoiated with the heatequation. 3. Brownian MotionWe �rst explain what Brownian motion is in the simplest ase when the dimension is 1.3.1. Gaussian Density. The onnetion between Brownian motion and heat equation iswell-understood through the so-alled marginal laws, that is the laws of the positions ofa Brownian motion at a given time. Reall indeed that the time�spae heat equation indimension 1(3.1) Dtu(t, x) −

1

2
D2
x,xu(t, x) = 0, (t, x) ∈ (0,+∞) × R,with an initial ondition of the form u(0, ·) = u0(·) admits as solution (say if u0 is boundedand ontinuous)(3.2) u(t, x) =

1√
2πt

∫

R

u0(x− y) exp
(
−|y|2

2t

)
dy, (t, x) ∈ (0,+∞) × R.7



Said di�erently, the solution may be expressed as the onvolution of the initial ondition bythe Gaussian density of zero mean and of variane t, i.e. the funtion
y ∈ R 7→ 1√

2πt
exp

(
−|y|2

2t

)
dy.The density is here said to be of zero mean and of variane t sine

1√
2πt

∫

R

y exp
(
−|y|2

2t

)
dy = 0

1√
2πt

∫

R

y2 exp
(
−|y|2

2t

)
dy = t.(The seond result follows from a simple hange of variable .)Convolution by a Gaussian kernel may be expressed in a simple probabilisti way. Indeed,if (Ω,F ,P) denotes a omplete1 probability spae and (Bt)t≥0 a family of random variables(i.e. of measurable funtions from (Ω,F) to R endowed with its Borel sets) suh that, forany t > 0, Bt has a Gaussian density of zero mean and variane t, i.e. (below, E stands forthe expetation)

∀f ∈ Cb(R), E
[
f(Bt)

]
=

∫

Ω

f(Xt(ω))dP(ω)

=
1√
2πt

∫

R

f(y) exp
(
−|y|2

2t

)
dy,and P{B0 = 0} = 1, then(3.3) u(t, x) = E

[
u0(x+Bt)

]
, t ≥ 0.3.2. Dynamis. The onnetion we just gave between heat equation and Gaussian variablesis atually too muh �stati� to be fully relevant. Nothing is said about the joint behaviorof the variables (Bt)t≥0 ones with others.To understand the dynamis, we use a disretization artifat. Assume indeed that we areapplying a �nite di�erene numerial sheme to solve heat equation (3.1). Spei�ally, fora small time step ∆t and a small spatial step ∆x, assume that we are seeking for a familyof reals (un,k)n∈N,k∈Z approximating the �true� values (u(n∆t, k∆x))k∈Z. A ommon shemeonsists in de�ning (un,k)n∈N,k∈Z through the iterative proedure(3.4) un+1,k − un,k

∆t
=

1

2

un,k+1 + un,k−1 − 2un,k
∆x2

, n ∈ N, k ∈ Z,with un,k = u0(k∆x) as initial ondition. Obviously, in the above equation, the left-handside is understood as an approximation of the time-derivative of u and the right-hand sideof its seond-order spatial derivative.We an write (3.4) as
un+1,k =

(
1 − ∆t

∆x2

)
un,k +

∆t

∆x2

un,k+1 + un,k−1

2
.1The ompleteness is used in the sequel. 8



Choosing ∆t = ∆x2, we obtain the simpler formula(3.5) un+1,k =
un,k+1 + un,k−1

2
, n ∈ N, k ∈ ZReplae now the approximating values (un,k)k∈Z,n≥0 in (3.5) by the true quantities and write

u
(
(n+ 1)∆t, k∆x

)
≈ u

(
n∆t, (k + 1)∆x

)
+ u

(
n∆t, (k − 1)∆x

)

2
= E

[
u(n∆t, k∆x+ ∆x ε)

]
,where ε is a random variable taking the values 1 and −1 with probability 1/2. Notie thatit is possible to repeat the argument by approximating u(n∆t, ·) with a new expetation(omputed w.r.t. a new random variable, independent of ε). Therefore,

u
(
(n + 1)∆t, k∆x

)
≈ E

[
u
(
(n− 1)∆t, k∆x+ ∆x(ε1 + ε2)

)]
,where ε1 and ε2 are two independent random variables taking the values 1 and −1 withprobability 1/2. Iterating the proedure N times, we dedue that(3.6) u

(
N∆t, k∆x

)
≈ E

[
u
(
0, k∆x+ ∆x(ε1 + ε2 + · + εN)

)]
.Clearly, the symbol ≈ is not really meaningful beause of the numerous approximations wejust performed. However, hoosing to simplify k = 0 and N∆t = 1, so that ∆x = N−1/2sine ∆t = ∆x2, we understand that the random variable in the right-hand side in (3.6) hasthe form

N−1/2
[
ε1 + ε2 + · + εN

]
.Central Limit Theorem says that it onverges, in the weak sense, towards the Gaussian law ofzero mean and variane 1. (Here, weak onvergene means weak onvergene of probabilitymeasures.) In partiular, passing to the limit in (3.6), we reover Eq. (3.3).Atually, this non-rigorous argument says that the right struture for (Bt)t≥0 in (3.3) is ofindependent inrement type. Indeed, we understand that, on disjoint intervals, the under-lying variables (εn)n≥1 are asked to be independent. Moreover, the struture is stationary:randomness between times 0 and t − s is the same in law as the randomness plugged intothe system between times s and t. This says that the right hoie for (Bt)t≥0 isDe�nition 3.1. A family of random variables (Bt)t≥0 is a Brownian motion starting from

0 if(1) P{B0 = 0} = 1,(2) for any n ≥ 1, for any t0 = 0 < t1 < t2 < · · · < tn, the inrements Bt1 , Bt2 − Bt1,
· · · , Btn − Btn−1

are independent,(3) for any 0 < s < t, the inrement Bt − Bs has a Gaussian law of zero mean andvariane t− s.(4) with probability 1, the paths t ≥ 0 7→ Bt(ω) are ontinuous.The last ondition is the most tehnial one: roughly speaking, it says that the di�erentialstruture assoiated with Brownian motion is loal. Add also that, by de�nition, a Brownianmotion starting from x is nothing else but x plus a Brownian motion starting from 0.9



3.3. Di�erential Rules. To understand if Brownian motion is the right harateristi forheat equation, the point is to ompute the in�nitesimal variation of (u(T − t, Bt))0≤t≤T , fora given T > 0, where u is given by (3.1). We here expand by Taylor's formula
u(T − (t+ h), Bt+h − Bt +Bt)

= u(T − t, Bt) −Dtu(t, Bt)h+Dxu(t, Bt)(Bt+h −Bt)

+
1

2
D2
x,xu(t, Bt)(Bt+h − Bt)

2 +
1

2
D2
t,tu(t, Bt)h

2

−D2
t,xu(t, Bt)(Bt+h −Bt)h+ . . .Expansion is given at least of order two: we aim to reover heat equation. (Moreover, itmakes sense sine u is regular away from the boundary.).Atually, it is enough to stop the expansion at order two: by de�nition of a Brownianmotion, E[(Bt+h − Bt)

2] = h; using a simple Gaussian argument, this result may be gen-eralized as E[(Bt+h − Bt)
2p] = Cph

p for any integer p, the onstant Cp being universal. Inpartiular, the only term of order 1 in h among the derivatives of order two is the term inspatial derivatives. The others are of order h3/2 and h2. Therefore, we write
u(T − (t+ h), Bt+h − Bt +Bt)

= u(T − t, Bt) −Dtu(t, Bt)h+Dxu(t, Bt)(Bt+h −Bt)

+
1

2
D2
x,xu(t, Bt)(Bt+h − Bt)

2 + . . .

(3.7)Here, we wish to replae (Bt+h −Bt)
2 by h. Using a Gaussian argument again,

E
[(

(Bt+h −Bt)
2 − h

)2]
= 2h2.Clearly, this does not show that the term (Bt+h − Bt)
2 − h is less than h. However, on thelong run, the sum of the terms of this type, i.e.(3.8) n−1∑

i=0

[
(Bti+1

− Bti)
2 − h

]2for a subdivision 0 < t1 < t2 < · · · < tn of stepsize h is a sum of independent randomvariables of variane 2h2. In the independent ase, the variane is additive: the variane ofthe sum is equal to 2nh2. Noting that nh is marosopi, we understand that the ation ofthis term is negligible from a marosopi point of view.The reader an hek that the argument still holds when the quantity D2
x,xu(t, Bt) is addedto sum as in (3.7).Finally, we write

u(T − (t+ h), Bt+h − Bt +Bt)

= u(T − t, Bt) −Dtu(t, Bt)h+Dxu(t, Bt)(Bt+h −Bt)

+
1

2
D2
x,xu(t, Bt)h+ o(h)

= u(T − t, Bt) +Dxu(t, Bt)(Bt+h − Bt) + o(h),10



the seond line being obtained by using the PDE. From an in�nitesimal point of view (i.e.when getting rid of the negligible terms), we write(3.9) d
[
u(T − t, Bt)

]
= Dxu(t, Bt)dBt, 0 ≤ t ≤ T,We emphasize that the result is not zero! Said di�erently, the variation of (u(T−t, Bt))0≤t≤Tis not zero, as for equations of order one. Atually, understandingDxu(t, Bt)dBt asDxu(t, Bt)(Bt+h−

Bt), we dedue from the independene of Dxu(t, Bt) and Bt+h − Bt that the expetation ofthe inrement is zero. Therefore, (u(T − t, Bt))0≤t≤T is onstant. . . in expetation.3.4. Di�erential Rules. In the end, everything works as if we had written
d
[
u(T − t, Bt)

]
= −Dtu(t, Bt)dt+

1

2
D2
x,xu(t, Bt)dB

2
t +Dxu(t, Bt)dBt,and set dB2

t = dt. We will use this rule below.Theorem 3.2. [It�'s formula℄ Let (Bt)t≥0 a real Brownian motion and f a funtion of lass
C1,2([0,+∞),R). Then, the in�nitesimal variation of (f(t, Bt))0≤t≤T writes

d
[
f(t, Bt)

]
=

[
Dtf(t, Bt) +

1

2
D2
x,xf(t, Bt)

]
dt+Dxf(t, Bt)dBt.Said di�erently, It�'s formula is a Taylor formula with onvention dB2

t = dt.4. Stohasti IntegralWe here explain the basi steps of the onstrution of the stohasti integral. Spei�ally,the problem is to give a meaning, from a marosopi point of view, to the term(4.1) Dxu(t, Bt)dBt,in the statement of Theorem 3.2.4.1. Heuristis. Under a marosopi form, the term in (4.1) reads as a stohasti integral
∫ T

0

Dxu(t, Bt)dBt.This integral is not de�ned in the Lebesgue sense: Brownian motion paths are not of boundedvariation. However, it may be understood in a spei� way, as the limit (in a ertain sense)of some Riemann sums. Indeed, the integral is understood as the L2 limit of the sum
n−1∑

i=0

Dxu(ti, Bti)
(
Bti+1

− Bti

)
,where 0 = t0 < t1 < · · · < tn is a subdivision of [0, T ] of (say uniform) stepsize, equal to

T/n.De�ne now the proess (i.e. a family of random variables depending on time)
αnt =

n−1∑

i=0

Dxu(ti, Bti)1(ti,ti+1](t).11



As a de�nition of the stohasti integral of suh a simple proess, we then set
∫ T

0

αnt dBt :=

n−1∑

i=0

Dxu(ti, Bti)
(
Bti+1

− Bti

)
.As we already said, this term is of zero expetation. The variane is equal to

E

[(∫ T

0

αnt dBt

)2]

=
n−1∑

i=0

E
[∣∣Dxu(ti, Bti)

∣∣2|Bti+1
− Bti |2

]

+ 2
∑

0≤i<j≤n−1

E
[
Dxu(ti, Bti)Dxu(tj, Btj )

(
Bti+1

−Bti

)(
Btj+1

− Btj

)]
.In the �rst sum, we may take advantage of the independene of Bti+1

−Bti and Bti to split theexpetations. Similarly, in the seond sum, the expetation of Btj+1
− Btj may be isolated:it is equal to 0. Therefore,

E

[(∫ T

0

αnt dBt

)2]
= h

n−1∑

i=0

E
[∣∣Dxu(ti, Bti)

∣∣2] = E

∫ T

0

(αnt )
2dt.Said di�erentily, we just built an isometry between L2(Ω,F ,P) and L2([0, T ] × Ω,B(R) ⊗

F , dt⊗P). It is well-seen that the sequene (αnt )0≤t≤T onverges (at least pointwise) towards
(Dxu(t, Bt))0≤t≤T . It may be assumed to be bounded if the initial ondition u0 in (3.1) isLipshitz. Therefore, it has a limit in L2([0, T ]× Ω,B(R) ⊗F , dt⊗ P) and, thus, is Cauhy.As a onsequene, the sequene (∫ T

0

αnt dBt

)

0≤t≤Tis Cauhy in L2(Ω,F ,P) as well. It is onvergent: by de�nition, the limit is the stohastiintegral ∫ T

0

Dxu(t, Bt)dBt.4.2. Constrution. [The reader may skip this part.℄ Atually, the proedure may be gen-eralized to integrate more general stohasti proesses. To do so, we �rst speify someelements of the theory of stohasti proesses (keep in mind that (Ω,F ,P) stands for aomplete probability spae):De�nition 4.1. We all a �ltration any non-dereasing family (Ft)t≥0 of sub σ-�elds of F .In pratie, a �ltration stands for the available information by observation of the eventsoured between the initial and present times. In what follows, �ltrations are assumed tobe right-ontinuous, i.e. ∩ε>0Ft+ε = Ft and omplete, i.e. ontaining sets of zero measure.This is neessary to state some fundamental results for stohasti proesses.De�nition 4.2. A proess (Xt)t≥0 is said to be adapted w.r.t. a �ltration (Ft)t≥0 if, for any
t ≥ 0, Xt is Ft-measurable. (That is, the value of Xt is known at time t.)12



De�nition 4.3. A Brownian motion (Bt)t≥0 is said to be an (Ft)t≥0-Brownian motion if itis adapted w.r.t. (Ft)t≥0 and if, for any (t, h) ∈ R2
+, the inrement Bt+h−Bt is independentof Ft. For instane, a Brownian motion (Bt)t≥0 is always a Brownian motion w.r.t. itsnatural �ltration(4.2) Ft = σ(Bs, s ≤ t) ∨N , t ≥ 0.Here, σ(Bs, s ≤ t) stands for the smallest �ltration for whih the variables (Bs)0≤s≤t aremeasurable and N for the olletion of sets of zero-measure.We are now in position to generalize the de�nition of the stohasti integral:De�nition 4.4. A simple proess w.r.t. to the �ltration (Ft)t≥0 is a proess of the form

Ht =

n−1∑

i=0

H i
1(ti,ti+1](t),where H i is a square-integrable Fti-measurable random variable and 0 < t1 < t2 < · · · < tn.Then, the stohasti integral is(4.3) ∫ +∞

0

HtdBt =
n−1∑

i=0

H i
(
Bti+1

−Bti

)
.Using, as above, the independene of H i and of Bti+1

− Bti , we an show that
E

[(∫ +∞

0

HtdBt

)2]
= E

∫ +∞

0

H2
t dt.As announed above, the integral de�nes an isometry. By density, we an extend the de�ni-tion of the integral to the lass of so-alled progressively-measurable proesses:De�nition 4.5. A proess (Ht)t≥0 is said to be progressively-measurable w.r.t. the �ltration

(Ft)t≥0 if, at any time T ≥ 0, the joint mapping
(t, ω) ∈ [0, T ] × Ω 7→ Xt(ω)is measurable for the produt σ-�eld B([0, T ]) ⊗FT .Given a progressively-measurable proess suh that

E

∫ +∞

0

H2
t dt < +∞,there exists a sequene (Hn

t )t≥0 of simple proesses onverging in L2([0,+∞)×Ω,B([0,+∞))⊗
F , dt⊗ P) towards (Ht)t≥0 so that ∫ +∞

0

HsdBsexists as a limit in L2(Ω,F ,P) of a Cauhy sequene. It satis�es It�'s isometry, i.e.
E

[(∫ +∞

0

HsdBs

)2]
= E

∫ +∞

0

H2
sds.The notion of progressive-measurability is neessary: as the isometry property shows, theproess is seen as joint funtion of time and randomness. As example, it may be proven thatany (left- or right-)ontinuous adapted proess is progressively-measurable.13



4.3. Variation of the Integration Bound. To make the onnetion between De�nition4.5 and ∫ T

0

Dxu(t, Bt)dBt,we understand the above stohasti integral as
∫ +∞

0

1(0,T ](t)Dxu(t, Bt)dBt.Below, we use the �rst writing only. Going bak to (3.9), we �nally write (replaing (Bt)t≥0by (x+Bt)t≥0), for all t ≥ 0,(4.4) u(T − t, x+Bt) = u(T, x) +

∫ t

0

Dxu(T − s, x+Bs)dBs.This writing is a bit awkward beause of the time reversal. To obtain a straightforwardprobabilisti formulation, it turns out to be easier to set Eq. (3.1) in a bakward sense itself,i.e. with a terminal boundary ondition. Atually, in the spei� ase of Monge-Ampère,this has no real in�uene sine the equation is stationary.However, we understand from Eq. (4.4) how it may be useful to see the stohasti integralas a proess, indexed by the upper integration bound. Atually, it is not so easy to do:the integral being de�ned as an element of L2(Ω,F ,P), it is de�ned up to an event of zeromeasure only. To let the upper integration bound vary, it is neessary to hoose a suitableversion at eah time:Proposition 4.6. Given a progressively-measurable stohasti proess (Ht)t≥0 w.r.t. a �l-tration (Ft)t≥0 suh that
∀t ≥ 0, E

∫ t

0

H2
sds < +∞,it is possible to hoose for any t ≥ 0 a version of the stohasti integral

∫ t

0

HsdBs =

∫ +∞

0

1]0,t](s)HsdBs,suh that the proess (∫ t

0

HsdBs

)

t≥0be of ontinuous paths. (That is, is ontinuous ω by ω.)Notie that the ontinuity property is well-understood in (4.4) sine the left-hand sidetherein is ontinuous.4.4. Martingale Property. There is another remarkable property of the stohasti inte-gral: it is of zero expetation. Said di�erently, taking the expetation in (4.4) when t = T ,we obtain
u(T, x) = E

[
u0(x+BT )

]
.This is nothing but the representation announed in (3.3): this representation is referred asFeynman-Ka formula. 14



Atually, the entering property for the stohasti integral may be seen as a onsequeneof a more general property: the stohasti integral is a martingale. The martingale propertyis a projetive property based upon the notion of onditinal expetation:De�nition 4.7. An adapted proess (Mt)t≥0 w.r.t. a �ltration (Ft)t≥0 is alled a martingaleif it is integrable at any time and
∀0 ≤ s ≤ t, E

[
Mt|Fs

]
= Ms.In partiular, a martingale has a onstant expetation.Go now bak to De�nition 4.4. Considering (4.3), we notie, with the same notations,that

∫ tj

0

HrdBr =

j−1∑

i=0

H i(Bti+1
− Bti),for 0 ≤ j ≤ n. By onditioning w.r.t. Ftj−1

, we obtain
E

[∫ tj

0

HrdBr|Ftj−1

]
=

j−2∑

i=0

H i(Bti+1
− Bti) + E

[
Hj−1(Btj −Btj−1

)|Ftj−1

]
,sine the j − 1 �rst terms are measurable w.r.t. the σ-�eld Ftj−1

. Examinate now theremaining part: we know that Hj−1 is measurable w.r.t. Ftj−1
and that the inrement (Btj −

Btj−1
) is independent of Ftj−1

. Therefore, the produt of both is orthogonal to L2(Ω,Ftj−1
,P):the onditional expetation is zero. Finally,

E

[∫ tj

0

HrdBr|Ftj−1

]
=

∫ tj−1

0

HrdBr.The argument is atually true for any onditioning by Ftℓ , 0 ≤ ℓ ≤ j − 1. Moreover, notingthat any pair (s, t), 0 ≤ s ≤ t, may be understood as a subset of the subdivision {t0, . . . , tn},we obtain that
E

[∫ t

0

HrdBr|Fs

]
=

∫ s

0

HrdBr,for any s and t. By a density argument, we dedueProposition 4.8. Given a progressively-measurable proess (Ht)t≥0 w.r.t. a �ltration (Ft)t≥0and satisfying
∀t ≥ 0, E

[∫ t

0

H2
sds

]
< +∞,the stohasti integral

(∫ t

0

HsdBs

)

t≥0is a martingale w.r.t. (Ft)t≥0. 15



4.5. Stopping Times. The reader may wonder about the onnetion bewteen a proess ofzero mean and a martingale. Atually, a martingale is a proess whose expetation is zerowhen stopped at any suitable random times, alled stopping times.Here is the de�nition (together with an example):De�nition 4.9. Given a �ltration (Ft)t≥0, a random variable τ with non-negative (but pos-sibly in�nite) values is alled a stopping-time if
∀t ≥ 0, {τ ≤ t} ∈ Ft.As an example, a ontinuous and adapted proess (Xt)t≥0 w.r.t. a �ltration (Ft)t≥0 and alosed subset F ⊂ R, the variable
τ := inf{t ≥ 0 : Xt ∈ F},is a stopping time (the in�mum being set as +∞ is the set is empty).Stopping times are really useful beause of the following Doob Theorem:Theorem 4.10. Given a martingale (Mt)t≥0 w.r.t. a �ltration (Ft)t≥0 and a stopping time

τ , (Mt∧τ )t≥0 is also a martingale (w.r.t. the same �ltration). (Here t ∧ τ = min(t, τ).)In partiular, if τ is bounded by some T , then E[Mτ ] = E[MT∧τ ] = E[M0].In the above statement, t ∧ τ , for some deterministi time t, is a stopping time again.Indeed, we let the reader hek that the minimum of two stopping times is a stopping timeas well.Below, we will also make use of the following version of Doob's theorem:Theorem 4.11. For a �ltration (Ft)t≥0 and a stopping time τ (w.r.t. (Ft)t≥0), we all
σ-�eld of events oured before time τ , the σ-�eld

Fτ :=
{
A ∈ F : ∀t ≥ 0, A ∩ {τ ≤ t} ∈ Ft

}
.Then, for a martingale (Mt)t≥0 w.r.t. (Ft)t≥0 and for another stopping time σ ≥ τ ,

∀t ≥ 0, 1{τ≤t}E
[
Mσ∧t|Fτ

]
= 1{τ≤t}Mσ∧t.(Again, it is an easy exerie to hek that {τ ≤ t} is in Fτ . Indeed, Fτ must be understoodas the olletion of events for whih it may be deided if they have oured or not at time

τ .) 5. Probabilisti Writing of Monge-AmpèreWe now go bak to Setion 2. In order to give a probabilisti representation of (2.1), we�rst investigate the probabilisti writing of the solution to the Dirihlet problem(5.1) Trace
[
aD2

z,z̄u
]
(z) = f(z), z ∈ D,with the boundary ondition u(z) = g(z), z ∈ ∂D, the non-negative Hermitian matrix abeing given. 16



5.1. Real Dirihlet Problem. It may be simpler to start with the real ase:
Trace

[
aD2

x,xu
]
(x) + f(x) = 0, x ∈ D ; u(x) = g(x), x ∈ ∂D,the matrix a being real, symmetri and non-negative. Obviously, in this writing, the oe�-ients f and g together with the domain D are supposed to be of real struture.In the ase when a is equal to the identity matrix, the proess assoiated with the di�er-ential operator Trace[D2

x,x·] is (up to a multipliative onstant) the d-dimensional Brownianmotion, as de�ned byDe�nition 5.1. A proess (B1
t , . . . , B

d
t )t≥0 with values in Rd is alled a d-dimensional Brow-nian motion if eah proess (Bi

t)t≥0, 1 ≤ i ≤ d, is a Brownian motion and if all of them areindependent, i.e., for any time-indies 0 < t1 < · · · < tn, n ≥ 1, the vetors (B1
t1
, . . . , B1

tn),
. . . , (Bd

t1
, . . . , Bd

tn) are independent.Generally speaking, the stohasti integration theory works in dimension d as in dimension1. Spei�ally, the point is to onsider a ommon referene �ltration: the natural hoieonsists in replaing Bs in (4.2) by (B1
s , . . . , B

d
s ). It is also neessary to extend the di�erentialrules given in the statement of Theorem 3.2 to the multi-dimensional ase.Theorem 5.2. It�'s formula (or stohasti Taylor formula) in Theorem 3.2 extends to themulti-dimensional setting. For a d-dimensional Brownian motion (Bt = (B1

t , . . . , B
d
t ))t≥0and a funtion f ∈ C([0,+∞) × Rd,R), the in�nitesimal variation of (f(t, Bt))t≥0 expandsas

d
[
f(t, Bt)

]

=
[
Dtf(t, Bt) +

1

2

d∑

i=1

D2
xi,xi

f(t, Bt)
]
dt+

d∑

i=1

Dxi
f(t, Bt)dB

i
t, t ≥ 0.Sketh of the Proof. We just provide the main idea. Generally speaking, the proof relieson the d-dimensional Taylor formula. The only problem is to understand how behave thein�nitesimal produts dBi

tdB
j
t , 1 ≤ i, j ≤ d.Obviously, dBi

tdB
i
t = dt for any 1 ≤ i ≤ d. When i 6= j, dBi

tdB
j
t is set as 0. Thisde�nition may be understood by disretizing the underlying dynamis with a mirosopistepsize. Indeed, if 0 = t0 < t1 < · · · < tn is a time-grid of stepsize h, we may ompute

E

[(n−1∑

k=0

(Bi
tk+1

− Bi
tk

)(Bj
tk+1

−Bj
tk

)

)2]
,as in (3.8).The idea is then the same as in (3.8). Variables are learly independent and of zero expe-tation so that the expetation of the square of the sum is equal to the sum of the varianes.Now, sine E[(Bi

tk+1
− Bi

tk
)2(Bj

tk+1
− Bj

tk
)2] = h2, the sum is equal to nh2. It is thus miro-sopi at the marosopi level aording to the same argument as in (3.8). Marosopiontributions of the rossed terms are therefore zero. �We now provide an example of appliation. (In what follows, we will write Bt for

(B1
t , . . . , B

d
t ), so that Bt stands for a vetor.)17



When a = (1/2)Id and f and g are regular enough (say f is Hölder ontinuous and g hasHölder ontinuous seond-order derivatives), it is well-known that the real Dirihlet problem
1

2
∆u(x) + f(x) = 0, x ∈ D ; u(x) = g(x), x ∈ ∂D,has a unique lassial solution, with bounded derivatives. For x ∈ D, we write the in�nites-imal dynamis of (u(x+Bt))t≥0. We obtain

du(x+Bt) =

d∑

i=1

Dxi
u(x+Bt)dB

i
t +

1

2

d∑

i=1

D2
xi,xi

u(x+Bt)dt

=
d∑

i=1

Dxi
u(x+Bt)dB

i
t − f(x+Bt)dt.

(5.2)On the marosopi sale, we obtain (with B0 = 0)
u(x+Bt) = u(x) −

∫ t

0

f(x+Bs)ds+
d∑

i=1

∫ t

0

Dxi
u(x+Bt)dB

i
t.This writing is atually unsatisfatory: it holds when x + Bt belongs to D only; otherwise,it is meaningless. To make things rigorous, we introdue the stopping time:

τx := inf
{
t ≥ 0 : x+Bt ∈ D∁

}
.We are then able to write

u(x+Bt)

= u(x) −
∫ t

0

f(x+Bs)ds+
d∑

i=1

∫ t

0

Dxi
u(x+Bt)dB

i
t, 0 ≤ t ≤ τx.We emphasize that the martingale term is well-de�ned sine the gradient is bounded. (At-ually, for what follows, it would be su�ient that the gradient be ontinuous inside D andthus bounded on every ompat subset of D.) Taking the expetation at time t ∧ τx andapplying Doob's Theorem de Doob 4.10, we obtain(5.3) E

[
u(x+Bt∧τx)

]
= u(x) − E

∫ t∧τx

0

f(x+Bs)ds.We then intend to let t tend to the in�nity. This is possible if E[τx] < +∞.Theorem 5.3. For any x ∈ D, de�ne τx as τx := inf{t ≥ 0 : x+Bt ∈ D∁}. Then, for any
x ∈ D, E[τx] < +∞.In partiular, if f is Hölder ontinuous on D and g has Hölder ontinuous seond-orderderivatives in the neighborhood of D̄, then the solution u to the Dirihlet problem

1

2
∆u(x) + f(x) = 0, x ∈ D ; u(x) = g(x), x ∈ ∂D,admits the following Feynman-Ka representation

u(x) = E

[
g(x+Bτx) +

∫ τx

0

f(x+Bs)ds

]
.18



Proof. It is su�ient to prove E[τx] < +∞. Feynman-Ka formula then follows by letting
t to +∞ in (5.3).To prove E[τx] < +∞, we use the non-degeneray property of the identity matrix in onearbitrarily hosen diretion of the spae. Compute indeed

d|x+Bt|2 = d
[ d∑

i=1

|xi +Bi
t |2

]
=

d∑

i=1

[
2(xi +Bi

t)dB
i
t + (dBi

t)
2
]

= 2

d∑

i=1

(xi +Bi
t)dB

i
t + d dt.Take expetation at time t ∧ τx. Sine D is bounded, we obtain

sup
t≥0

E
[
t ∧ τx

]
< +∞.By monotonous onvergene Theorem, we omplete the proof. �When the identity matrix is replaed by a non-zero symmetri matrix a, Brownian motionis replaed by the proess(5.4) Xt := x+

∫ t

0

σdBs, t ≥ 0,where σ is a square-root of a, i.e. σσ∗ = a. This writing must be understood as
X i
t = xi +

d∑

j=1

∫ t

0

σi,jdB
j
s , t ≥ 0.Following (5.2), we then obtain(5.5) du(Xt) =

d∑

i=1

Dxi
u(Xt)dX

i
t +

1

2

d∑

i,j=1

D2
xi,xj

u(Xt)dX
i
tdX

j
t , t ≥ 0.Here, dX i

t =
∑d

j=1 σi,jdB
j
t and the di�erential rules have the form

dX i
tdX

j
t =

d∑

k,ℓ=1

σi,kσj,ℓdB
k
t dB

ℓ
t =

d∑

k=1

σi,kσj,kdt = (σσ∗)i,jdt.If det(a) 6= 0, we then obtain an analogous representation to the one obtained for the Laplaeoperator.Theorem 5.4. Consider a positive symmetrix matrix a with σ as square-root, i.e. a = σσ∗.For any x ∈ D, onsider (Xx
t )t≥0 as in (5.4) and set τx := inf{t ≥ 0 : Xt ∈ D∁}. Then,

E[τx] < +∞.Moreover, if f is Hölder ontinuous on D and g has Hölder ontinuous seond-order deriva-tives in the neighborhood of D̄, then the solution u to the Dirihlet problem
1

2
Trace

[
aD2

x,xu
]
(x) + f(x) = 0, x ∈ D ; u(x) = g(x), x ∈ ∂D,19



admits the Feynman-Ka representation
u(x) = E

[
g(Xx

τx) +

∫ τx

0

f(Xx
s )ds

]
.Sketh of the Proof. The boundedness of the expetation of the hitting time is proved asin Theorem 5.3. By It�'s formula (5.5), we omplete the proof. �5.2. Complex Brownian Motion. Consider now the omplex Dirihlet problem. Withthe same notation as above (but understood in the omplex sense), we are seeking for arepresentation of the solution u to

Trace
[
aDz,z̄u

]
(z) + f(z) = 0, z ∈ D ; u(z) = g(z), z ∈ ∂D.Here, the matrix a is a non-negative Hermitian matrix.The solution u may be represented as above. We are going to reprodue the same om-putations, but with respet to the omplex Brownian motion:De�nition 5.5. A omplex Brownian motion of dimension d is a d-dimensional proess

(Bt = (B1
t , . . . , B

d
t ))t≥0 with values in Cd given by

Bj
t =

W j,1
t +

√
−1W j,2

t√
2

, t ≥ 0, 1 ≤ j ≤ d,where the proesses (W j,1
t ,W j,2

t )1≤j≤d are independent real Brownian motions.We emphasize that the oe�ient √2 is here to normalize the expetation of the squaremodulus of Bt, i.e. E[|Bt|2] = t, t ≥ 0.Di�erential rules are given byProposition 5.6. Let (Bt = (B1
t , . . . , B

d
t ))t≥0 be a omplex Brownian motion of dimension

d. Then, It�'s formula in Theorem 5.2 holds with f funtion of the omplex variable ofdimension d and with the di�erential rules
dBi

tdB
j
t = 0, dBi

tdB̄
j
t = 1{i=j}dt, 1 ≤ i, j ≤ d.Sketh of the Proof. For 1 ≤ i ≤ d,

dBi
tdB

i
t =

(dW i,1
t )2 − (dW i,2

t )2 + 2
√
−1 dW i,1

t dW i,2
t

2
= 0.Similalry, dB̄i

tdB̄
i
t = 0 and
dBi

tdB̄
i
t =

(dW i,1
t )2 + (dW i,2

t )2 + 2
√
−1 dW i,1

t dW i,2
t

2
= dt.Finally, for 1 ≤ i < j ≤ d,

dBi
tdB

j
t = dBi

tdB̄
j
t = 0.This ompletes the proof. �Give now several examples. 20



Example (a). If d = 1 and (Z1
t )t≥0 and (Z2

t )t≥0 admit
dZ1

t = σ1
t dBt + b1tdt

dZ2
t = σ2

t dBt + b2tdt, t ≥ 0,as dynamis, we obtain
d(Z1

t Z
2
t ) = Z1

t dZ
2
t + Z2

t dZ
1
t + dZ1

t dZ
2
t

= (Z1
t σ

2
t + Z2

t σ
1
t )dBt + (Z1

t b
2
t + Z2

t b
1
t )dt+ σ1

t σ
2
t dBtdBt, t ≥ 0.(Pay attention that the absolutely ontinuous parts b1tdt and b2tdt play no role in the produt

dZ1
t dZ

2
t : all the terms they indue are least of order dt3/2.) Now, dBtdBt = 0 in the aboveequation.However,

d(Z1
t Z̄

2
t )

= Z1
t dZ̄

2
t + Z̄2

t dZ
1
t + dZ1dZ̄

2
t

= (Z1
t σ̄

2
t dB̄t + Z̄t

2
σ1
t dBt) + (Z1

t b̄
2
t + Z̄2

t b
1
t )dt+ σ1

t σ̄
2
t dBtdB̄t, t ≥ 0.Here, dBt · dB̄t = dt.In partiular, if

Zt =
n∑

j=1

σjdB
j
t , t ≥ 0,where ((Bj

t )t≥0)j are independent omplex Brownian motion (i.e. (Bt = (B1
t , . . . , B

d
t ))t≥0 isa omplex Brownian motion of dimension d), then

d|Zt|2 = ZtdZ̄t + Z̄tdZt + dZtdZ̄t

= Zt

n∑

j=1

σ̄jdB̄
j
t + Z̄t

n∑

j=1

σjdB
j
t +

n∑

j=1

σj σ̄jdt, t ≥ 0.For example, if σj = (σξ)j for a matrix σ, then the last term is equal to |σξ|2, i.e. to 〈ξ̄, aξ〉where a = σ̄∗σ. This is also equal to 〈a∗ξ̄, ξ〉.Example (b). Assume that d = 1 and onsider an holomorphi funtion f on C. Then,
df(Bt) = f ′

z(Bt)dBt +
1

2
f ′′
z,z(Bt)dBtdBt = f ′

z(Bt)dBt, t ≥ 0.In partiular, if τR := inf{t ≥ 0 : |Bt| ≥ R}, R > 0, then (f(Bt∧τR))t≥0 is a martingale. (Here,the stopping time is neessary to guarantee that the martingale is integrable: suh an ar-gument is alled �a loalization argument�.) We will say that (f(Bt))t≥0 is a loal martingale.Example (). Assume now that d ≥ 1. Consider a funtion u with real values of lass C2on the domain D and ompute du(Xt), t ≥ 0, where
Xt = z +

∫ t

0

σdBs, t ≥ 0,21



with σ omplex matrix of size d× d. We obtain, for any t ≥ 0,
du(Xt)

=

d∑

i=1

Dzi
u(Xt)dX

i
t +

d∑

i=1

Dz̄i
u(Xt)dX̄

i
t

+
1

2

d∑

i,j=1

D2
zi,zj

u(Xt)(dXt)
i(dXt)

j +
1

2

d∑

i,j=1

D2
z̄i,z̄j

u(Xt)(dXt)
i(dXt)

j

+
1

2

d∑

i,j=1

D2
zi,z̄j

u(Xt)(dXt)
i(dX̄t)

j +
1

2

d∑

i,j=1

D2
z̄i,zj

u(Xt)(dX̄t)
i(dXt)

j.It is well-seen that (dXt)
i(dXt)

j = 0 and (dX̄t)
i(dX̄t)

j = 0, 1 ≤ i, j ≤ d. Moreover,
(dXt)

i(dX̄t)
j =

∑d
ℓ=1 σi,kσ̄k,jdt = (σσ̄∗)i,jdt. Therefore,

du(Xt) =

d∑

i=1

Dzi
u(Xt)dX

i
t +

d∑

i=1

Dz̄i
u(Xt)dX̄

i
t

+
1

2
Trace

[
aD2

z,z̄u(Xt)
]
dt+

1

2
Trace

[
āD2

z̄,zu(Xt)
]
dt, t ≥ 0.Finally, sine a and D2

z,z̄u are Hermitian, we dedue
du(Xt)

=
d∑

i=1

Dzi
u(Xt)dX

i
t +

d∑

i=1

Dz̄i
u(Xt)dX̄

i
t + Trace

[
aD2

z,z̄u(Xt)
]
dt, t ≥ 0.Obviously, this is true for t ≤ τ z := inf{t ≥ 0 : Xt 6∈ D} only. We then dedue the analog ofTheorem 5.3:Theorem 5.7. Let a be a positive Hermitian omplex matrix of size d × d and σ be anHermitian square-root of a, i.e. a = σσ̄∗. For a given z ∈ D (D being here assumed to be ofthe omplex variable of dimension d), set

Xz
t = z +

∫ t

0

σdBs, t ≥ 0,together with τ z := inf{t ≥ 0 : Xt 6∈ D}. Then, E[τ z] < +∞.Moreover, for given real-valued funtions f and g of the omplex variable of dimension d,satisfying the same assumption as in Theorem 5.3, the solution u to the omplex Dirihletproblem
Trace

[
aD2

z,z̄u(z)
]
+ f(z) = 0, z ∈ D ; u(z) = g(z), z ∈ ∂D,admits the Feynman-Ka representation

u(z) = E

[
g(Xz

τz) +

∫ τz

0

f(Xz
s )ds

]
.22



5.3. Formulation �à la Gaveau�. We are now in position to give a probabilisti represen-tation of the solution of the Monge-Ampère equation. In light of (2.1) and (2.7), a naturalandidate to solve the Monge-Ampère equation is(5.6) ∀z ∈ D̄, u(z) = inf E

[
g(Xσ,z

τσ,z) −
∫ τσ,z

0

f(Xσ,z
t )dt

]
,the in�mum being here taken over all progressively-measurable proesses (σt)t≥0 with valuesin the set of omplex matries of size d and of determinant of modulus 1, i.e. det(σtσ̄

∗
t ) = 1for all t ≥ 0, with(5.7) Xσ,z

t = z +

∫ t

0

σsdBs, t ≥ 0 ; τσ,z := inf{t ≥ 0 : Xσ,z
t ∈ D∁}.We emphasize that this is an in�mum and not a supremum despite the supremum in (2.1).The reason may be understood as follows.Proposition 5.8. Let σ be a (non-zero) omplex matrix of size d×d and u be a C(D̄)∩C2(D)funtion satisfying(5.8) −Trace

[
aD2

z,z̄u(z)
]
+ f(z) ≤ 0, z ∈ D ; u(z) = g(z), z ∈ ∂D,where a = σσ∗ and f and g are funtions from D into R as in Theorem 5.7 (or as inAssumption (A)).For a given z ∈ D, de�ne (Xz
t )t≥0 and τ z as in Theorem 5.7. Then,

u(z) ≤ E

[
g(Xz

τz) −
∫ τz

0

f(Xz
s )ds

]
.Sketh of the Proof. The proof is similar to the proof of Theorem 5.7 and relies on asimple appliation of It�'s formula. �Pay attention that u is here assumed to be smooth. In partiular, the reader may objetthat the solution to the Monge-Ampère equation is not assumed to be of lass C2, so thatProposition 5.8 does not apply to it. Atually, Proposition 5.8 must be understood as someheuristis towards the probabilisti formulation of Monge-Ampère.In PDE theory, a funtion u satisfying (5.8) is alled a subsolution to the Dirihlet problemdriven by a, f and g. From a probabilisti point of view, it says that the proess (u(Xz

t ))t≥0is a sub-martingale when f ≥ 0, i.e. the in�nitesimal variation of (u(Xz
t ))t≥0 is greater thanthe in�nitesimal variation of a martingale.Proposition 5.8 may be seen a variation of the maximum priniple: there exists a ompar-ison priniple between the solutions of the Dirihlet problems driven by the same matrix a.Going bak to the formulation (2.1) of Monge-Ampère, we then understand that the solutionto Monge-Ampère is expeted to be less than the solution to any Dirihlet problem drivenby the same f and g as in Monge-Ampère and by any non-negative Hermitian matrix ofdeterminant 1.We derive the following representation priniple, whih may be seen as a probabilistivariation of the Perron-Bremermann method disussed in Chapter 1 by V. Guedj and A.Zeriahi (see Setion 1 therein)22We here say �variation� of the Perron-Bremermann method sine the optimization below is not performedover a set of plurisubharmoni funtions as in the Perron-Bremermann method. Plurisubharmoniity is here23



De�nition 5.9. Let f and g be as in Assumption (A) and (Bt)t≥0 be a omplex Brownianmotion of dimension d. We all Gaveau representation or Gaveau andidate for the Monge-Ampère equation the funtion u given by
∀z ∈ D̄, u(z) = inf E

[
g
(
Xσ,z
τσ,z

)
−

∫ τσ,z

0

f(Xσ,z
s )ds

]
,the in�mum being taken over the set of progressively-measurable proesses (σt)t≥0 with valuesin Cd×d suh that det(σtσ̄

∗
t ) = 1, t ≥ 0, the proess (Xσ,z

t )t≥0 being given by
Xσ,z
t = z +

∫ t

0

σsdBs, t ≥ 0,and the stopping time τσ,z by τσ,z = inf{t ≥ 0 : Xσ,z
t 6∈ D}.As the reader may guess, De�nition 5.9 goes bak to the earlier paper by Gaveau [3℄. Infat, it is di�erent from the one used by Krylov in his works and thus di�erent from theone we use below. The reason why Krylov introdued a di�erent representation in his ownanalysis may be explained as follows: in De�nition 5.9, the ontrol σ is poorly ontrolled!Said di�erently, the ondition on the determinant of σσ̄∗ is really weak sine the norm of thematrix σσ̄∗ may be as large as possible.Nevertheless, we emphasize that the onnetion between the andidate u in De�nition 5.9and the Monge-Ampère equation is rigorously established in the original paper by Gaveau.We refer the reader to it for the omplete argument.5.4. Krylov Point of View. Krylov's strategy is a bit di�erent. The starting point onsistsin writing the original Monge-Ampère formulation(5.9) det1/d

[
D2
z,z̄u(z)

]
=

1

d
f(z), z ∈ D,under the form(5.10) sup

{
−Trace

(
aD2

z,z̄u(z)
)

+ det1/d(a)f(z) ; a = ā∗ ≥ 0, Trace(a) = 1
}

= 0,

z ∈ D. Obviously, the �rst problem is to prove that any C1,1 solution u to (5.10) satis�es(5.9) as well.Assume therefore that there exists a C1,1 funtion u from D to R solving (5.10) almosteverywhere in D. Sine u is C1,1, D2
z,z̄u(z) exists for almost every z ∈ D. By (5.10) and bythe sign ondition f ≥ 0, for almost every z ∈ D, Trace(aD2

z,z̄u(z)) ≥ 0 for any non-negativeHermitian matrix a, so that u is plurisubharmoni. Choose now some z ∈ D at whih
D2
z,z̄u(z) exists. If D2

z,z̄u(z) is equal to zero, we an �nd a positive Hermitian matrix a (witha non-zero determinant) with 1 as trae suh that Trace(aD2
z,z̄u(z)) = 0. In partiular, (5.10)says that f(z) ≤ 0 so that f(z) = 0 sine f is non-negative: (5.9) holds at point z. If thedeterminant in non-zero at z, the omplex Hessian D2

z,z̄u(z) is non-degenerate. In partiularit is positive. Therefore, for any sequene (an)n≥1 of non-degenerate matries approximatingthe supremum in (5.10), the determinant of an, n ≥ 1, is away from zero, uniformly in n.(If the determinant has some vanishing subsequene, we an �nd a non-zero non-negativeHermitian matrix a suh that Trace(aD2
z,z̄u(z)) = 0: by Lemma 2.1, D2

z,z̄u(z) is of zerohidden in the very large hoie for the stohasti proess (σt)t≥0: this is the reason why we say �probabilistivariation�. 24



determinant.) Therefore, by ompatness, there exists a matrix a with 1 as determinantsuh that
−Trace

(
aD2

z,z̄u(z)
)

+ f(z) = 0.By Lemma 2.1, we understand that det1/d(D2
z,z̄u(z)) ≤ f(z)/d. Now, hoosing the matrix ain (5.10) as a = (D2

z,z̄u(z))
−1/Trace[(D2

z,z̄u(z))
−1], we obtain

−d+ det−1/d(D2
z,z̄u(z))f(z) ≤ 0,i.e. f(z)/d ≤ det1/d(D2

z,z̄u(z)), so that equality holds.The value funtion assoiated with the optimal ontrol problem (5.10) admits the following(formal) probabilisti representation
∀z ∈ D, u(z) = inf E

[
g(Xσ,z

τσ,z) −
∫ τσ,z

0

det1/d(σtσ̄
∗
t )f(Xσ,z

t )dt

]
,the in�mum being here taken over the progressively-measurable proesses (σt)t≥0 with valuesin the set of omplex matries of size d suh that Trace(σtσ̄

∗
t ) = 1 for any t ≥ 0, with

Xσ,z
t = z +

∫ t

0

σsdBs, t ≥ 0 ; τσ,z := inf{t ≥ 0 : Xσ,z
t ∈ D∁}.In what follows, we will investigate −u instead of u itself. Changing g into −g in theorginal Monge-Ampère equation, we setDe�nition 5.10. Let f and g be as in Assumption (A) and (Bt)t≥0 be a omplex Brownianmotion of dimension d. We all Krylov formulation of the Monge-Ampère equation drivenby the soure term f and the boundary ondition −g (and not g) the funtion −v, where(5.11) v(z) = sup

σ
vσ(z), z ∈ D̄,the supremum being here taken over the set of progressively-measurable proesses (σt)t≥0 withvalues in Cd×d suh Trace(σtσ̄

∗
t ) = 1, t ≥ 0, and vσ being given by(5.12) vσ(z) = E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

0

det1/d(at)f(Xσ,z
t )dt

]
, at = σtσ̄

∗
t ,the proess (Xσ,z

t )t≥0 by
Xσ,z
t = z +

∫ t

0

σsdBs, t ≥ 0,and the stopping time τσ,z by τσ,z = inf{t ≥ 0 : Xσ,z
t 6∈ D}.If v is C1,1 on D and −v satis�es (5.10) almost everywhere, i.e.(5.13) sup

{
Trace

(
aD2

z,z̄v(z)
)

+ det1/d(a)f(z) ; a = ā∗ ≥ 0, Trace(a) = 1
}

= 0,

a.e. z ∈ D, then −v is plurisubharmoni and satis�es the Monge-Ampère equation (5.9). If
−v is ontinuous up to the boundary ∂D, it admits −g as boundary ondition.The reader may worry about the boundary ondition. First, why is it satis�ed? Seond,may we expet the solution to be ontinuous up to the boundary ∂D? The answer to the �rstquestion is quite obvious: when z ∈ ∂D, the stopping time τσ,z is zero, so that Xσ,z

τσ,z = z.Conerning the seond question, we will see below that the answer is learly positive underAssumption (A). 25



5.5. Dynami Programming Priniple. The De�nition 5.10 is not ompletely satisfa-tory. The right question is now: may we laim that −v given by (5.11) is a solution toMonge-Ampère without making any referene to the Hamilton-Jaobi-Bellman Equation(5.10)?We will see below that the answer is almost positive. We say almost beause, to say so,we need some regularity property on v, as in De�nition 5.10.Proposition 5.11. Under the notation of De�nition 5.10, assume that the family (vσ)σ isequiontinuous on every ompat subset of D and that v is C1,1 on D. Then, −v satis�es(5.10) almost everywhere and thus satis�es the Monge-Ampère equation (5.9).Proof. The proof relies on a variation of the so-alled �Dynami Programming Priniple�(or Bellman Priniple). The main point is to split the ost (5.12) of reahing the boundaryof D when starting from a given point z into two parts: the ost of reahing the boundaryof a subdomain from z and the ost of reahing ∂D when starting from the boundary of thesubdomain.We thus �x a given point z ∈ D at whih v is twie di�erentiable in the sense of Taylor,i.e. admits a Taylor expansion of ordrer two at z. (Have in mind that v is almost-everywheretwie di�erentiable in the sense of Taylor sine belongs to C1,1(D).) Fix also a positive real
ε suh that the losed (omplex) ball B̄(z, ε) of enter z and radius ε is inluded in D. Forany (σt)t≥0 as in De�nition 5.10, de�ne ρσ as the �rst exit time from the open ball B(z, ε)by the proess Xz,σ, i.e. ρσ := inf{t ≥ 0 : |Xz,σ

t −z| ≥ ε}. Then, the Dynami ProgrammingPriniple writesLemma 5.12. Under the notation of De�nition 5.10, assume that the family (vσ)σ isequiontinuous on every ompat subset of D. Then, the Dynami Programming Prinipleholds in the following way(5.14) v(z) = sup
σ

E

[
v(Xσ,z

ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

]
, at = σtσ̄

∗
t ,the supremum being here taken w.r.t. the proesses (σt)t≥0 as in De�nition 5.10.Proof of the Lower Bound in Lemma 5.12. By (5.12),

vσ(z) = E

{
E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

ρσ

det1/d(at)f(Xσ,z
t )dt|Fρσ

]

+

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

}
.

(5.15)A part of the trik for the Dynami Programming Priniple is the following: the onditionalexpetation above is less than v(Xρσ). Indeed, for t ≥ ρσ,
Xσ,z
t = Xσ,z

ρσ +

∫ t

ρσ

σsdBs,so that the onditional expetation may be understood as an integration with respet to thetrajetories of (Xσ,z
t )t≥ρσ with Xσ,z

ρσ as starting point. (In partiular, the interval [ρσ, τσ,z ] onwhih (det1/d(at)f(Xσ,z
t ))t≥0 is integrated in the onditional expetation represents the time26



passed from ρσ up to the exit time from D.) Therefore,(5.16) vσ(z) ≤ E

[
v(Xσ,z

ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

]
.Taking the supremum w.r.t. σ, we omplete the proof of the lower bound.Proof of the Subsolution Property in Monge-Ampère. We now dedue the subsolu-tion property from the lower bound in the Dynami Programming Priniple. Sine v is twieTaylor di�erentiable at z, we an write

v(Xσ,z
ρσ ) = v(z) + 2Re

[
Dzv(z)

(
Xσ,z
ρσ − z

)]
+

1

2

[
H0[v(z)](Xσ,z

ρσ − z)
]

+ oε(1)ε2,
(5.17)the notation oε(1) standing for the Landau notation (i.e. oε(1) tends to 0 with ε) and beingindependent of the ontrol σ and the underlying randomness ω. Above H0[v(z)](ν), for
ν ∈ Cd, stands for H0[v(z)](ν) =

∑d
i,j=1(D

2
zi,zj

v(z)νiνj + D2
zi,z̄j

v(z)νiν̄j + D2
z̄i,zj

v(z)ν̄iνj +

D2
z̄i,z̄j

v(z)ν̄iν̄j). By It�'s formula, it is plain to see that
E[H0[v(z)](Xσ,z

ρσ − z)] = 2E

[∫ ρσ

0

Trace
(
atD

2
z,z̄v(z)

)
dt

]
.It is also lear that Re[Dzv(z)(X

σ,z
ρσ − z)] in (5.17) has zero expetation.Add now ∫ ρσ

0
det1/d(at)f(Xσ,z

t )dt to both sides in (5.17) and take the expetation. Then,
E

[
v(Xσ,z

ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

]

= v(z) + E

[∫ ρσ

0

[
Trace

(
atD

2
z,z̄v(z)

)
+ det1/d(at)f(Xσ,z

t )
]
dt

]
+ oε(1)ε2.Therefore, applying (5.16) and using the ontinuity of f ,

vσ(z) ≤ v(z)

+ sup
a=ā∗≥0,Trace(a)=1

[
Trace

(
aD2

z,z̄v(z)
)

+ det1/d(a)f(z)
]
E[ρσ]

+ oε(1)
(
E[ρσ] + ε2

)
.By Ito's formula, ε2 = E[|Xσ

ρσ − z|2] = E[ρσ]. Taking the supremum over σ, dividing by ε2and letting ε tend to 0, we dedue that
sup

a=ā∗≥0,Trace(a)=1

[
Trace

(
aD2

z,z̄v(z)
)

+ det1/d(a)f(z)

]
≥ 0.Proof of the Upper Bound in Lemma 5.12. To prove the supersolution property, we�rst prove the upper bound in Lemma 5.12. By assumption, we know that the funtions

(vσ)σ are equiontinuous. Therefore, for a given δ > 0, we an �nd N points y1, . . . , yN onthe surfae of the ball B(z, ε) suh that, for any (σt)t≥0 as above and any y ∈ ∂B(z, ε),there exists an index i(y) (say the smallest one) suh that |vσ(y) − vσ(yi(y))| ≤ δ. (Taking27



the supremum, the same holds for v, i.e. |v(y) − v(yi(y))| ≤ δ.) Moreover, by de�nition ofthe supremum, for any index i ∈ {1, . . . , N}, we an �nd a δ-optimal ontrol σi suh that
vσ

i

(yi) + δ ≥ v(yi) ≥ vσ
i

(yi).Consider now a ontrol (σt)t≥0 of the same type as above. It must be understood as aprogressively-measurable funtional of the Brownian paths (Bt)t≥0 and of the (possibly ran-dom) initial ondition X0, i.e. something as (σt)t≥0 = (σt((Bs)0≤s≤t, X0))t≥0. In partiular,we emphasize that the value of ρσ depends on the values of (σt)0≤t<ρσ only. Moreover, wean modify the values of (σt)t≥ρσ without hanging ρσ itself. For instane, we an hoose σt,for t ≥ ρσ, as σt = σ′
t−ρσ((Br+ρσ − Bρσ)0≤r≤t−ρσ , Xσ,z

ρσ ) for a new proess (σ′
t)t≥0, i.e. we anhoose σt, for t ≥ ρσ, as the new proess σ′, but shifted in time, the time shift being givenby ρσ.For suh a hoie of (σt)t≥0, we are able to ompute the onditional expetation in (5.15)expliitly. Indeed, for (σt)t≥0 as desribed above,

E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

0

det1/d(at)f(Xσ,z
t )dt|Fρσ

]

= E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

ρσ

det1/d(at)f(Xσ,z
t )dt|Fρσ

]

+

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt.

(5.18)
Write now Xσ,z

t = Xσ,z
ρσ +

∫ t

ρσ σsdBs. Written in a non-rigorous way, this has the form:
Xσ,z
t = Xσ,z

ρσ +

∫ t

ρσ

σ′
s−ρσ

(
(Br+ρσ −Bρσ)0≤r≤s, X

σ,z
ρσ

)
d
(
Bs −Bρσ

)
.When omputing the onditional expetation in the last line of (5.18), everything works asan integration with respet to the trajetories of (Bt −Bρσ)t≥ρσ : this is a Brownian motion,independent of the past before ρσ. Everything thus restarts afresh from Xσ,z
ρσ . Therefore,beause of the spei� form of σ after ρσ (this is the ruial point), the onditional expetationredues to ompute vσ′ at point Xσ,z

ρσ , so that
E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

0

det1/d(at)f(Xσ,z
t )dt|Fρσ

]

= vσ
′

(Xσ,z
ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt.Taking the expetation, we dedue a kind of martingale property:(5.19) vσ(z) = E
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′

(Xσ,z
ρσ ) +

∫ ρσ
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det1/d(at)f(Xσ,z
t )dt

]
.Here is the hoie of σ′. Rigoroulsy, we hoose σ′

t as σi(X0)
t where X0 stands for the (possiblyrandom) initial ondition of the proess X. Clearly, this means that σt = σ

i(Xσ
ρσ,z )

t−ρσ , t > ρσ.28



For this hoie of (σt)t≥0, we have from (5.19)
v(z)

≥ vσ(z)

= E

[
vσ

′

(Xσ,z
ρσ ) +

∫ ρσ
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det1/d(at)f(Xσ,z
t )dt

]
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ρσ ) +

∫ ρσ
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det1/d(at)f(Xσ,z
t )dt

]
− E

[
|v(Xσ,z

ρσ ) − vσ
′

(Xσ,z
ρσ )|

]
.

(5.20)
Now, by the hoie of the points (yi)1≤i≤N , we know that |vσ′(Xσ,z

ρσ ) − vσ
′

(yi(Xσ,z

ρσ ))| ≤ δ and
|v(Xσ,z

ρσ ) − v(yi(Xσ,z

ρσ ))| ≤ δ. Moreover, by de�nition, vσ′(yi(Xσ,z

ρσ )) = vσ
j

(yj) with j = i(Xσ,z
ρσ )so that |vσ′(yi(Xσ,z

ρσ )) − v(yi(Xσ,z

ρσ ))| ≤ δ. Therefore(5.21) E
[
|v(Xσ,z

ρσ ) − vσ
′

(Xσ,z
ρσ )|

]
≤ 3δ.Plugging (5.21) into (5.20) and letting δ tend to 0, we obtain the upper bound in Lemma5.12 and thus the equality, i.e. the omplete Bellman Priniple.Proof of the Supersolution Property. To dedue the supersolution property in Monge-Ampère, we perform a suitable hoie for (σt)0≤t≤ρσ up to time ρσ. We hoose it to beonstant between 0 and ρσ, the onstant value being denoted by σ for more simpliity.Expanding v(Xσ,z

ρσ,z) in (5.20) as in (5.17) and letting δ and then ε tend to 0, we obtain
Trace

(
aD2

z,z̄v(z)
)

+ det1/d(a)f(z) ≤ 0, with a = σσ̄∗.This ompletes the proof of Proposition 5.11. �5.6. Plurisubharmoniity by Bellman Priniple. We �nally emphasize that the Bell-man Priniple is nothing but a probabilisti version of the plurisubharmoniity property:Proposition 5.13. Assume that, for any z ∈ D, any ε > 0 suh that B̄(z, ε) ⊂ D and any
Cd×d-valued ontrol (σt)t≥0 suh that Trace(σtσ̄

∗
t ) = 1, t ≥ 0, the proess (Xσ,z

t )t≥0 given byDe�nition 5.10 satis�es the Bellman Priniple stated in Lemma 5.12 where ρσ stands thereinfor the stopping time ρσ = inf{t ≥ 0 : |Xσ,z
t − z| ≥ ε}. Assume also that v is ontinuous on

D. Then, v is plurisuperharmoni on D.In partiular, v is plurisuperharmoni if the family (vσ)σ in De�nition 5.10 is equiontin-uous on every ompat subset of D.Proof. Given z ∈ D and ε > 0 suh that B̄(z, ε) ⊂ D, it is enough to prove that, for any
ν ∈ Cd, |ν| = 1,(5.22) v(z) ≥ 1

2π

∫ 2π

0

v
(
z + εeiθν

)
dθ.In (5.14), we hoose σ as the (deterministi) projetion matrix on ν, i.e. σ = νν̄∗, ν beingunderstood as a olumn vetor. Sine f is non-negative, we dedue(5.23) v(z) ≥ E

[
v
(
Xσ,z
ρσ

)]
,29



with(5.24) Xσ,z
ρσ = z + νν̄∗Bρσ .We now emphasize that (ν̄∗Bt)t≥0 is a omplex Brownian motion of dimension 1. Indeed,independene of the inrements is well-seen and ontinuity of the trajetories is obviouslytrue as well. It remains to see that (Re(ν̄∗Bt))t≥0 and (Im(ν̄∗Bt))t≥0 are independent non-standard3 Brownian motions with inrements of variane ∆/2 over intervals of length ∆.Clearly, Re(ν̄∗(Bt − Bs)), for 0 ≤ s ≤ t, is equal to [ν̄∗(Bt − Bs) + ν∗(B̄t − B̄s)]/2. Bystandard omputations, the expetation of the square is equal to (t − s)/2, as announed.Similar omputations hold for Im(ν̄∗(Bt − Bs)).To prove independene, it is su�ient to prove that Re(ν̄∗(Bt−Bs)) and Im(ν̄∗(Bt−Bs))are orthogonal in L2(Ω,P) for any 0 ≤ s ≤ t4. This is easily heked.Finally, (5.24) yields

ε = |Xσ,z
ρσ − z| = |νν̄∗Bρσ | = |ν̄∗Bρσ |,so that ρσ stands for the �rst time when (ν̄∗Bt)t≥0 hits the irle of radius ε. By isotropy,the distribution of the hitting point, i.e. ν̄∗Bρσ , is uniform on the irle. We dedue (5.22)from (5.23). �6. Program for the Probabilisti AnalysisKrylov's program now onsists in establishingTheorem 6.1. Let Assumption (A) be in fore. Then, the value funtion v in De�nition5.10 belongs to C1,1(D̄). Moreover, the assumption of Proposition 5.11 is satis�ed so that

−v solves almost everywhere the Monge-Ampère equation with f as soure term and −g asboundary ondition.As the reader may notie, there are two parts in the statement of Theorem 6.1. The �rstpart must be understood as the main result: it provides the C1,1(D̄) property for the solutionto Monge-Ampère under Assumption (A). The seond part makes the onnetion betweenKrylov's formulation and the original Monge-Ampère equation: the only additional pointto prove is the equiontinuity property for the family (vσ)σ on every ompat subset of D.Atually, we prove more right below: we prove that equiontinuity holds on the whole D̄ sothat v is ontinuous up to the boundary and satis�es g as boundary ondition.6.1. Equiontinuity of (vσ)σ. We here prove the very �rst step of our program:Proposition 6.2. Under Assumption (A) and the notation of De�nition 5.10, the funtions
(vσ)σ are equiontinuous on D̄.3Non-standard means that the variane of the inrements is not normalized.4This argument is false for general proesses. It is here true beause proesses under onsideration areof Gaussian type with independent inrements. We refer the reader to any leture on Gaussian vetors andproesses. 30



Proof. We here follow the proof by Gaveau [3℄. Below, the ontrol (σt)t≥0 is �xed as inDe�nition 5.10. For given z, z′ ∈ D,
|vσ(z) − vσ(z′)|

≤ E
[∣∣g(Xσ,z

τσ,z) − g(Xσ,z′

τσ,z′
)
∣∣] + E
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0
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s )
∣∣ds
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s )

∣∣ds+ E

∫ τσ,z′

τσ,z∧τσ,z′

∣∣f(Xσ,z′

s )
∣∣ds.(Keep in mind that det(at) ≤ Trace(at) = 1.) By Assumption (A), we an �nd a onstant

C, depending on (A) only (and whose value may vary from line to line), suh that
|vσ(z) − vσ(z′)| ≤ CE

[∣∣Xσ,z
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s
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+ CE
[
|τσ,z′ − τσ,z|

]

= T1 + T2 + T3.

(6.1)Above, a ∨ b stands for max(a, b) and a ∧ b for min(a, b).To deal with T2 in (6.1), we emphasize that Xσ,z
s −Xσ,z′

s = z − z′, 0 ≤ s ≤ τσ,z ∧ τσ,z′ , sothat
T2 ≤ C|z − z′|E

[
τσ,z

]
.To treat T1, we notie that
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∗
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= |z − z′| + E
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|τσ,z − τσ,z

′ |
]1/2

.To omplete the proof, it is thus su�ient to proveLemma 6.3. There exists a onstant C, depending on (A) only, suh that for any z, z′ ∈ D,
E[τσ,z ] ≤ C and E[|τσ,z − τσ

′,z|] ≤ C|z − z′|.Proof (Lemma 6.3). Given two di�erent points z and z′ in D, we know that Xσ,z
t −Xσ,z′

t =
z − z′ for any t ≤ τσ,z ∧ τσ,z′ .Moreover, on the event {τσ,z ≥ τσ,z

′},(6.2) Xσ,z′

τσ,z′
= Xσ,z′

τσ,z′
−Xσ,z

τσ,z′
+Xσ,z

τσ,z′
= z − z′ +Xσ,z

τσ,z′
,so that dist(Xσ,z

τσ,z′
, ∂D) ≤ |z − z′| when τσ,z ≥ τσ

′,z.As a onsequene, dist(Xσ,z

τσ,z′∧τσ,z
, ∂D) ≤ |z − z′| on the whole probability spae.31



Apply now It�'s formula to (ψ(Xσ,z
t ))t≥0. We obtain

ψ
(
Xσ,z
τσ,z

)
= ψ

(
Xσ,z

τσ,z∧τσ,z′

)
+

∫ τσ,z

τσ,z∧τσ,z′
Trace

(
asD

2
z,z̄ψ(Xσ,z

s )
)
ds

+

∫ τσ,z

τσ,z∧τσ,z′

(
Dzψ(Xσ,z

s )σsdBs +Dz̄ψ(Xσ,z
s )σ̄sdB̄s

)
.We emphasize that the LHS is zero. Taking the expetation, we dedue from the plurisu-perharmoniity property that

E
[
ψ

(
Xσ,z

τσ,z∧τσ,z′

)]
≥ CE

[
τσ,z − τσ,z ∧ τσ,z′

]
,for some onstant C > 0 depending on (A) only.By (6.2), we dedue (C possibly varying from line to line) that

E
[(
τσ,z − τσ,z

′)+]
= E

[
τσ,z − τσ,z ∧ τσ,z′

]
≤ C|z − z′|.By symmetry,

E
[∣∣τσ,z − τσ,z

′∣∣] ≤ C|z − z′|.This ompletes the proof. �6.2. Semi-Convexity Argument. The main idea to prove the regularity is to redue theanalysis to a onvexity problem:Proposition 6.4. Assume that the funtion v is Lipshitz ontinuous and semi-onvex inthe whole D̄, i.e. there exists a onstant N suh that the funtion z ∈ D̄ 7→ v(z) +N |z|2 isonvex in any ball inluded in D̄. Then v belongs to C1,1(D̄).Proof. Proposition 6.4 follows from Lemma 1.3.2 in Chapter 1 by V. Guedj and A. Zeriahi.Indeed, by Proposition 5.13 and Proposition 6.2, −v is plurisubharmoni. Moreover, thesemi-onvexity property provides the required estimate in Lemma 1.3.2. �Remark 6.5. Below, we will also apply Proposition 6.4 on ompat subsets of D (instead ofthe whole D̄). Obviously, the result then remains true.6.3. Getting Rid of the Supremum. A very natural idea, to investigate v, is to get ridof, as most as possible, of the supremum. In some sense, this is not so di�ult sine bothLipshitz ontinuity and (semi-)onvexity are stable by supremum:Proposition 6.6. Let (wβ)β be a family of (bounded) funtions of the real variable, indexedby some parameter β, for whih we an �nd two funtions r1 and r2, of the real variable aswell, satisfying for any β,
|wβ(s) − wβ(0)| ≤ r1(s), s ∈ R,and

s 7→ wβ(s) + r2(s)is onvex. Then, the funtion s 7→ supβ w
β(s) satis�es the same properties.The proof is straightforward. The key point is to think of wβ(s) as vσ(γ(s)) for some path

s ∈ R 7→ γ(s) with values in the domain D, vσ being given by De�nition 5.10. The funtions
s ∈ R 7→ r1(s) and s ∈ R 7→ r2(s) may be understood as s ∈ R 7→ Ns et s ∈ R 7→ Ns2, forsome onstant N . In suh a ase, the �rst inequality in Propostion 6.6 is understood as aLipshitz property and the seond one as a semi-onvexity property.32



6.4. Di�erentiation under the Symbol E. As we just said, the strategy onsists inapplying Proposition 6.6 to eah funtion vσ in De�nition 5.10 along a path γ with values in
D: this is the way we are able to transfer regularity from the family (vσ)σ to its supremum,i.e. to the funtion v.Therefore, the whole problem is now to estimate vσ uniformly in σ: spei�ally, we are toestimate the Lipshitz onstant and to bound from below the seond-order derivatives.The most natural idea to do so is to di�erentiate under the symbol E with respet to theinitial ondition z in the de�nition of vσ, see (5.11), σ being �xed. Remember indeed thatthe oe�ients f and g are di�erentiable. Remember also that, for eah σ, the value Xσ,z

tof the ontrolled proess at time t is easily di�erentiable with respet to z, whatever therandomness may be.Unfortunately, the piture is not so simple. The big deal is the following: the stoppingtimes τσ,z are not di�erentiable w.r.t. z.6.5. Modi�ation of the Representation. To be able to di�erentiate under the symbol
E, it is neessary to get rid of the boundary. This means the following: we are to get rid ofthe boundary ondition and to fore the representation proess to stay in D forever.To get rid of the boundary ondition, it is su�ient to onsider vσ − g. Indeed, stohastidi�erentation rules given in Setion 5 show that vσ − g may be written as

(
vσ − g

)
(z) = E

∫ τσ,z

0

[
det1/d(at)f(Xσ,z

t ) + Trace
(
atD

2
z,z̄g(X

σ,z
t )

)]
dt,with at = σtσ̄

∗
t , t ≥ 0. Obviously, the funtion g being assumed to be C4 with boundedderivatives, this operation doesn't modify the regularity property of the seond member.However, it may modify its sign.To reover the right sign, we may use the plurisuperharmoniity ondition. Indeed, sine

sup
a

sup
z∈D

Trace
(
aD2

z,z̄ψ(z)
)
< 0,(with a as above), we an add N0ψ to vσ − g, for N0 as large as neessary.We emphasize that this transform annot be understood as a modi�ation of the originalseond member f of the Monge-Ampère equation. Indeed, the oe�ients we here removedepend on σ in a more general way than det1/d(at)f does so that the expetation we haveto investigate has the form(6.3) ṽσ(z) := E

∫ τσ,z

0

F (det(at), at, X
σ,z
t )dt,whih is muh more general than the original one in De�nition 5.10. We also notie thatthe general oe�ient F is C2 with respet to the seond and third parameters. (Above,

at = σtσ̄
∗
t , t ≥ 0.)It now remains to get rid of the boundary itself! The idea is to slow down the proess

(Xt)t≥0 (forget for the moment the supersripts z and σ to simplify the notations) in theneighborhood of the boundary by means of the funtion ψ. Consider indeed a stohastiproess (Zt)t≥0 with the following dynamis:(6.4) dZt = ψ1/2(Zt)σtdBt + atD
∗
z̄ψ(Zt)dt, t ≥ 0,33



and with Z0 = z as initial ondition. Sine the dynamis depend on (Zt)t≥0 itself, theproess (Zt)t≥0 is said to satisfy a Stohasti Di�erential Equation (SDE for short): wegive in the next setion a short overview of onditions ensuring existene and uniqueness ofsolutions. Roughly speaking, we will see that the basi onditions are the same as in thetheory of Ordinary Di�erential Equations: Eq. (6.4) is solvable in in�nite horizon underglobal Lipshitz onditions; if the oe�ients are loally Lipshitz only on a bounded opensubset U , then existene and uniqueness hold up to the �rst exit time of U . The point isthen to disuss whether (Zt)t≥0 may reah the boundary of the domain D or not.Proposition 6.7. Given an initial ondition z ∈ D and a ontrol (σt)t≥0 with values in theset of omplex matries of size d× d suh that Trace(σtσ̄
∗
t ) = 1, t ≥ 0, the SDE(6.5) dZσ,z

t = ψ1/2(Zσ,z
t )σtdBt + atD

∗
z̄ψ(Zσ,z

t )dt, t ≥ 0,with the initial ondition Zσ,z
0 = z admits a unique solution. It stays inside D forever.Said di�erently, the stopping time τσ,z∞ := inf{t ≥ 0 : Zσ,z

t 6∈ D} (with τσ,z∞ = +∞ if theunderlying set is empty) is almost-surely in�nite.Proof. The proof relies on a so-alled loalization argument. For the sake of simpliity, weremove below the supersript (σ, z) in Zσ,z and in τσ,z∞ .Assume for the moment that (6.5) is indeed solvable. On the interval [0, τ∞), we thenompute
dψ−1(Zt) = −ψ−3/2(Zt)Dzψ(Zt)σtdBt − ψ−3/2(Zt)Dz̄ψ(Zt)σ̄tdB̄t

− ψ−1(Zt)Trace
[
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]
dt, 0 ≤ t < τ∞,with at = σtσ̄

∗
t , t ≥ 0. Here, the dt term must be understood as
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]
, 0 ≤ t < τ∞.

(6.6)We obtain a (loal) martingale.Indeed, setting τn := inf{t ≥ 0 : ψ(Zt) ≤ 1/n}, the stohasti integral may be de�nedrigorously between 0 and τn5. Therefore, for any t ≥ 0,(6.7) E
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= ψ−1(z).Noting that ψ−1(Zt∧τn) = n if τn ≤ t, we dedue that, for some onstant C > 0 independentof n and t,(6.8) n exp(−Ct)P

{
τn ≤ t

}
≤ ψ−1(z).5This is the reason why the proof onsists of a �loalizing� argument.34



Thus,
∀n ≥ 1, t ≥ 0, n exp(−Ct)P

{
τ∞ ≤ t

}
≤ ψ−1(z),sine τ∞ ≥ τn. Dividing by n and letting it tend to +∞, we obtain

∀t ≥ 0, P
{
τ∞ ≤ t

}
= 0.In partiular, τ∞ = +∞ almost-surely.It now remains to prove that both existene and uniqueness hold. Atually, we an solvethe trunated version of (6.5)(6.9) dZn

t =
(
ϕnψ

1/2
)
(Zn

t )σtdBt + ϕn(Z
n
t )atD

∗
z̄ψ(Zn

t )dt, t ≥ 0,where ϕn is some smooth ut-o� funtion with values in [0, 1]mathing 1 on the set {ψ ≥ 1/n}and 0 on the set {ψ ≤ 1/(2n)}, n ≥ 1. It is lear that (6.9) is uniquely solvable. (SeeSubsetion 7.1.) Up to the stopping time ρn := inf{t ≥ 0 : ψ(Zn
t ) ≤ 1/n}, it satis�es (6.5)as well. In partiular, (6.8) holds with ρn instead of τn, so that ρn → +∞ almost-surely (as

n → +∞). Moreover, by uniqueness of the solution of a Cauhy-Lipshitz SDE, for m ≥ n,
(Zn

t )t≥0 and (Zm
t )t≥0 are equal up to time min(ρn, ρm) = ρn.We then set Zt = limn→+∞ Zn

t . For t ≤ ρn, n ≥ 0, Zt = Zn
t so that (Zt)0≤t≤ρn

satis�es(6.5) up to time ρn. Letting n tend to +∞, we dedue that (Zt)t≥0 satis�es (6.5) over thewhole R+.Uniqueness follows from the same argument. Any other solution (Z ′
t)t≥0 (with the sameinitial ondition) mathes (Zt)t≥0 up to the �rst time it exits from {ψ ≥ 1/n}. Letting ntend to +∞, we dedue that there exists a unique solution. �Obviously, hanging (Xσ,z

t )t≥0 into (Zσ,z
t )t≥0 breaks down the representation of vσ given inDe�nition 5.10 (and in (6.3)). The point is thus to provide a representation of v (or of −v,i.e. of the andidate to solve Monge-Ampère) in terms of the family ((Zσ,z

t )t≥0)σ.To do so, we �rst investigate the representation of ṽσ when (σt)t≥0 is deterministi andonstant, i.e. σt = σ deterministi, with det(σ) 6= 0.In the deterministi and onstant ase, we know that ṽσ given in (6.3) satis�es the PDE
−Trace

[
aD2

z,z̄ ṽ
σ(z)

]
= F (det(a), a, z), z ∈ D,with zero as boundary ondition. (Have in mind that F is here given by adding the

Trace[aD2
z,z̄(g −N0ψ)(z)] to the original soure term det1/d(a)f(z).)By Theorem 5.7, we know that ṽσ is C2 inside D and ontinuous up to the boundary. Inpartiular, we an apply It�'s formula to (ψ−1(Zσ,z

t )ṽσ(Zσ,z
t ))t≥0:Lemma 6.8. Under the notation of Proposition 6.7, for any (possibly random) ontrol (σt)t≥0(with values in the set of omplex matries of size d × d suh that Trace(σtσ̄

∗
t ) = 1, t ≥ 0)and for any funtion G in C2(D) with real values,

d

[
G(Zσ,z

t ) exp

(∫ t

0

Trace
[
asDz,z̄ψ(Zσ,z

s )
]
ds

)]

= exp

(∫ t

0

Trace
[
asDz,z̄ψ(Zσ,z

s )
]
ds

)[
DzG(Zσ,z

t )σtdBt +Dz̄G(Zσ,z
t )σ̄tdB̄t

]

+ exp

(∫ t

0

Trace
[
asDz,z̄ψ(Zσ,z

s )
]
ds

)
Trace

[
atDz,z̄(ψG)(Zσ,z

t )
]
dt, t ≥ 0,35



with at = σtσ̄
∗
t , t ≥ 0.In partiular, if σ is onstant and non-degenerate, we obtain by hoosing G = ψ−1ṽσ

ψ−1(z)ṽσ(z)

= E

∫ +∞

0

exp

(∫ t

0

Trace
[
aDz,z̄ψ(Zσ,z

s )
]
ds

)
F (det(a), a, Zσ,z

t )dt, z ∈ D.
(6.10)Proof. For simpliity, we get rid of the supersript (σ, z) in (Zσ,z

t )t≥0. The �rst part of theproof is similar to the proof of (6.6). For the seond part, it is neessary to loalize thedynamis of (Zt)t≥0 up to the stopping time τn = inf{t ≥ 0 : ψ(Zt) ≤ 1/n} as in (6.7). For
ψ(z) ≥ 1/n, we obtain

ψ−1(z)ṽσ(z) = E

[
exp

(∫ t∧τn

0

Trace
[
aDz,z̄ψ(Zs)

]
ds

)
ψ−1(Zt∧τn)ṽσ(Zt∧τn)

]

+ E

∫ t∧τn

0

exp

(∫ s

0

Trace
[
aDz,z̄ψ(Zr)

]
dr

)
F (det(a), a, Zs)ds.We emphasize that the plurisuperharmoniity ondition here plays a ruial role: it says thatthe seond integral is exponentially onvergent. In partiular, the seond term in the RHSlearly onverges towards the announed quantity as n and t tend to the in�nity. The �rstterm in the RHS may be a bit more di�ult to handle. By (6.7), we an bound(6.11) E

[
exp

(∫ t∧τn

0

Trace
[
aDz,z̄ψ(Zs)

]
ds

)
ψ−1(Zt∧τn)ṽσ(Zt∧τn); τn ≤ t

]by ψ−1(z) sup{ṽσ(z′), ψ(z′) ≤ 1/n}: this quantity tends to 0 as n tends to the in�nity byontinuity of ṽσ up to the boundary. On the omplementary, i.e. on {τn > t}, we use theplurisuperharmoniity ondition to bound (6.11) by C exp(−Ct)n, for a onstant C inde-pendent of n and t. Letting t tend �rst to the in�nity, and then n, we omplete the proof. �We shall now explain what happens when the ontrol (σt)t≥0 in (6.3) and (6.5) is randomand evolves with time. Formally, when σ is non-onstant, Eq. (6.10) breaks down: the term
ψ1/2 in Eq. (6.5) is understood as a hange of time speed6 and the proess (Zσ,z

t )t≥0 appearsas a slower version of the original (Xσ,z
t )t≥0, so that the proess (σt)t≥0 inside (6.10) annotbe the same as the original one in Eq. (6.3).The main idea is the following: Eq. (6.10) annot be a general formula for ṽσ, but, takingthe supremum w.r.t. σ, we reover a representation formula for supσ ṽ

σ. The idea is notso surprising. Indeed, going bak to the proof of the Dynami Programming Priniple, seeLemma 5.12, we understand that the global supremum in (5.11) may be loalized, i.e. thevalues of (σt)t≥0 may be loally frozen. Sine the representation of ṽσ in (6.10) holds fora onstant ontrol, we may expet the supremum w.r.t. to (general) σ to satisfy a similarrepresentation formula.This result turns out to be true: representation (6.10) holds for the value funtion of theoptimization problem. We thus laim6For the reader who knows a bit of stohasti analysis, the drift term in Eq. (6.5) follows from a Girsanovtransform. 36



Proposition 6.9. Given a ontrol (σt)t≥0 with values in the set of d × d omplex matriessuh that Trace(σtσ̄
∗
t ) = 1, t ≥ 0, onsider the funtion vσ as in De�nition 5.10 and modifyit into ṽσ = vσ − g +N0ψ as in (6.3) for some large enough N0, so that
(
ṽσ − g +N0ψ

)
(z)

= E

∫ τσ,z

0

[
det1/d(at)f(Xσ,z

t ) + Trace
(
atD

2
z,z̄g(X

σ,z
t )

)

−N0Trace
(
atD

2
z,z̄ψ(Xσ,z

t )
)]
dt,

:= E

∫ τσ,z

0

F (det(at), at, X
σ,z
t )dt, z ∈ D,with F non-negative.For a given initial ondition z ∈ D, onsider also the SDE(6.12) dZσ,z

t = ψ1/2(Zσ,z
t )σtdBt + atDz̄ψ

∗(Zσ,z
t )dt, t ≥ 0,with the initial ondition Zz,σ

0 = z ∈ D.Then, the value funtion supσ[v
σ − g +N0ψ] at point z may be expressed as

v(z) − g(z) +N0ψ(z) = sup
σ

[(
vσ − g +N0ψ

)
(z)

]
= ψ(z) sup

σ

[
V σ(z)

]
,where

V σ(z)

= sup
σ

E

[∫ +∞

0

exp

(∫ t

0

Trace
[
asDz,z̄ψ(Zσ,z

s )
]
ds

)
F (det(at), at, Z

σ,z
t )dt

]
,

z ∈ D. Below, we set V (z) := supσ V
σ(z).7. Derivative QuantityBy Proposition 6.9, we an now forget the boundary onstraints. In omparison with theformulation of the omplex Monge-Ampère equation given in Setion 5, the new representa-tion formula is set in in�nite time: we may think of di�erentiating with respet to the initialondition without taking are of the exit phenomenon.Unfortunately, there is a prie to pay for the new writing. The dynamis of the ontrolledpaths involved in the new representation formula are muh less simple to handle with thanthe original ones. Even without any spei� knowledge in stohasti di�erential equations, itis well-guessed that the derivative of Z in (6.5), if exists, is the solution of a new stohastidi�erential equation, obtained by di�erentiation: the whole problem is now to investigatethe di�erentiated equation on the long-run.7.1. A Word on SDEs. We said very few about stohasti di�erential equations. We herespeify some elementary fats. (To simplify, things are here stated for real valued proesses,but all of them are extendable to the omplex ase in a standard way.)A stohasti di�erential equation may be set in real or omplex oordinates. It has thegeneral form(7.1) dXt = b(t, Xt)dt+ σ(t, Xt)dBt, t ≥ 0.37



Here, the oe�ient b is alled the drift of the equation. It may depend on time, on thesolution at urrent time and on the randomness as well. The same is true for the di�usionoe�ient σ. Obviously, B here stands for a Brownian motion (with real or omplex valuesaording to the framework). We also indiate that the dimension of X may be di�erentfrom the dimension of B. This is not the ase in Proposition 6.9 sine the matrix σ is of size
d× d. When neessary, we will speify by d the dimension of X and by dB the dimension of
B, so that σ is a matrix of size d× dB.Here are the standard solvability onditions. The standard framework for the regularityin spae is the Lipshitz one, as we said above: oe�ients are assumed to be Lipshitz inspae, uniformly in randomness and in time in ompat subsets, i.e. ∀T > 0, ∃KT ≥ 0,
∀ω ∈ Ω, ∀t ∈ [0, T ], ∀x, x′,(7.2) |σ(t, x) − σ(t, x′)| + |b(t, x) − b(t, x′)| ≤ KT |x− x′|.To be sure that the underlying integrals are well-de�ned, some measurability property isneessary: for any x, the proesses (b(t, x))t≥0 and (σ(t, x))t≥0 are progressively-measurable.Finally, to ontrol the growth of the oe�ients, we ask(7.3) ∀T ≥ 0, E

∫ T

0

[
|b(s, 0)|2 + |σ(s, 0)|2

]
ds < +∞.Under these three onditions, existene and uniqueness of a solution to (7.1) with a giveninitial ondition in L2 hold, on the whole [0,+∞). The solution has ontinuous paths thatare adapted to the �ltration generated by B. Morever, the supremum of the solution is in

L2, loally in time:(7.4) ∀T ≥ 0, E
[

sup
0≤t≤T

|XT |2
]
< +∞.In the ase when the initial ondition is in Lp, for some p > 2, and (7.3) holds in Lp aswell, for the same p, then (7.4) also holds in Lp.Atually, global Lipshitz onditions may be relaxed. Under loal Lipshitz onditionsin spae, the solution exists on a random interval and may blow up at some random time.As easily-guessed, the blow-up time is a stopping time. It orresponds to the limit of thestopping times (��rst time when the modulus of the solution is larger than m�)m.Below, we will ompare the solutions to stohasti di�erential equations driven by di�erentoe�ients. The following result will be referred to as a stability property :Proposition 7.1. Consider two sets of oe�ients (b, σ) and (b′, σ′) satisfying (7.2) and(7.3) and denote by (Xt)t≥0 and (X ′

t)t≥0 the assoiated solutions for some initial onditions
X0 and X ′

0 in L2. Then, for any T > 0, there exists a onstant CT ≥ 0, only depending on
T and KT , suh that, for any event A ∈ F0,

E
[
1A sup

0≤t≤T
|Xt −X ′

t|2
]
≤ CT

{
E
[
1A|X0 −X ′

0|2
]

+ E

[
1A

∫ T

0

(
|b− b′|2(t, Xt) + |σ − σ′|2(t, Xt)

)
dt

]}
.A similar version holds in Lp, for p > 2, if the initial onditions are in Lp and (7.3) holdsin Lp both for (b, σ) and (b′, σ′). 38



(The indiator 1A here permits to loalize the stability property w.r.t. the values of theinitial onditions.)In what follows, the generi equation we onsider is of real struture, the omplex asebeing a partiular ase of the real one by doubling the dimension. The equation is alsoassumed to be set on the whole spae. (Eq. (6.5) is indeed set on the whole spae provided
ψ be extended to the whole Cd, but the solution stays inside D forever.)7.2. Di�erentiation of the Flow Generated by a SDE. Clearly, we have in mind todi�erentiate under the symbol E in the representation formula of Proposition 6.9. To do so,we here give some preliminary results about the di�erentiability of the �ow generated by astohasti di�erential equation.Spei�ally, the following result guarantees the di�erentiability of the paths (Xx

t )t≥0 withrespet to the starting point x, the oordinates of x being possibly real or omplex.Theorem 7.2. Assume that, for every t ≥ 0 and (almost) every ω ∈ Ω, the oe�ients
b(t, ·) : x ∈ Rd 7→ b(t, x) and σ(t, ·) : x ∈ Rd 7→ σ(t, x) are of lass C3, with boundedderivatives, uniformly in ω and in t in ompat sets. Then, P-almost surely, for all t ≥ 0,the mapping x ∈ Rd 7→ Xx

t is twie di�erentiable with respet to x.In partiular, for any family of initial onditions (Xs
0)s∈R suh that, P-a.s., s ∈ R 7→ Xs

0is C3, with bounded derivatives, uniformly in ω, the mappings (s 7→ Xs
t := X

Xs
0

t )t≥0 are,
P almost-surely, di�erentiable with respet to s for all t ≥ 0. Moreover, (Ds[X

s
t ])t≥0 and

(D2
s,s[X

s
t ])t≥0 satisfy linear stohasti di�erential equations (with random oe�ients):(7.5) ξst = γ′(s) +

∫ t

0

Dxb(r,X
s
r )ξ

s
rdr +

∫ t

0

dB∑

j=1

Dxσ·,j(r,X
s
r )ξ

s
rdW

j
r ,and

ηst = γ′′(s) +

∫ t

0

[
Dxb(r,X

s
r )η

s
r +D2

x,xb(r,X
s
r )ξ

s
r ⊗ ξsr

]
dr

+

∫ t

0

dB∑

j=1

(
Dxσ·,j(r,X

s
r )η

s
r +D2

x,xσ·,j(r,X
s
r )ξ

s
r ⊗ ξsr

)
dW j

r ,

(7.6)that is Ds[X
s
t ] = ξst and D2

s,s[X
s
t ] = ηst , t ≥ 0, s ∈ R.Proof. We refer the reader to the monograph by Protter [14, Chap. V, Se. 7, Thm. 39℄for the proof.

�Below, the di�erentiability property in Theorem 7.2 is referred to as pathwise twie di�eren-tiability, that is the paths of the proess are twie di�erentiable, randomness by randomness.In some sense, pathwise di�erentiability is too muh demanding for our purpose. Indeed,as we realled above, the point below is to di�erentiate under the symbol E only, so thatweaker notions of di�erentiability turn out to be su�ient:De�nition 7.3. Under the notations of Theorem 7.2, the proess (Xs
t )t≥0 is said to be twiedi�erentiable in probability w.r.t. s if Eqs. (7.5) and (7.6) are uniquely solvable and, for any39



T > 0 and any s ∈ R,
∀ν > 0, lim

ε→0,ε 6=0
P
{

sup
0≤t≤T

∣∣δεXs
t − ξst

∣∣ ≥ ν
}

= 0,

lim
ε→0,ε 6=0

P
{

sup
0≤t≤T

∣∣δεξst − ηst
∣∣ ≥ ν

}
= 0,

(7.7)with the generi notation δεF
s
t = ε−1(F s+ε

t − F s
t ) for some funtional F depending on t, sand possibly ω.The proess (Xs

t )t≥0 is said to be twie di�erentiable in the mean w.r.t. s if Eqs. (7.5) and(7.6) are uniquely solvable and, for any T > 0 and any s ∈ R,
∀p ≥ 1, lim

ε→0,ε 6=0
E
[

sup
0≤t≤T

∣∣δεXs
t − ξst

∣∣p] = 0,

lim
ε→0,ε 6=0

E
[

sup
0≤t≤T

∣∣δεξst − ηst
∣∣p] = 0.

(7.8)It turns out that di�erentiability in the mean holds under weaker assumptions than path-wise di�erentiability :Theorem 7.4. Assume that, for every t ≥ 0 and (almost) every ω ∈ Ω, the oe�ients
b(t, ·) : x ∈ Rd 7→ b(t, x) and σ(t, ·) : x ∈ Rd 7→ σ(t, x) are of lass C2, with boundedderivatives, uniformly in t. Consider a family of initial onditions (Xs

0)s∈R that is twiedi�erentiable in probability, i.e. suh that, for any s ∈ R,(7.9) ξs0 = lim
ε→0,ε 6=0

δεX
s
0 and ηs0 = lim

ε→0,ε 6=0
δεξ

s
0exist in probability, i.e. as in (7.7). Then, the proess (Xs

t )t≥0 is twie di�erentiable inprobability w.r.t. s.If the random variables (Xs
0)s∈R have �nite p-moments of any order p ≥ 1 and are di�eren-tiable in the mean, i.e. (7.9) holds as in (7.8), then the proess (Xs

t )t≥0 is twie di�erentiablein the mean w.r.t. s.The proof is a onsequene of the stability property for SDEs. (See Proposition 7.1.)We now say a word about the onnetion between the di�erent kinds of di�erentiability.As easily guessed by the reader, pathwise di�erentiability is stronger than di�erentiabilityin probability. (This is a straightforward onsequene of Lebesgue dominated onvergeneTheorem. This is also well-understood by omparing the assumptions of Theorems 7.2and 7.4.) By Markov inequality, it is also lear that di�erentiability in the mean impliesdi�erentiability in probability.The onverse is true provided some uniform integrability onditions. Consider for examplea family of initial onditions (Xs
0)s∈R, with �nite p-moments of any order p ≥ 1, suh thatthe mapping s ∈ R 7→ Xs

0 is C3 almost-surely, with derivatives in any Lp, p ≥ 1, uniformly in
s in ompat sets, and assume that, for some stopping τ , (Xs

t )0≤t≤τ is twie di�erentiable inprobability, uniformly in t ∈ [0, τ ]. (That is T in (7.8) is replaed by τ .) If sup0≤t≤τ |ξst | and
sup0≤t≤τ |ηst | are in any Lp, p ≥ 1, uniformly in s in ompat sets, then twie di�erentiabilityin the mean holds uniformly on [0, τ ]. As announed, the proof relies on a lassial argumentin probability theory: onvergene in probability implies onvergene in any Lp, p ≥ 1,provided uniform integrability in any Lp, p ≥ 1. Spei�ally, the point is to prove that,for any s ∈ R and p ≥ 1, sup0≤t≤τ |δεXs

t | and sup0≤t≤τ |δεζst | are in Lp, uniformly in ε in a40



neighborhood of 0 (ε being di�erent from zero). This may be seen as a onsequene of thebounds:
E
[

sup
0≤t≤τ

|δεXs
t |p

]
≤ 1

ε

∫ s+ε

s

E
[

sup
0≤t≤τ

|ζrt |p
]
dr,

E
[

sup
0≤t≤τ

|δεζst |p
]
≤ 1

ε

∫ s+ε

s

E
[

sup
0≤t≤τ

|ηrt |p
]
dr,

(7.10)for ε > 0. (Within the framework of Theorem 7.4 and with a similar inequality for ε < 0.)The above inequalities are a straightforward onsequene of the �rst-order Taylor formulawhen the family ((Xs
t )t≥0)s∈R is twie di�erentiable in the pathwise sense, that is when theoe�ients b and σ in Theorem 7.2 are smooth. When they are C2 only, we an approximatethem by a sequene of molli�ed oe�ients: by the stability property for SDEs, the deriva-tives of the solutions to the molli�ed equations onverge towards the derivatives of the trueequation; passing to the limit in (7.10), we obtain the expeted bounds.Unless spei�ed, we will work below under the C2 framework of Theorem 7.4.7.3. Derivative Quantity. In the whole subsetion, we hoose Xs

0 = γ(s), γ here standingfor a C2 deterministi urve from R to Rd, with bounded derivatives. As a onsequene ofTheorem 7.4, we laim:Corollary 7.5. Keep the assumption and notation of Theorem 7.4. Given T > 0 and abounded progressively-measurable random funtion f : [0, T ] × Rd → R of lass C2 withrespet to the spatial parameter and with bounded derivatives, uniformly in time t and inrandomness, the real-valued funtion of the real variable
s ∈ [−1, 1] 7→ wT (s) = E

∫ T

0

f(r,Xs
r )dradmits as �rst and seond-order derivatives:

w′
T (s) = E

∫ T

0

Dxf(r,Xs
r )ξ

s
rdr

w′′
T (s) = E

∫ T

0

(
Dxf(r,Xs

r )η
s
r +D2

x,xf(r,Xs
r )ξ

s
r ⊗ ξsr

)
dr.Corollary 7.5 permits to bound w′

T and w′′
T . Indeed, sine the equations satis�ed by (ξst )t≥0and (ηst )t≥0 are linear (with random oe�ients), standard stability tehniques, based onGronwall's Lemma, would show that:(7.11) ∀p ≥ 0, ∀T > 0, sup

0≤t≤T
E
[
|ξst |p + |ηst |p

]
≤ C(p, T ),

C(p, T ) depending on p, T and the bounds for the derivatives of the oe�ients.Unfortunately, Corollary 7.5 doesn't apply to Proposition 6.9 sine T is in�nite in Proposi-tion 6.9. Therefore, we must disuss the long-run behavior of (|ξst |)t≥0 and (|ηst |)t≥0 arefullyand, spei�ally, investigate the long-run integrability against the exponential weight gen-erated by the plurisuperharmoni funtion ψ, exatly as in the representation formula ofProposition 6.9.In this framework, we emphasize the following fats. First, in light of Corollary 7.5, it issu�ient to analyze the long-run behavior of the seond-order moments of (|ξst |)t≥0 and the41



�rst-order moments of (|ηst |)t≥0. Moreover, the linear struture of (ηst )t≥0 being lose to theone of (ξst )t≥0 (the nonlinear terms in the dynamis of (|ηst |)t≥0 being ontrolled by (|ξst |2)t≥0),it is more or less su�ient to investigate the long-run beahvior of (|ξst |2)t≥0.Therefore, we now ompute the form of d|ξst |2. Using It�'s formula, we obtain
d|ξst |2 = 2

dB∑

i,j=1

(ξst )
iDxj

bi(t, Xs
t )(ξ

s
t )
jdt

+

d∑

i=1

n∑

j=1

( d∑

k=1

Dxk
σi,j(t, X

s
t )(ξ

s
t )
k

)2

dt+ dmt,

(7.12)
dmt standing for a martingale term, whih has no role when omputing the expetation. Inomparison with Krylov's orginal proof, we emphasize that Krylov makes use of the followingshorten notation:

Dξb
i
t :=

d∑

j=1

Dxj
bi(t, Xs

t )(ξ
s
t )
j, Dξσ

i,j
t :=

d∑

k=1

Dxk
σi,j(t, X

s
t )(ξ

s
t )
k,so that the dynamis of |ξst |2 have the form:(7.13) d|ξst |2 =

[
2〈ξst , Dξbt〉 + |Dξσt|2

]
dt+ dmt.A typial ondition to obtain a long-run ontrol for (|ξst |2)t≥0 is(7.14) 2〈ξst , Dξbt〉 + |Dξσt|2 ≤ 0, t ≥ 0.Indeed, (7.14) implies that (E[|ξst |2])t≥0 is bounded.Atually, the reader must understand that the hoie we here make is very restritive:instead of investigating the dynamis of (|ξst |2)t≥0, we ould also investigate the dynamis of

(〈ξst , A(Xs
t )ξ

s
t 〉)t≥0 for some smooth funtion A from Rd into the set of positive symmetrimatries of dimension d. Indeed, if the spetrum of A is in a ompat subset of (0,+∞), itis equivalent to obtain a long-run ontrol for (〈ξst , A(Xs

t )ξ
s
t 〉)t≥0 and a long-run ontrol for

(|ξst |2)t≥0.By hoosing A possibly di�erent from the identity, we are able to plug some freedom into(7.13) and thus to relax the ondition (7.14).In what follows, we will all:De�nition 7.6. Under the notation and assumption of Theorem 7.4 and for a smooth fun-tion A from Rd into the set of positive symmetri matries of size d, we all derivativequantity the quadrati proess (〈A(Xs
t )ξ

s
t , ξ

s
t 〉)t≥0, denoted by (Γst)t≥0, and we all dynamisof the derivative quantity its absolutely ontinuous part, denoted by (∂Γst )t≥0.Spei�ally, we all dynamis of derivative quantity (at point γ(s)) the proess (also de-noted by (∂Γt(X

s
t , ξ

s
t ))t≥0) given by

∂Γst = 2〈ξst , A(Xs
t )Dxb(t, X

s
t )ξ

s
t 〉

+ 〈Dxσ(t, Xs
t )ξ

s
t , A(Xs

t )Dxσ(t, Xs
t )ξ

s
t 〉

+ 2Trace
[
(Dxσ

∗(t, Xs
t )ξ

s
t )(DxA(Xs

t )ξ
s
t )σ(t, Xs

t )
]
dt

+ 〈ξst , (LtA)(Xs
t )ξ

s
t 〉, t ≥ 0,42



where
Lt =

d∑

i=1

bi(t, ·)Dxi
+ (1/2)

d∑

i,j=1

(σσ∗)i,j(t, ·)D2
xi,xj

〈Dxσ(t, Xs
t )ξ

s
t , A(Xs

t )Dxσ(t, Xs
t )ξ

s
t 〉

=

dB∑

j=1

〈Dxσ·,j(t, X
s
t )ξ

s
t , A(Xs

t )Dxσ·,j(t, X
s
t )ξ

s
t 〉

Trace
[
(Dxσ

∗(t, Xs
t )ξ

s
t )(DxA(Xs

t )ξ
s
t )σ(t, Xs

t )
]

=
d∑

i,k=1

dB∑

j=1

(Dxσi,j(t, X
s
t )ξ

s
t )

(
(DxA·,k(ξ

s
t )k)σ(t, Xs

t )
)
i,j
.

(7.15)
Following (7.13), it satis�es(7.16) dΓst = d〈ξst , A(Xs

t )ξ
s
t 〉 = ∂Γstdt+ dmt, t ≥ 0.(In the omplex ase, A is an Hermitian funtional and Γst has the form 〈ξst , A(Xs

t )ξ̄
s
t 〉.)We laimProposition 7.7. Together with the notations given above, we are also given a real δ > 0and an [δ,+∞)-valued (progressively-measurable) random funtion c both depending on therandomness ω ∈ Ω and on (t, x) ∈ [0,+∞)× Rd suh that, for every t ≥ 0 and for (almost)every ω ∈ Ω, c(t, ·) : x ∈ Rd 7→ c(t, x) ∈ [δ,+∞) is of lass C2, with bounded derivatives,uniformly in t and in ω.Given an open subset U ⊂ Rd suh that γ(s) ∈ U for some s ∈ [−1, 1], assume that

∂Γst = ∂Γt(X
s
t , ξ

s
t ) ≤ (c(t, Xs

t ) − δ)Γst up to the exit time from U , i.e. for t ≤ τU := inf{t ≥
0 : Xs

t 6∈ U}, then, for any t ≥ 0,(7.17) E

[
exp

(
−

∫ t∧τU

0

(c(r,Xs
r ) − δ)dr

)
Γt∧τU

]
≤ 〈γ′(s), A(γ(s))γ′(s)〉.Assume for example that U = Rd. Then, with the notation and assumption of Corollary7.5, there exists a onstant C depending on δ and the L∞ norms (on U) of A−1, Dxc, f and

Dxf only suh that, for any T > 0, the funtion(7.18) s ∈ [−1, 1] 7→ wT (s) = E

[∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)
f(t, Xs

t )dt

]
,satisfy |w′

T (s)| ≤ C|γ′(s)|. In partiular, the Lipshitz onstant of wT is independent of T .Proof. The proof is almost straightforward. By (7.16),
d

[
exp

(
−

∫ t

0

(
c(r,Xs

r ) − δ
)
dr

)
Γst

]

d

[
exp

(
−

∫ t

0

(
c(r,Xs

r ) − δ
)
dr

)
〈ξst , A(Xs

t )ξ
s
t 〉

]

= exp

(
−

∫ t

0

(
c(r,Xs

r ) − δ
)
dr

)[(
∂Γst − (c(t, Xs

t ) − δ)Γst
)
dt+ dmt

]
.43



Taking the expetation, we get rid of the martingale term. Having, in mind the sign onditionon ∂Γst − (c(t, Xs
t ) − δ)Γst , we diretly dedue (7.17).To prove the Lipshitz estimate, we �rst emphasize that, for any s ∈ [−1, 1],

|w′
T (s)| =

∣∣∣∣E
∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)[
Dxf(t, Xs

t )ξ
s
t

− f(t, Xs
t )

∫ t

0

Dxc(r,X
s
r )ξ

s
rdr

]∣∣∣∣

≤ CE

[∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)[
|ξst | +

∫ t

0

|ξsr |dr
]
dt

]
,

(7.19)
for some onstant C depending on ‖f‖∞, ‖Dxf‖∞ and ‖Dxc‖∞ only.The result then follows from Lemma 7.8 below. �Lemma 7.8. Consider a non-negative proess (ct)t≥0 together with an Rd-valued proess
(ξt)t≥0 suh that ct ≥ δ, t ≥ 0, and

E

[
exp

(
−

∫ t

0

crdr

)
|ξt|2

]
≤ C exp(−δt), t ≥ 0,for some C ≥ 0 and δ > 0, then

E

[∫ +∞

0

exp

(
−

∫ t

0

crdr

)(
|ξt| +

∫ t

0

|ξr|dr
)
dt

]
≤ C ′,for some C ′ depending on C and δ only.Proof. From Cauhy-Shwarz inequality and from the bound c ≥ δ, we obtain the L1version:

E

[
exp

(
−

∫ t

0

crdr

)
|ξst |

]
≤ E

[
exp

(
−2

∫ t

0

crdr

)
|ξst |2

]1/2

≤ exp
(
−δ

2
t
)
E

[
exp

(
−

∫ t

0

crdr

)
|ξst |2

]1/2

≤ C1/2 exp(−δt), t ≥ 0.

(7.20)In partiular, sine c is always larger than δ, Inequality (7.20) yields
E

[∫ +∞

0

exp

(
−

∫ t

0

crdr

)(
|ξt| +

∫ t

0

|ξr|dr
)
dt

]

≤ E

[∫ +∞

0

(
exp

(
−

∫ t

0

crdr

)
|ξt|

+ exp(−δt)
∫ t

0

exp(δr) exp

(
−

∫ r

0

cudu

)
|ξr|dr

)
dt

]

≤ C1/2

∫ +∞

0

exp(−δt)
(
1 + t

)
dt.

(7.21)
This ompletes the proof. �We now perform a similar analysis, but for the seond-order derivative (〈ηst , A(Xs

t )η
s
t 〉)t≥0(see Theorems 7.2 and 7.4) and then for w′′

T (s).44



Proposition 7.9. Assume that the assumption of Proposition 7.7 are in fore and that
σ is bounded. For any s ∈ [−1, 1], denote by (∆s

t )t≥0 (or by (Γt(X
s
t , η

s
t ))t≥0) the proess

(〈ηst , A(Xs
t )η

s
t 〉)t≥0 and by (∂∆s

t )t≥0 the proess
∂∆s

t = 2〈ηst , A(Xs
t )Dxb(t, X

s
t )η

s
t 〉dt

+ 〈Dxσ(t, Xs
t )η

s
t , A(Xs

t )Dxσ(t, Xs
t )η

s
t 〉dt

+ 2Trace
[
(Dxσ

∗(t, Xs
t )η

s
t )(DxA(Xs

t )η
s
t )σ(t, Xs

t )
]
dt

+ 〈ηst , (LtA)(Xs
t )η

s
t 〉, t ≥ 0.(Be areful that (∂∆s

t )t≥0 is not the absolutely ontinuous part of (∆s
t )t≥0. It is obtained byreplaing (ξst )t≥0 by (ηst )t≥0 in the de�nition of (∂Γst )t≥0.)Given an open subset U ⊂ Rd suh that γ(s) ∈ U for some s ∈ [−1, 1], assume that, for all

t ≤ τU := inf{t ≥ 0 : Γst 6∈ U}, ∂∆t ≤ (c(t, Xs
t )−δ)∆t. (Pay attention that this is exatly thesame inequality as the one in Proposition 7.7, but with (ξst )t≥0 replaed by (ηst )t≥0. Clearly,if the one in Proposition 7.7 is true, the urrent one is expeted to be true as well.) Then,there exists a onstant C, depending on δ and the L∞ norms (on U) of A, A−1, DxA, c,

D2
x,xb, σ, Dxσ and D2

x,xσ only, suh that, for any t ≥ 0,
E

[
exp

(
−

∫ t∧τU

0

(c(r,Xs
r ) − δ/2)dr

)(
[Γst∧τU ]2 + ∆s

t∧τU

)1/2
]

≤
(
〈γ′(s), A(γ(s))γ′(s)〉2 + 〈γ′′(s), A(γ(s))γ′′(s)〉

)1/2

+ C〈γ′(s), A(γ(s))γ′(s)〉.

(7.22)For example if U = Rd, the funtion wT in (7.18) satis�es
|w′′

T (s)| ≤ C

(1 ∧ δ)3

(
|γ′(s)|2 + |γ′′(s)|

)
, s ∈ [−1, 1].for a possible modi�ed value of the onstant C, depending on the L∞ norms (on U) of Dxc,

D2
x,xc, f , Dxf and D2

x,xf as well. (In partiular, it is independent of T and s.)Proof. For simpliity, we make use of Krylov's notations, i.e. we set: Dηb
s
t := Dxb(t, X

s
t )η

s
t ,

D2
ξ,ξb

s
t := D2

x,xb(t, X
s
t )ξ

s
t⊗ξst ,Dη(σ

s
t )·,j := Dxσ·,j(t, X

s
t )η

s
t and �nallyD2

ξ,ξ(σ
s
t )·,j := D2

x,xσ·,j(t, X
s
t )ξ

s
t⊗

ξst . With these notations, η in Theorem 7.2 has the form:
dηst = Dηb

s
tdt+D2

ξ,ξb
s
tdt+

dB∑

j=1

Dη(σ
s
t )·,jdW

j
t +

dB∑

j=1

D2
ξ,ξ(σ

s
t )·,jdW

j
t ,

t ≥ 0. Considering the quadrati form driven by A, we obtain (with the notation Ast =
A(Xs

t ))
d〈ηst , Astηst 〉
= 2〈ηst , AstDηb

s
t〉dt+ 2〈ηst , AstD2

ξ,ξb
s
t〉dt

+ 2Trace
[
(Dησ

∗(t, Xs
t ) +D2

ξ,ξσ
∗(t, Xs

t ))(DxA(Xs
t )η

s
t )σ(t, Xs

t )
]
dt

+ 〈
(
Dησ

s
t +D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
〉dt+ 〈ηst , LtAstηst 〉dt+ dmt,

t ≥ 0, (mt)t≥0 standing for a generi martingale term that is (more or less) useless in whatfollows. (See (7.15) for the de�nition of 〈(Dησ
s
t + D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t + D2

ξ,ξσ
s
t

)
〉.) Following45



the proof of (7.16),
d
[
〈ξst , Astξst 〉2

]
= 2〈ξst , Astξst 〉∂Γstdt+

∣∣2AstDξσ
s
t ξ
s
t + 〈ξst , DσA(Xs

t )ξ
s
t 〉

∣∣2dt+ dmt.(Here again, the generi notation (mt)t≥0 stands for a martingale. Morever, the term
|2AstDξσ

s
t ξ
s
t+〈ξst , DσA(Xs

t )ξ
s
t 〉|2 stands for ∑dB

j=1 |2〈AstDξ(σ
s
t )·,j, ξ

s
t 〉+

∑d
k=1〈ξst , Dxk

A(Xs
t )ξ

s
t 〉σk,j(t, Xs

t )|2.)Therefore,
d
(
〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)

= 2〈ηst , AstDηb
s
t 〉dt+ 2〈ηst , AstD2

ξ,ξb
s
t〉dt+ 〈ηst , LtAstηst 〉dt

+ 2Trace
[
(Dησ

∗(t, Xs
t ) +D2

ξ,ξσ
∗(t, Xs

t ))(DxA(Xs
t )η

s
t )σ(t, Xs

t )
]
dt

+ 〈
(
Dησ

s
t +D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
〉dt+ 2〈ξst , Astξst 〉∂Γstdt

+
∣∣2AstDξσ

s
t ξ
s
t + 〈ξst , DσA(Xs

t )ξ
s
t 〉

∣∣2dt+ dmt.Apply now the funtion x ∈ R 7→ (a + x)1/2, for some small a > 0. It is a onave funtion,so that the seond-order term deriving from It�'s formula is non-inreasing. In partiular,we write (in a little bit rude way)
d
(
a+ 〈ξst , Astξt〉2 + 〈ηst , Astηst 〉

)1/2

≤ 1

2

(
a+ 〈ξst , Astξt〉2 + 〈ηst , Astηst 〉

)−1/2[
2〈ηst , AstDηb

s
t〉 + 2〈ηst , AstD2

ξ,ξb
s
t〉

+ 2Trace
[
(Dησ

∗(t, Xs
t ) +D2

ξ,ξσ
∗(t, Xs

t ))(DxA(Xs
t )η

s
t )σ(t, Xs

t )
]
dt

+ 〈ηst , LtAstηst 〉 + 〈
(
Dησ

s
t +D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
〉

+ 2〈ξst , Astξst 〉∂Γstdt+
∣∣2AstDξσ

s
t ξ
s
t + 〈ξst , DσA(Xs

t )ξ
s
t 〉

∣∣2] + dmt.

(7.23)
We now laim that

2〈ηst , AstDηb
s
t〉 + 〈ηst , LtAstηst 〉 + 〈

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
〉

+ 2Trace
[
(Dησ

∗(t, Xs
t ) +D2

ξ,ξσ
∗(t, Xs

t ))(DxA(Xs
t )η

s
t )σ(t, Xs

t )
]

= ∂∆s
t + 2〈Dησ

s
t , A

s
tD

2
ξ,ξσ

s
t 〉 + 〈D2

ξ,ξσ
s
t , A

s
tD

2
ξ,ξσ

s
t 〉

+ 2Trace
[
D2
ξ,ξσ

∗(t, Xs
t )(DxA(Xs

t )η
s
t )σ(t, Xs

t )
]

= ∂∆s
t +O

(
(a+ |ξst |4 + |ηst |2)1/2|ξst |2

)
,the notation O(. . . ) standing for the Landau notation. Here, we emphasize that the under-lying onstant in O(· · · ) depends on the L∞ norms (on U) of A, DxA, σ, Dxσ and D2

x,xσonly and, in partiular, is independent of t and ω. Atually, all the remaining terms in(7.23) exept the martingale term an be bounded by O((a + |ξst |4 + |ηst |2)1/2|ξst |2) as well,the underlying onstant in O(· · · ) possibly depending on the L∞ norms (on U) of A−1, cand D2
x,xb also. Therefore, we an �nd some onstant C > 0, depending on the L∞ norms(on U) of A, A−1, DxA, c, D2

x,xb, σ, Dxσ and D2
x,xσ only, suh that

d
(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)1/2

≤ 1

2

(
a + 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)−1/2
∂∆s

tdt+ C|ξst |2dt+ dmt.46



Finally, following the proof of Proposition 7.7,
d

[
exp

(
−

∫ t

0

(c(r,Xs
r ) − δ)dr

)(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)1/2
]

≤ 1

2
exp

(
−

∫ t

0

(c(r,Xs
r ) − δ)dr

){(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)−1/2

×
[
∂∆s

t − 2(c(t, Xs
t ) − δ)

(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)]

+ C|ξst |2dt+ dmt

}
.By assumption, ∂∆t ≤ (c(t, Xs

t ) − δ)〈ηst , Astηst 〉 ≤ 2(c(t, Xs
t ) − δ)〈ηst , Astηst 〉 sine c is greaterthan δ, so that

d

[
exp

(
−

∫ t

0

(c(r,Xs
r ) − δ)dr

)(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)1/2
]

≤ exp

(
−

∫ t

0

(c(r,Xs
r ) − δ)dr

){
C|ξst |2dt+ dmt

}
.Integrating from 0 to t ∧ τU , taking the expetation and letting a tend to 0,

E

[
exp

(
−

∫ t∧τU

0

(
c(r,Xs

r ) − δ
)
dr

)(
〈ξst∧τU , Ast∧τU ξst∧τU 〉2

+ 〈ηst∧τU , Ast∧τU ηst∧τU 〉
)1/2

]

≤
(
〈γ′(s), A(γ(s))γ′(s)〉2 + 〈γ′′(s), A(γ(s))γ′′(s)〉

)1/2

+ CE

∫ t∧τU

0

[
exp

(
−

∫ r

0

(c(u,Xs
u) − δ)du

)
|ξsr |2

]
dr.Obviously, the above inequality applies with δ/2 instead of δ. Then, from Proposition 7.7,the last term in the RHS has the form

E

∫ t∧τU

0

[
exp

(
−

∫ r

0

(c(u,Xs
u) − δ/2)du

)
|ξsr |2

]
dr

≤
∫ +∞

0

[
exp

(
−(δ/2)r

)
E

[
exp

(
−

∫ r∧τU

0

(c(u,Xs
u) − δ)du

)
|ξsr∧τU |2

]
dr

]

≤ C〈γ′(s), A(γ(s)), γ′(s)〉
∫ +∞

0

exp
(
−(δ/2)r

)
dr,for a possibly new value of C, possibly depending on δ as well. This ompletes the proof of(7.22).We now investigate w′′

T . Following the proof of (7.19), we laim
|w′′

T (s)| ≤ CE

[∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)[
|ηst | +

∫ t

0

|ηsr|dr

+ |ξst |2 +

∫ t

0

|ξsr |2dr + |ξst |
∫ t

0

|ξsr |dr +

(∫ t

0

|ξsr |dr
)2]]

.

(7.24) 47



We now apply (7.21) and (7.22). For some possibly new value of the onstant C, alsodepending on the L∞ norms (on U) of c, Dxc, D2
x,xc, f , Dxf and D2

x,xf ,(7.25) E

[∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)
[|ηst | +

∫ t

0

|ηsr |dr
]]

≤ C
(
|γ′(s)|2 + |γ′′(s)|

)
.This shows how to deal with the terms in ηs in (7.24). The terms in ξs an be handled asfollows. Note from Young's inequality and Cauhy-Shwarz inequality that

|ξst |2 +

∫ t

0

|ξsr |2dr + |ξst |
∫ t

0

|ξsr |dr +

(∫ t

0

|ξsr |dr
)2

≤ C

(
|ξst |2 + (1 + t)

∫ t

0

|ξsr|2
)
, t ≥ 0.

(7.26)Following (7.21), we omplete the proof. �7.4. Conlusion. Before we arry on the analysis of the Monge-Ampère equation, we men-tion the following points:(1) We let the reader adapt the statements of Propositions 7.7 and 7.9 to the omplexase, then onsidering A as an Hermitian funtional.(2) As well guessed from Proposition 6.9, the (random) funtion c in the statements ofPropositions 7.7 and 7.9 must be understood as Trace(atD
2
z,z̄ψ(z)) in the spei�framework of Monge-Ampère.(3) We also emphasize how the rule obtained by Krylov has a very simple form. Thewhole problem is now to ompare two quadrati (or Hermitian in the omplex ase)forms: ξ ∈ Rd 7→ ∂Γt(x, ξ) and ξ ∈ Rd 7→ (c(t, x) − δ)|ξ|2, with t ≥ 0 and x ∈ Rd (or

x in a domain of Rd or Cd: for instane D in the Monge-Ampère ase). If omparisonholds, then both the �rst and seond-order derivatives of wT in the statement ofProposition 7.7 an be ontrolled uniformly in T . In the Hamilton-Jaobi-Bellmanframework, the omparison rule between ∂Γt(x, ξ) and (c(t, x)− δ)|ξ|2 must hold forany value of the underlying parameter (denoted by σ in the spei� ase of Monge-Ampère, see Proposition 6.9). Obviously, establishing suh a omparison rule mightbe really hallenging in pratie: it is indeed in the Monge-Ampère ase!(4) Below, we sometimes all the proess (∂Γst )t≥0 in De�nition 7.6 derivative quantityitself whereas the derivative quantity stands for the the proess (〈ξst , A(Xs
t )ξ

s
t 〉)t≥0.We feel that it is not onfusive for the reader.8. Almost Proof of the C1 RegularityIn this setion, we explain how to derive the C1 property of the solution to Monge-Ampèreequation from the program developed in the previous Subsetion 7.4. Unfortunately, weare not able to provide a ompletely rigorous proof at this stage of the notes: some �holes�are indeed left open in the proof. Spei�ally, some quantities under onsideration are notrigorously shown to be di�erentiable. The plan is thus the following: we here explain howthings work without paying too muh attention to the di�erentiability arguments and wepostpone to the �nal Setion 9 the omplete argument. We will deal with the seond-orderestimates in Setion 9 as well.For all these reasons, the following statement is alled a �Meta-Theorem�:48



Meta-Theorem 8.1. Assume that Assumption (A) is in fore and keep the notation ofProposition 6.9. Then, up to the proof of some di�erentiability properties, it may be shownthat, for any ompat subset K ⊂ D, there exists a onstant C, depending on (A) and K only,suh that, for every smooth urve γ : [−1, 1] → D, the funtion s 7→ V (γ(s)) is Lipshitzwith C‖γ′‖∞ as Lipshitz onstant.Obviously, the whole idea is to apply Points (2) and (3) in Conlusion 7.4 to the solutionof the resaled SDE (6.5), i.e.(8.1) dZs
t = ψ1/2(Zs

t )σtdBt + atD
∗
z̄ψ(Zs

t )dt, t ≥ 0.with Zs
0 = γ(s), where γ : s ∈ [−1, 1] 7→ γ(s) ∈ D is a urve as in the statement of Theorem8.1. (Note that the ompat set K is not spei�ed at this stage of the proof.) Here, (σt)t≥0denotes a generi ontrol proess (i.e. a progressively-measurable proess with values in Cd×dsuh that Trace(σσ̄∗

t ) = 1.)The reader may then easily understand what �Meta� means: beause of the exponent 1/2,the funtion ψ1/2 is singular at the boundary so that Theorems 7.2 and 7.4 do not apply toEq. (8.1). In partiular, it may be a bit triky to establish the di�erentiability of (Zs
t )t≥0w.r.t. s. As announed above, we forget this di�ulty in the whole setion and assume thatEq. (8.1) is di�erentiable in the mean w.r.t. s. Setting ζst = dZs

t /ds, t ≥ 0, we write (atleast formally)
dζst = ψ−1/2(Zs

t )Re
[
Dzψ(Zs

t )ζ
s
t

]
σtdBt

+
[
atDz̄,zψ(Zs

t )ζ
s
t + atDz̄,z̄ψ(Zs

t )ζ̄
s
t

]
dt.

(8.2)Applying It�'s formula, we ould ompute the dynamis of (|ζst |2)t≥0 as in (7.16) and thusexpress the form of the assoiated derivative quantity. We won't do it here: the strategyfails when applied in a straightforward way. Said di�erently, there are very little hanes tobe able to bound the derivative quantity as in the statements of Propositions 7.7 and 7.9.8.1. Proedure to Estimate the Derivative Quantity in the General Case. Themajor idea of Krylov onsists in perturbing as most as possible the probabilisti ingredients ofthe Monge-Ampère equation to improve the long-run ontrol of the derivative quantity. Here,the word �perturbing� doesn't mean that we are seeking for another new representation: thegeneral struture given by Proposition 6.9 is the right one. The whole problem is to perturbit in a onvenient way to obtain the desired long-run estimate.There are three general ways to perturb the system:(1) sine the problem is stationary, time speed may be hanged,(2) using stohasti proesses theory, the underlying probability measure may be per-turbed itself,(3) �nally, additional �ghost� ontrol parameters may be plugged into the ontrol repre-sentation and used as perturbation parameters.We here try to explain the main ideas of this perturbation proedure. In the next subse-tions, we will show how to apply them to the Monge-Ampère equation expliitly. Unfortu-nately, to do so, the method given in Proposition 6.6 must be revisited �rst.49



Having in mind the general notation used in Proposition 6.6, the revisited strategy maybe explained as follows. Consider indeed a generi family:(8.3) wβ(s) = E

∫ +∞

0

F (βr, X
s,β
r )dr,where

dXs,β
t = σ(βt, X

s,β
t )dBt + b(βt, X

s,β
t )dt, t ≥ 0 ; Xs,β

0 = γ(s),just as in Propositions 6.6 and 6.9. Assume also that, for a given s, we are able to �nd afamily (ŵβ(s+ ε))ε, indexed by a small parameter ε, suh that, for any β,(8.4) ŵβ(s+ ε) ≤W (s+ ε) := sup
β
wβ(s+ ε) and ŵβ(s) = wβ(s).If the Lipshitz assumption of Proposition 6.6 is satis�ed for the family ŵβ(s+ ε), i.e.(8.5) ∣∣ŵβ(s+ ε) − ŵβ(s)

∣∣ ≤ r1(ε),(say) for s, s+ ε ∈ (−1, 1) and some funtion r1, then
W (s+ ε) − wβ(s) ≥ −r1(ε),by the inequality in (8.4), so that(8.6) W (s+ ε) −W (s) ≥ −r1(ε),by using the equality in (8.4) and by taking the in�mum with respet to β. Obviously, if theargument holds for any s in (−1, 1), s and s+ ε may be exhanged to bound the inrementfrom above.Similarly, if the onvexity assumption of Proposition 6.6 is satis�ed for the family ŵβ(s+ε),i.e.(8.7) ε 7→ ŵβ(s+ ε) + r2(s+ ε)is onvex (say) for s, s+ ε, s− ε ∈ (−1, 1) and some funtion r2, then, for all β,

lim inf
ε→0

ε−2
(
W (s+ ε) + r2(s+ ε) +W (s− ε) + r2(s− ε)

− 2W (s) − 2r2(s)
)

≥ lim inf
ε→0

ε−2
(
ŵβ(s+ ε) + r2(s+ ε) + ŵβ(s− ε) + r2(s− ε)

− 2W (s) − 2r2(s)
)
.Choosing β of the form βε so that

wβ
ε

(s) ≥W (s) − ε3,we obtain
lim inf
ε→0

ε−2
(
W (s+ ε) + r2(s+ ε) +W (s− ε) + r2(s− ε)

− 2W (s) − 2r2(s)
)

≥ lim inf
ε→0

ε−2
(
ŵβ

ε

(s+ ε) + r2(s+ ε) + ŵβ
ε

(s− ε) + r2(s− ε)

− 2ŵβ
ε

(s) − 2r2(s)
)
.

(8.8) 50



Now, by onvexity, the right-hand side is non-negative. (Pay attention, we say so withoutpassing to the limit.) If suh a strategy holds for all s in (−1, 1), we dedue that W + r2 isonvex.8.2. Enlarging the Set of Controls. We now explain how the family (ŵβ)β>0 an beonstruted in the framework of Monge-Ampère.The starting point is the following: in the spei� ase of Hamilton-Jaobi-Bellman equa-tions, the set of ontrols may exhibit some invariane properties; if so, it is oneivable toperturb the system along some transformation that let the system invariant. For instane,for the Monge-Ampère equation, the generi matriial ontrol (σt)t≥0 an be replaed by
(exp(pt)σt)t≥0 for some proess (pt)t≥0 with values in the set of anti-Hermitian matries:obviously, the trae of exp(pt)at exp(p̄∗t ) = exp(pt)at exp(−pt) is still equal to 1.The auxiliary ontrol parameter (pt)t≥0 appears as a �ghost� parameter along whih thesystem may be perturbed. To explain how things work, we go bak to Eq. (8.1):(8.9) dZs

t = ψ1/2(Zs
t )σtdBt + atD

∗
z̄ψ(Zs

t )dt, t ≥ 0,whih is the generi ontrolled equation used to represent the Monge-Ampère equation asthe value funtion of some optimization problem with an in�nite horizon.As said in introdution of Setion 8, we may onsider a urve (γ(s))s∈[−1,1] with valuesin D. For a �xed value of s, we de�ne (Ẑs
t )t≥0 as above: it is the solution of Eq. (8.9)(or equivalently of Eq. (8.1)) with Ẑs

0 = γ(s) as initial solution, so that Ẑs
t = Zs

t for any
t ≥ 0. Now, for ε in the neighborhood of 0 (but di�erent from 0), we de�ne (Ẑs+ε

t )t≥0 as thesolution of
dẐs+ε

t

= ψ1/2(Ẑs+ε
t ) exp

(
P (Ẑs

t , Ẑ
s+ε
t − Ẑs

t )
)
σtdBt

+ exp
(
P (Ẑs

t , Ẑ
s+ε
t − Ẑs

t )
)
at exp

(
P̄ ∗(Ẑs

t , Ẑ
s+ε
t − Ẑs

t )
)
D∗
z̄ψ(Ẑs+ε

t )dt,

(8.10)
t ≥ 0, with Ẑs+ε

0 = γ(s + ε) as initial ondition. Here P (z, z′) is some funtion of theparameters z in D and z′ in Cd with values in the set of anti-Hermitian matries. It isassumed to be regular in z′, with bounded derivatives, uniformly in z so that existene anduniqueness hold for (8.10). (See the proof of Proposition 6.7.) It is also assumed to satisfy
P (z, 0) = 0 so that (Ẑs+ε

t )t≥0 mathes (Zs
t )t≥0 in (8.9) when ε = 0.The typial hoie we perform below for P (z, z′) is (at least for z lose to the boundaryso that Dzψ(z) is non-zero)

P (z, z′) = ρ
(
|Dzψ(z)|−2

[
D2
z̄,zψ(z)z′Dzψ(z) +D2

z̄,z̄ψ(z)z̄′Dzψ(z)

−D∗
z̄ψ(z)(D2

z,z̄ψ(z)z̄′)∗ −D∗
z̄ψ(z)(D2

z,zψ(z)z′)∗
])
,

(8.11)where ρ is some smooth funtion from Cd×d into itself, with ompat support, mathing theidentity on the neighborhood of 0 and preserving the anti-Hermitian struture7. (Have in7Think of
ρ : (zi,j)1≤i,j≤d ∈ Cd×d 7→ ρ1

( d∑

i,j=1

|zi,j |2
)
(zi,j)1≤i,j≤d,where ρ1 stands for a smooth funtion from R to R with a ompat support mathing 1 in the neighborhoodof zero. 51



mind that Dzψ(z) above is seen as a row vetor and z′ as a olumn vetor.) We let thereader hek that P (z, z′) is anti-Hermitian.For ε as above, we set ps+εt = P (Ẑs
t , Ẑ

s+ε
t − Ẑs

t ) = P (Zs
t , Ẑ

s+ε
t −Zs

t ), so that (8.10) has theform
dẐs+ε

t = ψ1/2(Ẑs+ε
t ) exp(ps+εt )σtdBt + exp(ps+εt )at exp(−ps+εt )D∗

z̄ψ(Ẑs+ε
t )dt,

t ≥ 0. Now, we an follow Proposition 6.9 and onsider
V̂ σ(s+ ε)

= E

∫ +∞

0

[
exp

(∫ t

0

Trace[exp(ps+εr )ar exp(−ps+εr )D2
z,z̄ψ(Ẑs+ε

r )]dr

)

× F
(
det(at), exp(ps+εt )at exp(−ps+εt ), Ẑs+ε

t

)]
dt.

(8.12)(Pay attention that the determinant of at is the same as the determinant of the perturbedmatrix exp(ps+εt )at exp(−ps+εt ).) Clearly, we have V̂ σ(s) = V σ(γ(s)) (see the notation ofProposition 6.9). Moreover, V̂ σ(s+ ε) ≤ supσ(V
σ(γ(s+ ε))). (The ontrol (exp(ps+εt )σt)t≥0is a partiular ontrol of the same type as (σt)t≥0.)Di�erentiating (8.12) with respet to ε, we expet8 a generi expression of the form

d

dε

[
V̂ σ(s+ ε)

]
|ε=0

= E

∫ +∞

0

[
exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)

×
{

Λ1,s
t πst + Λ̄1,s

t π̄st + Λ2,s
t ζ̂st + Λ̄2,s

t
¯̂
ζst

+

∫ t

0

(
Λ3,s
r πsr + Λ̄3,s

r π̄sr + Λ4,s
r ζ̂sr + Λ̄4,s

r
¯̂
ζsr

)
dr

}
dt

]
.

(8.13)
Here, Λi,s

r , Λ̄
i,s
r , i = 1, 2, stand for the derivatives of the oe�ients appearing in (8.12) and

ζ̂st =
d

dε

[
Ẑs+ε
t

]
|ε=0

and πst =
d

dε

[
ps+εt

]
|ε=0

.Sine ps+εt = P (Ẑs
t , Ẑ

s+ε
t − Ẑs

t ), the term πst writes as Dz′P (Ẑs
t , 0)ζ̂st +Dz̄′P (Ẑs

t , 0)
¯̂
ζst so that(8.13) redues to

d

dε

[
V̂ σ(s+ ε)

]
|ε=0

= E

∫ +∞

0

[
exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r)]dr

)

×
{

Λ̂1,s
t ζ̂st +

¯̂
Λ1,s
t

¯̂
ζst +

∫ t

0

(
Λ̂2,s
r ζ̂sr +

¯̂
Λ2,s
r

¯̂
ζsr

)
dr

}]
dt,

(8.14)
for two new oe�ients Λ̂1,s and Λ̂2,s.8We here say �expet� only sine the di�erentiation argument under the integral symbol is not justi�edat this stage of the proof. 52



Before we arry on the analysis, we emphasize that the rigorous proof of (8.14) is far frombeing easy: it relies on a di�erentiation argument under the integral symbol that may bevery di�ult to justify beause of the long-run integration. To overome this problem, apossible strategy is to multiply F by some smooth ut-o� funtion φ(·/S), S standing for alarge positive real and φ for a funtion mathing 1 on some [0, 1] and vanishing on [2,+∞).In that ase, the di�erentiation is expeted to make sense: for example, it makes sense in theframework of De�nition 7.3 beause of the supremum over t in [0, T ] in the di�erentiabilityproperty. Obviously, the in�nite horizon framework an be reovered by letting S tend to
+∞ at the end of the analysis, provided the bound we have for the RHS in (8.14) is uniformin the ut-o� proedure9.The basi argument to bound the RHS in (8.14) is the following. By the very assumptionon the oe�ients and for the typial hoie of P we have in mind, the terms Λ̂1,s and Λ̂2,s arebounded in the neighborhood of the boundary only, i.e. for Ẑs

t = Zs
t lose to ∂D. (Indeed,have in mind that Dzψ is non-zero in the neighborhood of ∂D.) Just for the moment, assumethat they are bounded on the whole time interval [0,+∞). Then, to bound the right-handside above, it is su�ient to prove an equivalent of (7.17), i.e.(8.15) E

[
exp(−

∫ t

0

crdr)|ζ̂st |2
]
≤ exp(−δt)|ζ̂s0 |2 = exp(−δt)|γ′(s)|2for all t ≥ 0, with −cr = Trace[arD

2
z,z̄ψ(Zs

r)].In some sense, we are redued to the original problem of long-run estimate for the derivativeof the di�usion proess, but for a new derivative ζ̂s, namely for the solution of the SDE
dζ̂st =

[
Dz[ψ

1/2](Zs
t ) + ψ1/2(Zs

t )Dz′P (Zs
t , 0)

]
ζ̂st σtdBt

+
[
Dz̄[ψ

1/2](Zs
t ) + ψ1/2(Zs

t )Dz̄′P (Zs
t , 0)

] ¯̂
ζst σtdBt

+
{(
Dz′P (Zs

t , 0)ζ̂st +Dz̄′P (Zs
t , 0)

¯̂
ζst

)
at

− at
(
Dz′P (Zs

t , 0)ζ̂st +Dz̄′P (Zs
t , 0)

¯̂
ζst

)}
D∗
z̄ψ(Zs

t )dt

+ at
[
D∗
z̄,zψ(Zs

t )ζ̂
s
t +D∗

z̄,z̄ψ(Zs
t )

¯̂
ζst

]
dt, t ≥ 0,

(8.16)
with the initial ondition ζ̂s0 = γ′(s). The whole point is then to hek that the typial hoie(8.11) for P (z, z′) permits to derive the long-run estimate (8.15). Unfortunately, we will seebelow that it permits to obtain (8.15) for Zs

t lose to ∂D only. (Atually, this is well-guessed:remember that, for the typial hoie we have in mind for P (z, z′), we annot bound Λ̂1,s and
Λ̂2,s away from the boundary. Indeed, P (z, z′) may explode for z away from the boundary.)The strategy we follow below onsists in loalizing the perturbation argument. If thestarting point γ(s) of Zs is lose enough to the boundary, the perturbation argument appliesup to the stopping time t := inf{t ≥ 0 : ψ(Zs

t ) ≥ ǫ}, ǫ standing for some small positiveparameter10; if the starting point γ(s) of Zs is far away from the boundary, we an apply theperturbation argument when (ψ(Zs
t ))t≥0 beomes small enough, i.e. when (Zs

t )t≥0 enters intothe neighborhood of ∂D. Spei�ally, if s is some (�nite) stopping time at whih ψ(Zs
s
) < ǫ,we an apply the perturbation argument up to the stopping time t := inf{t ≥ s : ψ(Zs

t ) ≥ ǫ}:9We will detail this argument in Setion 9 rigorously.10Pay attention that ǫ and ε stand for two di�erent parameters.53



Proposition 8.2. Let S > 0 be a positive real, φ be a smooth funtion from R+ to [0, 1]mathing 1 on [0, 1] and 0 outside [0, 2], ǫ > 0 be a small enough real suh that |Dzψ(z)| > 0for ψ(z) ≤ ǫ and s be some (�nite) stopping time suh that ψ(Zs
s
) < ǫ. For t := inf{t ≥

s : ψ(Zs
t ) ≥ ǫ}, onsider some proess (Ẑs+ε

t )0≤t≤t for whih ([d/dε](Ẑs+ε
t )|ε=0)0≤t≤t and

([d2/dε2](Ẑs+ε
t )|ε=0)0≤t≤t exist and for whih the perturbed SDE (8.10) holds from s to t andde�ne
V̂ σ,s,t
S (s+ ε)

= E

∫
t

s

[
exp

(∫ t

0

Trace[exp(ps+εr )ar exp(−ps+εr )D2
z,z̄ψ(Ẑs+ε

r )]dr

)

× F
(
det(at), exp(ps+εt )at exp(−ps+εt ), Ẑs+ε

t

)
φ
( t
S

)]
dt,

(8.17)as the ut-o� loalized version of (8.12), with ps+εt = P (Zs
t , Ẑ

s+ε
t − Zs

t ), s ≤ t ≤ t, P beinggiven by (8.11).If the di�erentiation operator w.r.t. ε and the expetation and integral symbols in the RHSof (8.17) an be exhanged, then there exists a onstant C > 0, depending on Assumption(A) and on ǫ only (in partiular, it is independent of S and (σt)t≥0), suh that
∣∣ d
dε

[
V̂ σ,s,t
S (s+ ε)

]
|ε=0

∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)[
|ζ̂st | +

∫ t

0

|ζ̂sr |dr
]
dt

]
,where ζ̂st = [d/dε](Ẑs+ε

t )|ε=0.Say a word about the onrete meaning of Proposition 8.2: from time 0 to time s, theproess (Ẑs+ε
t )0≤t≤s is hosen abritrarily provided it be twie di�erentiable (in the mean)w.r.t. ε. Below, we expliitly say how it is hosen: roughly speaking, it is built from another(loal) perturbation argument. We also emphasize, that the value funtion V̂ σ,s,t

S has nostraightforward onnetion with the original V : again, we will see below how to gather allthe loal value funtions into a single one, diretly onneted to Monge-Ampère.Obviously, we an iterate the argument to bound the seond-order derivatives:Proposition 8.3. Keep the assumption and notation of Proposition 8.2 and assume thatthe seond-order di�erentiation operator w.r.t. ε and the expetation and integral symbolsin the RHS of (8.17) an be exhanged, then there exists a onstant C > 0, depending onAssumption (A) and on ǫ only, suh that
∣∣ d

2

dε2

[
V̂ σ,s,t
S (s+ ε)

]∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)

×
[
|η̂st | + |ζ̂st |2 +

∫ t

0

|η̂sr|dr +

∫ t

0

|ζ̂sr |2dr +

(∫ t

0

|ζ̂sr |dr
)2]

dt

]
,where η̂st = [d2/dε2](Ẑs+ε

t )|ε=0. 54



8.3. Time Change. Here is another example of perturbation. The starting point is thefollowing. In the Hamilton-Jaobi-Bellman formulation (5.13) of Monge-Ampère, the nor-malizing ondition for the trae of the matrix a is purely arbitrary. Indeed, the equationremains unhanged when multiplied by any positive onstant, so that the trae may be askedto math any other positive real value.Intuitively, this means that, in Eq. (8.2), the normalizing ondition for the trae of (at)t≥0might be useless, or said di�erently, that we might onsider a resaled version of (at)t≥0instead of (at)t≥0 itself.Now, have in mind that we are here seeking for a perturbed writing of Eq. (8.2) wheninitialized at γ(s + ε) for ε in the neighborhood of zero. We are thus thinking of resaling
(at)t≥0 by some positive sale funtion (|τ εt |2)t≥0 depending on the perturbation variable ε.Here, (τ εt )t≥0 stands for an arbitrary progressively-measurable real-valued proess that isdi�erentiable with respet to the parameter ε. Spei�ally, we onsider the perturbed SDE(8.18) dẐs+ε

t = ψ1/2(Ẑs+ε
t )τ εt σtdBt + |τ εt |2atD∗

z̄ψ(Zs+ε
t )dt, t ≥ 0.with Ẑs+ε

0 as initial ondition. (Solvability is proven as in Proposition 6.7.)Exatly as in the previous subsetion, the perturbation we here hoose vanishes at ε = 0,i.e. τ εt is hosen as T (Zs
t , Ẑ

s+ε
t − Zs

t ) for a smooth funtion T : (z, z′) ∈ D × Cd → R suhthat T (z, 0) = 1. In other words, Ẑs and Zs stand for the same proess. In partiular, whendi�erentiating T (Zs
t , Ẑ

s+ε
t − Zs

t ) with respet to 0, we obtain 2Re[Dz′T (Zs
t , 0)ζ̂st ] where ζ̂ststands for the derivative of Zs+ε

t with respet to ε at ε = 0, i.e.
ζ̂st :=

d

dε

[
Ẑs+ε
t

]
|ε=0

.The typial hoie we have in mind for T (z, z′) is(8.19) T (z, z′) = 1 + ρ
(
ψ−1(z)Re

[
Dzψ(z)z′

])
,where ρ is some smooth funtion with values in [−1/2, 1/2], suh that ρ(0) = 0 and ρ′(0) = 1,so that

Re
[
Dz′T (z, 0)ζ

]
= ψ−1(z)Re

[
Dzψ(z)ζ

]
, ζ ∈ Cn,and(8.20) d

dε

[
T 2

(
Zs
t , Ẑ

s+ε
t − Zs

t

)]
|ε=0

= 2ψ−1(Zs
t )Re

[
Dzψ(Zs

t )ζ̂
s
t

]
.The resulting dynamis for (ζ̂st )t≥0 is omputed below.The problem is to understand �rst how this perturbed proess is onneted with therepresentation of the solution of Monge-Ampère. Here is the whole point: the proess

(Ẑs+ε
t )t≥0 appears as a time-hange solution of a SDE of the same type as (8.2). Said in anon-rigorous way, we may think of (Ẑs+ε

t ) as (Zs+ε
Tε

t
)t≥0 where Ṫε

t = |τ εt |2, t ≥ 0, and(8.21) dZs+ε
t = ψ1/2(Zs+ε

t )
τ ε
(Tε)−1

t

|τ ε
(Tε)−1

t

|σ(Tε)−1
t
dBt + a(Tε)−1

t
D∗
z̄ψ(Zs+ε

t )dt, t ≥ 0.(Here, (Tε)−1 stands for the onverse of Tε. We will explain right below why we keep thesame notation for this Zs+ε as in the originial Eq. (8.1).) We won't provide a rigorous proof55



for this time-hange formula11, but the idea is very intuitive: roughly speaking, the ation ofthe time-hange on the dBt term must be understood as a multipliation by [Ṫs+ε
t ]1/2 sine

dBt is understood itself as [dt]1/2; obviously, the ation of the time-hange on the dt termsis the same as in an ODE.Atually, Eq. (8.21) is false. The reader might guess that, one way or another, thetime-hange a�ets the dynamis of the Brownian motion (Bt)t≥0. The right version is(8.22) dZs+ε
t = ψ1/2(Zs+ε

t )
τ ε
(Tε)−1

t

|τ ε
(Tε)−1

t

|σ(Tε)−1
t
dB̂ε

t + a(Tε)−1
t
D∗
z̄ψ(Zs+ε

t )dt, t ≥ 0,where
B̂ε
t =

∫ (Tε)−1
t

0

|τ εr |dBr, t ≥ 0.Here, (B̂ε
t )t≥0 is a Brownian motion again12 w.r.t. to the time-resaled �ltration (F(Tε

t )
−1)t≥0.Now, the time-resaled term ((τ ε

(Tε)−1
t

/|τ ε
(Tε)−1

t

|)σ(Tε)−1
t

)t≥0 may be seen as a new ontrolproess with (a(Tε)−1
t

)t≥0 as Hermitian square, so that we are redued to the original formu-lation of Monge-Ampère, but w.r.t. to a di�erent Brownian set-up (the set-up is the pairgiven by the Brownian motion and the underlying �ltration). It may be well-understoodthat the representation of the Monge-Ampère equation is kept preserved by modi�ation ofthe underlying Brownian set-up13, so that
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(
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)
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[∫ +∞
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× F (det(a(Tε)−1
t

), a(Tε)−1
t
, Zs+ε

t )dt

]
.11We refer the reader to the original paper by Krylov [8℄ for the omplete argument.12Clearly, (B̂ε

t )t≥0 is a martingale with values in Cd. Atually, for any oordinates 1 ≤ j, k ≤ d,(8.23) d[(B̂ε
t )j(B̂ε

t )k] = 0, d[(B̂ε
t )j(B̂ε

t )k] = δj,kdt,where δj,k stands for the Kroneker symbol. There is a famous theorem in stohasti alulus, due to PaulLévy, that says that any ontinuous martingale starting from 0 and satisfying (8.23) is a omplex Brownianmotion of dimension d. Atually, this may be explained as follows: Eq. (8.23), together with the martingaleproperty, provide the loal in�nitesimal dynamis of B̂ε; this makes the onnetion between W and theLaplae operator in R2d through It�'s formula. In some sense, there is one and only one stohasti proessassoiated with the Laplae operator in R2d: the 2d-dimensional real Brownian motion or, equivalently, the
d-dimensional omplex Brownian motion. (For further details, we refer the reader to [14, Thm II. 40℄.)13Atually, the proof is not so easy: the problem is to understand how the modi�ation of the Brownianpaths and of the underlying �ltration a�ets the representation. We refer the reader to the monograph byKrylov [4℄, Remark III.3.10 for a omplete disussion.56



(Use Proposition 6.9.) Changing time-speed in the integrals above, we dedue that V (γ(s+

ε)) ≥ V̂ σ(s+ ε) where
V̂ σ(s+ ε)
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s+ε
t )|τ εt |2dt
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.

(8.24)
Of ourse, when ε = 0, V̂ σ(s) = V σ(s) so that supσ[V̂

σ(s)] = V (γ(s)).The reader may notie that everything works as if (at)t≥0 had been multiplied by thesaling fator (|τ εt |2)t≥0 as disussed at the very beginning of the paragraph: rememberindeed that F is homogeneous with respet to a.It now remains to understand what happens when di�erentiating (8.24) w.r.t. ε. We let thereader hek that the resulting formula for [d/dε](v̂σ(s+ ε)) is similar to (8.14). Spei�ally,the terms Λ̂1,s and Λ̂2,s therein are bounded in the urrent framework ifDz′T (z, 0) is bounded.With the typial hoie (8.19) we have in mind, it is bounded away from the boundary, i.e.for ψ(z) away from 0. Atually, the main tehnial problem is the same as in (8.13): the pointis to justify the di�erentiation. To do, we use the same trik as in the previous subsetionby onsidering some ut-o� version of F . We thus dedue the analogs of Propositions 8.2and 8.3:Proposition 8.4. Let S be a positive real, φ be a smooth funtion mathing one on [0, 1]and vanishing outside [0, 2], ǫ be a positive real and s be some (�nite) stopping time suhthat ψ(Zs
s
) > ǫ. For t := inf{t ≥ s : ψ(Zs

t ) ≤ ǫ}, onsider some proess (Ẑs+ε
t )0≤t≤t for whih

([d/dε](Ẑs+ε
t )|ε=0)0≤t≤t and ([d2/dε2](Ẑs+ε

t )|ε=0)0≤t≤t exist and for whih the perturbed SDE(8.18) holds from s to t and de�ne
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)
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]
dt,as the loalized version of (8.24), with τ εt = T (Zs

t , Ẑ
s+ε
t − Zs

t ), s ≤ t ≤ t, T being given by(8.19), and Ṫε
t = |τ εt |2 (with Tε

0 = 1).If the di�erentiation operators of order 1 and 2 w.r.t. ε and the expetation and integralsymbols in the de�nition of V̂ σ,s,t
S an be exhanged, there exists a onstant C > 0, depending57



on Assumption (A) and on ǫ only, suh that
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]
,where ζ̂st = [d/dε](Zs+ε

t )|ε=0 and η̂st = [d2/dε2](Zs+ε
t )|ε=0.The reader may wonder about the spei� hoie for the ut-o�. First, the time-hangeis plugged as an argument of the ut-o� funtion: when performing the hange of variable,we reover (φ(t/S))t≥0 as ut-o�. Seond, we emphasize that the ut-o� permits to get ridof times t at whih Tε

t ≥ 2S. By assumption, we know that |τ ε|2 is always greater than 1/4so that Tε
t is always greater than t/4, t ≥ 0. In partiular, the ut-o� vanishes at times t atwhih t/4 ≥ 2S. In other words, the de�nition of V̂ σ,s,t

S is understood as a �nite horizon valuefuntion: this permits to justify the di�erentation argument w.r.t. ε provided (Ẑs+ε
t )0≤t≤tsatis�es the assumption of Corollary 7.5. (Have in mind that Corollary 7.5 holds in �nitehorizon.) Unfortunately, beause of the singularity of the oe�ient ψ1/2 in (8.1) in theneighborhood of ∂D, it is not so easy to prove that (Ẑs+ε

t )0≤t≤t satis�es the assumption ofCorollary 7.5. At this stage of the proof, this point is left open: this is the �meta�-part ofMeta-Theorem 8.1.8.4. Perturbation of the Measure: Girsanov Theorem. The last perturbation methodwe here disuss onsists in modifying the measure of the underlying probability spae. This atypial probabilisti way to estimate the solution of a partial di�erential equation of seond-order: we may refer the reader to the letures by Krylov in Pisa [9℄ for a detailed overview;we also mention the personal work [2℄ and the referenes therein.We here explain �rst how the probability measure may be hanged to establish somesmoothness property for the solution of a seond-order partial di�erential equation. Gener-ally speaking, the modi�ation of the referene measure is a ommon argument in stohastianalysis, whih turns out to be really e�ient to quantify the sensitivity of a system withrespet to the input noise. More or less, this is the starting point of the Malliavin Cal-ulus, used to prove by probabilisti tools the so-alled �Sum of squares� Theorem due toHörmander. (See the monograph [13℄.)In the spei� ase of heat equation, the problem may be understood as follows. Indeed,as already explained in (3.1) and (3.2), the solution of the one-dimensional heat equation
Dtu(t, x) −

1

2
D2
x,xu(t, x) = 0, (t, x) ∈ (0,+∞) × R,58



with an initial ondition of the form u(0, ·) = u0(·) (say, with u0 ontinuous and bounded)is given by
u(t, x) =

1√
2πt

∫

R

u0(y) exp
(
−|x− y|2

2t

)
dy, x ∈ R,Clearly, at �xed t > 0, and for any ε ∈ R, the Gaussian measures
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2t

)
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)
dyare equivalent, so that u(t, x+ ε) an be written as
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=
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)
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)
dy.Thinking of the Gaussian density as the density of the (marginal) law of the position of someBrownian B at time t, we may write as well:
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2t

)]

= E
[
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(
ε
Bt

t
− ε2

2t
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.Now, the term Mε = exp(εBt/t − ε2/(2t)) appears as a density on the probability spae

(Ω,F ,P) on whih the Brownian motion is de�ned. Said di�erently, the representation of
u(t, x+ ε) onsists in integrating u0(x+Bt), as for u(t, x), but under the measure Mε ·P. Inpartiular, the smoothness of u(t, ·) with respet to the spatial parameter is diretly givenby the smoothness of the density Mε with respet to the parameter ε.This example is very simple beause the hange of measure is of �nite dimension. Never-theless, there exists an in�nite dimensional ounterpart, known as Girsanov Theorem14.To understand how things work, go bak to the statement of Theorem 7.2 and onsider aurve γ of the form γ(s) = x0 + (T − s)ν, where T is some positive real, and x0 and ν somevetors in Rd. (Reall that, for more simpliity, the framework of Theorem 7.2 is real andnot omplex.) The whole idea now onsists in onsidering (X

γ(t)
t )0≤t≤T : it both depends ontime t through the time index of X and through the initial ondition γ(t). (Keep in mindthat Xγ(t)

0 = γ(t).) It an be proven (see e.g. the monograph by Kunita [10℄) that
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t γ′(t). See thestatement of Theorem 7.2.)The big deal is the following. If σ is invertible and σ−1 is bounded, uniformly in time andspae, we write
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)
.14We won't give the expliit form of Girsanov Theorem here. It would require an additional e�ort whihseems useless. We refer to the monograph by Protter [14℄.59



What Girsanov Theorem says is: we an �nd a new measure Q, equivalent to P on the σ-algebra generated by (Bt)0≤t≤T , suh that the proess in parentheses be a Brownian motion,i.e. (
Bt +

∫ t

0

σ−1(r,Xγ(r)
r )ξγ(r)r dr

)

0≤t≤T

,is a Brownian motion under Q15. As a onsequene, under the new probability measure Q,the proess (X
γ(t)
t )0≤t≤T behaves as the initial proess (X

γ(0)
t )0≤t≤T under P. In partiular,if u stands for the solution of the Cauhy problem

Dtu(t, x) + 〈b(t, x), Dxu(t, x)〉 +
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2
Trace
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a(t, x)D2

x,xu(t, x)
]

= 0,with the boundary ondition u(T, x) = uT (x). (Note that the problem is set in a bakwardway for notational simpliity only), the initial ondition u(0, γ(0)) an be written on thesame model as (5.3) as EP[uT (X
γ(0)
T )] and therefore as EQ[uT (X

γ(T )
T )]. (Here, the indies Pand Q denote the probability used to perform the integration.) In partiular,

u(0, x0 + Tν) = EQ

[
u(T,X

γ(T )
T )

]
.Now, the trik is: γ(T ) = x0 so that

u(0, x0 + Tν) = EQ

[
u(T,Xx0

T )
]
.Finally, it remains to give the form of Q. It is given by Girsanov Theorem as

dQ

dP
= ρνT
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)
.Finally,

u(0, x0 + Tν) = EP

[
u(T,Xx0

T )ρνT
]
.In other words, the regularity of u with respet to the spatial parameter follows from theregularity of ρνT , independently of the regularity of the boundary ondition: this is the typi-al probabilisti argument to understand the regularizing e�et of non-degenerate di�usionoperators. Of ourse, the prie to pay is the same as in analysis: the underlying di�usionmatrix has to be non-degenerate.Obviously, this is not the ase in the Monge-Ampère problem. However, we will useGirsanov Theorem as a perturbation tool.The idea is the following: go bak to Eq. (8.1) and onsider at s + ε the perturbeddynamis
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t , Ẑ
s+ε
t − Zs

t )dt
]

+ atD
∗
z̄ψ(Ẑs+ε

t )dt, t ≥ 0.
(8.25)Here, the funtion G satis�es G(z, 0) = 0 so that (Ẑs

t )t≥0 and (Zs
t )t≥0 are equal as requiredin the perturbation method. When G (seen as a funtion of two arguments) is a smooth15The reader who knows Girsanov Theorem already may notie that the exponential martingale propertyshould be heked to apply the theorem. Obviously, it should be: atually, the whole argument relies on aloalization proedure that is a little bit involved. For simpliity, we do not disuss it here.60



funtion with a ompat support, the unique solvability of (8.25) may be proven as inProposition 6.7: the sketh is given in footnote below 16. (The reader an skip it.) To makethe onnetion with the original dynamis, we are then seeking for a new measure Pε underwhih the proess (
B̂ε
t := Bt +

∫ t

0

G(Zs
r , Ẑ

s+ε
r − Zs

r)dr

)

t≥0is a Brownian motion. (So that, under Pε, the proess (Ẑs+ε
t )t≥0 has the right dynamis.)What Girsanov Theorem17 says is the following: if G is bounded, there exists a measure

Pε given by
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1A

]
, A ∈ Ft, t ≥ 0,

(8.26)under whih (B̂ε
t )t≥0 is a omplex Brownian motion of dimension d. (In partiular, Pε admitsa density with respet to P (and is even equivalent to P) when restrited to the σ-subalgebra

Ft, t ≥ 0.)We now go bak to (8.25): we understand that (Ẑs+ε
t )t≥0 has the same dynamis as

(Zs+ε
t )t≥0 in (8.1) but with (Bt)t≥0 replaed by (B̂ε

t )t≥0. Sine (B̂ε
t )t≥0 is a Brownian motionunder Pε, we expet (Ẑs+ε

t )t≥0 to have the same dynamis (i.e. the same distribution)under Pε as (Zs+ε
t )t≥0 under P. Under loal Cauhy-Lipshitz like type assumption on theoe�ients of (8.1), this is true: this is the so-alled Yamada and Watanabe Theorem, seee.g. Strook and Varadhan [17℄.16The argument is almost the same as in Proposition 6.7 but the right martingale to onsider in (6.6) is
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t ≥ 0. Indeed, by It�'s formula, we an prove that it is a loal martingale.Then, denoting by τn = inf{t ≥ 0 : ψ−1(Zs+ε
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≤ exp(C‖G‖∞t).See Rogers and Williams [15℄.17Pay attention that Girsanov Theorem is here given for the omplex Brownian motion.61



Consider now the perturbed value funtion
V̂ σ(s+ ε)

=
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s+ε
r − Zs

r ), dBr〉
]

−
∫ t

0

|G|2(Zs
r , Ẑ
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(8.27)
(Note that the integral and the expetation have been exhanged in omparison with theoriginal formulation in Proposition 6.9. This new writing permits to apply Girsanov Theoremeasily. Nevertheless, by boundedness of F and superharmoniity of ψ, Fubini's Theoremapplies and the integrals may be exhanged.) We may write it as
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dt,where EPε denotes the expetation under Pε. We then replae Ẑs+ε by Zs+ε by saying thatthe dynamis of the �rst one under Pε are the same as the dynamis of the seond one under

P. We dedue that the supremum supσ v̂
σ(s+ ε) is equal to V (γ(s+ ε))18.It now remains to speify the hoie for G. Atually, we an hoose it suh that(8.28) d

dε

[
Ḡ(Zs

t , Ẑ
s+ε
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t )
]
|ε=0

= Ξ(Zs
t )ζ̂

s
t ,where Ξ(z) is a omplex matrix of size d×d and ζ̂st = [d/dε](Ẑs+ε
t )|ε=0. (Choose for example

G(z, z′) = Ξ(z)ρ(z′), the funtion ρ being bounded and satisfying ρ(0) = 0, Dz′ρ(0) = Idand Dz̄′ρ(0) = 0.19) Below, the matrix Ξ(z) we use is bounded in z on every ompat subsetof D only. (In partiular, Ξ(z) may explode as z tends to ∂D.)To omplete the argument, it remains to explain what happens when di�erentiating (8.27)w.r.t. ε. (Again, we assume that we an do so: this is a part of the �meta� in Meta-Theorem 8.1.) The story is a bit di�erent from what we explained above for the two otherperturbations. Indeed, when di�erentiating (8.27), we obtain a new term to bound whih is
E

∫ +∞

0

∣∣∣∣
∫ t

0

〈Ξ(Zs
r )ζ̂

s
r , dBr〉 exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r )
]
dr

)∣∣∣∣dt.Here is what we an say:Lemma 8.5. Consider a proess (ςt)t≥0 with values in Cd, solution to a SDE of the form
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tς̄t)dBt,18Here, the story is the same as for time-hange. To have a ompletely rigorous argument, we should hek�rst that the representation of Monge-Ampère remains the same when the underlying Brownian motion ismodi�ed. Again, we refer to Remark III.3.10 in the monograph [4℄ for a omplete disussion.19A typial example is ρ(z′) = (ρ0(z
′
i))1≤i≤d with ρ0(z

′
i) = z′i exp(−|z′i|2), z′i ∈ C.62



the oe�ients (βt)t≥0, (β ′
t)t≥0 and (αt)t≥0, (α′

t)t≥0 being Cd ⊗ Cd and Cd×d ⊗ Cd-valuedrespetively (i.e. βtςt and β ′
tς̄t are in Cd and αtςt and α′

tς̄t are in Cd×d) and being possiblyrandom as well. Set
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〈Ξrςr, dBr〉, t ≥ 0,for another bounded Cd×d-valued proess (Ξt)t≥0. Assume �nally that (Ξt)t≥0 vanishes whenthe proess (ψ(Zs
t ))t≥0 is less than some ǫ00 > 0. Then, for a non-positive proess (ct)t≥0,

E

[
|mt| exp

(∫ t

0

crdr

)]
≤ CE

[∫ t

0

|ςr|
(
1 + r−1/2

)
exp

(∫ r

0

cudu

)
dr

]
,the onstant C only depending on the bound of Ξ and on the bounds of α, α′, β and β ′ attimes t for whih ψ(Zs

t ) > ǫ00/2.Proof. We follow the proof of (7.23). We onsider a smooth ut-o� funtion ϕ with valuesin [0, 1] mathing 1 on [ǫ00,+∞) and vanishing on (−∞, ǫ00/2]. Applying It�'s formula, wewrite
d
[
ϕ(ψ(Zs

t ))
]

= ϕ′(ψ(Zs
t ))d

(1)
t dt+ ϕ′′(ψ(Zs

t ))
∣∣d(2)
t

∣∣2dt
+ ϕ′(ψ(Zs

t ))〈d(2)
t , dBt〉 + ϕ′(ψ(Zs

t ))〈d̄(2)
t , dB̄t〉,

t ≥ 0, where (d
(1)
t )t≥0 and (d

(2)
t )t≥0 stand for the oe�ients of the It� expansion of (ψ(Zs

t ))t≥0,i.e.
d
[
ψ(Zs

t )
]

= d
(1)
t dt+ 〈d(2)

t , dBt〉 + 〈d̄(2)
t , dB̄t〉, t ≥ 0.Note also that

d
[
|ςt|2

]
=

(
2Re

[
〈ς̄t, βtςt + β ′

tς̄t〉
]
+ |αtςt + α′

tς̄t|2
)
dt

+ 2Re
[
〈(αtςt + α′

tς̄t)
∗ς̄t, dBt〉

]
, t ≥ 0.Therefore,

d
(
|mt|2 + tϕ(ψ(Zs

t ))|ςt|2
)

=
[
|Ξtςt|2 + ϕ(ψ(Zs

t ))|ςt|2

+ 2tϕ(ψ(Zs
t ))Re

[
〈ς̄t, βtςt + β ′

tς̄t〉
]
+ tϕ(ψ(Zs

t ))
∣∣αtςt + α′

tς̄t
∣∣2

+ t|ςt|2ϕ′(ψ(Zs
t ))d

(1)
t + t|ςt|2ϕ′′(ψ(Zs

t ))
∣∣d(2)
t

∣∣2

+ 2tϕ′(ψ(Zs
t ))Re

[
〈(αtςt + α′

tς̄t)
∗ς̄t, d̄

(2)
t 〉

]
dt+ dnt, t ≥ 0,where (nt)t≥0 stands for a new martingale term whose value may vary from line to line.Then, for any small a > 0, by onavity of the funtion x ∈ R+ 7→ (a + x)1/2 and by the63



bound |Ξtςt|2 ≤ ε
−1/2
00 |Ξt1{ψ(Zs

t )≥ε00}|2ϕ1/2(ψ(Zs
t ))|ςt|2,

d
(
a+ |mt|2 + tϕ(ψ(Zs

t ))|ςt|2
)1/2

≤ 1

2

(
a + |mt|2 + tϕ(ψ(Zs

t ))|ςt|2
)−1/2{|Ξtςt|2 + ϕ(ψ(Zs

t ))|ςt|2

+ 2tϕ(ψ(Zs
t ))Re

[
〈ς̄t, βtςt + β ′

tς̄t〉
]
+ tϕ(ψ(Zs

t ))
∣∣αtςt + α′

tς̄t
∣∣2

+ t|ςt|2ϕ′(ψ(Zs
t ))d

(1)
t + t|ςt|2ϕ′′(ψ(Zs

t ))
∣∣d(2)
t

∣∣2

+ 2tϕ′(ψ(Zs
t ))Re

[
〈(αtςt + α′

tς̄t)
∗ς̄t, d̄

(2)
t 〉

]}
dt+ dnt,

≤ C
(
1 + t−1/2

)
|ςt|dt+ dnt,

(8.29)
the onstant C here depending on the bound of (Ξt)t≥0, the bounds of the proesses (αt1{ψ(Zs

t )>ǫ00/2})t≥0,
(α′

t1{ψ(Zs
t )>ǫ00/2})t≥0, (βt1{ψ(Zs

t )>ǫ00/2})t≥0 and (β ′
t1{ψ(Zs

t )>ǫ00/2})t≥0 and the supremum norm of
ϕ′/ϕ1/2 and ϕ′′/ϕ1/2. (Note that (d

(1)
t )t≥0 and (d

(2)
t )t≥0 are bounded by known onstants.)In partiular, C is independent of a.Now, we an hoose ϕ suh that ϕ′/ϕ1/2 and ϕ′′/ϕ1/2 be bounded. For example, think of

ϕ(x) = exp[−ǫ200/(x2 − (ǫ00/2)2)] for x ∈ (ǫ00/2, ǫ00/
√

2), ϕ(x) = 0 for x ≤ ǫ00/2, ϕ(x) = 1for x ≥ ǫ00 and ϕ(x) ∈ [exp(−4), 1] for x ∈ (ǫ00/
√

2, ǫ00). As a onsequene, we an assumethat the onstant C in (8.29) only depends on the bounds of (Ξt)t≥0, (αt1{ψ(Zs
t )>ǫ00/2})t≥0and (βt1{ψ(Zs

t )>ǫ00/2})t≥0.Finally, using the non-positivity of (ct)t≥0, we dedue
d

[(
a+ |mt|2 + tϕ(ψ(Zs

t ))|ςt|2
)1/2

exp

(∫ t

0

crdr

)]

≤ C
(
1 + t−1/2

)
|ςt| exp

(∫ t

0

crdr

)
dt+ dnt, t ≥ 0.Taking the expetation and letting a tend to 0, we omplete the proof. �Obviously, we wish to apply Lemma 8.5 with

ςt = ζ̂st , Ξt = Ξ(Zs
t ), ct = Trace

[
atD

2
z,z̄ψ(Zs

t )
]
,provided we have a bound for the term Ξ(Zs

t ) in (8.28) and for ǫ00 to be �xed later on.(Basially, we annot hoose ǫ00 = 0 sine the oe�ients driving the SDE satis�ed by
(ζ̂st )t≥0 are expeted to be singular in the neighborhood of the boundary. See (8.1).)As explained above, for the hoie of Ξ we use below, the term Ξ(Zs

t ) is bounded for Zs
taway from the boundary of the domain only. Following Propositions 8.2 and 8.4, we are toloalize the perturbation argument. Spei�ally,De�nition 8.6. For some real S > 0, some smooth ut-o� funtion φ : R+ → [0, 1] mathing

1 on [0, 1] and 0 outside [2,+∞), some given positive real ǫ > 0 and some (�nite) stoppingtime s at whih ψ(Zs
s
) > ǫ, we all loalized perturbation argument of Girsanov type fromtime s to time t := inf{t > s : ψ(Zs

t ) ≤ ǫ} (t being possibly in�nite) the perturbation of theBrownian motion (Bt)t≥0 on the interval [s, t] only. In suh a ase, the hange of measure64



in (8.26) takes the form
Pε(A) = E

[
exp

(
−

∫ t∧t

s

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
]

−
∫ t∧t

s

|G|2(Zs
r , Ẑ

s+ε
r − Zs

r )dr

)
1A

]
, A ∈ Ft, t ≥ 0,and the perturbed value funtion (with ut-o�) in (8.27) writes

V̂ σ,s,t
S (s+ ε)

= E

∫
t

s

[
exp

(
−

∫ t

s

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
]

−
∫ t

s

|G|2(Zs
r , Ẑ

s+ε
r − Zs

r)dr

)

× exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Ẑs+ε

r )]dr

)
F

(
det(at), at, Ẑ

s+ε
t

)
φ
( t
T

)]
dt,

(8.30)
for some (progressively-measurable) extension of (Ẑs+ε

t )0≤t≤s to the time indies less than
s for whih ([d/dε](Ẑs+ε

t )|ε=0)0≤t≤t and ([d2/dε2](Ẑs+ε
t )|ε=0)0≤t≤t exist. In suh a ase, byLemma 8.5,

E

[∣∣∣∣
∫ t∧t

s

〈Ξ(Zs
r)ζ̂

s
r , dBr〉

∣∣∣∣ exp

(∫ t∧t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)]

≤ CE

[∫ t∧t

0

(1 + r−1/2)|ζ̂sr | exp

(∫ r

0

Trace[auD
2
z,z̄ψ(Zs

u)]du

)
dr

]
,for some onstant C > 0, only depending on (A) and on the bounds of (Ξ(Zs

t ))s≤t≤t andof the oe�ients appearing in the It� writing of (ζst )0≤t≤t at times 0 ≤ t ≤ t for whih
ψ(Zs

t ) ≥ ǫ/2. (Pay attention that we here start from time 0 to bene�t from a as initialondition in (8.29).)We then dedue the analog of Proposition 8.2Proposition 8.7. Keep the assumptions of De�nition 8.6 and assume that the funtion Ξis bounded on the set {ψ ≥ ǫ} If the di�erentiation operator w.r.t. ε and the expetationand integral symbols in the de�nition of V̂ σ,s,t
S an be exhanged, then there exists a onstant

C > 0, only depending on Assumption (A) and on the bounds of (Ξ(ζst ))s≤t≤t and of theoe�ients appearing in the It� writing of (ζst )0≤t≤t at times 0 ≤ t ≤ t for whih ψ(Zs
t ) ≥ ǫ/2,suh that

∣∣ d
dε

[
V̂ σ,s,t(s+ ε)

]∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)[
|ζ̂st | +

∫ t

0

(1 + r−1/2)|ζ̂sr |dr
]
dt

]
,where ζ̂st = [d/dε](Ẑs+ε

t )|ε=0. 65



Atually, the same strategy applies when di�erentiating twie in (8.30). It is then neessaryto bound(8.31) E

∫
t

s

[∣∣∣∣
∫ t

s

〈Ξ(Zs
r)ζ̂

s
r , dBr〉

∣∣∣∣
2

exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r )
]
dr

)]
dt,and(8.32) E

∫
t

s

∣∣∣∣
∫ t

s

〈Ξ(Zs
r )η̂

s
r , dBr〉 exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r)
]
dr

)∣∣∣∣dt,with η̂st = [d/dε](Ẑs+ε
t )|ε=0, and

E

∫
t

s

∣∣∣∣
∫ t

s

〈
(
DzΞ(Zs

r )ζ̂
s
r +Dz̄Ξ(Zs

r )
¯̂
ζsr

)
ζ̂sr , dBr〉

× exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r )
]
dr

)∣∣∣∣dt.
(8.33)For (8.32) and (8.33), the proof is the same as the one of Lemma 8.5. With the samenotations as the ones used therein, the point is to onsider (for a > 0)

d
[(
a+ |mt|2 + tϕ(ψ(Zs

t ))[|ζ̂st |4 + |η̂st |2]
)1/2]

, s ≤ t ≤ t,with
mt =

∫ t

s

〈Ξ(Zs
r )η̂

s
r , dBr〉, s ≤ t ≤ t,or

mt =

∫ t

0

〈
(
DzΞ(Zs

r)ζ̂
s
r +Dz̄Ξ(Zs

r )ζ̂r
)
ζ̂sr , dBr〉, s ≤ t ≤ t.For (8.31), it is su�ient to expand

[∣∣∣∣
∫ t

s

〈Ξ(Zs
r)ζ̂

s
r , dBr〉

∣∣∣∣
2

exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r )
]
dr

)]

s≤t≤tby It�'s formula to get an analog of Lemma 8.5.We then dedueProposition 8.8. Keep the assumption Proposition 8.7. If the di�erentiation operator oforder 2 w.r.t. ε and the expetation and integral symbols in the de�nition of V̂ σ,s,t
S an beexhanged, then there exists a onstant C > 0, only depending on Assumption (A) and onthe bounds of (Ξ(ζst ))s≤t≤t and of the oe�ients appearing in the It� writing of (ζst )0≤t≤t and

(ηst )0≤t≤t at times 0 ≤ t ≤ t for whih ψ(Zs
t ) ≥ ǫ/2, suh that

∣∣ d
2

dε2

[
V̂ σ,s,t(s+ ε)

]∣∣ ≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)

×
[
|η̂st | + |ζ̂st |2 +

∫ t

0

(1 + r−1/2)|η̂sr|dr

+

∫ t

0

(1 + r−1/2)|ζ̂sr |2dr +

(∫ t

0

|ζ̂sr |dr
)2]

dt

]
,where η̂st = [d2/dε2](Ẑs+ε

t )|ε=0. 66



8.5. Expliit Computations at the Boundary. We are now in position to expand theomputations. We start with the so-alled �enlargement of the set of ontrols� method.Following the loalization proedure desribed in the statement of Proposition 8.2, the timeindies t we onsider below are always assumed to belong to the interval [s, t], the hoie ofthe parameter ǫ in Proposition 8.2 being learly spei�ed at the end of the disussion. Reallthat for t ∈ [s, t], ψ(Zs
t ) is less than ǫ. Reall also from (8.10) that the perturbation reads

dẐs+ε
t = ψ1/2(Ẑs+ε

t ) exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
σtdBt

+ exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
at exp

(
P̄ ∗(Zs

t , Ẑ
s+ε
t − Zs

t )
)
D∗
z̄ψ(Ẑs+ε

t )dt,
(8.34)where t ∈ [s, t], and (see (8.11))

d

dε

[
P (Zs

t , Ẑ
s+ε
t − Zs

t )
]

= |Dzψt|−2
[
D2
z̄,zψtζtDzψt +D2

z̄,z̄ψtζ̄tDzψt

−D∗
z̄ψt(D

2
z,z̄ψtζ̄t)

∗ −D∗
z̄ψt(D

2
z,zψtζt)

∗
]
,

:= Qtζt, t ∈ [s, t],

(8.35)
ζt being given by ζt = [d/dε][Zs+ε

t ], t ∈ [s, t].We emphasize that (8.35) makes sense for ǫ small enough: sine ψ(Zs
t ) ≤ ǫ for t ∈ [s, t],

|Dzψt(Z
s
t )| 6= 0 for ǫ small enough and t ∈ [s, t].We also make use of the following abbreviated notation: we get rid of the symbol hat� �̂ and of the supersript s for more simpliity in (ζ̂st )s≤t≤t (ompare with the statement ofProposition 8.2); we also write ψt for ψ(Zs

t ) and Lψt for Trace[atD
2
z,z̄ψ(Zs

t )], s ≤ t ≤ t.We then write the derivative (ζt)s≤t≤t as the solution of20
dζt =

{
ψ

−1/2
t Re

[
Dzψtζt

]
+ ψ

1/2
t Qtζt

}
σtdBt

+
[
atDz̄,zψtζt + atDz̄,z̄ψtζ̄t

]
dt+

[
QtζtatD

∗
z̄ψt − atQtζtD

∗
z̄ψt

]
dt.Above, the vetor (

∑d
j,k=1(at)i,jD

2
z̄j ,zk

ψ(Zs
t )(ζt)k)1≤i≤d is represented by the produt atDz̄,zψtζt.From (8.35), we have (pay attention that DzψtatD

∗
z̄ψt and [(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗]D∗

z̄ψtbelow stand for salar quantities as produts of row and olum vetors)
atDz̄,zψtζt + atDz̄,z̄ψtζ̄t +QtζtatD

∗
z̄ψt − atQtζtD

∗
z̄ψt

= |Dzψt|−2DzψtatD
∗
z̄ψt

(
D2
z̄,zψtζt +D2

z̄,z̄ψtζ̄t
)

− |Dzψt|−2D∗
z̄ψt

[
(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗
]
atD

∗
z̄ψt

+ |Dzψt|−2
[
(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗
]
D∗
z̄ψtatD

∗
z̄ψt

:= |Dzψt|−2DzψtatD
∗
z̄ψt

(
D2
z̄,zψtζt +D2

z̄,z̄ψtζ̄t
)

+HtatD
∗
z̄ψt,

(8.36)
(Ht)s≤t≤t here standing for the auxiliary proess

Ht = |Dzψt|−2
{
−D∗

z̄ψt
[
(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗
]

+
[
(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗
]
D∗
z̄ψt

}
,

(8.37)with values in Cd×d.20Again, the di�erentiation is purely formal sine no di�erentiability property has been established yet.This is the so-alled �meta� part of Meta-Theorem 8.1.67



We dedue that
dζt =

{
ψ

−1/2
t Re

[
Dzψtζt

]
+ ψ

1/2
t Qtζt

}
σtdBt

+ |Dzψt|−2DzψtatD
∗
z̄ψt

(
D2
z̄,zψtζt +D2

z̄,z̄ψtζ̄t
)
dt+HtatD

∗
z̄ψtdt.Taking the square norm, we obtain

d|ζt|2

= 2|Dzψt|−2DzψtatD
∗
z̄ψtRe

[
〈ζ̄t,

(
D2
z̄,zψtζt +D2

z̄,z̄ψtζ̄t
)]
dt

+ 2Re
[
〈ζ̄t, HtatD

∗
z̄ψt〉

]
dt

+ Trace
[(
ψ

−1/2
t Re

[
Dzψtζt

]
Id + ψ

1/2
t Qtζt

)

× at
(
ψ

−1/2
t Re

[
Dzψtζt

]
Id − ψ

1/2
t

(
Qtζt

)∗)]
dt

+ ψ
−1/2
t Re

[
Dzψtζt

]
〈ζ̄t, σtdBt〉 + ψ

−1/2
t Re

[
Dzψtζt

]
〈ζt, σ̄tdB̄t〉

+ ψ
1/2
t

[
〈ζ̄t, QtζtσtdBt〉 + 〈ζt, Qtζtσ̄tdB̄t〉

]
, s ≤ t ≤ t.

(8.38)
In what follows, we modify the hoie of ψ aording to the following observation: forany onstant c > 0, cψ is again a plurisuperharmoni funtion desribing the domain. Tomake things lear, we denote by ψ0 some referene plurisuperharmoni funtion suh that,for any Hermitian matrix a of trae 1 and for any z ∈ D, Trace[aD2

z,z̄ψ
0(z)] ≤ −1. Then, weunderstand ψ as Nψ0 for some free parameter N ≥ 1 that will be �xed later on.As a �rst appliation, we an simplify the form of d|ζt|2, or at least we an bound it. Asalready said, for ǫ > 0 small, ψ0

t ≤ Nψ0
t ≤ ǫ, t ∈ [s, t], so that |Dzψ

0
t | ≥ κ for some givenonstant κ > 0, s ≤ t ≤ t. For example, we notie that |Qtζt| in (8.35) and |Ht| in (8.37) byan be bounded by C|ζt|, i.e.(8.39) |Qtζt|, |Ht| ≤ C|ζt|, s ≤ t ≤ t,for some onstant C depending on κ, ‖Dψ0‖∞ and ‖D2ψ0‖∞, but independent of N . There-fore, denoting by (rt)s≤t≤t a generi bounded proess, bounded by some onstant C at anytime in [s, t], and setting E0

t := Dzψ
0
t atD

∗
z̄ψ

0
t , we write

d|ζt|2

= ψ−1
t Re2

[
Dzψtζt

]
dt+ Re

[
Dzψtζt

]
|ζt|rtdt+ ψt|ζt|2rtdt

+N |ζt|2
(
(E0
t )

1/2 + E0
t

)
rtdt

+ ψ
−1/2
t Re

[
Dzψtζt

]
〈ζ̄t, σtdBt〉 + ψ

−1/2
t Re

[
Dzψtζt

]
〈ζt, σ̄tdB̄t〉

+ ψ
1/2
t

[
〈ζ̄t, QtζtσtdBt〉 + 〈ζt, Qtζtσ̄tdB̄t〉

]
, s ≤ t ≤ t,

(8.40)
the onstant C in the bound of (rt)s≤t≤t depending on (A) only (and not onN). In partiular,
C may depend on κ. (Above, the writing ((E0

t )
1/2 + E0

t )rt is an abuse of notation. It standsfor (E0
t )

1/2rt+E0
t rt for possibly di�erent values of r. We will use this simpli�ation quite oftenbelow.) One way or another, we understand that the terms (ψ−1

t Re2[Dzψtζt])t≥0 and (E0
t )t≥0are to be ontrolled to ontrol the derivative quantity aording to the program announedin Setion 7. 68



The strategy we here develop (and inspired by the one of Krylov) onsists in onsideringa modi�ed version of the derivative quantity. Below, we onsider(8.41) Γ̄t = exp(−Kψt)|ζt|2 + ψ−1
t Re2

[
Dzψtζt

]
, s ≤ t ≤ t,for some onstant K > 0 to be hosen later on.To ompute (dΓ̄t)s≤t≤t, we use the following writing for (dψt)s≤t≤t(8.42) dψt = ψ

1/2
t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]
+ 2DzψtatD

∗
z̄ψtdt+ ψtLψtdt, s ≤ t ≤ t.(Apply It�'s formula to (ψ(Zs

t ))s≤t≤t and have in mind that P (Zs, Ẑs − Zs) = 0 when Ẑs in(8.34) is Zs itself.) We �rst write
d exp(−Kψt)
= −2K exp(−Kψt)ψ1/2

t Re
[
Dzψ(Zs

t )σdBt

]

+ [K2ψt − 2K] exp(−Kψt)〈Dzψt, atDz̄ψt〉dt
−K exp(−Kψt)ψtLψtdt

= −2K exp(−Kψt)ψ1/2
t Re

[
Dzψ(Zs

t )σdBt

]

+N2[K2ψt − 2K] exp(−Kψt)E0
t dt−NK exp(−Kψt)ψtLψ0

t dt.

(8.43)
Using (8.40),

d
[
exp(−Kψt)|ζt|2

]

= exp(−Kψt)
[
ψ−1
t Re2[Dzψtζt] + Re[Dzψtζt]|ζt|rt

+ ψt|ζt|2rt +N |ζt|2
(
(E0
t )

1/2 + E0
t

)
rt

]
dt

+ |ζt|2 exp(−Kψt)
[
N2[K2ψt − 2K]E0

t −NKψtLψ
0
t

]
dt

+NK exp(−Kψt)
[
Re[Dzψtζt]|ζt| + ψt|ζt|2

]
rt + dmt, s ≤ t ≤ t,where (mt)t≥0 stands for a generi martingale term. We are now in position to ompute dΓ̄tat any time t ∈ [s, t]. Have in mind that, for suh t's, ψt is less than ǫ and (rt)s≤t≤t is ageneri proess satisfying |rt| ≤ C, for some C depending on (A) only. Think in partiularof the useful bound: |Re[Dzψtζt]| ≤ ǫ1/2ψ

−1/2
t |Re[Dzψtζt]|, t ∈ [s, t]. Then, applying Young'sinequality to the term N(E0

t )
1/2, the above equation has the form

d
[
exp(−Kψt)|ζt|2

]

≤ exp(−Kψt)
[
ψ−1
t Re2[Dzψtζt] + C(1 + ǫ1/2 + ǫ)|ξt|2

+ C(N +N2)|ζt|2E0
t

]
dt

+ |ζt|2 exp(−Kψt)
[
N2[K2ǫ− 2K]E0

t + CNKǫ
]
dt

+NK exp(−Kψt)
[
Cǫ1/2|ξt|2 + Cǫ|ξt|2

]
+ dmt,

(8.44)
where |ξt|2 = |ζt|2 + ψ−1

t Re2[Dzψtζt]. To omplete the analysis (in the neighborhood of theboundary), we must ompute d[ψ−1
t Re2[Dzψtζt]], s ≤ t ≤ t. To do so, we start with (8.42)69



at s+ ε (so that at is understood as exp(pεt )at exp(−pεt )). Taking the square root, we write
dψ1/2(Zs+ε

t )

=
1

2

[
Dzψ(Zs+ε

t ) exp(pεt )σtdBt +Dz̄ψ(Zs+ε
t ) exp(p̄εt)σ̄tdB̄t

]

+
3

4
ψ−1/2(Zs+ε

t )Dzψ(Zs+ε
t ) exp(pεt)at exp(−pεt )D∗

z̄ψ(Zs+ε
t )dt

+
1

2
ψ1/2(Zs+ε

t )Trace
[
exp(pεt)at exp(−pεt )D2

z,z̄ψ(Zs+ε
t )

]
dt.We now di�erentiate with respet to ε at ε = 0. We obtain (with the notation Et =

DzψtatD
∗
z̄ψt = N2E0

t )
1

2
d
[
ψ

−1/2
t Re[Dzψ(Zt)ζt]

]

= Re
[(

(Dz,zψtζt)
∗ + (Dz,z̄ψtζ̄t)

∗ +DzψtQtζt
)
σtdBt

]

− 3

4
ψ

−3/2
t Re[Dzψtζt]Etdt

+
3

4
ψ

−1/2
t

[(
(Dz,zψtζt)

∗ + (Dz,z̄ψtζ̄t)
∗ +DzψtQtζt

)
atDz̄∗ψt

]
dt

+
3

4
ψ

−1/2
t

[
Dzψtat

(
Dz̄,zψtζt +Dz̄,z̄ψtζ̄t −QtζtD

∗
z̄ψt

)]
dt

+
1

2
ψ

1/2
t Trace

[(
Qtζtat − atQtζt

)
D2
z,z̄ψt + atD

2
z,z̄,zψtζt + atD

2
z,z̄,z̄ψtζ̄t

]
dt

+
1

2
Re[Dzψtζt]ψ

−1/2
t Lψtdt.

(8.45)
Plugging the de�nition of (Qtζt)s≤t≤t (see (8.35)), we dedue

(Dz,zψtζt)
∗ + (Dz,z̄ψtζ̄t)

∗ +DzψtQtζt

= |Dzψt|−2
(
DzψtD

2
z̄,zψtζt +DzψtD

2
z̄,z̄ψtζ̄t

)
Dzψt

= rt|ζt|Dzψt.

(8.46)It is important to notie that the proess (rt)s≤t≤t in (8.46) is salar as the produt of rowand olumn vetors. (It is also bounded independently of N .) We dedue
d
[
ψ

−1/2
t Re[Dzψtζt]

]

= 2Re
[
rt|ζt|DzψtσtdBt

]
− 3

2
ψ

−3/2
t Re[Dzψtζt]Etdt

+ ψ
−1/2
t rtEt|ζt|dt+Nψ

1/2
t rt|ζt|dt+ Re[Dzψtζt]ψ

−1/2
t Lψtdt.Taking the square, we �nally laim (use the following trik to pass from the equality tothe inequality : ψ−1

t rt|ζt|Re[Dzψtζt]Et ≤ ψ−2
t Re2[Dzψtζt]Et + r2

t |ζt|2Et, Nrt|ζt|Re[Dzψtζt] ≤70



Nψtr
2
t |ζt|2 +Nψ−1

t Re2[Dzψtζt] and Lψt ≤ −N)
d
[
ψ−1
t Re2[Dzψtζt]

]

= dmt + rt|ζt|2Etdt− 3ψ−2
t Re2[Dzψtζt]Etdt+ ψ−1

t rt|ζt|Re[Dzψtζt]Etdt
+Nrt|ζt|Re[Dzψtζt]dt+ 2ψ−1

t Re2[Dzψtζt]Lψtdt

≤ dmt + C(1 + Et)|ζt|2dt+ CNψt|ζt|2dt−Nψ−1
t Re2[Dzψtζt]dt,

(8.47)for a possibly new value of C.Making the sum with (8.44) and assuming ǫ < 1 and N ≥ 1, we dedue
dΓ̄t ≤ exp(−Kψt)(1 −N)ψ−1

t Re2[Dzψtζt]dt

+ |ξt|2
(
C ′ + C ′Nǫ1/2 + C ′NKǫ1/2

)
dt

+ |ζt|2 exp(−Kψt)N2
[
K2ǫ− 2K + C ′ exp(Kψt)

]
E0
t dt+ dmt,the onstant C ′ depending on C only. (In partiular, C ′ is independent of K, N , ǫ, s and t.)Choose now K = ǫ−1/4. We obtain

dΓ̄t ≤ exp(−Kψt)(1 −N)ψ−1
t Re2[Dzψtζt]dt+ 2(C ′ + 2C ′Nǫ1/4)|ξt|2dt

+ |ζt|2 exp(−Kψt)N2
[
ǫ1/2 − 2ǫ−1/4 + C ′ exp(ǫ3/4)

]
E0
t dt+ dmt.Choose ǫ small enough suh that(8.48) ǫ1/2 − 2ǫ−1/4 + C ′ exp(ǫ3/4) < 0.Then,

dΓ̄t ≤ exp(−Kψt)(1 −N)ψ−1
t Re2[Dzψtζt]dt+ 2

(
C ′ + 2C ′Nǫ1/4

)
|ξt|2dt+ dmt,for s ≤ t ≤ t. Finally for N = ǫ−1/4 and exp(ǫ3/4) ≤ 2, we obtain:(8.49) dΓ̄t ≤ 6C ′|ξt|2dt+ dmt ≤ 6C ′ exp(ǫ3/4)Γ̄t + dmt ≤ 12C ′Γ̄t + dmt,for s ≤ t ≤ t.Exatly as in the statement of Proposition 7.7 (see in partiular (7.17)), the right quantityto onsider is

exp

(∫ t

0

Lψrdr

)
Γ̄t = exp

(∫ t

0

NLψ0
rdr

)
Γ̄t, s ≤ t ≤ t.Again, for s ≤ t ≤ t,

d

[
exp

(∫ t

0

NLψ0
rdr

)
Γ̄t

]

≤ exp

(∫ t

0

NLψ0
rdr

)[
NLψ0

t Γ̄t + 12C ′Γ̄t

]
dt+ dmt

≤ exp

(∫ t

0

NLψ0
rdr

)[
−N Γ̄t + 12C ′Γ̄t

]
dt+ dmt.Having in mind that N = ǫ−1/4, we dedue that, for ǫ−1/4 ≥ 12C ′ (obviously, this is ompat-ible with (8.48)),(8.50) d

[
exp

(∫ t

0

NLψ0
rdr

)
Γ̄t

]
≤ dmt, s ≤ t ≤ t.71



Atually, it is plain to see that, for ǫ small enough, the same holds with NLψ0
s replaed by

(N − 1)Lψ0
s , i.e.(8.51) d

[
exp

(∫ t

0

(N − 1)Lψ0
sds

)
Γ̄t

]
≤ dmt, s ≤ t ≤ t.We dedueProposition 8.9. There exists a positive real ǫ1 suh that for 0 < ǫ < ǫ1, for N = K = ǫ−1/4,for ψ = Nψ0, where ψ0 is the referene plurisuperharmoni funtion desribing D suh that

Trace[aD2
z,z̄ψ

0(z)] ≤ −1, z ∈ D, for a stopping time s at whih ψ(Zs
s
) < ǫ, the derivativequantity obtained by perturbing the ontrol parameter as in (8.10) and (8.35)

Γ̄
(1)
t = exp

(
−Kψ(Zs

t )
)
|ζt|2 + ψ−1(Zs

t )Re2
[
Dzψ(Zs

t )ζt
]
, t ≥ s,satis�es up to time t = inf{t ≥ s : ψ(Zs

t ) ≥ ǫ} (provided that (Ẑs+ε
t )0≤t≤t is well di�erentiablew.r.t. ε)

E

[
exp

(∫ t∧t

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r )]dr

)
Γ̄

(1)
t∧t|Fs

]

≤ exp

(∫
s

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r)]dr

)
Γ̄(1)

s , t ≥ s,with δ = 1/N = ǫ1/4.8.6. Away from the Boundary. We now investigate the derivative quantity away fromthe boundary. The idea onsists in perturbing the system in two di�erent ways as thesame time, or said di�erently, in applying two perturbations. In the subsetions above, thispossiblity has not been disussed, but we feel it quite simple to understand: it is even plainto see that provided that the orresponding versions of Propositions 8.2, 8.4 or 8.7 be truefor eah perturbation under onsideration, the ommon ation of both perturbations on theperturbed value funtion is of the same type, i.e. the statements of Propositions 8.2, 8.4 or8.7 (aording to the framework) remain true under the ommon ation.Away from the boundary, the idea is to perturb both the underlying time speed, as ex-plained in Subsetion 8.3, and the probability measure, as explained in Subsetion 8.4.Following the loalization proedure desribed in the statement of Propositions 8.4 and 8.7,the time indies t we onsider in this subsetion are always assumed to belong to the interval
[s, t], where s is some stopping time at whih ψ(Zs

t ) > ǫ21 and t = inf{t > s : ψ(Zs
t ) ≤ ǫ}.(As above, the hoie of the parameter ǫ is learly spei�ed at the end of the disussion.) Inpartiular for t ∈ [s, t], ψ(Zs

t ) is greater than ǫ.We also make use of the same abbreviated notation as above: we get rid of the symbolhat � �̂ and of the supersript s for more simpliity in (ζ̂st )s≤t≤t; we also write ψt for ψ(Zs
t )and Lψt for Trace[atD

2
z,z̄ψ(Zs

t )], s ≤ t ≤ t. Finally, we emphasize that ψ is here arbitrary:the onnetion with the form ψ = Nψ0 used in Proposition 8.9 is explained later on.The time-hange we here use is given by a variation of (8.20), namely(8.52) d

dε

[
T (Zs

t , Ẑ
s+ε
t − Zs

t )
]
|ε=0

= −ψ−1(Zs
t )Re

[
Dzψ(Zs

t )ζt
]
, s ≤ t ≤ t.21Pay attention that the values of ǫ may be di�erent from the ones given by Proposition 8.9.72



Moreover, the measure perturbation we hoose in (8.28) is(8.53) d

dε

[
G(Zs

t , Ẑ
s+ε
t − Zs

t )
]
|ε=0

= −Λσ̄∗
t ζt, s ≤ t ≤ t,for some onstant Λ to be hosen. (In other words, Ξ(Zs
t ) = −Λσ̄∗

t in (8.28).)We emphasize that both perturbations (8.52) and (8.53) are linear funtionals of ζ , witha bounded linear oe�ient. (Again, ψ−1(Zs
t ) is bounded by ǫ−1 away for t ∈ [s, t].)The dynamis of (Ẑs+ε

t )s≤t≤t then read (ompare with (8.18) and (8.25))
dẐs+ε

t = ψ1/2(Ẑs+ε
t )T (Zs

t , Ẑ
s+ε
t − Zs

t )σt
[
dBt +G(Zs

t , Ẑ
s+ε
t − Zs

t )dt
]

+ T 2(Zs
t , Ẑ

s+ε
t − Zs

t )atD
∗
z̄ψ(Zs+ε

t )dt, s ≤ t ≤ t.Di�erentiating (at least formally), we obtain
dζt = −Λatζtdt+ atD

∗
z̄,zψtζtdt+ atD

∗
z̄,z̄ψtζ̄tdt− 2ψ−1

t Re[Dzψtζt]atD
∗
z̄ψtdt.(Pay attention that the dBt terms anel.)Then,

d|ζt|2 = −2Λ〈ζ̄t, atζt〉dt+ 2Re
[
〈ζ̄t, atD∗

z̄,zψtζt〉 + 〈ζ̄t, atD∗
z̄,z̄ψtζ̄t〉

]
dt

− 4ψ−1
t Re[Dzψtζt]Re[Dzψtatζt]dt.Have in mind that ψt ≥ ǫ for t ∈ [s, t]. Then, by Young's inequality, we an �nd someonstant C(ǫ, ψ) depending on ǫ and ψ only22, suh that(8.54) d|ζt|2 ≤

[
C(ǫ, ψ) − 2Λ

]
〈ζ̄t, atζt〉dt+ ǫ2|ζt|2dt, s ≤ t ≤ t.Consider now some real R suh that R2 ≥ 2 supz∈D[|z|2]. Then, by Lemma 6.8,

d

[[
(R2 − |Zt|2)ψ−1

t

]
exp

(∫ t

0

Lψrdr

)]
= − exp

(∫ t

0

Lψrdr

)
dt+ dmt,where (mt)t≥0 stands for a generi martingale term whose value may vary from line to line.In partiular, for a small real δ > 0,

d

[[
(R2 − |Zt|2)ψ−1

t

]
exp

(∫ t

0

(1 − δ)Lψrdr

)]

=
[
−δ(R2 − |Zt|2)ψ−1

t Lψt − 1
]
exp

(∫ t

0

(1 − δ)Lψrdr

)
dt+ dmt, t ≥ 0.

(8.55)Finally, from (8.54) and (8.55),
d

[[
(R2 − |Zt|2)ψ−1

t |ζt|2
]
exp

(∫ t

0

(1 − δ)Lψrdr

)]

≤
[(
ǫ2 − δLψt

)
(R2 − |Zt|2)ψ−1

t − 1
]
|ζt|2 exp

(∫ t

0

(1 − δ)Lψrdr

)
dt

+
(
C(ǫ, ψ) − 2Λ

)[
(R2 − |Zt|2)ψ−1

t

]
〈ζ̄t, atζt〉 exp

(∫ t

0

(1 − δ)Lψrdr

)
dt

+ dmt,

(8.56)
22We here speify the dependene on ψ sine ψ may vary in the statement of Proposition 8.9.73



for s ≤ t ≤ t. Choose ǫ small enough suh that ǫR2 ≤ 1/2 and then δ small enough suhthat(8.57) δ−1 ≥ 2R2ǫ−1 sup
{
−Trace(aD2

z,z̄ψ(z)), z ∈ D, a ∈ Hd : Trace(a) = 1
}
,so that

δR2ǫ−1 sup
{
−Trace(aD2

z,z̄ψ(z)), z ∈ D, a ∈ Hd : Trace(a) = 1
}
≤ 1

2
.Then, for any s ≤ t ≤ t,

(
ǫ2 − δLψt

)
(R2 − |Zt|2)ψ−1

t − 1 ≤
(
ǫ2 − δLψt

)
R2ǫ−1 − 1 ≤ 0,so that the �rst term in the RHS in (8.56) is non-positive. Choose �nally Λ = C(ǫ, ψ)/2 toanel the seond term in the RHS in (8.56). Then,

d

[[
(R2 − |Zt|2)ψ−1

t |ζt|2
]
exp

(∫ t

0

(1 − δ)Lψrdr

)]
≤ dmt, s ≤ t ≤ t.Finally,Proposition 8.10. Let ψ be a plurisuperharmoni funtion desribing the domain D as in(A). Then, there exists a positive real ǫ3 > 0 suh that for any 0 < ǫ < ǫ3, we an �nd aonstant C(ǫ, ψ), depending on ǫ and ψ only, suh that, for any stopping time s at whih

ψ(Zs
s) > ǫ, for Λ = C(ǫ, ψ)/2 in (8.53) and R2 ≥ 2 supz∈D[|z|2], the derivative quantityobtained by perturbing the time speed as in (8.52) and the measure as in (8.53)

Γ̄
(3)
t = (R2 − |Zs

t |2)ψ−1(Zs
t )|ζt|2, t ≥ s,satis�es up to time t = inf{t ≥ s : ψ(Zs

t ) ≤ ǫ} (provided that (Ẑs+ε
t )0≤t≤t is well di�erentiablew.r.t. ε)

E

[
exp

(∫ t∧t

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r )]dr

)
Γ̄

(3)
t∧t|Fs

]

≤ exp

(∫
s

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r)]dr

)
Γ̄(3)

s , t ≥ s,with δ as in (8.57).8.7. Interpolation between the Interior and the Boundary. It now remains to gatherthe estimates at and away the boundary. To do, we introdue an interpolated version of thederivative quantity.The idea is the same as in the previous subsetion: we ouple at the same time severalperturbations. Spei�ally, we here make use of the three possible types of perturbationsdisussed in Subsetions 8.1, 8.2 and 8.4: the ontrol perturbation is given by (8.11) and(8.35), i.e.
d

dε

[
P (Zs

t , Ẑ
s+ε
t − Zs

t )
]

= |Dzψt|−2
[
D2
z̄,zψtζtDzψt +D2

z̄,z̄ψtζ̄tDzψt

−D∗
z̄ψt(D

2
z,z̄ψtζ̄t)

∗ −D∗
z̄ψt(D

2
z,zψtζt)

∗
]
,

:= Qtζt,

(8.58) 74



the time-hange perturbation is given by a variation of (8.20), namely(8.59) d

dε

[
T (Zs

t , Ẑ
s+ε
t − Zs

t )
]
|ε=0

= (λ− 1)ψ−1(Zs
t )Re

[
Dzψ(Zs

t )ζt
]
,for some real λ ∈ (0, 1) to be hosen later on, and the measure perturbation is given as avariation of (8.28):

d

dε

[
G(Zs

t , Ẑ
s+ε
t − Zs

t )
]
|ε=0

= (−2λ+ λ2 + 2)ψ−3/2(Zs
t )Re

[
Dzψ(Zs

t )ζt
]
σ̄∗
tDz̄ψ(Zs

t ).
(8.60)(We here say a variation of (8.28) sine the perturbation now involves (ζ̄t)s≤t≤t as well.Obviously, this doesn't hange the global strategy.) The dynamis of (Ẑs+ε

t )s≤t≤t then read(ompare with (8.10), (8.18) and (8.25))
dẐs+ε

t = ψ1/2(Ẑs+ε
t )T (Zs

t , Ẑ
s+ε
t − Zs

t ) exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)

× σt
[
dBt +G(Zs

t , Ẑ
s+ε
t − Zs

t )dt
]

+ T 2(Zs
t , Ẑ

s+ε
t − Zs

t ) exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
D∗
z̄ψ(Zs+ε

t )dt,for s ≤ t ≤ t.Following the loalization proedure desribed in the statement of Propositions 8.2, 8.4and 8.7, the time indies t we onsider in this subsetion are always assumed to belong tothe interval [s, t], where s is some stopping time at whih ǫ′ < ψ(Zs
t ) < ǫ, for an additionalpositive real ǫ′ 23 and t = inf{t > s : ψ(Zs

t ) 6∈]ǫ′, ǫ[}. In partiular for t ∈ [s, t], ψ(Zs
t ) belongsto [ǫ′, ǫ].We also make use of the same abbreviated notation as above: we get rid of the symbolhat � �̂ and of the supersript s for more simpliity in (ζ̂st )s≤t≤t; we also write ψt for ψ(Zs

t )and Lψt for Trace[atD
2
z,z̄ψ(Zs

t )], s ≤ t ≤ t.Then, we an di�erentiate the dynamis of (Ẑs+ε
t )t≥0 aording to the rules presribedabove. Following (8.36), we obtain

dζt

=
[
λψ

−1/2
t Re

[
Dzψtζt

]
+ ψ

1/2
t Qtζt

]
σtdBt + ψ

1/2
t ΞtatD

∗
z̄ψtdt

+
(
N−1Et + E1/2

t

)
|ζt|rtdt+ 2(λ− 1)ψ−1

t Re
[
Dzψtζt

]
atD

∗
z̄ψtdt, t ≥ 0,where (rt)s≤t≤t stands for a generi proess, bounded by some onstant C depending on(A) only. (Here and only here (rt)s≤t≤t has values in Cd. Below, it has values in C.)Above, Et := DzψtatD

∗
z̄ψt and N denotes a real greater than 1 suh that ψ = Nψ0 where

ψ0 is some referene hoie of the plurisuperharmoni funtion desribing D, suh that
Trace[aD2

z,z̄ψ
0(z)] ≤ −1 for any z ∈ D and any positive Hermitian matrix a of trae 1.Now, N−1Et is bounded by CE1/2

t , s ≤ t ≤ t, up to a modi�iation of C. (Pay attentionthat C is independent of N .) Therefore, using the boundedness of |Qtζt|/|ζt| (see (8.35)),23The values of both ǫ and ǫ′ will be spei�ed later on.75



s ≤ t ≤ t,
d|ζt|2

= λψ
−1/2
t Re

[
Dzψtζt

](
〈ζ̄t, σtdBt〉 + 〈ζt, σ̄tdB̄t〉

)

+ ψ
1/2
t

(
〈ζ̄t, QtζtσtdBt〉 + 〈ζt, Qtζtσ̄tdB̄t〉

)

+ 4(λ− 1)ψ−1
t Re

[
Dzψtζt

]
Re

[
Dzψtatζt

]
dt+ 2ψ

1/2
t ΞtRe

[
Dzψtatζt

]
dt

+
[
λ2ψ−1

t Re2[Dzψtζt] + λN |ζt|2rt + ψt|ζt|2rt + E1/2
t |ζt|2rt

]
dt.

(8.61)
Now, from (8.42),

dψ−λ
t = −λψ−λ−1/2

t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

− λ(1 − λ)ψ
−(1+λ)
t DzψtatD

∗
z̄ψtdt− λψ−λ

t Lψtdt.
(8.62)By (8.43), for K ≥ 1 to be hosen later on,

d
[
exp(−Kψt)

]

= −K exp(−Kψt)ψ1/2
t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+ [K2ψt − 2K] exp(−Kψt)DzψtatD
∗
z̄ψtdt−K exp(−Kψt)ψtLψtdt,so that

d
[
exp(−Kψt)ψ−λ

t ]

= −
[
λψ

−1/2
t +Kψ

1/2
t

]
exp(−Kψt)ψ−λ

t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+
[
K2ψt + 2λK − 2K − λ(1 − λ)ψ−1

t

]
exp(−Kψt)ψ−λ

t DzψtatD
∗
z̄ψtdt

−
[
λ+Kψt

]
exp(−Kψt)ψ−λ

t Lψtdt.Then, by (8.61) and the above equality,
d
[
exp(−Kψt)ψ−λ

t |ζt|2
]

= (4λ− 2λ2 − 4 − 2λKψt) exp(−Kψt)ψ−(1+λ)
t Re

[
Dzψtζt

]
Re

[
Dzψtatζt

]
dt

+ 2Ξt exp(−Kψt)ψ1/2−λ
t Re

[
Dzψtatζt

]
dt

+ exp(−Kψt)ψ−λ
t

[
λ2ψ−1

t Re2[Dzψtζt] + λN |ζt|2rt
+NKψt|ζt|2rt + E1/2

t |ζt|2rt
]
dt

+
[
K2ψt + 2λK − 2K − λ(1 − λ)ψ−1

t

]
exp(−Kψt)ψ−λ

t Et|ζt|2dt
−

[
λ+Kψt

]
exp(−Kψt)ψ−λ

t Lψt|ζt|2dt+ dmt,

(8.63)
where (mt)s≤t≤s stands for a generi martingale term.76



By the spei� hoie we made for (Ξt)s≤t≤t, see (8.60), and by Young's inequality,
d
[
exp(−Kψt)ψ−λ

t |ζt|2
]

≤ λ2ψ
−(1+λ)
t Re2[Dzψtζt]dt

+ C
(
λKN2 + λN +K−1 +NKψt

)
exp(−Kψt)ψ−λ

t |ζt|2dt
+

[
K2ψt − (1 − 2λ)K

]
exp(−Kψt)ψ−λ

t Et|ζt|2dt
−

[
λ+Kψt

]
exp(−Kψt)ψ−λ

t Lψt|ζt|2dt+ dmt.

(8.64)
Replaing −λ by (1 − λ)/2 in (8.62), we obtain in a similar way

dψ
(1−λ)/2
t

=
1 − λ

2
ψ

−λ/2
t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+
(1 − λ)(3 − λ)

4
ψ

−(1+λ)/2
t DzψtatD

∗
z̄ψtdt+

1 − λ

2
ψ

(1−λ)/2
t Lψtdt.

(8.65)
Below, we make use of (8.65) but at point s+ ε instead of ε. We obtain

d
[
ψ(1−λ)/2(Ẑs+ε

t )
]

=
1 − λ

2
ψ−λ/2(Ẑs+ε

t )T (Zs
t , Ẑ

s+ε
t − Zs

t )

×
[
Dzψ(Ẑs+ε

t ) exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
σt

(
dBt +G(Zs

t , Ẑ
s+ε
t − Zs

t )dt
)

+Dz̄ψ(Ẑs+ε
t ) exp

(
P̄ (Zs

t , Ẑ
s+ε
t − Zs

t )
)
σ̄t

(
dB̄t + Ḡ(Zs

t , Ẑ
s+ε
t − Zs

t )dt
)]

+
(1 − λ)(3 − λ)

4
ψ−(1+λ)/2(Ẑs+ε

t )T 2(Zs
t , Ẑ

s+ε
t − Zs

t )Dzψ(Ẑs+ε
t )

× exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
at exp

(
−P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
D∗
z̄ψ(Ẑs+ε

t )dt

+
1 − λ

2
ψ(1−λ)/2(Ẑs+ε

t )T 2(Zs
t , Ẑ

s+ε
t − Zs

t )

× Trace
[
exp

(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
D2
z,z̄ψ(Ẑs+ε

t )
]
dt.

(8.66)
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We now di�erentiate aording to the rules presribed above (see in partiular (8.58),(8.59) and (8.60)). Using (8.46), we obtain
(1 − λ)d

[
ψ

−(1+λ)/2
t Re[Dzψtζt]

]

=
1 − λ

2
ψ

−λ/2
t

[
−ψ−1

t Re[Dzψtζt] + rt|ζt|
][
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+ (1 − λ)ψ
−λ/2
t ΞtDzψtatD

∗
z̄ψtdt

+
(1 − λ)(3 − λ)

4

[
−1 − λ− 2 + 2λ

]
ψ

−(3+λ)/2
t Re[Dzψtζt]DzψtatD

∗
z̄ψtdt

+
(1 − λ)(3 − λ)

4
ψ

−(1+λ)/2
t rt|ζt|DzψtatD

∗
z̄ψtdt

+
1 − λ

2

[
1 − λ− 2 + 2λ

]
ψ

−(1+λ)/2
t Re[Dzψtζt]Lψtdt

+ (1 − λ)ψ
(1−λ)/2
t

[
Re

(
DzLψtζt

)
+ Re

(
Trace[QtζtatD

2
z,z̄ψt]

)]
dt.In a shorter way,

d
[
ψ

−(1+λ)/2
t Re[Dzψtζt]

]

=
1

2
ψ

−λ/2
t

[
−ψ−1

t Re[Dzψtζt] + rt|ζt|
][
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+
3 − λ

4
(λ− 3)ψ

−(3+λ)/2
t Re[Dzψtζt]DzψtatD

∗
z̄ψtdt

+
3 − λ

4
ψ

−(1+λ)/2
t rt|ζt|DzψtatD

∗
z̄ψtdt+ ψ

−λ/2
t ΞtDzψtatD

∗
z̄ψtdt

+
1

2
(λ− 1)ψ

−(1+λ)/2
t Re[Dzψtζt]Lψtdt

+ ψ
(1−λ)/2
t

[
Re

(
DzLψtζt

)
+ Re

(
Trace[QtζtatD

2
z,z̄ψt]

)]
dt.Finally, taking the square, we obtain

d
[
ψ

−(1+λ)
t Re2[Dzψtζt]

]

=

{
1

2
ψ

−(2+λ)
t Re2[Dzψtζt] + ψ−λ

t rt|ζt|2 + ψ
−(1+λ)
t Re[Dzψtζt]rt|ζt|

+
(3 − λ)

2
(λ− 3)ψ

−(2+λ)
t Re2[Dzψtζt] + 2ψ

−(1/2+λ)
t Re[Dzψtζt]Ξt

}

×DzψtatD
∗
z̄ψtdt

+ (λ− 1)ψ
−(1+λ)
t Re2[Dzψtζt]Lψtdt

+ 2ψ−λ
t Re[Dzψtζt]

[
Re

(
DzLψtζt

)
+ Re

(
Trace[QtζtatD

2
z,z̄ψt]

)]
dt+ dmt.78



In abbreviated notations, we dedue
d
[
ψ

−(1+λ)
t Re2[Dzψtζt]

]

=
1 + (3 − λ)(λ− 3)

2
ψ

−(2+λ)
t Re2[Dzψtζt]Etdt

+ 2ψ
−(1/2+λ)
t Re[Dzψtζt]ΞtEtdt

+ ψ
−(1+λ)
t Re[Dzψtζt]Et|ζt|rtdt

+ (λ− 1)ψ
−(1+λ)
t Re2[Dzψtζt]Lψtdt+N2ψ−λ

t |ζt|2rtdt+ dmt.Reall now from (8.60) that Ξt = (−2λ + λ2 + 2)ψ
−3/2
t Re[Dzψtζt]. Then, applying Young'sinequality to the seond term in the above RHS,

d
[
ψ

−(1+λ)
t Re2[Dzψtζt]

]

≤
(
−1

2
λ+

3

2
λ2

)
ψ

−(2+λ)
t EtRe2[Dzψtζt]dt

+ C(λ−1Et +N2)ψ−λ
t |ζt|2dt+ (λ− 1)ψ

−(1+λ)
t Re2[Dzψtζt]Lψtdt+ dmt.

(8.67)Choose now ǫ ≤ 1 and λ ≤ ǫ small enough suh that −λ/2 + 3λ2/2 < 0 and N = K = ǫ−1/4.Then, (8.64) writes for ψt ≤ ǫ

d
[
exp(−Kψt)ψ−λ

t |ζt|2
]

≤ λ2ψ
−(1+λ)
t Re2[Dzψtζt]dt+ Cǫ1/4 exp(−Kψt)ψ−λ

t |ζt|2dt
+

[
3ǫ1/2 − ǫ−1/4

]
exp(−Kψt)ψ−λ

t Et|ζt|2dt+ dmt.

(8.68)In the same way, (8.67) has the form
d
[
ψ

−(1+λ)
t Re2[Dzψtζt]

]
≤ C(λ−1Et + ǫ−1/2) exp(−Kψt)ψ−λ

t |ζt|2dt
+ (λ− 1)ψ

−(1+λ)
t Re2[Dzψtζt]Lψtdt+ dmt.

(8.69)Consider now the modi�ed derivative quantity
Γ̄t = exp(−Kψt)ψ−λ

t |ζt|2 + 2λǫ1/4ψ
−(1+λ)
t Re2[Dzψtζt].From (8.68) and (8.69), we obtain

dΓ̄t ≤ Cǫ1/4 exp(−Kψt)ψ−λ
t |ζt|2dt

+
(
Cǫ1/4 − ǫ−1/4

)
exp(−Kψt)ψ−λ

t Et|ζt|2dt
+

[
2λ(λ− 1)ǫ1/4Lψt + λ2

]
ψ

−(1+λ)
t Re2[Dzψtζt]dt+ dmt.For Cǫ1/4 − ǫ−1/4 < 0, we dedue

dΓ̄t ≤ Cǫ1/4 exp(−Kψt)ψ−λ
t |ζt|2dt

+
[
λ2(2Lψ0

t + 1) − 2λǫ1/4Lψt
]
ψ

−(1+λ)
t Re2[Dzψtζt]dt+ dmt.79



Sine Lψ0
t ≤ −1, we �nally dedue

dΓ̄t ≤ Cǫ1/4 exp(−Kψt)ψ−λ
t |ζt|2dt

+
[
λ2Lψ0

t − 2λǫ1/4Lψt
]
ψ

−(1+λ)
t Re2[Dzψtζt]dt+ dmt

≤ Cǫ1/4 exp(−Kψt)ψ−λ
t |ζt|2dt

+ 2
[
(λ/2 − 1)Lψt

]
λǫ1/4ψ

−(1+λ)
t Re2[Dzψtζt]dt+ dmt.Following (8.50) and (8.51), we dedue that(8.70) d

[
exp

(∫ t

0

(1 − λ/2)Lψrdr

)
Γ̄t

]
≤ dmt, s ≤ t ≤ t,for ǫ small enough and λ ≤ ǫ.We dedueProposition 8.11. Let ψ be a plurisuperharmoni funtion desribing the domain D asin (A). Then, there exists a positive real ǫ2 > 0 suh that for any 0 < ǫ′ < ǫ < ǫ2 and

0 < λ < ǫ, for N = K = ǫ−1/4, ψ = Nψ0 (with ψ0 as in the statement of Proposition8.9) and any stopping time s at whih ψ(Zs
s) ∈ [ǫ′, ǫ], the derivative quantity obtained byperturbing the ontrol parameter as in (8.58), the time speed as in (8.59) and the measureas in (8.60):

Γ̄
(2)
t = exp(−Kψt)ψ−λ(Zs

t )|ζt|2 + 2λǫ1/4ψ
−(1+λ)
t Re2[Dzψ(Zs

t )ζt], t ≥ s,satis�es up to time t = inf{t ≥ s : ψ(Zs
t ) 6∈]ǫ′, ǫ[} (provided that (Ẑs+ε

t )s≤t≤t is well di�eren-tiable w.r.t. ε)
E

[
exp

(∫ t∧t

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r )]dr

)
Γ̄

(2)
t∧t|Fs

]

≤ exp

(∫
s

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r)]dr

)
Γ̄(2)

s
, t ≥ s,with δ = λ/2.8.8. Global Derivative Quantity. The reader might understand the problem we are faingright now: above, we have de�ned three di�erent derivative quantities aording to theposition of the underlying representation proess in the domain D. Surely, we must gatherinto a single one the three di�erent parts to ontrol the dynamis on the whole spae.Atually, the strategy is not so ompliated. In what follows, we are given 0 < ǫ <

min(ǫ1, ǫ2, ǫ3) in the statements of Propositions 8.9, 8.10 and 8.11 and we hoose ψ = ǫ−1/4ψ0in eah statement and λ = ǫ2 in the statement of Proposition 8.11. Then, the three di�erentderivative quantities have the forms
Γ̄

(1)
t = exp(−ǫ−1/4ψt)|ζt|2 + ψ−1

t Re2
[
Dzψtζt

]
,

Γ̄
(2)
t = exp(−ǫ−1/4ψt)ψ

−ǫ2

t |ζt|2 + 2ǫ9/4ψ
−(1+ǫ2)
t Re2

[
Dzψtζt

]
,

Γ̄
(3)
t = (R2 − |Zt|2)ψ−1

t |ζt|2.
(8.71)At this stage of the proof, the de�nitions of Γ̄(1), Γ̄(2) and Γ̄(3) are purely formal sine theperturbed proess (Ẑs+ε

t )t≥0 has not been de�ned in a global way yet. Obviously, (Zt)t≥0,80



(ψt)t≥0, (ζt)t≥0 and (Dzψt)t≥0 will be understood as (Zs
t )t≥0, solution of (8.9), (ψ(Zs

t ))t≥0,
([d/dε][Ẑs+ε

t ])t≥0 and (Dzψ(Zs
t ))t≥0.For the moment, we laimProposition 8.12. Let (Zt)t≥0 be a proess with values in D and (ζt)t≥0 be another proesswith values in Cd. Setting ψt = ψ(Zt) and Dzψt = Dzψ(Zt), t ≥ 0, onsider (Γ̄

(1)
t )t≥0,

(Γ̄
(2)
t )t≥0 and (Γ̄

(3)
t )t≥0 as in (8.71).Then, there exists a real 0 < ǫ0 < min(ǫ1, ǫ2, ǫ3), depending on Assumption (A) only, suhthat for ǫ < ǫ0, we an �nd three reals ǫ4 < ǫ/4 and µ2, µ3 > 0, depending on ǫ and (A) only,suh that
ψt = ǫ⇒ µ2Γ̄

(2)
t ≥ µ3Γ̄

(3)
t

ψt = ǫ/2 ⇒ Γ̄
(1)
t ≥ µ2Γ̄

(2)
t

(
+(1 − 2ǫ9/4)ψ−1

t Re2
[
Dzψtζt

])

ψt = ǫ/4 ⇒ µ3Γ̄
(3)
t ≥ µ2Γ̄

(2)
t

ψt = ǫ4 ⇒ µ2Γ̄
(2)
t ≥ Γ̄

(1)
t

(
+

[( ǫ

2ǫ4

)ǫ2 − 1
]
|ζt|2

)
.Above, additional terms in parentheses are positive for ǫ0 small enough. They are uselessin the whole Setion 8. They will be useful in Setion 9.Proposition 8.12 may be understood through Figure 8.8 below. Eah drawn urve standsfor a possible graph of one of the three derivative quantities in Proposition 8.12. Theboundary points of eah urve (exept the ones in 0 and ǫ) are bounded from below bythe urrent point of another urve.
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ψtε

4
ε4

ε
2

ε

•
Γ̄1

µ3Γ̄3

µ2Γ̄2
•
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•

Figure 8.8. Representation of the derivative quantities.Proof. When ψt = ǫ/2, it is lear that
( ǫ
2

)ǫ2
Γ̄

(2)
t ≤ Γ̄

(1)
t ,provided 2ǫ9/4 ≤ 1 (whih is obviously true for ǫ small enough).81



If 2(ǫ/2)ǫ
2

ǫ9/4ψ−ǫ2

t = 1 (i.e. ψt = ǫ4, with ǫ4 muh more smaller than ǫ/2), then
( ǫ
2

)ǫ2
Γ̄

(2)
t ≥ Γ̄

(1)
t .We thus hoose µ2 = (ǫ/2)ǫ

2.When ψt = ǫ,(8.72) ǫ1−ǫ
2

R−2 exp(−ǫ3/4)Γ̄(3)
t ≤ Γ̄

(2)
t .When ψt = ϑǫ,

Γ̄
(2)
t ≤ (ϑǫ)1−ǫ2ψ−1

t |ζt|2 + 2ǫ9/4−ǫ
2

ϑ−ǫ
2‖Dzψ‖2

∞ψ
−1
t |ζt|2

≤ (ϑǫ)1−ǫ2ψ−1
t |ζt|2 + 2ǫ7/4−ǫ

2

ϑ−ǫ
2‖Dzψ

0‖2
∞ψ

−1
t |ζt|2,sine ψ = ǫ−1/4ψ0.Sine R2 ≥ 2 supz∈D[|z|2], we have R2− supz∈D[|z|2] ≥ R2/2 so that Γ̄

(3)
t ≥ (R2/2)ψ−1

t |ζt|2.We dedue
Γ̄

(2)
t ≤ 2R−2

[
(ϑǫ)1−ǫ2 + 2ǫ7/4−ǫ

2

ϑ−ǫ
2‖Dzψ

0‖2
∞

]
Γ̄

(3)
t .Finally,

Γ̄
(2)
t ≤ 2R−2

[
(ϑǫ)1−ǫ2 + 2ǫ7/4−ǫ

2

ϑ−ǫ
2‖Dzψ

0‖2
∞

]
Γ̄

(3)
t

≤ 2 exp(ǫ3/4)
[
ϑ1−ǫ2 + 2ǫ3/4ϑ−ǫ

2‖Dzψ
0‖2

∞

]
ǫ1−ǫ

2

R−2 exp(−ǫ3/4)Γ̄(3)
t .Choose ϑ = 1/4. Then,

Γ̄
(2)
t ≤ 2 exp(ǫ3/4)

[
4−1+ǫ2 + 2 · 4ǫ2ǫ3/4‖Dzψ

0‖2
∞

]
ǫ1−ǫ

2

R−2 exp(−ǫ3/4)Γ̄(3)
t .Then, for ǫ small enough,

Γ̄
(2)
t ≤ ǫ1−ǫ

2

R−2 exp(−ǫ3/4)Γ̄(3)
t .We �nally hoose µ3 = [ǫ1−ǫ

2

R−2 exp(−ǫ3/4)]µ2, so that µ2Γ̄
(2)
t ≤ µ3Γ̄

(3)
t when ψt = ǫ/4. By(8.72), µ3Γ̄

(3)
t ≤ µ2Γ̄

(2)
t when ψt = ǫ. �Proposition 8.13. Let ǫ ∈ (0, ǫ0) and ǫ4 be as in Proposition 8.12, de�ne the following sets:

U0 =
{
z ∈ D : ψ(z) ≤ ǫ4

}

U1 =
{
z ∈ D : ǫ4 ≤ ψ(z) ≤ ǫ/2

}

U2 =
{
z ∈ D : ǫ/4 ≤ ψ(z) ≤ ǫ

}

U3 =
{
z ∈ D : ψ(z) ≥ ǫ

}
.Let γ be a smooth path from [−1, 1] into U3, s be some �xed point in (−1, 1) and (Zs

t )t≥0 bethe solution of (8.1) with γ(s) as initial ondition.82



De�ne as well (τn)n≥1 as the sequene of exit times of the proess (ψ(Zs
t ))t≥0 from the sets

[ǫ/4,+∞), [ǫ4, ǫ] and [0, ǫ/2], i.e.
τ1 := inf

{
t ≥ 0 : ψt = ψ(Zs

t ) ≤ ǫ/4
}
,

τ2 := inf
{
t > τ1 : ψt 6∈]ǫ4, ǫ[

}
,

τ3 := inf
{
t > τ2 : ψt 6∈ [0, ǫ/2[

}
if ψτ2 = ǫ4,

τ3 := inf
{
t > τ2 : ψt ≤ ǫ/4

}
if ψτ2 = ǫ,

· · ·(If τn = +∞, then τn+1 = +∞ as well, n ≥ 1.)For initial onditions of the form γ(s+ε), onsider the perturbed version (Ẑs+ε
t )0≤t≤τ1 as inProposition 8.10 (ǫ/4 playing the role of ǫ) up to time τ1. If τ1 < +∞, extend the perturbedproess as (Ẑs+ε

t )τ1≤t≤τ2 aording to the perturbation of Proposition 8.11 (ǫ/2 playing therole of ǫ, ǫ′ being equal to ǫ4 and λ to ǫ2) up to time τ2. And so on. . . aording to Figure8.13 below.
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Figure 8.13. Choie of the perturbations.Assume that the whole proess (Ẑs+ε
t )t≥0 is di�erentiable in the mean w.r.t. ε and that thederivative proess (ζt = (d/dε)[Ẑs+ε

t ]|ε=0)t≥0 satis�es the SDE obtained by di�erentiation ofthe oe�ients of the perturbations as in Theorem 7.2. Then, from time 0 to time τ1, onsideras derivative quantity the proess (µ3Γ̄
(3)
t )0≤t≤τ1 de�ned in Proposition 8.10. From time τ1(if �nite) to time τ2, onsider as derivative quantity the proess (µ2Γ̄

(2)
t )τ1<t≤τ2 de�ned inProposition 8.11. And so on. . . aording to Figure 8.8. Denote by (Γ̄t)t≥0 the resulting globalderivative quantity. (So that the proess is left-ontinuous.)Then, we an �nd α ∈ (0, 1), depending on (A) and ǫ only, suh that

E

[
Γ̄t exp

(∫ t

0

αLψ(Zs
r )dr

)]
≤ Γ̄0, t ≥ 0.83



Moreover, there exists a onstant C ≥ 0, depending on (A) and ǫ only, suh that(8.73) E

[
|ζt|2 exp

(∫ t

0

αLψrdr

)]
≤ CΓ̄0, t ≥ 0.Proof. By Proposition 8.10, we an �nd some exponent α < 1 (depending on (A) and ǫonly) suh that(8.74) d

[
Γ̄

(3)
t exp

(∫ t

0

αLψrdr

)]
≤ dmt, 0 ≤ t ≤ τ1,

(mt)t≥0 standing for a generi martingale term (whose value may vary from line to line).Consider the ase when τ1 < +∞. By Proposition 8.11, we an modify α so that(8.75) d

[
Γ̄

(2)
t exp

(∫ t

0

αLψrdr

)]
≤ dmt, τ1 ≤ t ≤ τ2We then gather both derivative quantities (µ3Γ̄
(3)
t )0≤t≤τ1 and (µ2Γ̄

(2)
t )τ1≤t≤τ2 into a singleone, denoted by (Γ̄t)0≤t≤τ2 . Obviously, it may be disontinuous at time τ1: by onvention,we assume it to be left-ontinuous so that Γ̄τ1 = µ3Γ̄

(3)
τ1 . Then, we an rewrite (8.74) and(8.75) as

E

[
µ3Γ̄

(3)
τ1

exp

(∫ τ1

0

αLψrdr

)
1{τ1<+∞}

]
≤ µ3Γ̄

(3)
0 = Γ̄0

E

[
µ2Γ̄

(2)
t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
|Fτ1

]
1{τ1<+∞}

≤ µ2Γ̄
(2)
t∧τ1 exp

(∫ t∧τ1

0

αLψrdr

)
1{τ1<+∞}.

(8.76)
(The seond inequality above is obviously true if t ≤ τ1: in that ase, everything is knownat time t∧ τ2 and the onditional expetation is useless. Otherwise, i.e. if t > τ1, the seondinequality is a onsequene of (8.75). Add also that {τ1 < +∞} ∈ Fτ1 : at time τ1, τ1 isknown to be �nite or not.)We now apply Proposition 8.12. If τ1 < +∞ and t > τ1, we know that ψt∧τ1 = ψτ1 = ǫ/4so that µ2Γ̄

(2)
τ1 ≤ µ3Γ̄

(3)
τ1 . Then, for t > τ1 (and τ1 < +∞), (8.76) yields

E

[
µ2Γ̄

(2)
t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
|Fτ1

]
≤ µ3Γ̄

(3)
τ1 exp

(∫ τ1

0

αLψrdr

)
,i.e.

E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
|Fτ1

]
≤ Γ̄τ1 exp

(∫ τ1

0

αLψrdr

)
.84



Finally, for any t ≥ 0,
E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)]

= E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
1{τ1<t}

]

+ E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
1{τ1≥t}

]

= E

[
E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
1{τ1<t}

]∣∣Fτ1

]

+ E

[
E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
1{τ1≥t}

]∣∣Fτ1

]
.Therefore,

E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)]

≤ E

[
Γ̄τ1 exp

(∫ τ1

0

αLψrdr

)
1{τ1<t}

]

+ E

[
Γ̄t∧τ1 exp

(∫ t∧τ1

0

αLψrdr

)
1{τ1≥t}

]

= E

[
Γ̄t∧τ1 exp

(∫ t∧τ1

0

αLψrdr

)]
≤ Γ̄0.In other words, we are able to gather the two inequalities in (8.76) into a single one overthe whole interval [0, τ2). By indution, we an proess further: if τ2 < +∞ and ψτ2 = ǫ4,we make use of Proposition 8.9 up to τ3 = inf{t > τ2 : ψt ≥ ǫ/2}; if τ2 < +∞ and ψτ2 = ǫ,we make use of Proposition 8.10 up to τ3 = inf{t > τ2 : ψt ≤ ǫ/4}; we then extend Γ̄t to

[0, τ3) by using Proposition 8.12 (at time τ2, µ2Γ̄
(2)
τ2 is greater than the two other derivativequantities); and so on... We then extend the derivative quantity to the whole [0,+∞) insuh a way that

E

[
Γ̄t exp

(∫ t

0

αLψrdr

)]
≤ Γ̄0.Of ourse, the value of Γ̄t is given by one of the three original derivative quantities Γ̄

(1)
t ,

µ2Γ̄
(2)
t and µ3Γ̄

(3)
t aording to the position of Zs

t in D. (See Figure 8.8.) What is importantis that, in any ase, Γ̄t ≥ c|ζt|2, for some positive c depending on (A) and ǫ only. Eq. (8.73)follows. �8.9. Conlusion. It now remains to gather all the loalized value funtions into a singleone:Proposition 8.14. Keep the assumption and notation of Proposition 8.13. (In partiular,
s stands below for some �xed real in (−1, 1).) Given S > 0 and ε with s+ε ∈ (−1, 1), de�ne85



the globally perturbed analog of V in Proposition 6.9
V̂ σ
S (s+ ε)

= E

∫ +∞

0

[
exp

(
−

∫ t

0

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
]

−
∫ t

0

|G|2(Zs
r , Ẑ

s+ε
r − Zs

r )dr

)

× exp

(∫ t

0

|τ εr |2Trace[exp(pεr)ar exp(−pεr)D2
z,z̄ψ(Ẑs+ε

r )]dr

)

× F
(
det(at), exp(pεt )at exp(−pεt ), Ẑs+ε

t

)
φ
(Tε

t

S

)]
|τ εt |2dt,

(8.77)
where the quantities (pεt = P (Zs

t , Ẑ
s+ε
t −Zs

t ))t≥0, (τ εt = T (Zs
t , Ẑ

s+ε
t −Zs

t ))t≥0 and (G(Zs
t , Ẑ

s+ε
t −

Zs
t ))t≥0 stand for the di�erent possible perturbations used in Proposition 8.13. Preisely, pεis set equal to 0 outside the intervals on whih the perturbation of Proposition 8.2 applies,

τ ε is set equal to 1 outside the intervals on whih the perturbation of Proposition 8.4 appliesand (G(Zs
t , Ẑ

s+ε
t − Zs

t ))t≥0 is set equal to 0 outside the intervals on whih the perturbationof Proposition 8.7 applies. Moreover, Ṫε
t = |τ εt |2, t ≥ 0.Then, at point s, supσ V̂

σ
S (s) = VS(γ(s)) exatly, where VS(γ(s)) stands for the �nite-horizon version of V (γ(s)) in Proposition 6.9, i.e.

VS(z) = sup
σ
V σ
S (z), z ∈ D,where

V σ
S (z) = E

[∫ +∞

0

exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zσ,z

r )
]
dr

)

× F (det(at), at, Z
σ,z
t )φ

( t
S

)
dt

]
.Moreover, for any ontrol (σt)t≥0, V̂ σ

S (s+ ε) ≤ VS(γ(s+ ε)).Sketh of the Proof. The equality supσ V̂
σ
S (s) = VS(γ(s)) is easily seen.The proof of the inequality supσ V̂

σ
S (s + ε) ≤ VS(γ(s + ε)) is a bit more hallenging. Wewon't perform it in a omplete way. We refer the reader to the original artiles by Krylov[6, 8℄: the argument is explained therein in a very detailed way. However the idea is quitelear and onsists in oupling the arguments given in Subsetions 8.2, 8.3 and 8.4: modi�-ation of the ontrol, of the time speed and of the measure. �Here is the �nal step:Proposition 8.15. Keep the assumption and notation of Propositions 8.13 and 8.14. As-sume in addition that, for any S > 0 and s ∈ [−1, 1],(8.78) lim sup

ε→0
sup
σ

sup
|ε′|<|ε|

[∣∣ ∂
∂ε′

[
V̂ σ
S (s+ ε′)

]∣∣] =
∣∣ ∂
∂ε′

[
V̂ σ
S (s+ ε′)

]
|ε′=0

∣∣.86



Assume also that, for every ompat interval I ⊂ (−1, 1), for ε small enough, the quantity
supσ sup|ε′|<|ε|[|(∂/∂ε′)[V̂ σ

S (s + ε′)]|] is uniformly bounded w.r.t. s ∈ I. (Pay attention thatthe de�nition of the funtion V̂ σ
S depends on s itself.)Then, there exists a onstant C > 0, depending on (A) and the distane from γ([−1, 1])to ∂D only, suh that, for any S > 0, the funtion s ∈ (−1, 1) 7→ VS(γ(s))+C

∫ s

0
|γ′(r)|dr isnon-dereasing and the funtion s ∈ (−1, 1) 7→ VS(γ(s)) − C

∫ s

0
|γ′(r)|dr is non-inreasing.Proof. Without loss of generality, we an assume ǫ to be small enough so that γ([−1, 1]) ⊂

U3, with U3 as in Proposition 8.13. Following the proofs of Propositions 8.2, 8.4 and 8.7, wethen laim that (C being as in the statement)
∣∣ d
dε

[
V̂ σ
S (s+ ε)

]
|ε=0

∣∣ ≤ CE

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)

×
[
|ζt| +

∫ t

0

(1 + r−1/2)|ζr|dr
]
dt

]
.

(8.79)Reall that Trace[arD
2
z,z̄ψ(Zs

r )] ≤ −N = ǫ−1/4. By (8.73), we dedue
∣∣ d
dε

[
V̂ σ
S (s+ ε)

]
|ε=0

∣∣

≤ CE

[∫ +∞

0

exp
(
−N(1 − α/2)t

)[
|ζ̂t| exp

(∫ t

0

(α/2)Lψrdr

)

+

∫ t

0

(1 + r−1/2)|ζ̂r| exp

(∫ r

0

(α/2)Lψudu

)
dr

]
dt

]

= C

∫ +∞

0

exp
(
−N(1 − α/2)t

){
E

[
|ζ̂t| exp

(∫ t

0

(α/2)Lψrdr

)]

+

∫ t

0

(1 + r−1/2)E

[
|ζ̂r| exp

(∫ r

0

(α/2)Lψudu

)]
dr

}
dt

≤ CΓ̄
1/2
0

∫ +∞

0

exp
(
−N(1 − α/2)t

)
(1 + t)dt ≤ CΓ̄

1/2
0 ,the last line following from Cauhy-Shwarz inequality.Sine Γ̄0 = Γ̄

(3)
0 , we dedue that(8.80) ∣∣ d

dε

[
V̂ σ
S (s+ ε)

]
|ε=0

∣∣ ≤ CR|γ(s)|−1/2|γ′(s)|.Unfortunately, the above estimate is a bit weaker than (8.5) and is not su�ient to reover(8.81) lim inf
ε→0,ε 6=0

VS(γ(s+ ε)) − VS(γ(s))

|ε| ≥ −CR|γ(s)|−1/2|γ′(s)|,as in (8.6). 87



To reover (8.6), we take bene�t of (8.78). Indeed, by the mean value Theorem, we angeneralize (8.80) and write (for a possibly new value of the onstant C)
VS(γ(s+ ε)) − VS(γ(s)) ≥ inf

σ

[
V̂ σ
S (s+ ε) − V̂ σ

S (s)
]

≥ −C|ε| sup
|ε′|<|ε|

sup
σ

[∣∣ d
dε′

[
V̂S(s+ ε′)

]∣∣].
(8.82)By (8.78) and (8.80), we dedue (8.81). Modifying the onstant C in (8.81) (have in mindthat C may depend on ǫ but is independent of S and s), we dedue that

lim inf
ε→0,ε>0

ε−1

[
VS(γ(s+ ε)) + CR

∫ s+ε

0

|γ′(r)|dr

− VS(γ(s)) − CR

∫ s

0

|γ′(r)|dr
]
≥ 0.

(8.83)Atually, (8.82) says a little bit more. Sine sup|ε′|<|ε| supσ[|[d/dε′](V̂S(s+ε′))|] is bounded in
s in ompat subsets of (−1, 1) (at least for |ε| small enough), we dedue that the funtion
VS◦γ is Lipshitz ontinuous and thus ontinuous. (Pay attention that the Lipshitz onstantmay depend on S at this stage of the proof.) Indeed, the LHS in (8.82) being bounded frombelow uniformly in s, the points s and s + ε may be exhanged, so that the bound holdsfrom above as well.We then dedue from (8.83) that the funtion s ∈ (−1, 1) 7→ VS(γ(s)) + C

∫ s

0
|γ′(r)|dr isnon-dereasing.Letting S tend to +∞, we dedue that the funtion s ∈ (−1, 1) 7→ V (γ(s))+C
∫ s

0
|γ′(r)|dris non-dereasing. Similarly (i.e. by hanging ε into −ε), we an prove that the funtion

s ∈ (−1, 1) 7→ V (γ(s)) − C
∫ s

0
|γ′(r)|dr is non-inreasing.To omplete the proof of Meta-Theorem 8.1, it remains to hoose γ. For some point zsuh that ψ(z) > ǫ, we an set γ(s) = z + sν, s ∈ [−1, 1], for some ν ∈ Cd suh thatthe omplex losed ball of enter z and of radius |ν| be inluded in U3. (See the de�ni-tion of U3 in the statement of Proposition 8.13.) Then, V (γ(1)) − V (γ(0)) + C|ν| ≥ 0 and

V (γ(1)) − V (γ(0)) − C|ν| ≤ 0, i.e. |V (z + ν) − V (z)| ≤ C|ν|, the onstant C here depend-ing on ǫ. Going bak to the onnetion between V and the solution to Monge-Ampère inProposition 6.9, we understand that the solution to Monge-Ampère is Lipshitz ontinuousin every ompat subset of D. �Unfortunately, the argument fails for the seond-order derivatives. The reason is quite sim-ple. Indeed, we wish to apply Proposition 7.9. Replaing (ζt)t≥0 by (ηt = [d2/dε2](Ẑs+ε
t ))t≥0in the de�nition of Γ̄

(1)
t , Γ̄

(2)
t and Γ̄

(3)
t in (8.71), the problem is to prove that the result-ing global seond-order derivative quantity, denoted by (Γ̄t(ηt))t≥0, satis�es (ompare with(8.73))

E

[
Γ̄

1/2
t (ηt) exp

(∫ t

0

αLψ(Zs
r )dr

)]
≤ CΓ̄

1/2
0 , t ≥ 0.In some sense, this mathes (7.22) in Proposition 7.9.The problem is not to prove ∂Γ̄t(ηt) ≤ α′Lψ(Zs

r )Γ̄t(ηt), t ≥ 0. (The notation (∂Γ̄t(ηt))t≥0has the same meaning as in Proposition 7.9.) Basially, if the inequality is satis�ed for ζt, itis satis�ed for ηt as well: it is su�ient to replae ζt by ηt therein. The problem is somewhere88



else: in Proposition 7.9, the derivative quantity is assumed to be driven by a quadrati formequivalent to the Hermitian (Eulidean in the real ase) one. Obviously, this is not the asewhen using (Γ̄t(ηt))t≥0 sine (Γ̄
(1)
t )t≥0 in (8.71), whih is the derivative quantity we used inthe neighborhood of the boundary, has some singular oe�ient inside: (ψ−1

t )t≥0.9. Proof of the C1,1-Regularity up to the BoundaryWe now omplete the proof of Theorem 6.1.In omparison with Setion 8, Krylov's program onsists in introduing an alternativerepresentation of the solution of the Monge-Ampère equation in the neighborhood of theboundary and to assoiate a new derivative quantity with it, free of any singularities, so thatProposition 7.9 may apply.9.1. Representation Proess on a Zero Surfae. The trik onsists in introduing aparameterized version of Eq. (6.12) in the statement of Proposition 6.9. In what follows, wethus onsider the system (with values in Cd × C2)
dZt =

∑

i=1,2

Y i
t σtdB

i
t + atDz̄ψ

∗(Zt)dt,

dY i
t = Dz̄ψ(Zt)σ̄tdB̄

i
t +

1

2
Y i
t Trace

[
atD

2
z,z̄ψ(Zt)

]
dt, t ≥ 0, i = 1, 2,

(9.1)where B1 and B2 denote two independent omplex Brownian motion of dimension d. Atthat point of the proof, we don't know whether the proess (Zt)t≥0 stays inside D or not:sine ψ is C4 in the neighborhood of D̄, we an extend it to the whole Cd into a C4 boundedfuntion with bounded derivatives. For suh an extension and for a given initial ondition
(Z0, Y0), the above system has loally Lipshitz oe�ients and is therefore uniquely solvableon some interval [0, τ), τ here standing for a stopping time.In what follows, we set Φ(z, y) = ψ(z) − |y|2 for z ∈ Cd (ψ being extended to the wholespae) and y ∈ C2. We prove below that, for Z0 ∈ D, the solution (Zt, Yt)0≤t<τ lives in alevel set of the funtion Φ so that it an be extended to the whole [0,+∞), i.e. τ = +∞.(Indeed, the level set property says that (Yt)0≤t<τ is bounded by a universal onstant.) Todo so, we ompute for 0 ≤ t < τ :

dψ(Zt) =
∑

i=1,2

Y i
t Dzψ(Zt)σtdB

i
t +

∑

i=1,2

Ȳ i
t Dz̄ψ(Zt)σ̄tdB̄

i
t

+ 2Dzψ(Zt)atDz̄ψ
∗(Zt)dt+ |Yt|2Trace(atD

2
z,z̄ψ(Zt))dt.

(9.2)Above, |Yt|2 = |Y 1
t |2 + |Y 2

t |2. Now, we write for i ∈ {1, 2} and 0 ≤ t < τ :
d|Y i

t |2 = Y i
t Dzψ(Zt)σtdB

i
t + Ȳ i

tDz̄ψ(Zt)σ̄tdB̄
i
t

+ |Y i
t |2Trace

[
atD

2
z,z̄ψ(Zt)

]
dt+Dzψ(Zt)atDz̄ψ

∗(Zt)dt.
(9.3)As a onsequene, we obtain that(9.4) d

(
ψ(Zt) − |Yt|2

)
= 0, 0 ≤ t < τ,so that the proess (ψ(Zt) − |Yt|2)0≤t<τ lives on a level set of the funtion Φ. Therefore,

(Yt)0≤t<τ is bounded by some universal onstant, so that Eq. (9.1) appears as a Lipshitzsystem. 89



It now remains to understand how the dynamis of (Z, Y ) are onneted with the originalones of Z in (6.12). To this end, we set(9.5) Wt =
∑

i=1,2

∫ t

0

( Y i
s

|Ys|
1{|Ys|>0} +

1√
2
1{|Ys|=0}

)
dBi

s, t ≥ 0.Clearly, (Wt)t≥0 is a martingale with values in Cd. Atually, for any oordinates 1 ≤ j, k ≤
d,(9.6) d[W j

tW
k
t ] = 0, d[W j

t W̄
k
t ] = δj,kdt,where δj,k stands for the Kroneker symbol. Following Footnote (12), (Wt)t≥0 is a omplexBrownian motion of dimension d. Moreover, (9.5) implies(9.7) |Yt|dWt =

∑

i=1,2

Y i
t dB

i
t, t ≥ 0.Choose now Z0 ∈ D and Y0 ∈ C2 suh that ψ(Z0) = |Y0|2. By (9.4), ψ(Zt) = |Yt|2 for any

t ≥ 0 so that (9.7) has the form
ψ1/2(Zt)dWt =

∑

i=1,2

Y i
t dB

i
t, t ≥ 0.In partiular, (Zt)t≥0 satis�es(9.8) dZt = ψ1/2(Zt)σtdWt + atDz̄ψ
∗(Zt)dt, t ≥ 0,i.e. (6.12). Clearly, Eq. (9.8) says that Proposition 6.7 applies to (Zt)t≥0, that is (Zt)t≥0 doesnot leave D, and that we an use the parameterized version (9.1) of (6.12) in Proposition6.9. (See Footnote (13) as well.) When doing so, the representation formula holds at somepoint z ∈ D: it is the initial ondition of Z. However, we stress out that the right initialondition of Eq. (9.1) is the omplete initial ondition of the pair (Z, Y ): given the startingpoint of Z, the starting point of Y is hosen in suh a way that (Z0, Y0) is a zero of Φ.Here is a possible hoie:Proposition 9.1. Let γ = (γ0, γ1) be a smooth path from [−1, 1] into D× C2 suh that, forany s ∈ [−1, 1], Φ(γ(s)) = 0, where Φ(z, y) = ψ(z) − |y|2, z ∈ D, y ∈ C2. Then, for any

s ∈ [−1, 1], the solution (Zs
t , Y

s
t )t≥0 to

dZs
t =

∑

i=1,2

(Y s
t )iσtdB

i
t + atDz̄ψ

∗(Zs
t )dt,

d(Y s
t )i = Dz̄ψ(Zs

t )σ̄tdB̄
i
t +

1

2
(Y s

t )iTrace
[
atD

2
z,z̄ψ(Zs

t )
]
dt, t ≥ 0, i = 1, 2,with (Zs

0 , Y
s
0 ) = γ(s) as initial ondition, stays in the zero surfae of Φ. (Above, (B1

t )t≥0 and
(B2

t )t≥0 stand for two independent omplex Brownian motions of dimension d.)Moreover, the value funtion V in Proposition 6.9 may be represented at point γ(s) as thesupremum of V σ(γ(s)) obtained by plugging the above hoie for (Zs
t )t≥0 into the de�nitionof Proposition 6.9.A possible hoie for γ is γ0(s) = z+sν, z ∈ D and ν ∈ Cd \{0} (suh that B(z, |ν|) ⊂ D)and γ1 = (γ1,1, γ1,2) solution of the ODE(9.9) γ̇1,1(s) = γ̄−1

1,1(s)Dzψ(γ0(s))ν, γ̇1,2(s) = 0, s ∈ [−1, 1],90



with |γ1,1(0)|2 = ψ(z) and γ1,2(0) = 0.Proof. The �rst part of the statement has been already proven. Turn now to the ODE (9.9).It is solvable on a short time interval around zero as soon as γ1(0) is non zero. Atually, asimple omputation shows that, in the neighborhood of 0,
d
[
|γ1,1(s)|2 − ψ(γ0(s))

]

ds
= 2Re

[
Dzψ(γ0(s))ν

]
− 2Re

[
Dzψ(γ0(s))ν

]
= 0,so that |γ1,1(s)|2 = ψ(γ0(s)) for s in the neighborhood of 0. As ψ(γ0(s)) doesn't vanish for

s ∈ [−1, 1], γ1 may be de�ned on the whole [−1, 1] (at least). �Below, the objetive is to ompute the derivatives of the pair (Zs
t , Y

s
t )t≥0 and to onsidera suitable derivative quantity for it. Spei�ally, we emphasize that the situation is di�er-ent from the original one in Proposition 6.9: here, the oe�ients of the SDE of the pair

(Zs
t , Y

s
t )t≥0 are smooth up to the boundary. (Beause of the exponent 1/2 in ψ, they are notin the original Proposition 6.9.)9.2. Example: Estimate on a Ball. To explain how things work, we �rst fous on thespei� ase when the domain is a ball, say the ball of enter 0 and radius R. In suh a ase,we may hoose ψ(z) = R2 − |z|2 so that Eq. (6.12) has the form(9.10) dZt =

[
R2 − |Zt|2

]1/2
σtdBt − atZtdt,with Z0 = z ∈ B(0, R) = {z′ ∈ Cd : |z′|2 < R2}.We then apply Proposition 9.1 with Φ(z, y) = ψ(z) − |y|2 = R2 − |z|2 − |y|2, z ∈ B(0, R)and y ∈ C2. The parameterized version (9.1) of (9.10) has the form:

dZt =
∑

i=1,2

Y i
t σtdB

i
t − atZtdt

dY i
t = −〈Zt, σ̄tdB̄i

t〉 −
1

2
Y i
t dt, i = 1, 2,

(9.11)where (B1
t )t≥0 and (B2

t )t≥0 are two independent Brownian motions with values in Cd.We are now in position to omplete the analysis on a ball. To do so, we ompute thederivatives of the pair (Z, Y ): spei�ally, we initialize the pair at some γ(s), s in theneighborhood of zero and for some urve γ on a level set of Φ. (Choose for example γ as in(9.9).) The resulting pair (Z, Y ) is denoted by (Zs, Y s) as above. The derivative proess isdenoted by (ζst , ̺
s
t ). It is understood as ξs with the notations of Theorem 7.2. Eq. (9.11)being linear, Theorem 7.2 applies and we obtain:

dζst =
∑

i=1,2

(̺st )
iσtdB

i
t − atζtdt

d(̺st)
i = −〈ζt, σ̄tdB̄i

t〉 −
1

2
(̺st )

idt, i = 1, 2.Have in mind that d(|Zt|2 + |Yt|2) = d(−R2 + |Zt|2 + |Yt|2) = d[−ψ(Zt)+ |Yt|2] = 0. Similarly,the pair (ζst , ̺
s
t )t≥0 satis�es

d
(
|ζst |2 + |̺st |2

)
= 0.In omparison with De�nition 7.6, this means that the derivative quantity is zero, i.e.

dΓst = 0, t ≥ 0,91



with Γst = |ξst |2 = |ζst |2 + |̺st |2. In partiular,
exp

(
−

∫ t

0

csds

)
|ξst |2 = exp(−t)|ξs0|2,where ct = −Trace[atD

2
z,z̄ψ(Zt)] = 1.We then reover the onlusion of Proposition 8.13 but the onstant C in (8.73) we nowobtain is independent of the distane from γ to the boundary ∂D. Moreover, the matrix Ain Proposition 7.9 is simply the identity matrix so that a similar bound is expeted for thesquare-root of the seond-order derivative quantity. This makes the whole di�erene withSetion 8.9.3. Perturbed Version. Obviously, the ase of the ball is very spei�. In the generalase, we go bak to the perturbation strategy developed in Setion 8 but for the pair (Z, Y )solution of (9.1).Spei�ally, we onsider a C2 urve γ : s ∈ [−1, 1] 7→ γ(s) suh that Φ(γ(s)) = 0 for any

s ∈ [−1, 1]. For a given (�xed) s ∈ (−1, 1) and for ε in the neighborhood of 0, we denote by
(Zs+ε

t , Y s+ε
t )t≥0 the solution of24

dZs+ε
t =

∑

i=1,2

(Y s+ε
t )i exp(pεt)σtdB

i
t + exp(pεt )at exp(−pεt )D∗

z̄ψ(Zs+ε
t )dt,

d(Y s+ε
t )i = Dz̄ψ(Zs+ε

t ) exp(p̄εt)σ̄tdB̄
i
t

+
1

2
(Y s+ε

t )iTrace
[
exp(pεt )at exp(−pεt )D2

z,z̄ψ(Zs+ε
t )

]
dt,

t ≥ 0, i = 1, 2,

(9.12)
with the initial ondition (Zs+ε

0 , Y s+ε
0 ) = γ(s+ ε)Here, the proess (pεt )t≥0 denotes a ghost parameter with values into the set of anti-Hermitian matries, exatly as in Eq (8.10). Spei�ally, ps+εt = P (Zs

t , Z
s+ε
t − Zs

t ) as in(8.10) with P as in (8.11). As in Subsetion 9.1, ψ is here extended to the whole Cd into a
C4 funtion with bounded derivatives, so that the above system has Lipshitz oe�ients onthe whole spae and is therefore uniquely solvable for any given initial ondition (Z0, Y0).Following the proof of Proposition 9.1, we an ompute d(ψ(Zs+ε

t )−|Y s+ε
t |2) for any t ≥ 0and prove that it is zero, so that the proess (ψ(Zs+ε

t ) − |Y s+ε
t |2)t≥0 lives on the zero set ofthe funtion Φ : (z, y) ∈ D × C2 7→ ψ(z) − |y|2. (In partiular, (Zs+ε

t )t≥0 does not leave D.)Here is the analog of Propositions 8.2 and 8.3Proposition 9.2. Let S > 0 be a positive real, φ be a smooth funtion from R+ to [0, 1]mathing 1 on [0, 1] and 0 outside [0, 2], ǫ > 0 be a small enough real suh that |Dzψ(z)| > 0for ψ(z) ≤ ǫ and s be some (�nite) stopping time suh that ψ(Zs
s
) < ǫ. For t := inf{t ≥ s :

ψ(Zs
t ) ≥ ǫ}, onsider some proess (Zs+ε

t , Y s+ε
t )0≤t≤t for whih ([d/dε](Zs+ε

t )|ε=0)0≤t≤t and
([d2/dε2](Zs+ε

t )|ε=0)0≤t≤t exist and for whih the perturbed SDE (9.12) holds from s to t and24For more simpliity, we forget the symbol � �̂ used in Subsetion 8.2.92



de�ne
V̂ σ,s,t
S (s+ ε)

= E

∫
t

s

[
exp

(∫ t

0

Trace[exp(ps+εr )ar exp(−ps+εr )D2
z,z̄ψ(Zs+ε

r )]dr

)

× F
(
det(at), exp(ps+εt )at exp(−ps+εt ), Zs+ε

t

)
φ
( t
S

)]
dt,with ps+εt = P (Zs

t , Z
s+ε
t − Zs

t ), s ≤ t ≤ t, P being given by (8.11).Assume that the di�erentiation operator w.r.t. ε and the expetation and integration sym-bols an be exhanged in the de�nition of V̂ σ,s,t
S . Then, we an �nd a onstant C > 0,depending on Assumption (A) and on ǫ only (in partiular, it is independent of C), suhthat

∣∣ d
dε

[
V̂ σ,s,t
S (s+ ε)

]∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)[
|ζst | +

∫ t

0

|ζsr |dr
]
dt

]
,where ζst = [d/dε](Zs+ε

t )|ε=0.Similarly,
∣∣ d

2

dε2

[
V̂ σ,s,t
S (s+ ε)

]∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)

×
[
|ηst | + |ζst |2 +

∫ t

0

|ηsr|dr +

∫ t

0

|ζsr |2dr +

(∫ t

0

|ζsr |dr
)2]

dt

]
,where ηst = [d2/dε2](Ẑs+ε

t )|ε=0.9.4. Derivative Quantity. We now prove the analog of Proposition 8.9:Proposition 9.3. Keep the assumption and notation of Proposition 9.2. Then, there existsa positive real ǫ′1 suh that for 0 < ǫ < ǫ′1, for N = K = ǫ−1/4, for ψ = Nψ0, where ψ0 isthe referene plurisuperharmoni funtion desribing D suh that Trace[aD2
z,z̄ψ

0(z)] ≤ −1,
z ∈ D, for a stopping time s at whih ψ(Zs

s
) < ǫ, the derivative quantity obtained byperturbing the ontrol parameter as in (9.12)

Γ̄
(1)
t = exp

(
−Kψ(Zs

t )
)
|ζt|2 + |ρt|2, t ≥ s,with ζt = [d/dε](Zs+ε

t )|ε=0 and ρst = [d/dε](Y s+ε
t )|ε=0, satis�es up to time t = inf{t ≥ s :

ψ(Zs
t ) ≥ ǫ}

E

[
exp

(∫ t∧t

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r )]dr

)
Γ̄

(1)
t∧t|Fs

]

≤ exp

(∫
s

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r)]dr

)
Γ̄(1)

s
, t ≥ s,with δ = 1/N = ǫ1/4. 93



Proof. The proof is similar to the one of Proposition 8.9. The derivatives of (Zs+ε
t , Y s+ε

t )t≥0with respet to ε at ε = 0 are denoted by
ζt =

d

dε
[Zs+ε

t ]|ε=0, ̺t =
d

dε
[Y s+ε
t ]|ε=0, t ≥ 0.As (Y s+ε

t ) is C2-valued, so is (̺t)t≥0. Below, we denote by (̺1
t )t≥0 and (̺2

t )t≥0 the twooordinates of (̺t)t≥0. We also use the following notations:
ψt = ψ(Zs

t ), (Lψ)t = Trace
(
atD

2
z,z̄ψ(Zs

t )
)
,

Qtζt =
d

dε

[
P (Zs

t , Z
s+ε
t − Zs

t )
]
|ε=0

, t ≥ 0.Moreover, Id stands for the identity matrix of size d. By Theorem 7.4, the pair (ζt, ̺t)s≤t≤tsatis�es the equation25:
dζt =

∑

i=1,2

[
̺itId + Y i

t Qtζt
]
σtdB

i
t +

[
atDz̄,zψtζt + atDz̄,z̄ψtζ̄t

]
dt

+
[
QtζtatD

∗
z̄ψt − atQtζtD

∗
z̄ψt

]
dt

d̺it =
[(
Dz̄,zψtζt

)∗
+

(
Dz̄,z̄ψtζ̄t

)∗ −Dz̄ψt(Qtζt)
∗
]
σ̄tdB̄

i
t +

1

2
̺itLψtdt

+
1

2
Y i
t

[
Dz(Lψ)tζt +Dz̄(Lψ)tζ̄t

]
dt

+
1

2
Y i
t

[
Trace(QtζtatD

2
z,z̄ψt) − Trace(atQtζtD

2
z,z̄ψt)

]
dt,

s ≤ t ≤ t, i = 1, 2.Using the anti-Hermitian property of Qtζt, we have:
Trace(QtζtatD

2
z,z̄ψt)

= −Trace((Qtζt)
∗a∗t (D

2
z,z̄ψt)

∗)

= −Trace(D2
z,z̄ψtatQtζt) = −Trace(atQtζtD

2
z,z̄ψt), s ≤ t ≤ t.Taking the omplex onjugate in (8.46), we dedue

d̺it = rt|ζt|Dz̄ψtσ̄tdB̄
i
t +

1

2
̺itLψtdt

+ Y i
t Re

[
Dz(Lψ)tζt

]
dt

+ Y i
t Re

[
Trace(QtζtatD

2
z,z̄ψt)

]
dt, s ≤ t ≤ t, i = 1, 2,where (rt)s≤t≤t stands for a generi proess salar proess bounded in terms of (A) only.(The values of (rt)s≤t≤t may vary from line to line.)25The reader may understand that Theorem 7.4 provides both the form of the equation for the pair

(ζt, ̺t)s≤t≤s and the di�erentiability property of the proess (Zs+ε
t , Y s+ε

t )s≤t≤t w.r.t. ε. Indeed, Eq. (9.1)satis�es the assumption of Theorem 7.4: there is no singular term inside ontrary to Eq. (8.1). (Sine theomponent Y is bounded, the oe�ients may be onsidered as C2 oe�ients with bounded derivatives.)94



We are now in position to ompute the norm of the derivative proess ((ζt, ̺t))s≤t≤t.
d|ζt|2 = 2Re〈ζ̄t, atDz̄,zψtζt + atDz̄,z̄ψtζ̄t〉dt

+ 2Re〈ζ̄t, QtζtatD
∗
z̄ψt − atQtζtD

∗
z̄ψt〉dt

+
∑

i=1,2

Trace
[(
̺iId + (Yt

s)iQtζt
)
at

(
¯̺iId − (Ȳt

s
)iQtζt

)]
dt

+ dmt, s ≤ t ≤ t.

(9.13)Similarly,
d|̺t|2 = |̺t|2Lψtdt

+ 2Re
(
〈̺t, Ȳ s

t 〉
)[

Re(Dz(Lψ)tζt) + Re
(
Trace(QtζtatD

2
z,z̄ψt)

)]
dt

+ rtDzψtatD
∗
z̄ψt|ζt|2dt+ dmt, t ≥ 0.

(9.14)In what follows, we follow Setion 8 and modify the hoie of ψ aording to the observationwe made therein: for any onstant c > 0, cψ is again a plurisuperharmoni funtion desribingthe domain and we denote by ψ0 some hoie of the plurisuperharmoni funtion suh that,for any Hermitian matrix a of trae 1 and for any z ∈ D, Trace[aD2
z,z̄ψ

0(z)] ≤ −1. Then, weunderstand ψ as Nψ0 for some free parameter N that will be �xed later on.As a �rst appliation, we an simplify the form of d|̺t|2, or at least we an bound it, for
s ≤ t ≤ t. To this end, have in mind that |ψt| ≤ ǫ for s ≤ t ≤ t so that |Dzψ

0
t | ≥ κ forsome given onstant κ > 0 (for s ≤ t ≤ t and for ǫ small enough). Therefore, from (9.14),we laim

d|̺t|2

= N |̺t|2Lψ0
t dt+N |̺t||ζt||Y s

t |rtdt+N2|ζt|2E0
t rtdt+ dmt, s ≤ t ≤ t,

(9.15)where (rt)s≤t≤t is a generi notation for a proess, bounded by some onstant C dependingon (A) and κ only. (The values of (rt)s≤t≤t may vary from line to line.) Above, (ψ0
t )s≤t≤t isunderstood as (ψ0(Zs

t ))s≤t≤t and (E0
t )s≤t≤t stands for (E0

t := 〈D∗
zψ

0
t , atD

∗
z̄ψ

0
t 〉))s≤t≤t.By (8.36),

d|ζt|2 = |̺t|2dt+ |Y s
t ||̺t||ζt|rtdt+ |Y s

t |2|ζt|2rtdt
+N |ζt|2E0

t rtdt+N |ζt|2(E0
t )

1/2rtdt

+ 2
∑

i=1,2

Re
[
〈ζ̄t,

(
̺itId + (Y s

t )iQtζt)σtdB
i
t〉

]
, s ≤ t ≤ t.

(9.16)We now onsider the derivative quantity(9.17) Γ̄t = exp(−Kψt)|ζt|2 + |̺t|2, s ≤ t ≤ t.for some onstant K > 0 to be hosen later on.To ompute (dΓ̄t)s≤t≤t, we �rst note that
dψt = 2

∑

i=1,2

(Y s
t )iRe

[
DzψtσtdB

i
t

]
+ 2〈Dzψt, atD

∗
z̄ψt〉dt+ |Y s

t |2Lψtdt,95



so that
d
[
exp(−Kψt)

]

= −2K exp(−Kψt)
∑

i=1,2

Re
[
(Y s

t )iDzψ(Zs
t )σdB

i
t

]

+ [K2|Y s
t |2 − 2K] exp(−Kψt)〈Dzψt, atDz̄ψt〉dt

−K exp(−Kψt)|Y s
t |2Lψtdt

= −2K exp(−Kψt)
∑

i=1,2

Re
[
(Y s

t )iDzψ(Zs
t )σdB

i
t

]

+N2[K2|Y s
t |2 − 2K] exp(−Kψt)E0

t dt

−NK exp(−Kψt)|Y s
t |2Lψ0

t dt, s ≤ t ≤ t.

(9.18)
Therefore, from (9.18) and (9.16),

d
[
exp(−Kψt)|ζt|2

]

= exp(−Kψt)
[
|̺t|2 + |Y s

t ||̺t||ζt|rt + |Y s
t |2|ζt|2rt

+N |ζt|2E0
t rt +N |ζt|2(E0

t )
1/2rt

]
dt

+ |ζt|2 exp(−Kψt)
[
N2[K2|Y s

t |2 − 2K]E0
t −NK|Y s

t |2Lψ0
t

]
dt

+NK exp(−Kψt)
[
|Y s
t ||ζt||̺t|rt + |Y s

t |2|ζt|2rt
]
+ dmt, s ≤ t ≤ t.We are now in position to ompute dΓ̄t for s ≤ t ≤ t. To this end, have in mind that

Lψ0
t ≤ −1 and that |Y s

t |2 = ψt ≤ ǫ, s ≤ t ≤ t. Then, applying Young's inequality to theterm N(E0
t )

1/2, the above equation has the form
d
[
exp(−Kψt)|ζt|2

]

≤ exp(−Kψt)
[
|̺t|2 + C(1 + ǫ1/2 + ǫ)|ξt|2 + C(N +N2)|ζt|2E0

t

]
dt

+ |ζt|2 exp(−Kψt)
[
N2[K2ǫ− 2K]E0

t + CNKǫ
]
dt

+NK exp(−Kψt)
[
Cǫ1/2|ξt|2 + Cǫ|ξt|2

]
+ dmt, s ≤ t ≤ t,

(9.19)where |ξt|2 = |ζt|2 + |̺t|2. (Atually, (ξt)t≥0 must be understood as the derivative proess
(ζt, ̺t)t≥0.) Similarly, from (9.15),(9.20) d|̺t|2 ≤ −N |̺t|2dt+ CNǫ1/2|ξt|2dt+ CN2|ζt|2E0

t dt+ dmt s ≤ t ≤ t.Therefore, assuming ǫ < 1 and N ≥ 1,we dedue from (9.19) and (9.20)
dΓ̄t ≤ exp(−Kψt)(1 −N)|̺t|2dt

+ |ξt|2
(
C ′ + C ′Nǫ1/2 + C ′NKǫ1/2

)
dt

+ |ζt|2 exp(−Kψt)N2
[
K2ǫ− 2K + C ′ exp(Kψt)

]
E0
t dt

+ dmt, s ≤ t ≤ t,the onstant C ′ depending on C only. (In partiular, C ′ is independent of K, N , ǫ, s and t.)Choose now K = ǫ−1/4. We obtain
dΓ̄t ≤ exp(−Kψt)(1 −N)|̺t|2dt+ 2|ξt|2

(
C ′ + C ′Nǫ1/4

)
dt

+ |ζt|2 exp(−Kψt)N2
[
ǫ1/2 − 2ǫ−1/4 + C ′ exp(ǫ1/4)

]
E0
t dt+ dmt.96



Choose ǫ small enough suh that ǫ1/2 − 2ǫ−1/4 + C ′ exp(ǫ1/4) < 0. Then,
dΓ̄t ≤ exp(−Kψt)(1 −N)|̺t|2dt+ 2|ξt|2

(
C ′ + C ′Nǫ1/4

)
dt+ dmt, s ≤ t ≤ t.Finally for N = ǫ−1/4, we obtain:(9.21) dΓ̄t ≤ 4C ′|ξt|2dt+ dmt ≤ 4C ′ exp(ǫ1/4)Γ̄t + dmt ≤ 12C ′Γ̄t + dmt.The end of the proof is similar to the one of Proposition 8.9. �9.5. Global Derivative Quantity.Proposition 9.4. Let (B1

t )t≥0 and (B2
t )t≥0 be two independent omplex Brownian motionsof dimension d, the pair being independent of (Bt)t≥0. Moreover, let ǫ and ǫ4 be as inProposition 8.12, ǫ being less than ǫ′1 in Proposition 9.3 as well, γ0 be a path from [−1, 1]into D and s be a point in (−1, 1) suh that ψ(γ0(s)) > ǫ.For a given progressively-measurable (w.r.t. the �ltration generated by the triple of pro-esses (Bt, B

1
t , B

2
t )t≥0) ontrol (σt)t≥0 with values in the set of omplex matries of size d×dsuh that Trace(σtσ̄

∗
t ) = 1, t ≥ 1, de�ne (Zs

t )t≥0 as follows. Set r0 = 0. Up to time
r1 = {t ≥ 0 : ψt = ψ(Zs

t ) ≤ ǫ4}, de�ne (Zs
t )0≤t≤r1 as the solution of the SDE (8.1) with γ0(s)as initial ondition. At time r1, set Y s

r1
= (ψ1/2(Zs

r1
), 0) ∈ C2 and then de�ne (Zs

t , Y
s
t )r1≤t≤r2(with values into D × C2) up to time r2 = {t ≥ r1 : ψt = ψ(Zs

t ) ≥ ǫ/2} as the solution of(9.1). At time r2, de�ne (Zs
t )r2≤t≤r3 up to time r3 = {t ≥ r1 : ψt = ψ(Zs

t ) ≤ ǫ4} as thesolution of the SDE (8.1) and so on. . . , that is(9.22) dZs
t = ψ1/2(Zs

t )σtdBt + atD
∗
z̄ψ(Zs

t )dt, t ∈ [r2k, r2k+1], k ≥ 0,with Zs
0 = γ(s) as initial ondition (above, r0 = 0), and

dZs
t =

∑

i=1,2

(Y s
t )iσtdB

i
t + atD

∗
z̄ψ(Zs

t )dt

d
(
Y s
t

)i
= Dz̄ψ(Zs

t )σ̄tdB̄
i
t

+
1

2

(
Y s
t

)i
Trace

[
atD

2
z,z̄ψ(Zs

t )
]
dt, t ∈ [r2k+1, r2k+2], k ≥ 0, i = 1, 2,

(9.23)with Yr2k+1
= (ψ1/2(Zs

r2k+1
), 0) as initial ondition.De�ne also (τn)n≥1 as the sequene of exit times of the proess (ψ(Zs

t ))t≥0 from the sets
[ǫ/4,+∞), [ǫ4, ǫ] and [0, ǫ/2]. When the proess (ψ(Zs

t ))t≥0 belongs to [ǫ/4,+∞) onsiderthe perturbation given by Proposition 8.10; when (ψ(Zs
t ))t≥0 belongs to [ǫ4, ǫ] onsider theperturbation given by Proposition 8.11: the perturbation is then given by a proess of theform (Zs+ε

t )r2k≤t≤r2k+1
, with k ≥ 0. When (ψ(Zs

t ))t≥0 belongs to [0, ǫ/2] onsider the per-turbation given by Proposition 9.3: the perturbation is then given by a pair of the form
(Zs+ε

t , Y s+ε
t )r2k+1≤t≤r2k+2

, k ≥ 0, with Y s+ε
r2k+1

= (ψ1/2(Zs+ε
r2k+1

), 0) as initial ondition. Spei�-ally,
dZs+ε

t = T (Zs
t , Z

s+ε
t − Zs

t )ψ
1/2(Zs+ε

t ) exp
(
P (Zs

t , Z
s+ε
t − Zs

t )
)

× σt
(
dBt +G(Zs

t , Z
s+ε
t − Zs

t )dt
)

+ |T |2(Zs
t , Z

s+ε
t − Zs

t ) exp
(
P (Zs

t , Z
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Z
s+ε
t − Zs

t )
)
D∗
z̄ψ(Zs+ε

t )dt, r2k ≤ t ≤ r2k+1,97



with Zs+ε
0 = γ(s+ ε) as initial ondition, and

dZs+ε
t =

2∑

i=1

(Y s+ε
t )idBi

t

+ exp
(
P (Zs

t , Z
s+ε
t − Zs

t )
)
at exp

(
−P (Zs

t , Z
s+ε
t − Zs

t )
)
D∗
z̄ψ(Zs+ε

t )dt

d
(
Y s+ε
t

)i
= Dz̄ψ(Zs+ε

t ) exp
(
P̄ (Zs

t , Z
s+ε
t − Zs

t )
)
σ̄tdB̄

i
t

+
1

2

(
Y s+ε
t

)i
Trace

[
exp

(
P (Zs

t , Z
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Z
s+ε
t − Zs

t )
)
D2
z,z̄ψ(Zs+ε

t )
]
dt,

r2k+1 ≤ t ≤ r2k+2, i = 1, 2,with Y s+ε
r2k+1

= (ψ1/2(Zs+ε
r2k+1

), 0) as initial ondition.Above, (P (Zs
t , Z

s+ε
t − Zs

t ))t≥0, (T (Zs
t , Z

s+ε
t − Zs

t ))t≥0, and (G(Zs
t , Z

s+ε
t − Zs

t ))t≥0, standfor the di�erent possible perturbations used in Propositions 8.10, 8.11 and 9.3. Preisely,
(P (Zs

t , Z
s+ε
t − Zs

t ))t≥0 is set equal to 0 outside the intervals on whih the perturbation ofProposition 8.2 applies, (T (Zs
t , Z

s+ε
t −Zs

t ))t≥0 is set equal to 1 outside the intervals on whihthe perturbation of Proposition 8.4 applies and (G(Zs
t , Z

s+ε
t −Zs

t ))t≥0 is set equal to 0 outsidethe intervals on whih the perturbation of Propostion 8.7 applies. As a summary, Piture9.4 below is the analog of Piture 8.13

0
ψtε

4
ε4

ε
2

ε

•
Proposition 9.3

Proposition 8.11
Proposition 8.10

•

•

•
•

Figure 9.4. Choie of the perturbations with the new representation.Then, the family of proesses (Zs+ε
t )t≥0, ε in the neighborhood of 0, is twie di�eren-tiable in probability w.r.t. ε at ε = 0, with time ontinuous derivatives. Similarly, for eah

k ≥ 0, the family of proesses (Y s+ε
t )r2k+1≤t≤r2k+2

, ε in the neighborhood of 0, is twie di�er-entiable in probability w.r.t. ε at ε = 0, with ontinuous derivatives. Moreover, the dynamisof the derivatives are obtained by di�erentiating (w.r.t. ε) the dynamis of (Zs+ε
t )t≥0 and

((Y s+ε
t )r2k+1≤t≤r2k+2

)k≥0 formally at ε = 0, as done in the meta-part of Setion 8.De�ne then the derivative quantity (Γ̄t)t≥0 as µ2Γ̄
(2)
t , µ3Γ̄

(3)
t in Proposition 8.12 and Γ̄

(1)
tin Proposition 9.3. (In partiular, (Γ̄t)t≥0 is left-ontinuous.) Then, we an �nd α ∈ (0, 1),98



depending on (A) and ǫ only, suh that
E

[
Γ̄t exp

(∫ t

0

αLψrdr

)]
≤ Γ̄0, t ≥ 0.Proof. Di�erentiability properties will be established below. (See Proposition 9.6 below.)In omparison with Subsetion 8.8, the only di�erene is here to show that

lim
t→r2k+1+

Γ̄t ≤ Γ̄r2k+1
, lim
t→r2k+

Γ̄t ≤ Γ̄r2k
k ≥ 0.When t→ r2k+, Γ̄t is given by µ2Γ̄

(2)
t , so that, by Proposition 8.12 (reall that ψr2k

= ǫ/2),
lim

t→r2k+
Γ̄t = µ2Γ̄

(2)
r2k

= µ2 exp(−ǫ−1/4ψr2k
)ψ−ǫ2

r2k
|ζr2k

|2 + 2µ2ǫ
9/4ψ−(1+ǫ2)

r2k
Re2

[
Dzψr2k

ζr2k

]

≤ exp(−ǫ−1/4ψr2k
)|ζr2k

|2 + ψ−1
r2k

Re2
[
Dzψr2k

ζr2k

]
.

(9.24)Now, have in mind that |Y s+ε
r2k

|2 = ψ(Zs+ε
r2k

) so that, by di�erentiation,(9.25) Re
[
Dzψr2k

ζr2k

]
= Re

[
Y 1

r2k
(¯̺r2k

)1
]
+ Re

[
Y 2

r2k
(¯̺r2k

)2
]
.Therefore,(9.26) ∣∣Re

[
Dzψr2k

ζr2k

]∣∣ ≤ |Y 1
r2k
| |̺1

r2k
| + |Y 2

r2k
| |̺2

r2k
| ≤ |Yr2k

||ρr2k
|.Sine |Yr2k

| = ψ
1/2
r2k

,
ψ−1

r2k
Re2

[
Dzψr2k

ζr2k

]∣∣ ≤ |̺r2k
|2.From (9.24), we dedue

lim
t→r2k+

Γ̄t ≤ exp(−ǫ−1/4ψr2k
)|ζr2k

|2 + ψ−1
r2k

|̺r2k
|2 = Γ̄r2k

.It now remains to prove the bound at time r2k+1. When t → r2k+1+, Γ̄t is given by Γ̄
(1)
t ,i.e.

Γ̄t = exp(−ǫ−1/4ψt)|ζt|2 + |̺t|2.Therefore,(9.27) lim
t→r2k+1+

Γ̄t = exp(−ǫ−1/4ψr2k+1
)|ζr2k+1

|2 + |̺r2k+1
|2.Have in mind that, at time t = r2k+1, Y s+ε

r2k+1
= (ψ1/2(Zs+ε

r2k+1
), 0), so that, by di�erentiation,(9.28) ̺r2k+1

=
(
ψ−1/2

r2k+1
Re

[
Dzψr2k+1

ζr2k+1

]
, 0

)
.We dedue that(9.29) lim

t→r2k+1+
Γ̄t = exp(−ǫ−1/4ψr2k+1

)|ζr2k+1
|2 + ψ−1

r2k+1

∣∣Re
[
Dzψr2k+1

ζr2k+1

]∣∣2.Applying Proposition 8.12 (reall that ψr2k+1
= ǫ4), we obtain

lim
t→r2k+1+

Γ̄t ≤ µ2Γ̄
(2)
r2k+1

= Γ̄r2k+1
.This ompletes the proof. �We dedue 99



Corollary 9.5. Keep the notation of Proposition 9.4 and de�ne the seond-order derivativesof (Zs+ε
t )r2k≤t≤r2k+1

, k ≥ 0, by setting ηst = [d2/dε2][Zs+ε
t ]|ε=0, for r2k ≤ t ≤ r2k+1, k ≥ 0, andde�ne the seond-order derivatives of (Zs+ε

t , Y s+ε
t )r2k+1≤t≤r2k+2

, k ≥ 0, by setting (ηst , π
s
t ) =

[d2/dε2][(Zs+ε
t , Y s+ε

t )]|ε=0, for r2k ≤ t ≤ r2k+1, k ≥ 1.De�ne the analogs of Γ̄
(1)
t , µ2Γ̄

(2)
t and µ3Γ̄

(3)
t , t ≥ 0, i.e.

∆̄
(1)
t = exp

(
−ǫ−1/4ψ(Zs

t )
)
|ηt|2 + |πt|2,

∆̄
(2)
t = exp(−ǫ−1/4ψt)ψ

−ǫ2

t |ηt|2 + 2ǫ9/4ψ
−(1+ǫ2)
t Re2

[
Dzψtηt

]
,

∆̄
(3)
t = (R2 − |Zt|2)ψ−1

t |ηt|2,for some ǫ as in the statement of Proposition 8.12. De�ne the global seond-order deriva-tive quantity (∆̄t)t≥0 as the analog of (Γ̄t)t≥0. (In partiular, mention that (∆̄t)t≥0 is left-ontinuous.)Then, we an �nd α ∈ (0, 1) and C > 0, depending on (A) and ǫ only, suh that
E

[(
∆̄

1/2
t + Γ̄t

)
exp

(∫ t

0

αLψrdr

)]
≤ ∆̄

1/2
0 + CΓ̄0, t ≥ 0.Proof. Following the proof of Proposition 7.9, we an prove that on eah [τn, τn+1), n ≥ 0,with τ0 = 0 and (τn)n≥1 as in Proposition 9.4, and for any a > 0,(9.30) d

[
exp

(∫ t

0

αLψrdr

)(
a+ ∆̄t + Γ̄2

t

)1/2
]
≤ CΓ̄t exp

(∫ t

0

αLψrdr

)
dt.The proof of (9.30) relies on two points. First, what is alled (∂Γ̄t(X

s
t , (η

s
t , π

s
t )))t≥0 in thestatement of Proposition 7.9 (or equivalently (∂∆̄t)t≥0 with the urrent notation) satis�esthe same bound as (∂Γ̄t)t≥0. Preisely, (∂Γ̄t)t≥0 orresponds to the dt term obtained bydi�erentiating the form (Γ̄t)t≥0 and then by replaing (ζst , ̺

s
t )t≥0 therein by (ηst , π

s
t )t≥0. Inthe urrent ase, we know that ∂Γ̄t ≤ αLψtΓ̄t for any t ∈ (τn, τn+1) and for any possible valuesof the pair (ζst , ̺

s
t )τn≤t≤τn+1

. Replaing (ζst , ̺
s
t )τn≤t≤τn+1

by (ηst , π
s
t )τn≤t≤τn+1

, we dedue that
∂∆̄t ≤ αLψt∆̄t for any t ∈ (τn, τn+1). Seond, the proof of (9.30) relies on the equivalene ofthe quadrati form driving (Γ̄t)t≥0 and (∆̄t)t≥0 and the urrent Hermitian form: of (omplex)dimension d for t ∈ (r2k, r2k+1], k ≥ 0, and of (omplex) dimension d+2 for t ∈ (r2k+1, r2k+2].This equivalene makes the di�erene between Setions 8 and 9.As a onsequene of (9.30), we only need to hek the boundary onditions to reover thestatement, i.e. we only need to prove that limt→τn+ ∆̄t ≤ ∆̄τn .If τn is di�erent from some rk, the result follows from Proposition 8.12.If τn is equal to some r2k, we follow (9.24). (Keep in mind that ∆̄t is given by ∆̄

(2)
t as

t → r2k+ and by ∆̄
(1)
t as t → r2k−.) The point is to bound ψ−1

r2k
Re2[Dzψr2k

ηr2k
] in terms of

|πr2k
|2. We have the analog of (9.25), but with quadrati �rst-order terms in addition, i.e.(9.31) Re

[
Y 1

r2k
(π̄r2k

)1
]
+ Re

[
Y 2

r2k
(π̄r2k

)2
]

= Re
[
Dzψr2k

ηr2k

]
+O

(
|ζr2k

|2 + |̺r2k
|2

)
.(Here, the onstants in the Landau notation O(. . . ) only depend on (A).) As in (9.26), wededue that

ψ−1
r2k

Re2
[
Dzψr2k

ηr2k

]
≤ |πr2k

|2 +O
(∣∣Re

[
Dzψr2k

ηr2k

]∣∣(|ζr2k
|2 + |̺r2k

|2
))

+O
(
|ζr2k

|4 + |̺r2k
|4

)
.
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(Here, the Landau term O(. . . ) may depend on ǫ as well. Indeed, ψr2k
= ǫ/2.) As aonsequene, for any small a > 0, we an write

ψ−1
r2k

Re2
[
Dzψr2k

ηr2k

]

≤ |πr2k
|2 + aψ−1

r2k
Re2

[
Dzψr2k

ηr2k

]
+ (1 + a−1)O

(
|ζr2k

|4 + |̺r2k
|4

)
.By Proposition 8.12, we then dedue that (reall that ∆̄t is given by ∆̄

(2)
t as t→ r2k+)

lim
t→r2k+

∆̄t

= µ2 exp(−ǫ−1/4ψr2k
)ψ−ǫ2

r2k
|ηr2k

|2 + 2µ2ǫ
9/4ψ−(1+ǫ2)

r2k
Re2

[
Dzψr2k

ηr2k

]

≤ exp(−ǫ−1/4ψr2k
)|ηr2k

|2 + ψ−1
r2k

Re2
[
Dzψr2k

ηr2k

]

−
(
1 − 2ǫ9/4

)
ψ−1

r2k
Re2

[
Dzψr2k

ηr2k

]

≤ exp(−ǫ−1/4ψr2k
)|ηr2k

|2 + |πr2k
|2 +

(
a− 1 + 2ǫ9/4

)
ψ−1

r2k
Re2

[
Dzψr2k

ηr2k

]

+ (1 + a−1)O
(
|ζr2k

|4 + |̺r2k
|4

)
.Choosing a small enough (in terms of ǫ), we dedue that(9.33) lim

t→r2k+
∆̄t ≤ ∆̄r2k

+ C
(
|ζr2k

|4 + |̺r2k
|4

)
.We apply the same strategy when t→ r2k+1+. (Keep in mind that ∆̄t is given by ∆̄

(1)
t as

t→ r2k+1+ and by ∆̄
(2)
t as t→ r2k+1−.) Following (9.27), we laim

lim
t→r2k+1+

∆̄t = exp(−ǫ−1/4ψr2k+1
)|ηr2k+1

|2 + |πr2k+1
|2.Now, as in (9.28),

|πr2k+1
| = ψ−1/2

r2k+1

∣∣Re
[
Dzψr2k+1

ηr2k+1

]∣∣ +O(|ζr2k+1
|2).(Here as well, O(· · · ) may depend on ǫ and ǫ4. Indeed, ψr2k+1

= ǫ4.)In partiular, for any small a > 0,
|πr2k+1

|2 ≤ (1 + a)ψ−1
r2k+1

Re2
[
Dzψr2k+1

ηr2k+1

]
+ (1 + a−1)O(|ζr2k+1

|4).Following (9.29) and using Proposition 8.12, we dedue (as t→ r2k+1+, ∆̄t is given by ∆̄
(1)
t )

lim
t→r2k+1+

∆̄t

≤ exp(−ǫ−1/4ψr2k+1
)|ηr2k+1

|2 + ψ−1
r2k+1

Re2
[
Dzψr2k+1

ηr2k+1

]

+ aψ−1
r2k+1

Re2
[
Dzψr2k+1

ηr2k+1

]
+ (1 + a−1)O

(
|ζr2k+1

|4
)
.

≤ µ2 exp(−ǫ−1/4ψr2k
)ψ−ǫ2

r2k
|ηr2k

|2 + 2µ2ǫ
9/4ψ−(1+ǫ2)

r2k
Re2

[
Dzψr2k

ηr2k

]

+ aψ−1
r2k+1

Re2
[
Dzψr2k+1

ηr2k+1

]
−

[( ǫ

2ǫ4

)ǫ2 − 1
]
|ηr2k+1

|2

+ (1 + a−1)O
(
|ζr2k+1

|4
)
.Choosing a small enough in terms of ǫ and ǫ4, we dedue the analog of (9.33), i.e.(9.34) lim

t→r2k+1+
∆̄t ≤ ∆̄r2k+1

+ C|ζr2k+1
|4.101



From (9.29) and (9.34), we dedue that, at least, for any n ≥ 0,
lim
t→τn+

∆̄t ≤ ∆̄τn + CΓ̄2
τn ,the onstant C here depending on (A), ǫ and ǫ4, that is(9.35) lim

t→τn+

(
∆̄t + Γ̄2

t

)
≤ ∆̄τn + Γ̄2

τn + CΓ̄2
τn .(Eq. (9.35) must be seen as a version of (7.22).)Inequality (9.35) is not very helpful. To get rid of the term CΓ̄2

τn , we shall add a orretionto the term (∆̄t + Γ̄2
t )t≥0.Choose indeed a non-negative smooth funtion θ with ompat support inluded in (0,+∞)suh that θ(ǫ4) = 1 and θ(ǫ/2) = 3 and onsider the proesses

Φ̄
(1)
t = ∆̄

(1)
t + (1 + θ(ψt)C)

(
Γ̄

(1)
t

)2
,

Φ̄
(2)
t = ∆̄

(2)
t + (1 + 2C)

(
Γ̄

(2)
t

)2
,

Φ̄
(3)
t = ∆̄

(3)
t + (1 + 2C)

(
Γ̄

(3)
t

)2
, t ≥ 0,and de�ne the global proess (Φ̄t)t≥0 by gathering the three proesses above aording tothe position of (ψt)t≥0 as done to de�ne (Γ̄t)t≥0 and (∆̄t)t≥0.It is well seen that (9.30) still holds for Φ, i.e.(9.36) d

[
exp

(∫ t

0

αLψrdr

)(
1 + Φ̄t

)1/2
]
≤ CΓ̄t exp

(∫ t

0

αLψrdr

)
dt.It thus remains to hek the boundary onditions. When t tends to r2k+, Φ̄t is given by Φ̄

(2)
tand ψt → ǫ/2. Therefore, by (9.35)

lim
t→r2k+

Φ̄t = lim
t→r2k+

Φ̄
(2)
t ≤ ∆̄r2k

+ (1 + 3C)Γ̄2
r2k

= Φ̄(1)
r2k+1

= Φ̄r2k
.Similarly, when t tends to r2k+1+, Φ̄t is given by Φ̄

(1)
t and ψt → ǫ4. Therefore, by (9.35)

lim
t→r2k+1+

Φ̄t = lim
t→r2k+1+

Φ̄
(1)
t ≤ ∆̄r2k+1

+ (1 + 2C)Γ̄2
r2k+1

= Φ̄(2)
r2k+1

= Φ̄r2k+1
.This ompletes the proof. �9.6. Proof of the Di�erentiability Properties.Proposition 9.6. Choose 0 < ǫ̌ < ǫ4 < ǫ < min(ǫ0, ǫ

′
1), with ǫ0 as in Proposition 8.12 and

ǫ′1 as in Proposition 9.3, and onsider a ut-o� funtion ϕ1 from Cd into [0, 1] mathing
1 on the subset {z ∈ D : ψ(z) ≥ ǫ̌} and vanishing on the subset {z ∈ D : ψ(z) ≤ ǫ̌/2}.Consider another ut-o� funtion ϕ2 from C to C, mathing 1 on {y ∈ C : |y| ≤ r0},
r0 = supz∈D ψ

1/2(z), and vanishing outside {y ∈ C : |y| ≤ 2r0}.102



For any k ≥ 0, de�ne on [r2k, r2k+1], Žε as the solution of
dŽs+ε

t

= T (Zs
t , Ž

s+ε
t − Zs

t )(ϕ1ψ
1/2)(Žs+ε

t ) exp
(
P (Zs

t , Ž
s+ε
t − Zs

t )
)

× σt
(
dBt +G(Zs

t , Ž
s+ε
t − Zs

t )dt
)

+ |T |2(Zs
t , Ž

s+ε
t − Zs

t ) exp
(
P (Zs

t , Ž
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Ž
s+ε
t − Zs

t )
)(
ϕ1D

∗
z̄ψ

)
(Žs+ε

t )dt, r2k ≤ t ≤ r2k+1,

(9.37)
with Žs+ε

0 = γ(s+ε) as initial ondition. Above, (P (Zs
t , Ž

s+ε
t −Zs

t ))t≥0, (T (Zs
t , Ž

s+ε
t −Zs

t ))t≥0,and (G(Zs
t , Ž

s+ε
t −Zs

t ))t≥0, stand for the di�erent possible perturbations used in Proposition9.4. Preisely, (P (Zs
t , Ž

s+ε
t − Zs

t ))t≥0 is set equal to 0 outside the intervals on whih theperturbation of Proposition 9.3 applies, (T (Zs
t , Ž

s+ε
t − Zs

t ))t≥0 is set equal to 1 outside theintervals on whih the perturbation of Proposition 8.4 applies and (G(Zs
t , Ž

s+ε
t − Zs

t ))t≥0 isset equal to 0 outside the intervals on whih the perturbation of Propostion 8.7 applies.On [r2k+1, r2k+2], de�ne Žs+ε as the �rst oordinate of the pair (Žs+ε
t , Y̌ ε

t ) solution of
dŽs+ε

t =

2∑

i=1

ϕ2

[
(Y̌ s+ε

t )i
]
dBi

t

+ exp
(
P (Zs

t , Ž
s+ε
t − Zs

t )
)
at exp

(
−P (Zs

t , Ž
s+ε
t − Zs

t )
)
D∗
z̄ψ(Žs+ε

t )dt

d
(
Y̌ s+ε
t

)i
= Dz̄ψ(Žs+ε

t ) exp
(
P̄ (Zs

t , Ž
s+ε
t − Zs

t )
)
σ̄tdB̄

i
t

+
1

2
ϕ2

[(
Y̌ s+ε
t

)i]
Trace

[
exp

(
P (Zs

t , Ž
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Ž
s+ε
t − Zs

t )
)
D2
z,z̄ψ(Žs+ε

t )
]
dt,

r2k+1 ≤ t ≤ r2k+2, i = 1, 2,

(9.38)
with Y̌ s+ε

t = ((ϕ1ψ
1/2)(Žs+ε

t ), 0) as initial ondition. (Above, ψ is understood as any smoothextension with ompat support of the original ψ to the whole spae Cd. The perturbation
(P (Zs

t , Ž
s+ε
t − Zs

t ))t≥0 is the same as in (9.37).)Then, the proess (Žs+ε
t )t≥0 is twie di�erentiable in the mean w.r.t. ε, with time ontinu-ous �rst and seond order derivatives, and, the proess (

∑
k≥0 Y̌

s+ε
t 1[r2k+1,r2k+2](t))t≥0 is alsotwie di�erentiable w.r.t. ε, with time ontinuous �rst and seond order derivatives on every

[r2k+1, r2k+2], k ≥ 0.Moreover, for any S > 0 and any integer p ≥ 1,(9.39) sup
0<|ε′|<|ε|

sup
σ

E
[

sup
0≤t≤S

(
|ζ̌s+ε′t |p + |η̌s+ε′t |p

)]
< +∞,and(9.40) sup

0<|ε′|<|ε|

sup
σ

E
[
sup
k≥0

sup
r2k+1≤t≤r2k+2,t≤S

(
| ˇ̺s+ε′t |p + |π̌s+ε′t |p

)]
< +∞,and(9.41) lim

ε→0
sup
σ

E
[

sup
0≤t≤S

(∣∣ζ̌s+εt − ζ̌st
∣∣p +

∣∣η̌s+εt − η̌st |p
)]

= 0,103



where ζ̌s+εt = [d/dε][Žs+ε
t ], ˇ̺s+εt = [d/dε][Y̌ s+ε

t ]1[r2k+1,r2k+2](t), and η̌s+εt = [d2/dε2][Žs+ε
t ],

π̌s+εt = [d2/dε2][Y̌ s+ε
t ]1[r2k+1,r2k+2](t), t ≥ 0, k ≥ 0.Proof. We �rst establish di�erentiability in probability. By Theorem 7.4, twie di�erentia-bility in probability holds on [0, r1], i.e. (ζ̌s+εt )0≤t≤r1 and (η̌s+εt )0≤t≤r1 exist for any ε in theneighborhood of 0, and, for any S > 0,

lim
ε′→0,ε′ 6=0

sup
0≤t≤S∧r1

{∣∣δε′Žs+ε
t − ζ̌st

∣∣ +
∣∣δε′ ζ̌s+εt − η̌s+εt

∣∣} = 0,in P-probability, i.e. in the sense of (7.7).In partiular, in P-probability,
lim

ε′→0,ε′ 6=0

{∣∣δε′Žs+ε
S∧r1

− ζ̌s+εS∧r1

∣∣ +
∣∣δε′ ζ̌s+εS∧r1

− η̌s+εS∧r1

∣∣} = 0,so that we an apply Theorem 7.4 again, but on the time interval [r1, r2]∩[0, S], or equivalentlyon [r1, r2∧S] and on the event {r1 ≤ S}. Indeed, the dynamis of (Žs+ε, Y̌ s+ε) on [r1, r2]∩[0, S]are given by (9.38): Eq. (9.38) satis�es Theorem 7.4. We dedue that (ζ̌s+εt , ρ̌s+εt )r1≤t≤r2,t≤Sand (η̌s+εt , π̌s+εt )r1≤t≤r2,t≤S exist and
lim

ε′→0,ε′ 6=0
sup

r1≤t≤r2,t≤S

{∣∣(δε′Žs+ε
t , δε′Y̌

s+ε
t ) − (ζ̌s+εt , ρ̌s+εt )

∣∣

+
∣∣(δε′ ζ̌s+εt , δε′ ρ̌

s+ε
t ) − (η̌s+εt , π̌s+εt )

∣∣} = 0,in P-probability. Then, the proedure an be applied again but on [r2, r3]∩ [0, S], and so onby indution. This proves that twie di�erentiability in probability holds for the pair proess
(Žs+ε

t∧rn
,
∑

k≥0 Y̌
s+ε
t∧rn

1[r2k+1,r2k+2](t∧rn))0≤t≤S , n ≥ 0. Sine rn → +∞ a.s., twie di�erentiabilityin probability follows on the whole [0, S], for any S > 0. (We emphasize that rn → +∞ a.s.sine the proess (ψ(Zs
t ))t≥0 is a.s. ontinuous: it annot swith from ǫ4 to ǫ/2 an in�nitenumber of times on a ompat set.) Twie di�erentiability in the mean will follow from(9.39), (9.40) and (7.10).To prove (9.39), we emphasize that, for any k ≥ 0, we an �nd a onstant C, independentof ε, γ, k and σ, suh that, on eah [r2k, r2k+1)

26,(9.42) d
[
exp(−Ct)

∣∣ζ̌s+εt

∣∣2p] ≤ dmt, r2k ≤ t < r2k+1,

(mt)r2k≤t<r2k+1
standing for a generi martingale term. (The proof is the same as the proofof Corollary 7.5.)Similarly, up to a modi�ation of the onstant C, on eah [r2k+1, r2k+2), k ≥ 0,(9.43) d
[
exp(−Ct)

(∣∣ζ̌s+εt

∣∣2p +
∣∣ ˇ̺s+εt

∣∣2p])] ≤ dmt, r2k+1 ≤ t < r2k+2.To gather (9.42) and (9.43), it is su�ient to hek what happens at boundary times rn,
n ≥ 0. The relationship Y̌ s+ε

r2k+1
= ((ϕ1ψ

1/2)(Žs+ε
r2k+1

), 0) yields
∣∣ ˇ̺s+εr2k+1

∣∣ =
∣∣Re

[
Dz

(
ϕ1ψ

1/2
)
(Žs+ε

r2k+1
)ζ̌s+εr2k+1

]∣∣ ≤ C ′|ζ̌s+εr2k+1

∣∣,for some onstant C ′ (independent of ε, γ, k and σ).26Here, we feel simpler to use right-ontinuous versions of the proesses at hand. Atually, this has aninterest for (ˇ̺s+ε
t )t≥0 only sine (ζ̌s+ε

t )t≥0 is ontinuous.104



Below, we onsider a non-negative smooth funtion θ with values in [0, 1], mathing 1 in
ǫ4 and 0 in ǫ/2. Then, for any k ≥ 0,

lim
t→r2k+1−

[(
1 + C ′θ

(
ψ(Žs

t )
))∣∣ζ̌s+εt

∣∣2p] ≥
∣∣ζ̌s+εr2k+1

∣∣2p +
∣∣ ˇ̺s+εr2k+1

∣∣2p,

lim
t→r2k+2−

[∣∣ζ̌s+εt

∣∣2p +
∣∣ ˇ̺s+εt

∣∣2p] ≥
∣∣ζ̌s+εr2k+2

∣∣2p =
(
1 + C ′θ

(
ψ(Žs

r2k+2
)
))∣∣ζ̌s+εr2k+2

∣∣2p.
(9.44)Indeed, ψ(Žs

r2k+1
) = ǫ4 and ψ(Žs

r2k+2
) = ǫ/2, k ≥ 0. (Obviously, (Žs+ε

t )t≥0 is ontinuous intime.) Now, it remains to see that
d
[
exp(−Ct)

(
1 + C ′θ

(
ψ(Žs

t )
))∣∣ζ̌s+εt

∣∣2p] ≤ dmt, r2k ≤ t < r2k+1, k ≥ 0,for a possibly new value of C. (This follows from It�'s formula.)Set �nally
Mp

t :=

{
exp(−Ct)

(
1 + C ′θ

(
ψ(Žs

t )
))∣∣ζ̌s+εt

∣∣2p, r2k ≤ t < r2k+1,

exp(−Ct)
(∣∣ζ̌s+εt

∣∣2p +
∣∣ ˇ̺s+εt

∣∣2p), r2k+1 ≤ t < r2k+2,
, k ≥ 0.Then, for any n ≥ 0, t 7→ E[Mt∧rn

] is non-inreasing. (Use the martingale property and(9.44)). This proves the part related to the �rst-order derivatives in (9.39) and (9.40), butwith the supremum outside the expetation. To get the supremum inside the expetation,we an use so-alled Doob's inequality. It says that, for any square integrable progressively-measurable proess (Ht)0≤t≤S with values in Cd,
E

[
sup

0≤t≤S

∣∣∣∣
∫ t

0

〈Hs, dBs〉
∣∣∣∣
2]

≤ cE

∫ S

0

|Ht|2dt,for some universal c > 0. We then hoose (mt)0≤t≤S for (
∫ t

0
〈Hs, dBs〉)0≤t≤S. We notie thatthe orresponding proess (Ht)0≤t≤S is always bounded by C ′|ζ̌s+ε|2p for t ∈ [r2k, r2k+1]∩[0, S],

k ≥ 0, and by C ′(|ζ̌s+ε|2p + |ρ̌s+ε|2p) for t ∈ [r2k+1, r2k+2]∩ [0, S], k ≥ 0, for some onstant C ′independent of ε, γ, k and σ. Using the bounds for (E[M2p
t ])0≤t≤S, (9.39) and (9.40) follow.A similar argument holds for the seond-order derivatives (handling the boundary onditionby onsidering (|ζ̌s+εt |4p)t≥0 as in the proof of Corollary 9.5).We �nally turn to (9.41). It relies on the stability property of SDEs. (See Proposition7.1.) Basially, Proposition 7.1 applies on any interval [rn, rn+1]. By indution, we obtain(9.45) ∀n ≥ 1, lim

ε→0
E
[

sup
0≤t≤S

(∣∣ζ̌s+εt − ζ̌st
∣∣p +

∣∣η̌s+εt − η̌st |p
)
;S ≤ rn

]
= 0.To get the same estimate but on the whole spae, we �rst notie that(9.46) lim

n→+∞
sup
σ

P{S ≤ rn} = 1.Eq. (9.46) follows from a tightness argument. Sine the oe�ients of (Zs
t )t≥0 are bounded,uniformly in σ, the paths of (Zs

t )0≤t≤S are ontinuous, uniformly in σ, with large probability:spei�ally, given a small positive real ν, we an �nd a ompat subset K ⊂ C([0, S],Cd),suh that, for any σ, (Zs
t )0≤t≤S belongs to K with probability greater than 1 − ν. To prove(9.46), it then remains to see that r2n/n is greater than the smallest amount of time (Zs

t )t≥0needs to swith from ǫ4 to ǫ/2: learly, on [0, S], this smallest amount of time is ontrolledfrom below in terms of the modulus of ontinuity of (Zs
t )0≤t≤S only. In partiular, when105



(Zs
t )0≤t≤S belongs to K, S must be less than r2n for n larger than some n0, n0 depending on

K ans S only.In partiular,
lim

n→+∞
sup
σ

P{S > rn} = 0.By (9.39), (9.40) and Cauhy-Shwarz inequality,(9.47) lim
n→+∞

sup
σ

E
[

sup
0≤t≤S

(
| ˇ̺s+ε′t |p + |π̌s+ε′t |p

)
;S > rn

]
= 0,uniformly in ε′ in a neighborhood of 0.By (9.45) and (9.47), we omplete the proof of (9.41).

�We are now in position to just�ty the meta-statements:Corollary 9.7. Keep the assumption and notation of Propositions 9.4 and 9.6. Then, forany S > 0 and for ǫ̌ as in Proposition 9.6, there exist a desreasing sequene of positive reals
(εn)n≥1, a ountable family of inreasing events (Ωn)n≥1 (i.e. Ωn ⊂ Ωn+1, n ≥ 1), suh that
P(Ωn) → 1 as n→ +∞, and ontinuous proesses ((ζs+εt )0≤t≤S, ((ρ

s+ε
t )r2k+1≤t≤r2k+2,t≤S)k≥0)|ε|<ε0and ((ηs+εt )0≤t≤S, ((π

s+ε
t )r2k+1≤t≤r2k+2,t≤S)k≥0)|ε|<ε0 suh that, for any n ≥ 1, ((Zs+ε

t )0≤t≤S)|ε|<εnis twie di�erentiable in probability on the event Ωn, with ((ζs+εt )0≤t≤S)|ε|<εn
and ((ηs+εt )0≤t≤S)|ε|<εnas �rst and seond order derivatives, that is, with the notations of Theorem 7.4,

∀ε ∈ (−εn, εn), ∀ν > 0, lim
ε′→0,ε′ 6=0

P
{

sup
0≤t≤S

∣∣δε′Zs+ε
t − ζs+εt

∣∣ > ν,Ωn

}
= 0,

lim
ε′→0,ε′ 6=0

P
{

sup
0≤t≤S

∣∣δε′ζs+εt − ηs+εt

∣∣ > ν,Ωn

}
= 0,and, for every k ≥ 0 and n ≥ 1, the family ((Y s+ε

t )r2k≤t≤r2k+1,t≤S)|ε|<εn
is twie di�erentiablein probability on Ωn, with ((ρs+εt )r2k≤t≤r2k+1,t≤S)|ε|<εn

and ((πs+εt )r2k≤t≤r2k+1,t≤S)|ε|<εn
as �rstand seond order derivatives.Moreover, on eah Ωn, the dynamis of the proesses ((ζs+εt )0≤t≤S)|ε|<εn

and ((ηs+εt )0≤t≤S)|ε|<εnare obtained by di�erentiating w.r.t. ε the dynamis of ((Zs+ε
t )0≤t≤S)|ε|<εn

formally, as donein the meta-part of Setion 8. The same holds for the proesses ((ρs+εt )r2k+1≤t≤r2k+2,t≤S)k≥0)|ε|<εnand ((πs+εt )r2k+1≤t≤r2k+2,t≤S)k≥0)|ε|<εn
.Finally, a.s.,

ζst =
d

dε

[
Žs+ε
t

]
|ε=0

, ηst =
d2

dε2

[
Žs+ε
t

]
, t ≥ 0,

ρst =
d

dε

[
Y̌ s+ε
t

]
|ε=0

, πst =
d2

dε2

[
Y̌ s+ε
t

]
, r2k+1 ≤ t ≤ r2k+2, k ≥ 0.

(9.48)Before we make the proof, we emphasize the following: the reader may worry about theproperties of di�erentiability of the proesses (Zs+ε
t )t≥0 and ((Y s+ε

t )r2k≤t≤r2k+1
)k≥0 at ε = 0.Indeed, we here disussed the notion of di�erentiability in probability only whereas we usedthe notion of di�erentiability in the mean in the meta-statements of Setion 8. The reasonis the following: all the di�erentiations we perform below under the symbol E hold on thefamilies (Žs+ε

t )t≥0 and ((Y̌ s+ε
t )r2k≤t≤r2k+1

)k≥0 only, so that di�erentiability in the mean of106



(Zs+ε
t )t≥0 and ((Y s+ε

t )r2k≤t≤r2k+1
)k≥0 is useless. By Proposition 9.6, the families (Žs+ε

t )t≥0and ((Y̌ s+ε
t )r2k≤t≤r2k+1

)k≥0 are known to be di�erentiable in the mean.Proof. For an arbitrary ǫ̌ as in the statement of Proposition 9.6 we know that (Zs
t )t≥0and (Žs

t )t≥0 oinide. (Cut-o� funtions math 1 beause of the stopping times.) Similarly,
((Y s

t )r2k+1≤t≤r2k+2
)k≥0 and ((Y̌ s

t )r2k+1≤t≤r2k+2
)k≥0 oinide.By Theorem 7.2, we know that the mappings ((t, ε) ∈ R+ × [−ε0, ε0] 7→ Žs+ε

t are one-ontinuously di�erentiable for every ǫ̌ as in Proposition 9.6. (Here ε0 stands for a smallenough positive real suh that [s− ε, s+ ε] ⊂ [−1, 1]). In partiular, they are ontinuous, sothat sup|ε′|<ε sup0≤t≤S |Žs+ε′

t − Žs
t | tends to 0 a.s. as ε tends to 0. Therefore, we an �nd εnsmall enough suh that the event

Nn :=
{

inf
|ε′|<εn

inf
k≥0

inf
r2k≤t≤r2k+1,t≤S

ψ(Žs+ε′

t ) ≤ ǫ̌
}
,has probability less than 1/n.Set Ωn = (Nn)

∁ so that P(Ωn) ≥ 1 − 1/n. On Ωn, (Žs+ε
t )0≤t≤S oinide with (Zs+ε

t )0≤t≤Sand ((Y s+ε
t )r2k+1≤t≤r2k+2,t≤S)k≥0 oinide with the proess ((Y̌ s+ε

t )r2k+1≤t≤r2k+2,t≤S)k≥0 for any
ε ∈ (−εn, εn). (Indeed, on eah [r2k, r2k+1]∩ [0, S], k ≥ 0, the proess (ψ(Zs+ε

t ))r2k≤t≤r2k+1,t≤Sis above ǫ̌ so that ϕ1(Ž
s+ε
t ) in (9.37) and in the initial ondition of (9.38) mathes 1. As aonsequene, on eah [r2k+1, r2k+2]∩ [0, S], k ≥ 0, |Y̌ s+ε

t |2 = ψ(Žs+ε
t ).) Twie di�erentiabilityin probability of (Zs+ε

t )0≤t≤S on Ωn easily follows.We now hek that, on eah Ωn, n ≥ 1, the dynamis of the derivatives of (Žs+ε
t )0≤t≤Sw.r.t. ε ∈ (−εn, εn) are obtained by di�erentiating the dynamis of (Zs+ε

t )0≤t≤S formally.This is well-seen sine the dynamis of the derivatives of (Žs+ε
t )0≤t≤S are obtained by di�er-entiating the dynamis of (Zs+ε

t )0≤t≤S formally and sine the ut-o� funtions ϕ1 and ϕ2 inthe dynamis of (Žs+ε
t )0≤t≤S math 1 on Ωn.In partiular, on eah Ωn, n ≥ 1, the derivatives of (Zs+ε

t )0≤t≤S at ε = 0 and the derivativesof (Žs+ε
t )0≤t≤S at ε = 0 oinide. Taking the union over n ≥ 1, this shows that equalityholds almost-surely.A similar argument holds for ((Y s+ε

t )r2k+1≤t≤r2k+2,t≤S)k≥0.
�

9.7. Di�erentiability under the symbol E. We now laimProposition 9.8. With the hoie made for (Zs
t )t≥0 and (Zs+ε

t )t≥0 in Proposition 9.4, for asmooth path γ from [−1, 1] into {z ∈ D : ψ(z) > ǫ4} and for a given s ∈ [−1, 1], de�ne V̂ σ
S ,

V σ
S and V as in Proposition 8.14. Then, the onlusion of Proposition 8.14 is still true.Sketh of the Proof. The proof follows the argument used to establish Proposition 9.1.(See (9.4), (9.5), (9.6) and (9.7).) 107



Consider (Zs
t )t≥0 and de�ne the proess

Wt =
∑

n≥0

(∫ t

0

1{r2n≤r<r2n+1}dBr

)

+
∑

i=1,2

∑

n≥0

(∫ t

0

1{r2n+1≤r<r2n+2}

( Y i
r

|Yr|
1{|Yr |>0} +

1√
2
1{|Yr|=0}

)
dBi

r

)
,

t ≥ 0.Then, (Wt)t≥0 is a omplex Brownian motion of dimension d. Moreover,
dZs

t = ψ1/2(Zs
t )dWt + atD

∗
z̄ψ(Zs

t )dt, t ≥ 0.Therefore, for (Zs
t )t≥0, everything works as in Proposition 8.14 but with (Bt)t≥0 replaed by

(Wt)t≥0.A similar argument holds for (Zs+ε
t )t≥0 w.r.t. some (W ε

t )t≥0 (obtained in a similar way).To do so, we emphasize that (〈Ḡ(Zs
t , Z

s+ε
t −Zs

t ), dBt〉)t≥0 in (8.77) is equal to (〈Ḡ(Zs
t , Z

s+ε
t −

Zs
t ), dW

ε
t 〉)t≥0 sine G is set equal to 0 on [r2n+1, r2n+2], n ≥ 0.

�We now dedueProposition 9.9. Keep the assumption and notation of Proposition 9.8 and onsider inpartiular a smooth path γ from [−1, 1] into {z ∈ D : ψ(z) > ǫ4}. Then, there ex-ists a onstant C > 0, depending on (A) only, suh that, for any S > 0, the funtion
s ∈ (−1, 1) 7→ VS(γ(s)) + C

∫ s

0
|γ′(r)|dr is non-dereasing, the funtion s ∈ (−1, 1) 7→

VS(γ(s)) − C
∫ s

0
|γ′(r)|dr is non-inreasing and the funtion s ∈ (−1, 1) 7→ VS(γ(s)) +

C
∫ s

0
[(s− r)(|γ′(r)|2 + |γ′′(r)|)]dr is onvex.Proof. It is su�ient to �nd some onstant C, depending on (A) only, suh that for any

s ∈ (−1, 1),
lim
ε→0

VS(γ(s+ ε)) − VS(γ(s))

|ε| ≥ −C|γ′(s)|,

lim
ε→0

VS(γ(s+ ε)) + VS(γ(s− ε)) − 2VS(γ(s))

ε2
≥ −C

(
|γ′(s)|2 + |γ′′(s)|

)
,

(9.49)and to prove that VS ◦ γ is ontinuous. To do so, we �rst laim:Lemma 9.10. Choose ǫ = min(ǫ0, ǫ
′
1)/2, with ǫ0 as in Proposition 8.12 and ǫ′1 as in Propo-sition 9.3.De�ne

p̌εt = P (Zs
r , Ž

s+ε
r − Zs

r ), τ̌
ε
t = T (Zs

r , Ž
s+ε
r − Zs

r),

Ξ̌εt = G(Zs
r , Ž

s+ε
r − Zs

r), t ≥ 0.108



For a given smooth ut-o� funtion ρ with values in [0, 1] mathing the identity on [1/2, 3/2]and vanishing outside a ompat subset, set as well
V̌ σ
S (s+ ε)

= E

∫ +∞

0

[
ρ

(
exp

(
−

∫ t

0

2Re
[
〈 ¯̌Ξεr, dBr〉

]
−

∫ t

0

|Ξ̌εr|2dr
))

× exp

(∫ t

0

|τ̌ εr |2Trace[exp(p̌εr)ar exp(−p̌εr)D2
z,z̄ψ(Žs+ε

r )]dr

)

× F
(
det(at), exp(p̌εt )at exp(−p̌εt ), Žs+ε

t

)
φ
(Ťε

t

S

)]
|τ̌ εt |2dt,

(9.50)
with [d/dt](Ťε

t) = (τ̌ εt )
2, t ≥ 0.Then, supσ[V̌

σ
S (s)] = VS(γ(s)) and, for ε in the neighborhood of 0, supσ[V̌

σ
S (s + ε)] ≤

VS(γ(s+ ε)) + Cε3, for a onstant C depending on (A) and S only.Moreover, we an �nd a onstant C suh that
lim
ε→0

sup
|ε′|<|ε|

sup
σ

∣∣ d
dε′

[
V̌ σ
S

(
γ(s+ ε′)

)]∣∣

≤ E

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r)]dr

)

×
(
|Γ̄t| +

∫ t

0

(1 + r−1/2)|Γ̄r|dr
)
dt

]
,

(9.51)
and,

lim
ε→0

sup
|ε′|<|ε|

sup
σ

∣∣ d
2

dε′2
[
V̌ σ
S

(
γ(s+ ε′)

)]∣∣

≤ E

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)

×
(
|Γ̄t|2 + |∆̄t| +

∫ t

0

(1 + r−1/2)
(
|Γ̄r|2 + |∆̄r|

)
dr

)
dt

]
.

(9.52)
Finally, for every ompat interval I ⊂ (−1, 1) and for ε small enough, the quantity

supσ sup|ε′|<|ε|[|(∂/∂ε′)[V̌ σ
S (γ(s + ε′))]|] is uniformly bounded w.r.t. s ∈ I. (Pay attentionthat the de�nition of V̌ σ

S depends on s itself.)End of the Proof of Proposition 9.9. Before we prove Lemma 9.10, we omplete theproof of Proposition 9.9. Clearly, by Lemma 9.10
lim
ε→0

VS(γ(s+ ε)) − VS(γ(s))

|ε| ≥ lim
ε→0

1

|ε|
[
inf
σ

(
V̌ σ(s+ ε) − V̌ σ(s)

)]

≥ − lim
ε→0

sup
|ε′|<|ε|

sup
σ

∣∣ d
dε′

[
V̌ σ(s+ ε′)

]∣∣.109



By Lemma 9.10, we dedue that
lim
ε→0

VS(γ(s+ ε)) − VS(γ(s))

|ε|

≥ − sup
σ

E

[∫ +∞

0

exp

(∫ t

0

Trace
[
arD

2
z,z̄ψ(Zσ

r )
]
dr

)

×
(
|Γ̄t| +

∫ t

0

(1 + r−1/2)|Γ̄r|dr
)
dt

]
.By Proposition 9.4, we dedue that there exists a onstant C, depending on (A) only,suh that the �rst inequality in (9.49) holds. The same strategy holds to prove the seondinequality in (9.49).It remains to prove that VS ◦ γ is ontinuous. Basially,

VS(γ(s+ ε)) − VS(γ(s)) ≥ sup
σ

[
V̌ σ
S (s+ ε)

]
− sup

σ

[
V̌ σ
S (s)

]
− C|ε|3

≥ −|ε| sup
|ε′|<|ε|

sup
σ

[∣∣∂V̌
σ
S

∂ε′
(s+ ε′)

∣∣] − C|ε|3.Therefore, for any ompat interval I ⊂ (−1, 1), for ε small enough, we an �nd someonstant C ′ suh that
VS(γ(s+ ε)) − VS(γ(s)) ≥ −C ′|ε|,when s and s + ε are in I. Exhanging the roles of s + ε and s, this proves that VS ◦ γ isontinuous. �We now prove Lemma 9.10.Proof of Lemma 9.10. The equality supσ[V̌

σ
S (s)] = VS(γ(s)) is easily taken sine V̌ σ

S (s) =

V̂ σ
S (s), with V̂ σ

S as in Proposition 9.8.We now establish the inequality supσ[V̌
σ
S (s+ ε)] ≤ VS(γ(s+ ε))+Cε3. It is well-seen thatall the terms under the integral symbol in (9.50) are bounded by some onstant C dependingon (A) and S only.Therefore, for some ǫ′ > 0 to be hosen later,

V̌ σ
S (s+ ε)

= E

{∫ +∞

0

[
ρ

(
exp

(
−

∫ t

0

2Re
[
〈Ξ̌εr, dBr〉

]
−

∫ t

0

|Ξ̌εr|2dr
))

× exp

(∫ t

0

|τ̌ εr |2Trace[exp(p̌εr)ar exp(−p̌εr)D2
z,z̄ψ(Žs+ε

r )]dr

)

× F
(
det(at), exp(p̌εt )at exp(−p̌εt ), Žs+ε

t

)
φ
(Ťε

t

S

)]
|τ̌ εt |2dt;

sup
0≤t≤S

|Žs+ε
t − Zs

t | ≤ ǫ′
}

+O
(
P
{

sup
0≤t≤S

|Žs+ε
t − Zs

t | ≥ ǫ′
})
.

(9.53)
(Here, the Landau term O(· · · ) is uniform w.r.t. ε.)110



As long as the proess (|Žs+ε
t − Zs

t |)t≥0 stays below ǫ′, the proess (|ψ(Žs+ε
t )− ψ(Zs

t )|)t≥0stays below some Cǫ′, C depending on ψ only. In partiular, we an hoose ǫ′ small enoughsuh that Cǫ′ < ǫ̌/2. (See Proposition 9.6 for the de�nition of ǫ̌.)On eah [r2k, r2k+1], k ≥ 0, as in Proposition 9.4, the proess (ψ(Zs
t ))r2k≤t≤r2k+1

is above
ǫ4 > 2ǫ̌. Therefore, on eah [r2k, r2k+1]∩ [0, S], k ≥ 0, the ondition sup0≤t≤S |Žs+ε

t −Zs
t | ≤ ǫ′implies (reall that a ∧ b stands for min(a, b))

ψ(Žs+ε
t ) > ǫ̌, t ∈ [r2k, r2k+1] ∩ [0, S],so that ϕ1(Ž

s+ε
t ) in (9.37) and in the initial ondition of (9.38) mathes 1. As a onsequene,on eah [r2k+1, r2k+2] ∩ [0, S], k ≥ 0, the ondition sup0≤t≤S |Žs+ε

t − Zs
t | ≤ ǫ′ implies

|Y̌ s+ε
t |2 = ψ(Žs+ε

t ), t ∈ [r2k+1, r2k+2] ∩ [0, S].Finally, under the ondition sup0≤t≤S |Žs+ε
t −Zs

t | ≤ ǫ′, proesses (Žs+ε
t )0≤t≤S and (Zs+ε

t )0≤t≤Shave the same dynamis on the whole [0, S].As a onsequene, the �rst term in (9.53) is less than V̂ σ
S (s + ε). (Use F ≥ 0 to say so.)It thus remains to bound the seond term.The idea onsists in using Markov inequality. For any p ≥ 1, it says that(9.54) P

{
sup

0≤t≤S
|Žs+ε

t − Zs
t | ≥ ǫ̌/2

}
≤ 2pǫ̌−pE

[
sup

0≤t≤S
|Žs+ε

t − Zs
t |p

]
.Using the stability property for SDEs, see Proposition 7.1, we know that

E
[

sup
0≤t≤S

∣∣Žs+ε
t − Zs

t

∣∣p]

≤ Cεp + CE

∫ S

0

(∣∣Žs+ε
r − Zs

r

∣∣p +
∣∣Y̌ s+ε
r − Y s

r

∣∣p)dr

≤ Cεp
(
1 +

∫ S

0

sup
|ε′|≤ε

E
[∣∣ζ̌s+ε′r

∣∣p +
∣∣ ˇ̺s+ε′r

∣∣p]dr ≤ Cεp.

(9.55)
Plugging the above bound in (9.54) and then in (9.53), we omplete the proof of the bound
supσ[V̌

σ
S (s+ ε)] ≤ VS(γ(s+ ε)) + Cε3.The proof of the inequalities (9.51) is now straightforward: it follows from (8.82), (9.39),(9.41) and (9.48):

lim
ε→0

sup
|ε′|<|ε|

sup
σ

∣∣ d
dε

[
V̌ σ

(
γ(s + ε)

)]∣∣

≤ sup
σ

E

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r)]dr

)

×
(
|ζst | +

∫ t

0

|ζsr |dr +

∣∣∣∣
∫ t

0

Re
[
〈Dz′G(Zs

r , 0)ζsr , dBr〉
]∣∣∣∣

)
dt

]
.
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Following the proof of Proposition 8.8 (and spei�ally using a variant of Lemma 8.527), weobtain
d

dε

[
VS

(
γ(s+ ε)

)]
≤ E

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)

×
(
|Γ̄t| +

∫ t

0

(
1 + r−1/2

)
|Γ̄r|dr

)
dt

]
.

(9.57)The same argument holds for the seond-order derivatives.Finally, for every ompat interval I ⊂ (−1, 1) and for ε small enough, the quantity
supσ sup|ε′|<|ε|[|(∂/∂ε′)[V̌ σ

S (γ(s + ε′))]|] is shown to be uniformly bounded w.r.t. s ∈ I by asimilar argument and by (9.39). �9.8. Final Step. We now omplete the proof of Theorem 6.1.Passing to the limit in S → +∞ in Proposition 9.9, we dedue that V in Proposition6.9 satis�es the same property as VS, i.e. for any smooth urve γ from [−1, 1] into {z ∈
D : ψ(z) > ǫ4}, the funtion s ∈ [−1, 1] 7→ V (γ(s)) + C

∫ s

0
|γ′(r)|dr is non-dereasing,the funtion s ∈ [−1, 1] 7→ V (γ(s)) − C

∫ s

0
|γ′(r)|dr is non-inreasing and the funtion s ∈

[−1, 1] 7→ V (γ(s)) + C
∫ s

0
[(s− r)(|γ′′(r)| + |γ′(r)|2)]dr is onvex.Choosing γ as a straight path of the form s ∈ [−1, 1] 7→ z + νs, for ψ(z) > ǫ4 and

ν ∈ Cd, with |ν| small enough, we dedue that V is Lipshitz and semi-onvex away fromthe boundary, i.e. on {z ∈ D : ψ(z) > ǫ4}. In partiular, v − g +N0ψ in Proposition 6.9 isLipshitz and semi-onvex on {z ∈ D : ψ(z) > ǫ4} as well. By Proposition 6.4 and Remark6.5, v is C1,1 on {z ∈ D : ψ(z) > ǫ4}. Sine ǫ4 may be hosen as small as desired, we deduethat v is C1,1 in D.We emphasize that the Lipshitz and semi-onvexity onstants are bounded in terms of(A) only on every ompat subset. The problem is then to bound the Lipshitz and semi-onvexity onstants up to the boundary.To do so, we onsider a path γ0 from [−1, 1] into {z ∈ D : ψ(z) < ǫ/2}, for the same ǫas in Propositions 9.4 and 9.6. Then, we an de�ne (Zs
t )0≤t≤r1 as in (9.23) �rst, i.e. as the�rst oordinate of the pair (Zs

t , Y
s
t )0≤t≤r1 , r1 now standing for inf{t ≥ 0 : ψ(Zs

t ) > ǫ/2}. andswith to (9.22) from r1 to r2, with r2 = inf{t ≥ r1 : ψ(Zs
t ) < ǫ4}, and so on... Here, Zs

0 ishosen as γ0(s) and Y s
0 is hosen in suh a way that |Y s

0 |2 = ψ(Zs
0) = ψ(γ(s)). Obviously, wean apply the same proedure for the perturbed proess and �rst onsider (Žs+ε

t , Y̌ s+ε
t )0≤t≤r1as in (9.38).The whole question then lies in the hoie of the initial ondition (Žs+ε

0 , Y̌ s+ε
0 ). Surely,we hoose Žs+ε

0 as γ0(s + ε) and Y̌ s+ε
0 suh that |Y̌ s+ε

0 |2 = ψ(Žs+ε
0 ). Assume therefore that

Y̌ s+ε
0 = γ1(s + ε) for some smooth path γ1 de�ned on [−1, 1] suh that ψ(γ0(s)) = |γ1(s)|2,
s ∈ [−1, 1]. Then, Proposition 9.9 remains true with γ = (γ0, γ1), the proof being exatlythe same. In partiular, the onstant C therein depends on (A) only (and is independent27In Setion 8, the proess (ςt)t≥0 in the statement of Lemma 8.5 is understood as (ζs

t )t≥0. Here, ςt, t ≥ 0,is to be understood as ζs
t or (ζs

t , ̺
s
t ) aording to the ases: t ∈ [r2k, r2k+1[ or t ∈ [r2k+1, r2k+2[, k ≥ 0. Forthis reason, it may be simpler to plug (Γ̄t)t≥0 itself into (ςt)t≥0.However, sine it is disontinuous, (Γ̄t)t≥0 does not satisfy the assumption of Lemma 8.5. Atually, it issu�ient to apply It�'s formula to ((a+mt + Γ̄t)

1/2)t≥0 on eah (r2k, r2k+1), a standing for a small positivereal, and then to hek the boundary onditions. In partiular, it is useless to loalize the proof as done inthe proof of Lemma 8.5 sine there is no singulariry anymore in the dynamis of the derivative proesses.112



of the distane of γ0 to the boundary). Sine V is now known to be C1,1 in D (see Remark6.5), this may be read as
∣∣d[V (γ0(s))]

ds

∣∣ ≤ C|γ′(s)| s ∈ [−1, 1]

∣∣d
2[V (γ0(s))]

ds2

∣∣ ≤ C
(
|γ′(s)|2 + |γ′′(s)|

)
a.e. s ∈ [−1, 1].

(9.58)To obtain the Lipshitz property up to the boundary, we �x some z with ψ(z) < ǫ/2 andwe hoose γ as in Proposition 9.1, i.e. γ = (γ0, γ1) with γ0(s) = z + sν, s ∈ [−1, 1], for
ν ∈ Cd with a small enough norm, and γ1 = (γ1,1, 0), with

(γ1,1)
′(s) = (γ̄1,1)

−1(s)Dzψ(γ0(s))ν |γ1,1(0)|2 = ψ(z), s ∈ [−1, 1].Keep in mind that |γ1,1(s)|2 = ψ(γ0(s)) for s ∈ [−1, 1].Now, ompute for a di�erentiable funtion w(s):
∣∣d[w(s)ψ(γ0(s))]

ds

∣∣ =
∣∣ψ(γ0(s))

dw

ds
(s) + 2w(s)Re

[
Dzψ(γ0(s))ν

]∣∣.Choose now w = V ◦ γ0 and dedue from (9.58) that
∣∣∣∣
d[V (γ0(s))ψ(γ0(s))]

ds

∣∣∣∣

≤ Cψ(γ0(s))
[
|ν| + |γ̄−1

1,1(s)||Dzψ(γ0(s))ν|
]
+ C‖V ‖∞|ν|.Modifying the onstant C if neessary, we dedue that [ψV ](γ0(s)) is Lipshitz ontinuous ofonstant C|ν|. We emphasize that the onstant C is independent of the distane from z tothe boundary sine |ψ(γ0(s))γ̄

−1
1,1 | = ψ1/2(γ0(s)) is bounded. This proedure diretly appliesto Proposition 6.9: we dedue that v − g +N0ψ is Lipshitz ontinous up to the boundary.This is the �rst part in Theorem 8.1.It now remains to investigate the seond-order derivatives. To obtain an estimate thatholds up to the boundary, we onsider another parameterized urve. Let (γa0 , γ

a
1,1) and

(γb0, γ
b
1,1) be two pairs with values in D × R suh that(9.59) γ̇i0(s) = γi1,1(s)ν, γ̇i1,1(s) = Re

[
Dzψ(γi0(s))ν

]
, i = a, b.(Pay attention that γi1,1 is real-valued.) The initial boundary ondition has the form: γi0(0) =

z (with ψ(z) < ǫ/2) and γi1,1(0) = yi0 ∈ R, with yi0 to be hosen later on. Clearly, for eah
i = a, b, the system is (at least) solvable on a small interval around 0. Now,

d

ds

[
ψ(γi0(s)) − |γi1,1(s)|2

]

= 2Re
[
Dzψ(γi0(s))γ̇

i
0(s)

]
− 2γi1,1(s)Re

[
Dzψ(γi0(s))ν

]

= 0.

(9.60) 113



Now, for wi = V ◦ γi0 and for s in the interval of de�nition of (γi0, γ
i
1,1),

d2

ds2

[
V (γi0(s))

]

= 2
d

ds

{
γi1,1(s)Re

[
DzV (γi0(s))ν

]}

= 2Re
[
Dzψ(γi0(s))ν

]
Re

[
DzV (γi0(s))ν

]
+ |γi1,1(s)|2

[
D2V (γi0(s))

]
(ν),where [D2V (γi0(s))](ν) stands for the ation of the seond-order derivatives of V at point

γi0(s) on the vetor ν28. Choosing s = 0 and making the sum over i = a, b, we obtain:
∑

i=a,b

d2

ds2

[
V (γi0(s))

]
|s=0

= 4Re
[
Dzψ(z)ν

]
Re

[
DzV (z)ν

]

+ (|ya0 |2 + |yb0|2)
[
D2V (z)

]
(ν).The whole trik now onsists in hoosing |ya0 |2 = |yb0|2 = ψ(z)/2 so that

[
D2

(
ψV

)
(z)

]
(ν)

=
[
D2ψ(z)

]
(ν)V (z)

+ 4Re
[
Dzψ(z)ν

]
Re

[
DzV (z)ν

]
+ ψ(z)

[
D2V (z)

]
(ν)

=
[
D2ψ(z)

]
(ν)V (z) +

∑

i=a,b

d2

ds2

[
V (γi0(s))

]
|s=0

.To apply (9.58), we need to speify what the seond oordinate of eah γi1 is. We set
γi1(s) = (γi1,1(s), (ψ(z)/2)1/2) for s in the interval of de�nition of (γi0, γ

i
1,1). By (9.60), itsatis�es ψ(γi0(s)) − |γi1(s)|2 = 0, so that (γi0, γ

i
1), i = a, b, is a zero of the funtion Φ(z, y) =

ψ(z)−|y|2. (In partiular, γi0 annot exit from D and the solution to (9.59) may be extendedto the whole [−1, 1]. Indeed, γi1 annot vanish sine γi1,2(s) = (ψ(z)/2)1/2.) We now apply(9.58) (with s in the neighborhood of 0 only). Then, we obtain that D2[ψ(z)V (z)](ν) ≥
−C|ν|2, for some onstant C, independent from the distane from z to the boundary. Sine
ψV = v − g + N0ψ, this proves that the semi-onvexity onstant of v is uniform up to theboundary. By Proposition 6.4, we omplete the proof of Theorem 8.1.9.9. Conlusion. We here paid some prie to gather into a single one the two di�erentrepresentations ((Zs

t )r2k≤t<r2k+1
)k≥0 and ((Zs

t )r2k+1≤t<r2k+2
)k≥0 aording to the position ofthe proess (Zs

t )t≥0 inside the domain D.A natural way to simplify things onsists in onsidering the parameterized representation(9.1) in the whole spae and in forgetting the original Eq. (8.1). Atually, this is exatlywhat Krylov does in the papers mentioned in the referenes below.The reason why we here deided to split the representation into two piees is purelypedagogial even if a bit heavy to detail. Indeed, Setion 8 exatly shows what worksand fails when dealing with the �rst approah. In some sense, this may justify in a moreunderstandable way the reason why the parameterized version is the one used by Krylov. Wealso emphasize that the omputations performed in Setion 8 for the single proess (Zs
t )t≥028That is, D2[V (z)](ν) =

∑d
k,ℓ=1

(D2
zk,zℓ

V (z)νkνℓ +D2
z̄k,zℓ

V (z)ν̄kνℓ +D2
zk,z̄ℓ

V (z)νkν̄ℓ +D2
z̄k,z̄ℓ

V (z)ν̄kν̄ℓ).114



turn out to be really umbersome for the pair proess (Zs
t , Y

s
t )t≥0: this is another reasonwhy we kept both representations in the whole proof.Referenes[1℄ Barles, G. Solutions de visositè des èquations de Hamilton-Jaobi. Mathèmatiques & Appliations(Berlin), 17. Springer-Verlag, Paris, 1994.[2℄ Delarue, F.. Estimates of the Solutions of a System of Quasi-Linear PDEs. A probabilisti Sheme.Sèminaire de Probabilitès XXXVII (2003), pp. 290-332.[3℄ Gaveau, B. Mèthodes de ontrèle optimal en analyse omplexe. I. Rèsolution d'èquations de MongeAmpère. J. Funtional Analysis 25 (1977), 391�411.[4℄ Krylov, N. V. Controlled di�usion proesses. Springer-Verlag, New-York, 1980.[5℄ Krylov, N. V. Nonlinear ellipti and paraboli equations of the seond order. Mathematis and itsAppliations (Soviet Series), 7. D. Reidel Publishing Co., Dordreht, 1987.[6℄ Krylov, N. V. Moment estimates for the quasiderivatives, with respet to the initial data, of solutionsof stohasti equations and their appliation. Math. USSR-Sb. 64 (1989), 505�526.[7℄ Krylov, N. V. Smoothness of the payo� funtion for a ontrollable di�usion proess in a domain. Math.USSR-Izv. 34 (1990), 65�95.[8℄ Krylov, N. V. On ontrol of di�usion proesses on a surfae in Eulidean spae. Math. USSR-Sb. 65(1990), 185�203.[9℄ Krylov, N. V. Probabilisti methods of investigating interior smoothness of harmoni funtions asso-iated with degenerate ellipti operators. Pubbliazioni del Centro di Riera Matematia Ennio deGiorgi. [Publiations of the Ennio de Giorgi Mathematial Researh Center℄ Suola Normale Superiore,Pisa, 2004.[10℄ Kunita, H. Stohasti �ows and stohasti di�erential equations. Cambridge Studies in Advaned Math-ematis, 24. Cambridge University Press, Cambridge, 1990.[11℄ Malliavin, P. Stohasti alulus of variation and hypoellipti operators, In: Proeedings of the Inter-national Symposium on Stohasti Di�erential Equations (Res. Inst. Math. Si., Kyoto Univ., Kyoto,1976), Wiley, New York-Chihester-Brisbane, 1978, 195�263.[12℄ Malliavin, P. Ck-hypoelliptiity with degeneray, In: Stohasti analysis (Pro. Internat. Conf., North-western Univ., Evanston, Ill., 1978), Aademi Press, New York-London, 1978, 199�214.[13℄ Malliavin, P. Stohasti analysis. Springer-Verlag, Berlin Heidelberg New-York, 1997.[14℄ Protter, P. Stohasti integration and di�erential equations. A new approah. Appliations of Mathe-matis (New York), 21. Springer-Verlag, Berlin, 1990.[15℄ Rogers, L.C.G., Williams, D. Markov proesses, and martingales. Vol. 2. It� alulus. John Wiley &Sons, In., New York, 1987.[16℄ Strook, D. W. Partial di�erential equations for probabilists. Cambridge University Press, Cambridge,2008.[17℄ Strook, D. W., Varadhan, S. R. S. Multidimensional di�usion proesses. Springer-Verlag, Berlin-NewYork, 1979.
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