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STOCHASTIC ANALYSIS FOR THE COMPLEX MONGE-AMPÈREEQUATION(AN INTRODUCTION TO KRYLOV'S APPROACH)FRANÇOIS DELARUELaboratoire J.-A. Dieudonné, Université de Ni
e Sophia-Antipolis, Par
 Valrose,06108 Ni
e Cedex 02, Fran
eWe here gather in a single note several original probabilisti
 works devoted to the analysisof the C1,1 regularity of the solution to the possibly degenerate 
omplex Monge-Ampèreequation. The whole analysis relies on a probabilisti
 writing of the solution as the valuefun
tion of a sto
hasti
 optimal 
ontrol problem. Su
h a representation has been introdu
edby Gaveau [3℄ in the late 70's and used in an exhaustive way by Krylov in a series of paperspublished in the late 80's up to the �nal paper [7℄ in whi
h the C1,1-estimate is eventuallyestablished. All the arguments we here use follow from these seminal works.Nota Bene. This is an expanded version of the notes I prepared for a series of le
tures Idelivered in LATP, Marseille, in de
ember 2009.1. Introdu
tionBa
kground. This Chapter is devoted to the sto
hasti
 analysis of the possibly degener-ate Monge-Ampère equation and spe
i�
ally to the probabilisti
 proof of the C1,1-estimateof the solutions under some suitable assumption.For a 
omplete review of the stakes of su
h a result, we refer the reader to Chapters 0 and1 by V. Guedj and A. Zeriahi: we here fo
us on the probabilisti
 
ounterpart only and keepsilent about the geometri
 motivations that are hidden behind.The idea of understanding the 
omplex Monge-Ampère equation from a probabilisti
 pointof view goes ba
k to the earlier paper by Gaveau [3℄ in the late 70's. Therein, the solutionis shown to write as the value fun
tion of a sto
hasti
 optimal 
ontrol problem, i.e. as theminimal value of some averaged 
ost 
omputed along the traje
tories of di�erent di�usionpro
esses evolving inside the underlying domain.In some sense, this representation formula is a 
ompa
t (or 
losed) representation formulathat appears as a generalization of the Kolmogorov formula for the heat equation: the so-lution of the heat equation may be expressed as some averaged value 
omputed along thetraje
tories of the Brownian motion. Brownian motion might be understood as follows: atany given time and at any given position, the di�usive parti
le at hand moves at random,independently of the past and in an isotropi
 way. A
tually, Kolmogorov formula extendsto linear (say to simplify purely) se
ond-order partial di�erential equations with a variabledi�usion 
oe�
ient: the solution is then understood as some averaged value 
omputed alongthe solution of a di�erential equation of sto
hasti
 type driven by the 
oe�
ient of the PDEat hand. This appears as a sto
hasti
 method of 
hara
teristi
s: at any given time and atany given position, the di�usive parti
le asso
iated with the sto
hasti
 di�erential equation1



moves at random, independently of the past, but in a non-isotropi
 way; the most likelydire
tions are given by the main eigenve
tors of the di�usion matrix at the 
urrent point.In the 
ase of Monge-Ampère, the story might read as follows: at any given time and atany given position, the parti
le at hand moves at random, independently of the past, andthe di�usion 
oe�
ient is 
hosen among all the possible di�usion 
oe�
ient of determinant1 a

ording to some lo
al optimization 
riterion or, equivalently, to some lo
al 
ost.Purpose of the Note. In his paper, Gaveau managed to derive some Hölder 
ontinuityproperty of the solution to Monge-Ampère from the probabilisti
 formulation, but the ex-haustive use of the formula for the analysis of the regularity of the derivatives goes ba
k toKrylov. The referen
e paper on the subje
t is [7℄: the solution is shown to be C1,1 on thewhole domain (i.e. up to the boundary) under some suitable assumption that may in
ludethe degenerate 
ase. Basi
ally, it applies to a mu
h more general framework than the Monge-Ampère one: it applies to a general 
lass of Hamilton-Ja
obi-Bellman equations, i.e. to ageneral 
lass of equations summarizing the dynami
s of the value fun
tion of some sto
hasti
optimization problem.A
tually, the paper [7℄ is not self-
ontained. It must be seen as the 
on
lusion of a seriesof papers initiated in the 80's: see, among others, [5℄, [6℄, [8℄ and, �nally, [7℄. This note isan attempt to gather in a single manus
ript most of the ingredients of the whole proof, atleast in the spe
i�
 
ase of Monge-Ampère: from the basi
 rules of sto
hasti
 
al
ulus to thedetailed 
omputations of the �nal estimate of the �rst- and se
ond-order derivatives.However, the proof we here provide is a bit di�erent from the original one and mayappear as less straightforward. In some sense, the obje
tive is here both mathemati
aland. . . pedagogi
al: the idea is both to provide an almost 
omplete and self-
ontained proofof the C1,1 estimate and to explain to the reader the way we are following to rea
h it.A Short Review of the Strategy. The arguments used by Krylov have been developedsin
e the 70's. Some of them may be found in the seminal work by Malliavin [11℄ and[12℄, even if used di�erently. In short, Malliavin initiated a program to prove by meansof sto
hasti
 arguments only the Sum of Squares Theorem by Hörmander: Sum of SquaresTheorem provides some su�
ient 
ondition on the Lie algebra generated by the ve
tor �eldsof a possibly degenerate di�usion matrix to let the 
orresponding operator be hypoellipti
.The program 
onsists in an exhaustive analysis of the sto
hasti
 �ow generated by theasso
iated di�erential equation of sto
hasti
 type. (For the purely Lapla
e operator, the �owis trivial sin
e the 
urrent di�usion pro
ess redu
es to a Brownian motion plus a startingpoint.) A part of the problem is then to investigate the regularity of the �ow.In the 
urrent framework, the main idea of Krylov 
onsists in redu
ing the analysis of the
C1,1 regularity of the solution to Monge-Ampère to a long-run analysis of the derivatives ofthe �ow of the di�usion pro
esses behind. Roughly speaking, the point is to 
ontrol the �rst-and se
ond-order derivatives of the �ow both in time and in the optimization parameter. At�rst sight, it turns out to be really 
hallenging. By the way, it is in some sense: statedunder this form, the obje
tive may not be rea
hable. Here is the key-point of the proof:the required long-run estimate of the derivatives of order one and two of the �ow maybe relaxed a

ording to the underlying se
ond-order di�erential stru
ture. As an example,the analysis may bene�t from some uniform ellipti
ity (or non-degenera
y) property: when2



applied to a non-degenerate linear se
ond-order partial di�erential equation instead of theMonge-Ampère equation, the original required long-run estimate of the derivatives of the�ow 
an be relaxed to a mu
h more less restri
tive version (and in fa
t 
an almost be
an
elled) thanks to the non-degenera
y assumption itself. (The argument is explained inthe note.) In the 
ase of Monge-Ampère, the equation may degenerate, but the analysismay bene�t from the des
ription of the boundary: if the domain is stri
tly pseudo-
onvex,the original required long-run estimate of the derivatives of the �ow 
an be relaxed as well(but 
annot be 
an
elled); that is, stri
t pseudo-
onvexity plays the role of a weak non-degenera
y assumption. Finally, the analysis may also bene�t from the Hamilton-Ja
obi-Bellman formulation, i.e. from the writing of the Monge-Ampère equation as an equationderiving from a sto
hasti
 optimization problem: the stru
ture is indeed kept invariant undersome transformations of the optimization parameters. As explained below, this may also helpto redu
e the long-run 
onstraint on the derivatives of the �ow.As mentioned, the way the required long-run 
onstraint on the derivatives of the �ow isrelaxed is detailed in the note. At least, we may here spe
ify the keyword only: perturbation.Indeed, the strategy is 
ommon to the Malliavin point of view and 
onsists of a well-
hosenperturbation of the original probabilisti
 representation. This is a general meta-prin
iple insto
hasti
 analysis: from a probabilisti
 point of view, regularity properties are understoodthrough the rea
tion of the sto
hasti
 system under 
onsideration to an external perturba-tion.Main Result. In the end, the result we here prove is the following:Theorem 1.1. Let (A) stand for the assumption:
• D is a bounded domain of Cd, d ≥ 1, des
ribed by some C4 fun
tion ψ in the neigh-borhood of D̄, i.e.

D :=
{
z ∈ Cd : ψ(z) > 0

}
.

• The fun
tion ψ is assumed to be plurisuperharmoni
 in the neighborhood of D̄, i.e.
∀a ∈ H+

d : Trace(a) = 1, ∀z ∈ D̄, Trace
(
aD2

z,z̄ψ(z)
)
< 0,where H+

d stands for the set of non-negative Hermitian matri
es of size d× d.
• The fun
tion ψ is non-singular in the neighborhood of the boundary of D, i.e.

∃δ > 0, ∀z ∈ ∂D, |Dzψ(z)| ≥ δ.

• f and g are two fun
tions of 
lass C2 and C4 on D̄ with values in R+ and R respe
-tively.Then, under Assumption (A), there exists a fun
tion u from D̄ to R, of 
lass C1,1 onthe whole D̄ (i.e. with Lips
hitz �rst-order derivatives on the 
losure of the domain D),plurisubharmoni
, i.e.
∀a ∈ H+

d : Trace(a) = 1, a.e. z ∈ D, Trace
(
aD2

z,z̄u(z)
)
≥ 0,and(1.1) det1/d

(
D2
z,z̄u(z)

)
=
f(z)

d
a.e. z ∈ D, u(z) = g(z), z ∈ ∂D,3



i.e. u satis�es the Monge-Ampère equation on D with fd (up to some normalizing 
onstant)as sour
e term and g as boundary 
ondition. (Compare with Chapter 0, Se
tion 1, by V.Guedj.)Pay attention that Theorem 1.1 does not re
over Theorem 1.3.1 in Chapter 1 by V. Guedjand A. Zeriahi (that holds for the ball only) sin
e the boundary 
ondition therein is C1,1 only.Organization of the Note. The note is organized as follows. In Se
tion 2, we explain thebasi
 optimization prin
iple on whi
h the whole proof relies. In Se
tions 3 and 4, we intro-du
e the Kolmogorov representation of the Diri
hlet problem with 
onstant 
oe�
ients bymeans of the Brownian motion. We then give a short overview of the basi
 rules of sto
has-ti
 
al
ulus. In Se
tion 5, we introdu
e the probabilisti
 representation of Monge-Ampère,as originally 
onsidered by Gaveau. The program for the analysis of the representation isexplained in Se
tion 6. Se
tion 7 is a short presentation of the di�erentiability properties ofthe �ow of a sto
hasti
 di�erential equation. In Se
tion 8, we give a �rst sket
h of the proofof the C1-regularity. As explained therein, it fails for the se
ond-order derivatives. The rightargument is given in Se
tion 9.Useful Notation. Below, the gradient of a fun
tion is understood as a row ve
tor and forany pair of ve
tors (x, y) (of the same dimension d) with real or 
omplex 
oordinates, thenotation 〈x, y〉 stands for ∑d
i=1 xiyi.2. Hamilton-Ja
obi-Bellman FormulationWe here introdu
e the Hamilton-Ja
obi-Bellman formulation of the Monge-Ampère equa-tion.2.1. Optimization Problem. Generally speaking, Hamilton-Ja
obi-Bellman equations de-s
ribe the dynami
s � in spa
e only for a stationary problem and in time as well for an evo-lution equation � of the value fun
tion of an optimal (possibly sto
hasti
) 
ontrol problem.In the spe
i�
 
ase of Monge-Ampère, the Hamilton-Ja
obi-Bellman formulation followsfrom a simple Lemma taken from the original arti
le by Gaveau [3℄:Lemma 2.1. Given a non-negative Hermitian matrix H of size d × d, the determinant of

H is the solution of the minimization problem:
det1/d(H) =

1

d
inf

{
Trace[aH ] ; a ∈ H+

d , det(a) = 1
}
.Proof. Up to a diagonalization, we may assume H to be diagonal. Denoting by (λ1, . . . , λd)its (non-negative real) eigenvalues, we obtain for some a ∈ H+

d

Trace[aH ] =
d∑

i=1

ai,iλi.Noting that the elements (ai,i)1≤i≤d are non-negative, the standard inequality between thearithmeti
 and geometri
 means yields
1

d
Trace[aH ] ≥

( d∏

i=1

ai,iλi
)1/d

= det1/d(H)
( d∏

i=1

ai,i
)1/d

.4



Finally, Hadamard inequality says that Trace[aH ] ≥ d det1/d(H), that is
inf{Trace[aH ]; a ∈ H+

d , det(a) = 1} ≥ d det1/d(H).To prove the equality between both quantities, we 
hoose ai,i = λ−1
i det1/d(H) (and ai,jequal to zero for i and j di�erent) when H is non-degenerate (so that the in�mum thenreads as a minimum). In the degenerate 
ase, it is su�
ient to 
hoose ai,i = ε when λi > 0and ai,i = N when λi = 0, with ε small and N large to be 
hosen so that the determinantbe equal to 1 (again, ai,j is set equal to 0 for i and j di�erent). �Lemma 2.1 suggests us to write, at least formally, Monge-Ampère Eq. (1.1) under theform:(2.1) sup

a∈H+

d
, det(a)=1

[
−Trace[aD2

z,z̄u](z)
]
+ f(z) = 0, z ∈ D.(With the same boundary 
ondition.) This formulation makes the family of di�usion oper-ators (Trace[aD2

z,z̄·])a∈H+

d
, det(a)=1 appear.Roughly speaking, an equation driven by an in�mum (or a supremum) taken over a familyof se
ond-order operators is 
alled a se
ond-order Hamilton-Ja
obi-Bellman equation.2.2. First-Order Case. We �rst explain how minimization (or maximization) may a�e
ta family of �rst-order partial di�erential equations. In su
h a 
ase, the resulting equation is
alled a �rst-order Hamilton-Ja
obi-Bellman equation. Consider to this end a very simpleone-dimensional evolution problem:(2.2) Dtu(t, x) − sup
a∈R, |a|=1

[
aDxu

]
(t, x) = 0, (t, x) ∈ (0,+∞) × R,with a given regular boundary 
ondition u(0, ·) = u0(·). This is a non-linear equation with

Dtu(t, x) −
∣∣Dxu

∣∣(t, x) = 0, (t, x) ∈ (0,+∞) × R,as expli
it form.The purpose is here to understand how the method of 
hara
teristi
s may write for su
han equation. When the parameter or 
ontrol a is frozen, the equation(2.3) Dtu(t, x) − aDxu(t, x) = 0, (t, x) ∈ (0,+∞) × R,is a simple transport equation with −a as 
onstant velo
ity, whose solution is expli
itlyknown:
u(t, x) = u0(x+ at), (t, x) ∈ [0,+∞) × R.Said di�erently, the initial shape u0 is translated at velo
ity −a: as an example, the valueof u at time t and a point −at is u0(0). Said di�erently, the mapping t ≥ 0 7→ u(t, x− at) is
onstant.Here, the linear mapping t ≥ 0 7→ x+at is 
alled a ba
kward 
hara
teristi
 of the transportequation (2.3).Go now ba
k to the general 
ase. We understand that the supremum in Eq. (2.2) favoursthe velo
ity �elds of same sign as the lo
al spatial variation of the solution. Said di�erently,the possible 
hara
teristi
s must now be sought among paths driven by positive or negative5



speed a

ording to the values of the gradient of the solution of the PDE. We thus 
onsiderpaths of the form(2.4) xt = x0 +

∫ t

0

asds, t ≥ 0,where (at)t≥0 is a (measurable) fun
tion with values in {−1, 1} and x0 is an arbitrary initial
ondition. The whole point is then to understand the behavior of the solution to the PDEalong all these traje
tories. To do so, wa may di�erentiate, at least formally, u along some
(xt)t≥0 as in (2.4). For a given time T > 0 and some t ∈ [0, T ], we write

d

dt

[
u(T − t, xt)

]
= −Dtu(T − t, xt) + atDxu(T − t, xt)

= −|Dxu|(T − t, xt) + atDxu(T − t, xt) ≤ 0,by taking into a

ount the equality |at| = 1. Therefore,
u(T, x0) ≥ u0

(
x0 +

∫ T

0

asds

)
,that is(2.5) u(T, x0) ≥ sup

(at)0≤t≤T :|at|=1

[
u0

(
x0 +

∫ T

0

asds

)]
.Now, the formal 
hoi
e (at = sign[Dxu(T − t, xt)])t≥0 says that equality might hold. Wethus derive as a (possible) 
losed representation formula of u:(2.6) u(T, x0) = sup

(at)0≤t≤T :|at|=1

[
u0(x

a
T )

]
,with

xat = x0 +

∫ t

0

asds, t ≥ 0.The argument is here formal only. However, it suggests some possible 
losed representationfor the solution of Eq. (2.2) as the value fun
tion of a deterministi
 
ontrol problem: the so-
alled 
ontrol parameter is of the form (at)t≥0 with |at| = 1, t ≥ 0, and the resulting 
ontrolledpath is of the form (xat )t≤0. We stress out that the supremum in (2.2) is kept preserved inthe representation formula (2.6). This follows from a maximum prin
iple argument: by themaximum prin
iple, the solution to (2.2) is above the solution to any linear transport PDEwith the same initial 
ondition u0 and with a (possibly time-dependent) velo
ity �eld ofnorm 1. (See (2.5).)We also emphasize that the theory of vis
osity solutions provides a rigorous framework tothe formal argument we have here given. (See for example Chapter 2, Lemma 2.1, in themonograph by Barles [1℄.)2.3. Se
ond-Order Equations. Go now ba
k to the Hamilton-Ja
obi-Bellman formulation(2.1). In 
omparison with the previous subse
tion, we may distinguish two main di�eren
es.On the hand, Eq. (2.1) has a sour
e term. On the other hand, the underlying operator is ofse
ond-order. (The reader may also noti
e that the equation is also stationary and that it isset on a bounded domain of the spa
e only. We will 
ome ba
k to these two points later.)6



Plugging a sour
e term (say f in the right-hand side) in the Hamilton-Ja
obi formulation(2.2) would not really modify the analysis we just performed. In a su
h a 
ase, the rightform of (2.6) would be(2.7) u(T, x0) = sup
(at)0≤t≤T :|at|=1

[
u0(x

a
T ) +

∫ T

0

f(xat )dt

]
.(That is, the sour
e term would be integrated along the 
ontrolled traje
tories.)Repla
ing the �rst-order operator by a se
ond-order one is a
tually mu
h more di�
ult tounderstand. To do so, the �rst point 
onsists in going ba
k to the frozen problem withoutany optimization, i.e. to the 
ase when the di�usion 
oe�
ient in (2.1) is given by some�xed a ∈ H+

d , and then in seeking for the right 
hara
teristi
s in that framework.Under this form, the problem is not well-posed. The whole point is the following: for ase
ond-order operator, there are no true 
hara
teristi
s; the only possible way to obtain a
losed formula for the solution 
onsists in introdu
ing an additional parameter, i.e. somerandomness, and then in 
onsidering random 
hara
teristi
s. This follows from some s
alefa
tors: there is no way to balan
e, in a single di�erentiation, �rst-order terms in time andin spa
e and se
ond-order terms in spa
e. More pre
isely, to balan
e �rst-order terms intime and se
ond-order terms in spa
e, the point is to introdu
e some 
hara
teristi
s withunbounded variation and, in fa
t, 
hara
teristi
s that are not absolutely 
ontinuous w.r.t.the Lebesgue measure. Randomness may be useless for the 
onstru
tion of su
h traje
tories:as we will see below, randomness permits to get rid of some parasiti
 terms of order one bya simple integration w.r.t. to the underlying probability measure.The typi
al 
ase is the purely Lapla
e one. When a mat
hes the identity matrix Id,the operator Trace[D2
z,z̄·] admits the 
omplex Brownian motion of dimension d as random
hara
teristi
. A
tually, Trace[D2

z,z̄·] may be expanded in real 
oordinates as
Trace[D2

z,z̄·] =
1

4

[
∆x,x + ∆y,y

]
,so that it is equivalent to 
onsider the real Brownian motion of dimension 2d as random
hara
teristi
: Brownian motion is the right sto
hasti
 pro
ess asso
iated with the heatequation. 3. Brownian MotionWe �rst explain what Brownian motion is in the simplest 
ase when the dimension is 1.3.1. Gaussian Density. The 
onne
tion between Brownian motion and heat equation iswell-understood through the so-
alled marginal laws, that is the laws of the positions ofa Brownian motion at a given time. Re
all indeed that the time�spa
e heat equation indimension 1(3.1) Dtu(t, x) −

1

2
D2
x,xu(t, x) = 0, (t, x) ∈ (0,+∞) × R,with an initial 
ondition of the form u(0, ·) = u0(·) admits as solution (say if u0 is boundedand 
ontinuous)(3.2) u(t, x) =

1√
2πt

∫

R

u0(x− y) exp
(
−|y|2

2t

)
dy, (t, x) ∈ (0,+∞) × R.7



Said di�erently, the solution may be expressed as the 
onvolution of the initial 
ondition bythe Gaussian density of zero mean and of varian
e t, i.e. the fun
tion
y ∈ R 7→ 1√

2πt
exp

(
−|y|2

2t

)
dy.The density is here said to be of zero mean and of varian
e t sin
e

1√
2πt

∫

R

y exp
(
−|y|2

2t

)
dy = 0

1√
2πt

∫

R

y2 exp
(
−|y|2

2t

)
dy = t.(The se
ond result follows from a simple 
hange of variable .)Convolution by a Gaussian kernel may be expressed in a simple probabilisti
 way. Indeed,if (Ω,F ,P) denotes a 
omplete1 probability spa
e and (Bt)t≥0 a family of random variables(i.e. of measurable fun
tions from (Ω,F) to R endowed with its Borel sets) su
h that, forany t > 0, Bt has a Gaussian density of zero mean and varian
e t, i.e. (below, E stands forthe expe
tation)

∀f ∈ Cb(R), E
[
f(Bt)

]
=

∫

Ω

f(Xt(ω))dP(ω)

=
1√
2πt

∫

R

f(y) exp
(
−|y|2

2t

)
dy,and P{B0 = 0} = 1, then(3.3) u(t, x) = E

[
u0(x+Bt)

]
, t ≥ 0.3.2. Dynami
s. The 
onne
tion we just gave between heat equation and Gaussian variablesis a
tually too mu
h �stati
� to be fully relevant. Nothing is said about the joint behaviorof the variables (Bt)t≥0 ones with others.To understand the dynami
s, we use a dis
retization artifa
t. Assume indeed that we areapplying a �nite di�eren
e numeri
al s
heme to solve heat equation (3.1). Spe
i�
ally, fora small time step ∆t and a small spatial step ∆x, assume that we are seeking for a familyof reals (un,k)n∈N,k∈Z approximating the �true� values (u(n∆t, k∆x))k∈Z. A 
ommon s
heme
onsists in de�ning (un,k)n∈N,k∈Z through the iterative pro
edure(3.4) un+1,k − un,k

∆t
=

1

2

un,k+1 + un,k−1 − 2un,k
∆x2

, n ∈ N, k ∈ Z,with un,k = u0(k∆x) as initial 
ondition. Obviously, in the above equation, the left-handside is understood as an approximation of the time-derivative of u and the right-hand sideof its se
ond-order spatial derivative.We 
an write (3.4) as
un+1,k =

(
1 − ∆t

∆x2

)
un,k +

∆t

∆x2

un,k+1 + un,k−1

2
.1The 
ompleteness is used in the sequel. 8



Choosing ∆t = ∆x2, we obtain the simpler formula(3.5) un+1,k =
un,k+1 + un,k−1

2
, n ∈ N, k ∈ ZRepla
e now the approximating values (un,k)k∈Z,n≥0 in (3.5) by the true quantities and write

u
(
(n+ 1)∆t, k∆x

)
≈ u

(
n∆t, (k + 1)∆x

)
+ u

(
n∆t, (k − 1)∆x

)

2
= E

[
u(n∆t, k∆x+ ∆x ε)

]
,where ε is a random variable taking the values 1 and −1 with probability 1/2. Noti
e thatit is possible to repeat the argument by approximating u(n∆t, ·) with a new expe
tation(
omputed w.r.t. a new random variable, independent of ε). Therefore,

u
(
(n + 1)∆t, k∆x

)
≈ E

[
u
(
(n− 1)∆t, k∆x+ ∆x(ε1 + ε2)

)]
,where ε1 and ε2 are two independent random variables taking the values 1 and −1 withprobability 1/2. Iterating the pro
edure N times, we dedu
e that(3.6) u

(
N∆t, k∆x

)
≈ E

[
u
(
0, k∆x+ ∆x(ε1 + ε2 + · + εN)

)]
.Clearly, the symbol ≈ is not really meaningful be
ause of the numerous approximations wejust performed. However, 
hoosing to simplify k = 0 and N∆t = 1, so that ∆x = N−1/2sin
e ∆t = ∆x2, we understand that the random variable in the right-hand side in (3.6) hasthe form

N−1/2
[
ε1 + ε2 + · + εN

]
.Central Limit Theorem says that it 
onverges, in the weak sense, towards the Gaussian law ofzero mean and varian
e 1. (Here, weak 
onvergen
e means weak 
onvergen
e of probabilitymeasures.) In parti
ular, passing to the limit in (3.6), we re
over Eq. (3.3).A
tually, this non-rigorous argument says that the right stru
ture for (Bt)t≥0 in (3.3) is ofindependent in
rement type. Indeed, we understand that, on disjoint intervals, the under-lying variables (εn)n≥1 are asked to be independent. Moreover, the stru
ture is stationary:randomness between times 0 and t − s is the same in law as the randomness plugged intothe system between times s and t. This says that the right 
hoi
e for (Bt)t≥0 isDe�nition 3.1. A family of random variables (Bt)t≥0 is a Brownian motion starting from

0 if(1) P{B0 = 0} = 1,(2) for any n ≥ 1, for any t0 = 0 < t1 < t2 < · · · < tn, the in
rements Bt1 , Bt2 − Bt1,
· · · , Btn − Btn−1

are independent,(3) for any 0 < s < t, the in
rement Bt − Bs has a Gaussian law of zero mean andvarian
e t− s.(4) with probability 1, the paths t ≥ 0 7→ Bt(ω) are 
ontinuous.The last 
ondition is the most te
hni
al one: roughly speaking, it says that the di�erentialstru
ture asso
iated with Brownian motion is lo
al. Add also that, by de�nition, a Brownianmotion starting from x is nothing else but x plus a Brownian motion starting from 0.9



3.3. Di�erential Rules. To understand if Brownian motion is the right 
hara
teristi
 forheat equation, the point is to 
ompute the in�nitesimal variation of (u(T − t, Bt))0≤t≤T , fora given T > 0, where u is given by (3.1). We here expand by Taylor's formula
u(T − (t+ h), Bt+h − Bt +Bt)

= u(T − t, Bt) −Dtu(t, Bt)h+Dxu(t, Bt)(Bt+h −Bt)

+
1

2
D2
x,xu(t, Bt)(Bt+h − Bt)

2 +
1

2
D2
t,tu(t, Bt)h

2

−D2
t,xu(t, Bt)(Bt+h −Bt)h+ . . .Expansion is given at least of order two: we aim to re
over heat equation. (Moreover, itmakes sense sin
e u is regular away from the boundary.).A
tually, it is enough to stop the expansion at order two: by de�nition of a Brownianmotion, E[(Bt+h − Bt)

2] = h; using a simple Gaussian argument, this result may be gen-eralized as E[(Bt+h − Bt)
2p] = Cph

p for any integer p, the 
onstant Cp being universal. Inparti
ular, the only term of order 1 in h among the derivatives of order two is the term inspatial derivatives. The others are of order h3/2 and h2. Therefore, we write
u(T − (t+ h), Bt+h − Bt +Bt)

= u(T − t, Bt) −Dtu(t, Bt)h+Dxu(t, Bt)(Bt+h −Bt)

+
1

2
D2
x,xu(t, Bt)(Bt+h − Bt)

2 + . . .

(3.7)Here, we wish to repla
e (Bt+h −Bt)
2 by h. Using a Gaussian argument again,

E
[(

(Bt+h −Bt)
2 − h

)2]
= 2h2.Clearly, this does not show that the term (Bt+h − Bt)
2 − h is less than h. However, on thelong run, the sum of the terms of this type, i.e.(3.8) n−1∑

i=0

[
(Bti+1

− Bti)
2 − h

]2for a subdivision 0 < t1 < t2 < · · · < tn of stepsize h is a sum of independent randomvariables of varian
e 2h2. In the independent 
ase, the varian
e is additive: the varian
e ofthe sum is equal to 2nh2. Noting that nh is ma
ros
opi
, we understand that the a
tion ofthis term is negligible from a ma
ros
opi
 point of view.The reader 
an 
he
k that the argument still holds when the quantity D2
x,xu(t, Bt) is addedto sum as in (3.7).Finally, we write

u(T − (t+ h), Bt+h − Bt +Bt)

= u(T − t, Bt) −Dtu(t, Bt)h+Dxu(t, Bt)(Bt+h −Bt)

+
1

2
D2
x,xu(t, Bt)h+ o(h)

= u(T − t, Bt) +Dxu(t, Bt)(Bt+h − Bt) + o(h),10



the se
ond line being obtained by using the PDE. From an in�nitesimal point of view (i.e.when getting rid of the negligible terms), we write(3.9) d
[
u(T − t, Bt)

]
= Dxu(t, Bt)dBt, 0 ≤ t ≤ T,We emphasize that the result is not zero! Said di�erently, the variation of (u(T−t, Bt))0≤t≤Tis not zero, as for equations of order one. A
tually, understandingDxu(t, Bt)dBt asDxu(t, Bt)(Bt+h−

Bt), we dedu
e from the independen
e of Dxu(t, Bt) and Bt+h − Bt that the expe
tation ofthe in
rement is zero. Therefore, (u(T − t, Bt))0≤t≤T is 
onstant. . . in expe
tation.3.4. Di�erential Rules. In the end, everything works as if we had written
d
[
u(T − t, Bt)

]
= −Dtu(t, Bt)dt+

1

2
D2
x,xu(t, Bt)dB

2
t +Dxu(t, Bt)dBt,and set dB2

t = dt. We will use this rule below.Theorem 3.2. [It�'s formula℄ Let (Bt)t≥0 a real Brownian motion and f a fun
tion of 
lass
C1,2([0,+∞),R). Then, the in�nitesimal variation of (f(t, Bt))0≤t≤T writes

d
[
f(t, Bt)

]
=

[
Dtf(t, Bt) +

1

2
D2
x,xf(t, Bt)

]
dt+Dxf(t, Bt)dBt.Said di�erently, It�'s formula is a Taylor formula with 
onvention dB2

t = dt.4. Sto
hasti
 IntegralWe here explain the basi
 steps of the 
onstru
tion of the sto
hasti
 integral. Spe
i�
ally,the problem is to give a meaning, from a ma
ros
opi
 point of view, to the term(4.1) Dxu(t, Bt)dBt,in the statement of Theorem 3.2.4.1. Heuristi
s. Under a ma
ros
opi
 form, the term in (4.1) reads as a sto
hasti
 integral
∫ T

0

Dxu(t, Bt)dBt.This integral is not de�ned in the Lebesgue sense: Brownian motion paths are not of boundedvariation. However, it may be understood in a spe
i�
 way, as the limit (in a 
ertain sense)of some Riemann sums. Indeed, the integral is understood as the L2 limit of the sum
n−1∑

i=0

Dxu(ti, Bti)
(
Bti+1

− Bti

)
,where 0 = t0 < t1 < · · · < tn is a subdivision of [0, T ] of (say uniform) stepsize, equal to

T/n.De�ne now the pro
ess (i.e. a family of random variables depending on time)
αnt =

n−1∑

i=0

Dxu(ti, Bti)1(ti,ti+1](t).11



As a de�nition of the sto
hasti
 integral of su
h a simple pro
ess, we then set
∫ T

0

αnt dBt :=

n−1∑

i=0

Dxu(ti, Bti)
(
Bti+1

− Bti

)
.As we already said, this term is of zero expe
tation. The varian
e is equal to

E

[(∫ T

0

αnt dBt

)2]

=
n−1∑

i=0

E
[∣∣Dxu(ti, Bti)

∣∣2|Bti+1
− Bti |2

]

+ 2
∑

0≤i<j≤n−1

E
[
Dxu(ti, Bti)Dxu(tj, Btj )

(
Bti+1

−Bti

)(
Btj+1

− Btj

)]
.In the �rst sum, we may take advantage of the independen
e of Bti+1

−Bti and Bti to split theexpe
tations. Similarly, in the se
ond sum, the expe
tation of Btj+1
− Btj may be isolated:it is equal to 0. Therefore,

E

[(∫ T

0

αnt dBt

)2]
= h

n−1∑

i=0

E
[∣∣Dxu(ti, Bti)

∣∣2] = E

∫ T

0

(αnt )
2dt.Said di�erentily, we just built an isometry between L2(Ω,F ,P) and L2([0, T ] × Ω,B(R) ⊗

F , dt⊗P). It is well-seen that the sequen
e (αnt )0≤t≤T 
onverges (at least pointwise) towards
(Dxu(t, Bt))0≤t≤T . It may be assumed to be bounded if the initial 
ondition u0 in (3.1) isLips
hitz. Therefore, it has a limit in L2([0, T ]× Ω,B(R) ⊗F , dt⊗ P) and, thus, is Cau
hy.As a 
onsequen
e, the sequen
e (∫ T

0

αnt dBt

)

0≤t≤Tis Cau
hy in L2(Ω,F ,P) as well. It is 
onvergent: by de�nition, the limit is the sto
hasti
integral ∫ T

0

Dxu(t, Bt)dBt.4.2. Constru
tion. [The reader may skip this part.℄ A
tually, the pro
edure may be gen-eralized to integrate more general sto
hasti
 pro
esses. To do so, we �rst spe
ify someelements of the theory of sto
hasti
 pro
esses (keep in mind that (Ω,F ,P) stands for a
omplete probability spa
e):De�nition 4.1. We 
all a �ltration any non-de
reasing family (Ft)t≥0 of sub σ-�elds of F .In pra
ti
e, a �ltration stands for the available information by observation of the eventso

ured between the initial and present times. In what follows, �ltrations are assumed tobe right-
ontinuous, i.e. ∩ε>0Ft+ε = Ft and 
omplete, i.e. 
ontaining sets of zero measure.This is ne
essary to state some fundamental results for sto
hasti
 pro
esses.De�nition 4.2. A pro
ess (Xt)t≥0 is said to be adapted w.r.t. a �ltration (Ft)t≥0 if, for any
t ≥ 0, Xt is Ft-measurable. (That is, the value of Xt is known at time t.)12



De�nition 4.3. A Brownian motion (Bt)t≥0 is said to be an (Ft)t≥0-Brownian motion if itis adapted w.r.t. (Ft)t≥0 and if, for any (t, h) ∈ R2
+, the in
rement Bt+h−Bt is independentof Ft. For instan
e, a Brownian motion (Bt)t≥0 is always a Brownian motion w.r.t. itsnatural �ltration(4.2) Ft = σ(Bs, s ≤ t) ∨N , t ≥ 0.Here, σ(Bs, s ≤ t) stands for the smallest �ltration for whi
h the variables (Bs)0≤s≤t aremeasurable and N for the 
olle
tion of sets of zero-measure.We are now in position to generalize the de�nition of the sto
hasti
 integral:De�nition 4.4. A simple pro
ess w.r.t. to the �ltration (Ft)t≥0 is a pro
ess of the form

Ht =

n−1∑

i=0

H i
1(ti,ti+1](t),where H i is a square-integrable Fti-measurable random variable and 0 < t1 < t2 < · · · < tn.Then, the sto
hasti
 integral is(4.3) ∫ +∞

0

HtdBt =
n−1∑

i=0

H i
(
Bti+1

−Bti

)
.Using, as above, the independen
e of H i and of Bti+1

− Bti , we 
an show that
E

[(∫ +∞

0

HtdBt

)2]
= E

∫ +∞

0

H2
t dt.As announ
ed above, the integral de�nes an isometry. By density, we 
an extend the de�ni-tion of the integral to the 
lass of so-
alled progressively-measurable pro
esses:De�nition 4.5. A pro
ess (Ht)t≥0 is said to be progressively-measurable w.r.t. the �ltration

(Ft)t≥0 if, at any time T ≥ 0, the joint mapping
(t, ω) ∈ [0, T ] × Ω 7→ Xt(ω)is measurable for the produ
t σ-�eld B([0, T ]) ⊗FT .Given a progressively-measurable pro
ess su
h that

E

∫ +∞

0

H2
t dt < +∞,there exists a sequen
e (Hn

t )t≥0 of simple pro
esses 
onverging in L2([0,+∞)×Ω,B([0,+∞))⊗
F , dt⊗ P) towards (Ht)t≥0 so that ∫ +∞

0

HsdBsexists as a limit in L2(Ω,F ,P) of a Cau
hy sequen
e. It satis�es It�'s isometry, i.e.
E

[(∫ +∞

0

HsdBs

)2]
= E

∫ +∞

0

H2
sds.The notion of progressive-measurability is ne
essary: as the isometry property shows, thepro
ess is seen as joint fun
tion of time and randomness. As example, it may be proven thatany (left- or right-)
ontinuous adapted pro
ess is progressively-measurable.13



4.3. Variation of the Integration Bound. To make the 
onne
tion between De�nition4.5 and ∫ T

0

Dxu(t, Bt)dBt,we understand the above sto
hasti
 integral as
∫ +∞

0

1(0,T ](t)Dxu(t, Bt)dBt.Below, we use the �rst writing only. Going ba
k to (3.9), we �nally write (repla
ing (Bt)t≥0by (x+Bt)t≥0), for all t ≥ 0,(4.4) u(T − t, x+Bt) = u(T, x) +

∫ t

0

Dxu(T − s, x+Bs)dBs.This writing is a bit awkward be
ause of the time reversal. To obtain a straightforwardprobabilisti
 formulation, it turns out to be easier to set Eq. (3.1) in a ba
kward sense itself,i.e. with a terminal boundary 
ondition. A
tually, in the spe
i�
 
ase of Monge-Ampère,this has no real in�uen
e sin
e the equation is stationary.However, we understand from Eq. (4.4) how it may be useful to see the sto
hasti
 integralas a pro
ess, indexed by the upper integration bound. A
tually, it is not so easy to do:the integral being de�ned as an element of L2(Ω,F ,P), it is de�ned up to an event of zeromeasure only. To let the upper integration bound vary, it is ne
essary to 
hoose a suitableversion at ea
h time:Proposition 4.6. Given a progressively-measurable sto
hasti
 pro
ess (Ht)t≥0 w.r.t. a �l-tration (Ft)t≥0 su
h that
∀t ≥ 0, E

∫ t

0

H2
sds < +∞,it is possible to 
hoose for any t ≥ 0 a version of the sto
hasti
 integral

∫ t

0

HsdBs =

∫ +∞

0

1]0,t](s)HsdBs,su
h that the pro
ess (∫ t

0

HsdBs

)

t≥0be of 
ontinuous paths. (That is, is 
ontinuous ω by ω.)Noti
e that the 
ontinuity property is well-understood in (4.4) sin
e the left-hand sidetherein is 
ontinuous.4.4. Martingale Property. There is another remarkable property of the sto
hasti
 inte-gral: it is of zero expe
tation. Said di�erently, taking the expe
tation in (4.4) when t = T ,we obtain
u(T, x) = E

[
u0(x+BT )

]
.This is nothing but the representation announ
ed in (3.3): this representation is referred asFeynman-Ka
 formula. 14



A
tually, the 
entering property for the sto
hasti
 integral may be seen as a 
onsequen
eof a more general property: the sto
hasti
 integral is a martingale. The martingale propertyis a proje
tive property based upon the notion of 
onditinal expe
tation:De�nition 4.7. An adapted pro
ess (Mt)t≥0 w.r.t. a �ltration (Ft)t≥0 is 
alled a martingaleif it is integrable at any time and
∀0 ≤ s ≤ t, E

[
Mt|Fs

]
= Ms.In parti
ular, a martingale has a 
onstant expe
tation.Go now ba
k to De�nition 4.4. Considering (4.3), we noti
e, with the same notations,that

∫ tj

0

HrdBr =

j−1∑

i=0

H i(Bti+1
− Bti),for 0 ≤ j ≤ n. By 
onditioning w.r.t. Ftj−1

, we obtain
E

[∫ tj

0

HrdBr|Ftj−1

]
=

j−2∑

i=0

H i(Bti+1
− Bti) + E

[
Hj−1(Btj −Btj−1

)|Ftj−1

]
,sin
e the j − 1 �rst terms are measurable w.r.t. the σ-�eld Ftj−1

. Examinate now theremaining part: we know that Hj−1 is measurable w.r.t. Ftj−1
and that the in
rement (Btj −

Btj−1
) is independent of Ftj−1

. Therefore, the produ
t of both is orthogonal to L2(Ω,Ftj−1
,P):the 
onditional expe
tation is zero. Finally,

E

[∫ tj

0

HrdBr|Ftj−1

]
=

∫ tj−1

0

HrdBr.The argument is a
tually true for any 
onditioning by Ftℓ , 0 ≤ ℓ ≤ j − 1. Moreover, notingthat any pair (s, t), 0 ≤ s ≤ t, may be understood as a subset of the subdivision {t0, . . . , tn},we obtain that
E

[∫ t

0

HrdBr|Fs

]
=

∫ s

0

HrdBr,for any s and t. By a density argument, we dedu
eProposition 4.8. Given a progressively-measurable pro
ess (Ht)t≥0 w.r.t. a �ltration (Ft)t≥0and satisfying
∀t ≥ 0, E

[∫ t

0

H2
sds

]
< +∞,the sto
hasti
 integral

(∫ t

0

HsdBs

)

t≥0is a martingale w.r.t. (Ft)t≥0. 15



4.5. Stopping Times. The reader may wonder about the 
onne
tion bewteen a pro
ess ofzero mean and a martingale. A
tually, a martingale is a pro
ess whose expe
tation is zerowhen stopped at any suitable random times, 
alled stopping times.Here is the de�nition (together with an example):De�nition 4.9. Given a �ltration (Ft)t≥0, a random variable τ with non-negative (but pos-sibly in�nite) values is 
alled a stopping-time if
∀t ≥ 0, {τ ≤ t} ∈ Ft.As an example, a 
ontinuous and adapted pro
ess (Xt)t≥0 w.r.t. a �ltration (Ft)t≥0 and a
losed subset F ⊂ R, the variable
τ := inf{t ≥ 0 : Xt ∈ F},is a stopping time (the in�mum being set as +∞ is the set is empty).Stopping times are really useful be
ause of the following Doob Theorem:Theorem 4.10. Given a martingale (Mt)t≥0 w.r.t. a �ltration (Ft)t≥0 and a stopping time

τ , (Mt∧τ )t≥0 is also a martingale (w.r.t. the same �ltration). (Here t ∧ τ = min(t, τ).)In parti
ular, if τ is bounded by some T , then E[Mτ ] = E[MT∧τ ] = E[M0].In the above statement, t ∧ τ , for some deterministi
 time t, is a stopping time again.Indeed, we let the reader 
he
k that the minimum of two stopping times is a stopping timeas well.Below, we will also make use of the following version of Doob's theorem:Theorem 4.11. For a �ltration (Ft)t≥0 and a stopping time τ (w.r.t. (Ft)t≥0), we 
all
σ-�eld of events o

ured before time τ , the σ-�eld

Fτ :=
{
A ∈ F : ∀t ≥ 0, A ∩ {τ ≤ t} ∈ Ft

}
.Then, for a martingale (Mt)t≥0 w.r.t. (Ft)t≥0 and for another stopping time σ ≥ τ ,

∀t ≥ 0, 1{τ≤t}E
[
Mσ∧t|Fτ

]
= 1{τ≤t}Mσ∧t.(Again, it is an easy exer
i
e to 
he
k that {τ ≤ t} is in Fτ . Indeed, Fτ must be understoodas the 
olle
tion of events for whi
h it may be de
ided if they have o

ured or not at time

τ .) 5. Probabilisti
 Writing of Monge-AmpèreWe now go ba
k to Se
tion 2. In order to give a probabilisti
 representation of (2.1), we�rst investigate the probabilisti
 writing of the solution to the Diri
hlet problem(5.1) Trace
[
aD2

z,z̄u
]
(z) = f(z), z ∈ D,with the boundary 
ondition u(z) = g(z), z ∈ ∂D, the non-negative Hermitian matrix abeing given. 16



5.1. Real Diri
hlet Problem. It may be simpler to start with the real 
ase:
Trace

[
aD2

x,xu
]
(x) + f(x) = 0, x ∈ D ; u(x) = g(x), x ∈ ∂D,the matrix a being real, symmetri
 and non-negative. Obviously, in this writing, the 
oe�-
ients f and g together with the domain D are supposed to be of real stru
ture.In the 
ase when a is equal to the identity matrix, the pro
ess asso
iated with the di�er-ential operator Trace[D2

x,x·] is (up to a multipli
ative 
onstant) the d-dimensional Brownianmotion, as de�ned byDe�nition 5.1. A pro
ess (B1
t , . . . , B

d
t )t≥0 with values in Rd is 
alled a d-dimensional Brow-nian motion if ea
h pro
ess (Bi

t)t≥0, 1 ≤ i ≤ d, is a Brownian motion and if all of them areindependent, i.e., for any time-indi
es 0 < t1 < · · · < tn, n ≥ 1, the ve
tors (B1
t1
, . . . , B1

tn),
. . . , (Bd

t1
, . . . , Bd

tn) are independent.Generally speaking, the sto
hasti
 integration theory works in dimension d as in dimension1. Spe
i�
ally, the point is to 
onsider a 
ommon referen
e �ltration: the natural 
hoi
e
onsists in repla
ing Bs in (4.2) by (B1
s , . . . , B

d
s ). It is also ne
essary to extend the di�erentialrules given in the statement of Theorem 3.2 to the multi-dimensional 
ase.Theorem 5.2. It�'s formula (or sto
hasti
 Taylor formula) in Theorem 3.2 extends to themulti-dimensional setting. For a d-dimensional Brownian motion (Bt = (B1

t , . . . , B
d
t ))t≥0and a fun
tion f ∈ C([0,+∞) × Rd,R), the in�nitesimal variation of (f(t, Bt))t≥0 expandsas

d
[
f(t, Bt)

]

=
[
Dtf(t, Bt) +

1

2

d∑

i=1

D2
xi,xi

f(t, Bt)
]
dt+

d∑

i=1

Dxi
f(t, Bt)dB

i
t, t ≥ 0.Sket
h of the Proof. We just provide the main idea. Generally speaking, the proof relieson the d-dimensional Taylor formula. The only problem is to understand how behave thein�nitesimal produ
ts dBi

tdB
j
t , 1 ≤ i, j ≤ d.Obviously, dBi

tdB
i
t = dt for any 1 ≤ i ≤ d. When i 6= j, dBi

tdB
j
t is set as 0. Thisde�nition may be understood by dis
retizing the underlying dynami
s with a mi
ros
opi
stepsize. Indeed, if 0 = t0 < t1 < · · · < tn is a time-grid of stepsize h, we may 
ompute

E

[(n−1∑

k=0

(Bi
tk+1

− Bi
tk

)(Bj
tk+1

−Bj
tk

)

)2]
,as in (3.8).The idea is then the same as in (3.8). Variables are 
learly independent and of zero expe
-tation so that the expe
tation of the square of the sum is equal to the sum of the varian
es.Now, sin
e E[(Bi

tk+1
− Bi

tk
)2(Bj

tk+1
− Bj

tk
)2] = h2, the sum is equal to nh2. It is thus mi
ro-s
opi
 at the ma
ros
opi
 level a

ording to the same argument as in (3.8). Ma
ros
opi

ontributions of the 
rossed terms are therefore zero. �We now provide an example of appli
ation. (In what follows, we will write Bt for

(B1
t , . . . , B

d
t ), so that Bt stands for a ve
tor.)17



When a = (1/2)Id and f and g are regular enough (say f is Hölder 
ontinuous and g hasHölder 
ontinuous se
ond-order derivatives), it is well-known that the real Diri
hlet problem
1

2
∆u(x) + f(x) = 0, x ∈ D ; u(x) = g(x), x ∈ ∂D,has a unique 
lassi
al solution, with bounded derivatives. For x ∈ D, we write the in�nites-imal dynami
s of (u(x+Bt))t≥0. We obtain

du(x+Bt) =

d∑

i=1

Dxi
u(x+Bt)dB

i
t +

1

2

d∑

i=1

D2
xi,xi

u(x+Bt)dt

=
d∑

i=1

Dxi
u(x+Bt)dB

i
t − f(x+Bt)dt.

(5.2)On the ma
ros
opi
 s
ale, we obtain (with B0 = 0)
u(x+Bt) = u(x) −

∫ t

0

f(x+Bs)ds+
d∑

i=1

∫ t

0

Dxi
u(x+Bt)dB

i
t.This writing is a
tually unsatisfa
tory: it holds when x + Bt belongs to D only; otherwise,it is meaningless. To make things rigorous, we introdu
e the stopping time:

τx := inf
{
t ≥ 0 : x+Bt ∈ D∁

}
.We are then able to write

u(x+Bt)

= u(x) −
∫ t

0

f(x+Bs)ds+
d∑

i=1

∫ t

0

Dxi
u(x+Bt)dB

i
t, 0 ≤ t ≤ τx.We emphasize that the martingale term is well-de�ned sin
e the gradient is bounded. (At-ually, for what follows, it would be su�
ient that the gradient be 
ontinuous inside D andthus bounded on every 
ompa
t subset of D.) Taking the expe
tation at time t ∧ τx andapplying Doob's Theorem de Doob 4.10, we obtain(5.3) E

[
u(x+Bt∧τx)

]
= u(x) − E

∫ t∧τx

0

f(x+Bs)ds.We then intend to let t tend to the in�nity. This is possible if E[τx] < +∞.Theorem 5.3. For any x ∈ D, de�ne τx as τx := inf{t ≥ 0 : x+Bt ∈ D∁}. Then, for any
x ∈ D, E[τx] < +∞.In parti
ular, if f is Hölder 
ontinuous on D and g has Hölder 
ontinuous se
ond-orderderivatives in the neighborhood of D̄, then the solution u to the Diri
hlet problem

1

2
∆u(x) + f(x) = 0, x ∈ D ; u(x) = g(x), x ∈ ∂D,admits the following Feynman-Ka
 representation

u(x) = E

[
g(x+Bτx) +

∫ τx

0

f(x+Bs)ds

]
.18



Proof. It is su�
ient to prove E[τx] < +∞. Feynman-Ka
 formula then follows by letting
t to +∞ in (5.3).To prove E[τx] < +∞, we use the non-degenera
y property of the identity matrix in onearbitrarily 
hosen dire
tion of the spa
e. Compute indeed

d|x+Bt|2 = d
[ d∑

i=1

|xi +Bi
t |2

]
=

d∑

i=1

[
2(xi +Bi

t)dB
i
t + (dBi

t)
2
]

= 2

d∑

i=1

(xi +Bi
t)dB

i
t + d dt.Take expe
tation at time t ∧ τx. Sin
e D is bounded, we obtain

sup
t≥0

E
[
t ∧ τx

]
< +∞.By monotonous 
onvergen
e Theorem, we 
omplete the proof. �When the identity matrix is repla
ed by a non-zero symmetri
 matrix a, Brownian motionis repla
ed by the pro
ess(5.4) Xt := x+

∫ t

0

σdBs, t ≥ 0,where σ is a square-root of a, i.e. σσ∗ = a. This writing must be understood as
X i
t = xi +

d∑

j=1

∫ t

0

σi,jdB
j
s , t ≥ 0.Following (5.2), we then obtain(5.5) du(Xt) =

d∑

i=1

Dxi
u(Xt)dX

i
t +

1

2

d∑

i,j=1

D2
xi,xj

u(Xt)dX
i
tdX

j
t , t ≥ 0.Here, dX i

t =
∑d

j=1 σi,jdB
j
t and the di�erential rules have the form

dX i
tdX

j
t =

d∑

k,ℓ=1

σi,kσj,ℓdB
k
t dB

ℓ
t =

d∑

k=1

σi,kσj,kdt = (σσ∗)i,jdt.If det(a) 6= 0, we then obtain an analogous representation to the one obtained for the Lapla
eoperator.Theorem 5.4. Consider a positive symmetrix matrix a with σ as square-root, i.e. a = σσ∗.For any x ∈ D, 
onsider (Xx
t )t≥0 as in (5.4) and set τx := inf{t ≥ 0 : Xt ∈ D∁}. Then,

E[τx] < +∞.Moreover, if f is Hölder 
ontinuous on D and g has Hölder 
ontinuous se
ond-order deriva-tives in the neighborhood of D̄, then the solution u to the Diri
hlet problem
1

2
Trace

[
aD2

x,xu
]
(x) + f(x) = 0, x ∈ D ; u(x) = g(x), x ∈ ∂D,19



admits the Feynman-Ka
 representation
u(x) = E

[
g(Xx

τx) +

∫ τx

0

f(Xx
s )ds

]
.Sket
h of the Proof. The boundedness of the expe
tation of the hitting time is proved asin Theorem 5.3. By It�'s formula (5.5), we 
omplete the proof. �5.2. Complex Brownian Motion. Consider now the 
omplex Diri
hlet problem. Withthe same notation as above (but understood in the 
omplex sense), we are seeking for arepresentation of the solution u to

Trace
[
aDz,z̄u

]
(z) + f(z) = 0, z ∈ D ; u(z) = g(z), z ∈ ∂D.Here, the matrix a is a non-negative Hermitian matrix.The solution u may be represented as above. We are going to reprodu
e the same 
om-putations, but with respe
t to the 
omplex Brownian motion:De�nition 5.5. A 
omplex Brownian motion of dimension d is a d-dimensional pro
ess

(Bt = (B1
t , . . . , B

d
t ))t≥0 with values in Cd given by

Bj
t =

W j,1
t +

√
−1W j,2

t√
2

, t ≥ 0, 1 ≤ j ≤ d,where the pro
esses (W j,1
t ,W j,2

t )1≤j≤d are independent real Brownian motions.We emphasize that the 
oe�
ient √2 is here to normalize the expe
tation of the squaremodulus of Bt, i.e. E[|Bt|2] = t, t ≥ 0.Di�erential rules are given byProposition 5.6. Let (Bt = (B1
t , . . . , B

d
t ))t≥0 be a 
omplex Brownian motion of dimension

d. Then, It�'s formula in Theorem 5.2 holds with f fun
tion of the 
omplex variable ofdimension d and with the di�erential rules
dBi

tdB
j
t = 0, dBi

tdB̄
j
t = 1{i=j}dt, 1 ≤ i, j ≤ d.Sket
h of the Proof. For 1 ≤ i ≤ d,

dBi
tdB

i
t =

(dW i,1
t )2 − (dW i,2

t )2 + 2
√
−1 dW i,1

t dW i,2
t

2
= 0.Similalry, dB̄i

tdB̄
i
t = 0 and
dBi

tdB̄
i
t =

(dW i,1
t )2 + (dW i,2

t )2 + 2
√
−1 dW i,1

t dW i,2
t

2
= dt.Finally, for 1 ≤ i < j ≤ d,

dBi
tdB

j
t = dBi

tdB̄
j
t = 0.This 
ompletes the proof. �Give now several examples. 20



Example (a). If d = 1 and (Z1
t )t≥0 and (Z2

t )t≥0 admit
dZ1

t = σ1
t dBt + b1tdt

dZ2
t = σ2

t dBt + b2tdt, t ≥ 0,as dynami
s, we obtain
d(Z1

t Z
2
t ) = Z1

t dZ
2
t + Z2

t dZ
1
t + dZ1

t dZ
2
t

= (Z1
t σ

2
t + Z2

t σ
1
t )dBt + (Z1

t b
2
t + Z2

t b
1
t )dt+ σ1

t σ
2
t dBtdBt, t ≥ 0.(Pay attention that the absolutely 
ontinuous parts b1tdt and b2tdt play no role in the produ
t

dZ1
t dZ

2
t : all the terms they indu
e are least of order dt3/2.) Now, dBtdBt = 0 in the aboveequation.However,

d(Z1
t Z̄

2
t )

= Z1
t dZ̄

2
t + Z̄2

t dZ
1
t + dZ1dZ̄

2
t

= (Z1
t σ̄

2
t dB̄t + Z̄t

2
σ1
t dBt) + (Z1

t b̄
2
t + Z̄2

t b
1
t )dt+ σ1

t σ̄
2
t dBtdB̄t, t ≥ 0.Here, dBt · dB̄t = dt.In parti
ular, if

Zt =
n∑

j=1

σjdB
j
t , t ≥ 0,where ((Bj

t )t≥0)j are independent 
omplex Brownian motion (i.e. (Bt = (B1
t , . . . , B

d
t ))t≥0 isa 
omplex Brownian motion of dimension d), then

d|Zt|2 = ZtdZ̄t + Z̄tdZt + dZtdZ̄t

= Zt

n∑

j=1

σ̄jdB̄
j
t + Z̄t

n∑

j=1

σjdB
j
t +

n∑

j=1

σj σ̄jdt, t ≥ 0.For example, if σj = (σξ)j for a matrix σ, then the last term is equal to |σξ|2, i.e. to 〈ξ̄, aξ〉where a = σ̄∗σ. This is also equal to 〈a∗ξ̄, ξ〉.Example (b). Assume that d = 1 and 
onsider an holomorphi
 fun
tion f on C. Then,
df(Bt) = f ′

z(Bt)dBt +
1

2
f ′′
z,z(Bt)dBtdBt = f ′

z(Bt)dBt, t ≥ 0.In parti
ular, if τR := inf{t ≥ 0 : |Bt| ≥ R}, R > 0, then (f(Bt∧τR))t≥0 is a martingale. (Here,the stopping time is ne
essary to guarantee that the martingale is integrable: su
h an ar-gument is 
alled �a lo
alization argument�.) We will say that (f(Bt))t≥0 is a lo
al martingale.Example (
). Assume now that d ≥ 1. Consider a fun
tion u with real values of 
lass C2on the domain D and 
ompute du(Xt), t ≥ 0, where
Xt = z +

∫ t

0

σdBs, t ≥ 0,21



with σ 
omplex matrix of size d× d. We obtain, for any t ≥ 0,
du(Xt)

=

d∑

i=1

Dzi
u(Xt)dX

i
t +

d∑

i=1

Dz̄i
u(Xt)dX̄

i
t

+
1

2

d∑

i,j=1

D2
zi,zj

u(Xt)(dXt)
i(dXt)

j +
1

2

d∑

i,j=1

D2
z̄i,z̄j

u(Xt)(dXt)
i(dXt)

j

+
1

2

d∑

i,j=1

D2
zi,z̄j

u(Xt)(dXt)
i(dX̄t)

j +
1

2

d∑

i,j=1

D2
z̄i,zj

u(Xt)(dX̄t)
i(dXt)

j.It is well-seen that (dXt)
i(dXt)

j = 0 and (dX̄t)
i(dX̄t)

j = 0, 1 ≤ i, j ≤ d. Moreover,
(dXt)

i(dX̄t)
j =

∑d
ℓ=1 σi,kσ̄k,jdt = (σσ̄∗)i,jdt. Therefore,

du(Xt) =

d∑

i=1

Dzi
u(Xt)dX

i
t +

d∑

i=1

Dz̄i
u(Xt)dX̄

i
t

+
1

2
Trace

[
aD2

z,z̄u(Xt)
]
dt+

1

2
Trace

[
āD2

z̄,zu(Xt)
]
dt, t ≥ 0.Finally, sin
e a and D2

z,z̄u are Hermitian, we dedu
e
du(Xt)

=
d∑

i=1

Dzi
u(Xt)dX

i
t +

d∑

i=1

Dz̄i
u(Xt)dX̄

i
t + Trace

[
aD2

z,z̄u(Xt)
]
dt, t ≥ 0.Obviously, this is true for t ≤ τ z := inf{t ≥ 0 : Xt 6∈ D} only. We then dedu
e the analog ofTheorem 5.3:Theorem 5.7. Let a be a positive Hermitian 
omplex matrix of size d × d and σ be anHermitian square-root of a, i.e. a = σσ̄∗. For a given z ∈ D (D being here assumed to be ofthe 
omplex variable of dimension d), set

Xz
t = z +

∫ t

0

σdBs, t ≥ 0,together with τ z := inf{t ≥ 0 : Xt 6∈ D}. Then, E[τ z] < +∞.Moreover, for given real-valued fun
tions f and g of the 
omplex variable of dimension d,satisfying the same assumption as in Theorem 5.3, the solution u to the 
omplex Diri
hletproblem
Trace

[
aD2

z,z̄u(z)
]
+ f(z) = 0, z ∈ D ; u(z) = g(z), z ∈ ∂D,admits the Feynman-Ka
 representation

u(z) = E

[
g(Xz

τz) +

∫ τz

0

f(Xz
s )ds

]
.22



5.3. Formulation �à la Gaveau�. We are now in position to give a probabilisti
 represen-tation of the solution of the Monge-Ampère equation. In light of (2.1) and (2.7), a natural
andidate to solve the Monge-Ampère equation is(5.6) ∀z ∈ D̄, u(z) = inf E

[
g(Xσ,z

τσ,z) −
∫ τσ,z

0

f(Xσ,z
t )dt

]
,the in�mum being here taken over all progressively-measurable pro
esses (σt)t≥0 with valuesin the set of 
omplex matri
es of size d and of determinant of modulus 1, i.e. det(σtσ̄

∗
t ) = 1for all t ≥ 0, with(5.7) Xσ,z

t = z +

∫ t

0

σsdBs, t ≥ 0 ; τσ,z := inf{t ≥ 0 : Xσ,z
t ∈ D∁}.We emphasize that this is an in�mum and not a supremum despite the supremum in (2.1).The reason may be understood as follows.Proposition 5.8. Let σ be a (non-zero) 
omplex matrix of size d×d and u be a C(D̄)∩C2(D)fun
tion satisfying(5.8) −Trace

[
aD2

z,z̄u(z)
]
+ f(z) ≤ 0, z ∈ D ; u(z) = g(z), z ∈ ∂D,where a = σσ∗ and f and g are fun
tions from D into R as in Theorem 5.7 (or as inAssumption (A)).For a given z ∈ D, de�ne (Xz
t )t≥0 and τ z as in Theorem 5.7. Then,

u(z) ≤ E

[
g(Xz

τz) −
∫ τz

0

f(Xz
s )ds

]
.Sket
h of the Proof. The proof is similar to the proof of Theorem 5.7 and relies on asimple appli
ation of It�'s formula. �Pay attention that u is here assumed to be smooth. In parti
ular, the reader may obje
tthat the solution to the Monge-Ampère equation is not assumed to be of 
lass C2, so thatProposition 5.8 does not apply to it. A
tually, Proposition 5.8 must be understood as someheuristi
s towards the probabilisti
 formulation of Monge-Ampère.In PDE theory, a fun
tion u satisfying (5.8) is 
alled a subsolution to the Diri
hlet problemdriven by a, f and g. From a probabilisti
 point of view, it says that the pro
ess (u(Xz

t ))t≥0is a sub-martingale when f ≥ 0, i.e. the in�nitesimal variation of (u(Xz
t ))t≥0 is greater thanthe in�nitesimal variation of a martingale.Proposition 5.8 may be seen a variation of the maximum prin
iple: there exists a 
ompar-ison prin
iple between the solutions of the Diri
hlet problems driven by the same matrix a.Going ba
k to the formulation (2.1) of Monge-Ampère, we then understand that the solutionto Monge-Ampère is expe
ted to be less than the solution to any Diri
hlet problem drivenby the same f and g as in Monge-Ampère and by any non-negative Hermitian matrix ofdeterminant 1.We derive the following representation prin
iple, whi
h may be seen as a probabilisti
variation of the Perron-Bremermann method dis
ussed in Chapter 1 by V. Guedj and A.Zeriahi (see Se
tion 1 therein)22We here say �variation� of the Perron-Bremermann method sin
e the optimization below is not performedover a set of plurisubharmoni
 fun
tions as in the Perron-Bremermann method. Plurisubharmoni
ity is here23



De�nition 5.9. Let f and g be as in Assumption (A) and (Bt)t≥0 be a 
omplex Brownianmotion of dimension d. We 
all Gaveau representation or Gaveau 
andidate for the Monge-Ampère equation the fun
tion u given by
∀z ∈ D̄, u(z) = inf E

[
g
(
Xσ,z
τσ,z

)
−

∫ τσ,z

0

f(Xσ,z
s )ds

]
,the in�mum being taken over the set of progressively-measurable pro
esses (σt)t≥0 with valuesin Cd×d su
h that det(σtσ̄

∗
t ) = 1, t ≥ 0, the pro
ess (Xσ,z

t )t≥0 being given by
Xσ,z
t = z +

∫ t

0

σsdBs, t ≥ 0,and the stopping time τσ,z by τσ,z = inf{t ≥ 0 : Xσ,z
t 6∈ D}.As the reader may guess, De�nition 5.9 goes ba
k to the earlier paper by Gaveau [3℄. Infa
t, it is di�erent from the one used by Krylov in his works and thus di�erent from theone we use below. The reason why Krylov introdu
ed a di�erent representation in his ownanalysis may be explained as follows: in De�nition 5.9, the 
ontrol σ is poorly 
ontrolled!Said di�erently, the 
ondition on the determinant of σσ̄∗ is really weak sin
e the norm of thematrix σσ̄∗ may be as large as possible.Nevertheless, we emphasize that the 
onne
tion between the 
andidate u in De�nition 5.9and the Monge-Ampère equation is rigorously established in the original paper by Gaveau.We refer the reader to it for the 
omplete argument.5.4. Krylov Point of View. Krylov's strategy is a bit di�erent. The starting point 
onsistsin writing the original Monge-Ampère formulation(5.9) det1/d

[
D2
z,z̄u(z)

]
=

1

d
f(z), z ∈ D,under the form(5.10) sup

{
−Trace

(
aD2

z,z̄u(z)
)

+ det1/d(a)f(z) ; a = ā∗ ≥ 0, Trace(a) = 1
}

= 0,

z ∈ D. Obviously, the �rst problem is to prove that any C1,1 solution u to (5.10) satis�es(5.9) as well.Assume therefore that there exists a C1,1 fun
tion u from D to R solving (5.10) almosteverywhere in D. Sin
e u is C1,1, D2
z,z̄u(z) exists for almost every z ∈ D. By (5.10) and bythe sign 
ondition f ≥ 0, for almost every z ∈ D, Trace(aD2

z,z̄u(z)) ≥ 0 for any non-negativeHermitian matrix a, so that u is plurisubharmoni
. Choose now some z ∈ D at whi
h
D2
z,z̄u(z) exists. If D2

z,z̄u(z) is equal to zero, we 
an �nd a positive Hermitian matrix a (witha non-zero determinant) with 1 as tra
e su
h that Trace(aD2
z,z̄u(z)) = 0. In parti
ular, (5.10)says that f(z) ≤ 0 so that f(z) = 0 sin
e f is non-negative: (5.9) holds at point z. If thedeterminant in non-zero at z, the 
omplex Hessian D2

z,z̄u(z) is non-degenerate. In parti
ularit is positive. Therefore, for any sequen
e (an)n≥1 of non-degenerate matri
es approximatingthe supremum in (5.10), the determinant of an, n ≥ 1, is away from zero, uniformly in n.(If the determinant has some vanishing subsequen
e, we 
an �nd a non-zero non-negativeHermitian matrix a su
h that Trace(aD2
z,z̄u(z)) = 0: by Lemma 2.1, D2

z,z̄u(z) is of zerohidden in the very large 
hoi
e for the sto
hasti
 pro
ess (σt)t≥0: this is the reason why we say �probabilisti
variation�. 24



determinant.) Therefore, by 
ompa
tness, there exists a matrix a with 1 as determinantsu
h that
−Trace

(
aD2

z,z̄u(z)
)

+ f(z) = 0.By Lemma 2.1, we understand that det1/d(D2
z,z̄u(z)) ≤ f(z)/d. Now, 
hoosing the matrix ain (5.10) as a = (D2

z,z̄u(z))
−1/Trace[(D2

z,z̄u(z))
−1], we obtain

−d+ det−1/d(D2
z,z̄u(z))f(z) ≤ 0,i.e. f(z)/d ≤ det1/d(D2

z,z̄u(z)), so that equality holds.The value fun
tion asso
iated with the optimal 
ontrol problem (5.10) admits the following(formal) probabilisti
 representation
∀z ∈ D, u(z) = inf E

[
g(Xσ,z

τσ,z) −
∫ τσ,z

0

det1/d(σtσ̄
∗
t )f(Xσ,z

t )dt

]
,the in�mum being here taken over the progressively-measurable pro
esses (σt)t≥0 with valuesin the set of 
omplex matri
es of size d su
h that Trace(σtσ̄

∗
t ) = 1 for any t ≥ 0, with

Xσ,z
t = z +

∫ t

0

σsdBs, t ≥ 0 ; τσ,z := inf{t ≥ 0 : Xσ,z
t ∈ D∁}.In what follows, we will investigate −u instead of u itself. Changing g into −g in theorginal Monge-Ampère equation, we setDe�nition 5.10. Let f and g be as in Assumption (A) and (Bt)t≥0 be a 
omplex Brownianmotion of dimension d. We 
all Krylov formulation of the Monge-Ampère equation drivenby the sour
e term f and the boundary 
ondition −g (and not g) the fun
tion −v, where(5.11) v(z) = sup

σ
vσ(z), z ∈ D̄,the supremum being here taken over the set of progressively-measurable pro
esses (σt)t≥0 withvalues in Cd×d su
h Trace(σtσ̄

∗
t ) = 1, t ≥ 0, and vσ being given by(5.12) vσ(z) = E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

0

det1/d(at)f(Xσ,z
t )dt

]
, at = σtσ̄

∗
t ,the pro
ess (Xσ,z

t )t≥0 by
Xσ,z
t = z +

∫ t

0

σsdBs, t ≥ 0,and the stopping time τσ,z by τσ,z = inf{t ≥ 0 : Xσ,z
t 6∈ D}.If v is C1,1 on D and −v satis�es (5.10) almost everywhere, i.e.(5.13) sup

{
Trace

(
aD2

z,z̄v(z)
)

+ det1/d(a)f(z) ; a = ā∗ ≥ 0, Trace(a) = 1
}

= 0,

a.e. z ∈ D, then −v is plurisubharmoni
 and satis�es the Monge-Ampère equation (5.9). If
−v is 
ontinuous up to the boundary ∂D, it admits −g as boundary 
ondition.The reader may worry about the boundary 
ondition. First, why is it satis�ed? Se
ond,may we expe
t the solution to be 
ontinuous up to the boundary ∂D? The answer to the �rstquestion is quite obvious: when z ∈ ∂D, the stopping time τσ,z is zero, so that Xσ,z

τσ,z = z.Con
erning the se
ond question, we will see below that the answer is 
learly positive underAssumption (A). 25



5.5. Dynami
 Programming Prin
iple. The De�nition 5.10 is not 
ompletely satisfa
-tory. The right question is now: may we 
laim that −v given by (5.11) is a solution toMonge-Ampère without making any referen
e to the Hamilton-Ja
obi-Bellman Equation(5.10)?We will see below that the answer is almost positive. We say almost be
ause, to say so,we need some regularity property on v, as in De�nition 5.10.Proposition 5.11. Under the notation of De�nition 5.10, assume that the family (vσ)σ isequi
ontinuous on every 
ompa
t subset of D and that v is C1,1 on D. Then, −v satis�es(5.10) almost everywhere and thus satis�es the Monge-Ampère equation (5.9).Proof. The proof relies on a variation of the so-
alled �Dynami
 Programming Prin
iple�(or Bellman Prin
iple). The main point is to split the 
ost (5.12) of rea
hing the boundaryof D when starting from a given point z into two parts: the 
ost of rea
hing the boundaryof a subdomain from z and the 
ost of rea
hing ∂D when starting from the boundary of thesubdomain.We thus �x a given point z ∈ D at whi
h v is twi
e di�erentiable in the sense of Taylor,i.e. admits a Taylor expansion of ordrer two at z. (Have in mind that v is almost-everywheretwi
e di�erentiable in the sense of Taylor sin
e belongs to C1,1(D).) Fix also a positive real
ε su
h that the 
losed (
omplex) ball B̄(z, ε) of 
enter z and radius ε is in
luded in D. Forany (σt)t≥0 as in De�nition 5.10, de�ne ρσ as the �rst exit time from the open ball B(z, ε)by the pro
ess Xz,σ, i.e. ρσ := inf{t ≥ 0 : |Xz,σ

t −z| ≥ ε}. Then, the Dynami
 ProgrammingPrin
iple writesLemma 5.12. Under the notation of De�nition 5.10, assume that the family (vσ)σ isequi
ontinuous on every 
ompa
t subset of D. Then, the Dynami
 Programming Prin
ipleholds in the following way(5.14) v(z) = sup
σ

E

[
v(Xσ,z

ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

]
, at = σtσ̄

∗
t ,the supremum being here taken w.r.t. the pro
esses (σt)t≥0 as in De�nition 5.10.Proof of the Lower Bound in Lemma 5.12. By (5.12),

vσ(z) = E

{
E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

ρσ

det1/d(at)f(Xσ,z
t )dt|Fρσ

]

+

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

}
.

(5.15)A part of the tri
k for the Dynami
 Programming Prin
iple is the following: the 
onditionalexpe
tation above is less than v(Xρσ). Indeed, for t ≥ ρσ,
Xσ,z
t = Xσ,z

ρσ +

∫ t

ρσ

σsdBs,so that the 
onditional expe
tation may be understood as an integration with respe
t to thetraje
tories of (Xσ,z
t )t≥ρσ with Xσ,z

ρσ as starting point. (In parti
ular, the interval [ρσ, τσ,z ] onwhi
h (det1/d(at)f(Xσ,z
t ))t≥0 is integrated in the 
onditional expe
tation represents the time26



passed from ρσ up to the exit time from D.) Therefore,(5.16) vσ(z) ≤ E

[
v(Xσ,z

ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

]
.Taking the supremum w.r.t. σ, we 
omplete the proof of the lower bound.Proof of the Subsolution Property in Monge-Ampère. We now dedu
e the subsolu-tion property from the lower bound in the Dynami
 Programming Prin
iple. Sin
e v is twi
eTaylor di�erentiable at z, we 
an write

v(Xσ,z
ρσ ) = v(z) + 2Re

[
Dzv(z)

(
Xσ,z
ρσ − z

)]
+

1

2

[
H0[v(z)](Xσ,z

ρσ − z)
]

+ oε(1)ε2,
(5.17)the notation oε(1) standing for the Landau notation (i.e. oε(1) tends to 0 with ε) and beingindependent of the 
ontrol σ and the underlying randomness ω. Above H0[v(z)](ν), for
ν ∈ Cd, stands for H0[v(z)](ν) =

∑d
i,j=1(D

2
zi,zj

v(z)νiνj + D2
zi,z̄j

v(z)νiν̄j + D2
z̄i,zj

v(z)ν̄iνj +

D2
z̄i,z̄j

v(z)ν̄iν̄j). By It�'s formula, it is plain to see that
E[H0[v(z)](Xσ,z

ρσ − z)] = 2E

[∫ ρσ

0

Trace
(
atD

2
z,z̄v(z)

)
dt

]
.It is also 
lear that Re[Dzv(z)(X

σ,z
ρσ − z)] in (5.17) has zero expe
tation.Add now ∫ ρσ

0
det1/d(at)f(Xσ,z

t )dt to both sides in (5.17) and take the expe
tation. Then,
E

[
v(Xσ,z

ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

]

= v(z) + E

[∫ ρσ

0

[
Trace

(
atD

2
z,z̄v(z)

)
+ det1/d(at)f(Xσ,z

t )
]
dt

]
+ oε(1)ε2.Therefore, applying (5.16) and using the 
ontinuity of f ,

vσ(z) ≤ v(z)

+ sup
a=ā∗≥0,Trace(a)=1

[
Trace

(
aD2

z,z̄v(z)
)

+ det1/d(a)f(z)
]
E[ρσ]

+ oε(1)
(
E[ρσ] + ε2

)
.By Ito's formula, ε2 = E[|Xσ

ρσ − z|2] = E[ρσ]. Taking the supremum over σ, dividing by ε2and letting ε tend to 0, we dedu
e that
sup

a=ā∗≥0,Trace(a)=1

[
Trace

(
aD2

z,z̄v(z)
)

+ det1/d(a)f(z)

]
≥ 0.Proof of the Upper Bound in Lemma 5.12. To prove the supersolution property, we�rst prove the upper bound in Lemma 5.12. By assumption, we know that the fun
tions

(vσ)σ are equi
ontinuous. Therefore, for a given δ > 0, we 
an �nd N points y1, . . . , yN onthe surfa
e of the ball B(z, ε) su
h that, for any (σt)t≥0 as above and any y ∈ ∂B(z, ε),there exists an index i(y) (say the smallest one) su
h that |vσ(y) − vσ(yi(y))| ≤ δ. (Taking27



the supremum, the same holds for v, i.e. |v(y) − v(yi(y))| ≤ δ.) Moreover, by de�nition ofthe supremum, for any index i ∈ {1, . . . , N}, we 
an �nd a δ-optimal 
ontrol σi su
h that
vσ

i

(yi) + δ ≥ v(yi) ≥ vσ
i

(yi).Consider now a 
ontrol (σt)t≥0 of the same type as above. It must be understood as aprogressively-measurable fun
tional of the Brownian paths (Bt)t≥0 and of the (possibly ran-dom) initial 
ondition X0, i.e. something as (σt)t≥0 = (σt((Bs)0≤s≤t, X0))t≥0. In parti
ular,we emphasize that the value of ρσ depends on the values of (σt)0≤t<ρσ only. Moreover, we
an modify the values of (σt)t≥ρσ without 
hanging ρσ itself. For instan
e, we 
an 
hoose σt,for t ≥ ρσ, as σt = σ′
t−ρσ((Br+ρσ − Bρσ)0≤r≤t−ρσ , Xσ,z

ρσ ) for a new pro
ess (σ′
t)t≥0, i.e. we 
an
hoose σt, for t ≥ ρσ, as the new pro
ess σ′, but shifted in time, the time shift being givenby ρσ.For su
h a 
hoi
e of (σt)t≥0, we are able to 
ompute the 
onditional expe
tation in (5.15)expli
itly. Indeed, for (σt)t≥0 as des
ribed above,

E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

0

det1/d(at)f(Xσ,z
t )dt|Fρσ

]

= E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

ρσ

det1/d(at)f(Xσ,z
t )dt|Fρσ

]

+

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt.

(5.18)
Write now Xσ,z

t = Xσ,z
ρσ +

∫ t

ρσ σsdBs. Written in a non-rigorous way, this has the form:
Xσ,z
t = Xσ,z

ρσ +

∫ t

ρσ

σ′
s−ρσ

(
(Br+ρσ −Bρσ)0≤r≤s, X

σ,z
ρσ

)
d
(
Bs −Bρσ

)
.When 
omputing the 
onditional expe
tation in the last line of (5.18), everything works asan integration with respe
t to the traje
tories of (Bt −Bρσ)t≥ρσ : this is a Brownian motion,independent of the past before ρσ. Everything thus restarts afresh from Xσ,z
ρσ . Therefore,be
ause of the spe
i�
 form of σ after ρσ (this is the 
ru
ial point), the 
onditional expe
tationredu
es to 
ompute vσ′ at point Xσ,z

ρσ , so that
E

[
g(Xσ,z

τσ,z) +

∫ τσ,z

0

det1/d(at)f(Xσ,z
t )dt|Fρσ

]

= vσ
′

(Xσ,z
ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt.Taking the expe
tation, we dedu
e a kind of martingale property:(5.19) vσ(z) = E

[
vσ

′

(Xσ,z
ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

]
.Here is the 
hoi
e of σ′. Rigoroulsy, we 
hoose σ′

t as σi(X0)
t where X0 stands for the (possiblyrandom) initial 
ondition of the pro
ess X. Clearly, this means that σt = σ

i(Xσ
ρσ,z )

t−ρσ , t > ρσ.28



For this 
hoi
e of (σt)t≥0, we have from (5.19)
v(z)

≥ vσ(z)

= E

[
vσ

′

(Xσ,z
ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

]

≥ E

[
v(Xσ,z

ρσ ) +

∫ ρσ

0

det1/d(at)f(Xσ,z
t )dt

]
− E

[
|v(Xσ,z

ρσ ) − vσ
′

(Xσ,z
ρσ )|

]
.

(5.20)
Now, by the 
hoi
e of the points (yi)1≤i≤N , we know that |vσ′(Xσ,z

ρσ ) − vσ
′

(yi(Xσ,z

ρσ ))| ≤ δ and
|v(Xσ,z

ρσ ) − v(yi(Xσ,z

ρσ ))| ≤ δ. Moreover, by de�nition, vσ′(yi(Xσ,z

ρσ )) = vσ
j

(yj) with j = i(Xσ,z
ρσ )so that |vσ′(yi(Xσ,z

ρσ )) − v(yi(Xσ,z

ρσ ))| ≤ δ. Therefore(5.21) E
[
|v(Xσ,z

ρσ ) − vσ
′

(Xσ,z
ρσ )|

]
≤ 3δ.Plugging (5.21) into (5.20) and letting δ tend to 0, we obtain the upper bound in Lemma5.12 and thus the equality, i.e. the 
omplete Bellman Prin
iple.Proof of the Supersolution Property. To dedu
e the supersolution property in Monge-Ampère, we perform a suitable 
hoi
e for (σt)0≤t≤ρσ up to time ρσ. We 
hoose it to be
onstant between 0 and ρσ, the 
onstant value being denoted by σ for more simpli
ity.Expanding v(Xσ,z

ρσ,z) in (5.20) as in (5.17) and letting δ and then ε tend to 0, we obtain
Trace

(
aD2

z,z̄v(z)
)

+ det1/d(a)f(z) ≤ 0, with a = σσ̄∗.This 
ompletes the proof of Proposition 5.11. �5.6. Plurisubharmoni
ity by Bellman Prin
iple. We �nally emphasize that the Bell-man Prin
iple is nothing but a probabilisti
 version of the plurisubharmoni
ity property:Proposition 5.13. Assume that, for any z ∈ D, any ε > 0 su
h that B̄(z, ε) ⊂ D and any
Cd×d-valued 
ontrol (σt)t≥0 su
h that Trace(σtσ̄

∗
t ) = 1, t ≥ 0, the pro
ess (Xσ,z

t )t≥0 given byDe�nition 5.10 satis�es the Bellman Prin
iple stated in Lemma 5.12 where ρσ stands thereinfor the stopping time ρσ = inf{t ≥ 0 : |Xσ,z
t − z| ≥ ε}. Assume also that v is 
ontinuous on

D. Then, v is plurisuperharmoni
 on D.In parti
ular, v is plurisuperharmoni
 if the family (vσ)σ in De�nition 5.10 is equi
ontin-uous on every 
ompa
t subset of D.Proof. Given z ∈ D and ε > 0 su
h that B̄(z, ε) ⊂ D, it is enough to prove that, for any
ν ∈ Cd, |ν| = 1,(5.22) v(z) ≥ 1

2π

∫ 2π

0

v
(
z + εeiθν

)
dθ.In (5.14), we 
hoose σ as the (deterministi
) proje
tion matrix on ν, i.e. σ = νν̄∗, ν beingunderstood as a 
olumn ve
tor. Sin
e f is non-negative, we dedu
e(5.23) v(z) ≥ E

[
v
(
Xσ,z
ρσ

)]
,29



with(5.24) Xσ,z
ρσ = z + νν̄∗Bρσ .We now emphasize that (ν̄∗Bt)t≥0 is a 
omplex Brownian motion of dimension 1. Indeed,independen
e of the in
rements is well-seen and 
ontinuity of the traje
tories is obviouslytrue as well. It remains to see that (Re(ν̄∗Bt))t≥0 and (Im(ν̄∗Bt))t≥0 are independent non-standard3 Brownian motions with in
rements of varian
e ∆/2 over intervals of length ∆.Clearly, Re(ν̄∗(Bt − Bs)), for 0 ≤ s ≤ t, is equal to [ν̄∗(Bt − Bs) + ν∗(B̄t − B̄s)]/2. Bystandard 
omputations, the expe
tation of the square is equal to (t − s)/2, as announ
ed.Similar 
omputations hold for Im(ν̄∗(Bt − Bs)).To prove independen
e, it is su�
ient to prove that Re(ν̄∗(Bt−Bs)) and Im(ν̄∗(Bt−Bs))are orthogonal in L2(Ω,P) for any 0 ≤ s ≤ t4. This is easily 
he
ked.Finally, (5.24) yields

ε = |Xσ,z
ρσ − z| = |νν̄∗Bρσ | = |ν̄∗Bρσ |,so that ρσ stands for the �rst time when (ν̄∗Bt)t≥0 hits the 
ir
le of radius ε. By isotropy,the distribution of the hitting point, i.e. ν̄∗Bρσ , is uniform on the 
ir
le. We dedu
e (5.22)from (5.23). �6. Program for the Probabilisti
 AnalysisKrylov's program now 
onsists in establishingTheorem 6.1. Let Assumption (A) be in for
e. Then, the value fun
tion v in De�nition5.10 belongs to C1,1(D̄). Moreover, the assumption of Proposition 5.11 is satis�ed so that

−v solves almost everywhere the Monge-Ampère equation with f as sour
e term and −g asboundary 
ondition.As the reader may noti
e, there are two parts in the statement of Theorem 6.1. The �rstpart must be understood as the main result: it provides the C1,1(D̄) property for the solutionto Monge-Ampère under Assumption (A). The se
ond part makes the 
onne
tion betweenKrylov's formulation and the original Monge-Ampère equation: the only additional pointto prove is the equi
ontinuity property for the family (vσ)σ on every 
ompa
t subset of D.A
tually, we prove more right below: we prove that equi
ontinuity holds on the whole D̄ sothat v is 
ontinuous up to the boundary and satis�es g as boundary 
ondition.6.1. Equi
ontinuity of (vσ)σ. We here prove the very �rst step of our program:Proposition 6.2. Under Assumption (A) and the notation of De�nition 5.10, the fun
tions
(vσ)σ are equi
ontinuous on D̄.3Non-standard means that the varian
e of the in
rements is not normalized.4This argument is false for general pro
esses. It is here true be
ause pro
esses under 
onsideration areof Gaussian type with independent in
rements. We refer the reader to any le
ture on Gaussian ve
tors andpro
esses. 30



Proof. We here follow the proof by Gaveau [3℄. Below, the 
ontrol (σt)t≥0 is �xed as inDe�nition 5.10. For given z, z′ ∈ D,
|vσ(z) − vσ(z′)|

≤ E
[∣∣g(Xσ,z

τσ,z) − g(Xσ,z′

τσ,z′
)
∣∣] + E

∫ τσ,z∧τσ,z′

0

∣∣f(Xσ,z
s ) − f(Xσ,z′

s )
∣∣ds

+ E

∫ τσ,z

τσ,z∧τσ,z′

∣∣f(Xσ,z
s )

∣∣ds+ E

∫ τσ,z′

τσ,z∧τσ,z′

∣∣f(Xσ,z′

s )
∣∣ds.(Keep in mind that det(at) ≤ Trace(at) = 1.) By Assumption (A), we 
an �nd a 
onstant

C, depending on (A) only (and whose value may vary from line to line), su
h that
|vσ(z) − vσ(z′)| ≤ CE

[∣∣Xσ,z
τσ,z −Xσ,z′

τσ,z′

∣∣] + CE

∫ τσ,z∧τσ,z′

0

∣∣Xσ,z
s −Xσ,z′

s

∣∣ds

+ CE
[
|τσ,z′ − τσ,z|

]

= T1 + T2 + T3.

(6.1)Above, a ∨ b stands for max(a, b) and a ∧ b for min(a, b).To deal with T2 in (6.1), we emphasize that Xσ,z
s −Xσ,z′

s = z − z′, 0 ≤ s ≤ τσ,z ∧ τσ,z′ , sothat
T2 ≤ C|z − z′|E

[
τσ,z

]
.To treat T1, we noti
e that

E
[∣∣Xσ,z

τσ,z −Xσ,z′

τσ,z′

∣∣] ≤ |z − z′| + E

[∣∣∣∣
∫ τσ,z∨τσ,z′

τσ,z∧τσ,z′
σsdBs

∣∣∣∣
]

≤ |z − z′| + E

[∣∣∣∣
∫ τσ,z∨τσ,z′

τσ,z∧τσ,z′
σsdBs

∣∣∣∣
2]1/2

= |z − z′| + E

[∫ τσ,z∨τσ,z′

τσ,z∧τσ,z′
Trace(σsσ̄

∗
s )ds

]1/2

= |z − z′| + E
[
|τσ,z − τσ,z

′ |
]1/2

.To 
omplete the proof, it is thus su�
ient to proveLemma 6.3. There exists a 
onstant C, depending on (A) only, su
h that for any z, z′ ∈ D,
E[τσ,z ] ≤ C and E[|τσ,z − τσ

′,z|] ≤ C|z − z′|.Proof (Lemma 6.3). Given two di�erent points z and z′ in D, we know that Xσ,z
t −Xσ,z′

t =
z − z′ for any t ≤ τσ,z ∧ τσ,z′ .Moreover, on the event {τσ,z ≥ τσ,z

′},(6.2) Xσ,z′

τσ,z′
= Xσ,z′

τσ,z′
−Xσ,z

τσ,z′
+Xσ,z

τσ,z′
= z − z′ +Xσ,z

τσ,z′
,so that dist(Xσ,z

τσ,z′
, ∂D) ≤ |z − z′| when τσ,z ≥ τσ

′,z.As a 
onsequen
e, dist(Xσ,z

τσ,z′∧τσ,z
, ∂D) ≤ |z − z′| on the whole probability spa
e.31



Apply now It�'s formula to (ψ(Xσ,z
t ))t≥0. We obtain

ψ
(
Xσ,z
τσ,z

)
= ψ

(
Xσ,z

τσ,z∧τσ,z′

)
+

∫ τσ,z

τσ,z∧τσ,z′
Trace

(
asD

2
z,z̄ψ(Xσ,z

s )
)
ds

+

∫ τσ,z

τσ,z∧τσ,z′

(
Dzψ(Xσ,z

s )σsdBs +Dz̄ψ(Xσ,z
s )σ̄sdB̄s

)
.We emphasize that the LHS is zero. Taking the expe
tation, we dedu
e from the plurisu-perharmoni
ity property that

E
[
ψ

(
Xσ,z

τσ,z∧τσ,z′

)]
≥ CE

[
τσ,z − τσ,z ∧ τσ,z′

]
,for some 
onstant C > 0 depending on (A) only.By (6.2), we dedu
e (C possibly varying from line to line) that

E
[(
τσ,z − τσ,z

′)+]
= E

[
τσ,z − τσ,z ∧ τσ,z′

]
≤ C|z − z′|.By symmetry,

E
[∣∣τσ,z − τσ,z

′∣∣] ≤ C|z − z′|.This 
ompletes the proof. �6.2. Semi-Convexity Argument. The main idea to prove the regularity is to redu
e theanalysis to a 
onvexity problem:Proposition 6.4. Assume that the fun
tion v is Lips
hitz 
ontinuous and semi-
onvex inthe whole D̄, i.e. there exists a 
onstant N su
h that the fun
tion z ∈ D̄ 7→ v(z) +N |z|2 is
onvex in any ball in
luded in D̄. Then v belongs to C1,1(D̄).Proof. Proposition 6.4 follows from Lemma 1.3.2 in Chapter 1 by V. Guedj and A. Zeriahi.Indeed, by Proposition 5.13 and Proposition 6.2, −v is plurisubharmoni
. Moreover, thesemi-
onvexity property provides the required estimate in Lemma 1.3.2. �Remark 6.5. Below, we will also apply Proposition 6.4 on 
ompa
t subsets of D (instead ofthe whole D̄). Obviously, the result then remains true.6.3. Getting Rid of the Supremum. A very natural idea, to investigate v, is to get ridof, as most as possible, of the supremum. In some sense, this is not so di�
ult sin
e bothLips
hitz 
ontinuity and (semi-)
onvexity are stable by supremum:Proposition 6.6. Let (wβ)β be a family of (bounded) fun
tions of the real variable, indexedby some parameter β, for whi
h we 
an �nd two fun
tions r1 and r2, of the real variable aswell, satisfying for any β,
|wβ(s) − wβ(0)| ≤ r1(s), s ∈ R,and

s 7→ wβ(s) + r2(s)is 
onvex. Then, the fun
tion s 7→ supβ w
β(s) satis�es the same properties.The proof is straightforward. The key point is to think of wβ(s) as vσ(γ(s)) for some path

s ∈ R 7→ γ(s) with values in the domain D, vσ being given by De�nition 5.10. The fun
tions
s ∈ R 7→ r1(s) and s ∈ R 7→ r2(s) may be understood as s ∈ R 7→ Ns et s ∈ R 7→ Ns2, forsome 
onstant N . In su
h a 
ase, the �rst inequality in Propostion 6.6 is understood as aLips
hitz property and the se
ond one as a semi-
onvexity property.32



6.4. Di�erentiation under the Symbol E. As we just said, the strategy 
onsists inapplying Proposition 6.6 to ea
h fun
tion vσ in De�nition 5.10 along a path γ with values in
D: this is the way we are able to transfer regularity from the family (vσ)σ to its supremum,i.e. to the fun
tion v.Therefore, the whole problem is now to estimate vσ uniformly in σ: spe
i�
ally, we are toestimate the Lips
hitz 
onstant and to bound from below the se
ond-order derivatives.The most natural idea to do so is to di�erentiate under the symbol E with respe
t to theinitial 
ondition z in the de�nition of vσ, see (5.11), σ being �xed. Remember indeed thatthe 
oe�
ients f and g are di�erentiable. Remember also that, for ea
h σ, the value Xσ,z

tof the 
ontrolled pro
ess at time t is easily di�erentiable with respe
t to z, whatever therandomness may be.Unfortunately, the pi
ture is not so simple. The big deal is the following: the stoppingtimes τσ,z are not di�erentiable w.r.t. z.6.5. Modi�
ation of the Representation. To be able to di�erentiate under the symbol
E, it is ne
essary to get rid of the boundary. This means the following: we are to get rid ofthe boundary 
ondition and to for
e the representation pro
ess to stay in D forever.To get rid of the boundary 
ondition, it is su�
ient to 
onsider vσ − g. Indeed, sto
hasti
di�erentation rules given in Se
tion 5 show that vσ − g may be written as

(
vσ − g

)
(z) = E

∫ τσ,z

0

[
det1/d(at)f(Xσ,z

t ) + Trace
(
atD

2
z,z̄g(X

σ,z
t )

)]
dt,with at = σtσ̄

∗
t , t ≥ 0. Obviously, the fun
tion g being assumed to be C4 with boundedderivatives, this operation doesn't modify the regularity property of the se
ond member.However, it may modify its sign.To re
over the right sign, we may use the plurisuperharmoni
ity 
ondition. Indeed, sin
e

sup
a

sup
z∈D

Trace
(
aD2

z,z̄ψ(z)
)
< 0,(with a as above), we 
an add N0ψ to vσ − g, for N0 as large as ne
essary.We emphasize that this transform 
annot be understood as a modi�
ation of the originalse
ond member f of the Monge-Ampère equation. Indeed, the 
oe�
ients we here removedepend on σ in a more general way than det1/d(at)f does so that the expe
tation we haveto investigate has the form(6.3) ṽσ(z) := E

∫ τσ,z

0

F (det(at), at, X
σ,z
t )dt,whi
h is mu
h more general than the original one in De�nition 5.10. We also noti
e thatthe general 
oe�
ient F is C2 with respe
t to the se
ond and third parameters. (Above,

at = σtσ̄
∗
t , t ≥ 0.)It now remains to get rid of the boundary itself! The idea is to slow down the pro
ess

(Xt)t≥0 (forget for the moment the supers
ripts z and σ to simplify the notations) in theneighborhood of the boundary by means of the fun
tion ψ. Consider indeed a sto
hasti
pro
ess (Zt)t≥0 with the following dynami
s:(6.4) dZt = ψ1/2(Zt)σtdBt + atD
∗
z̄ψ(Zt)dt, t ≥ 0,33



and with Z0 = z as initial 
ondition. Sin
e the dynami
s depend on (Zt)t≥0 itself, thepro
ess (Zt)t≥0 is said to satisfy a Sto
hasti
 Di�erential Equation (SDE for short): wegive in the next se
tion a short overview of 
onditions ensuring existen
e and uniqueness ofsolutions. Roughly speaking, we will see that the basi
 
onditions are the same as in thetheory of Ordinary Di�erential Equations: Eq. (6.4) is solvable in in�nite horizon underglobal Lips
hitz 
onditions; if the 
oe�
ients are lo
ally Lips
hitz only on a bounded opensubset U , then existen
e and uniqueness hold up to the �rst exit time of U . The point isthen to dis
uss whether (Zt)t≥0 may rea
h the boundary of the domain D or not.Proposition 6.7. Given an initial 
ondition z ∈ D and a 
ontrol (σt)t≥0 with values in theset of 
omplex matri
es of size d× d su
h that Trace(σtσ̄
∗
t ) = 1, t ≥ 0, the SDE(6.5) dZσ,z

t = ψ1/2(Zσ,z
t )σtdBt + atD

∗
z̄ψ(Zσ,z

t )dt, t ≥ 0,with the initial 
ondition Zσ,z
0 = z admits a unique solution. It stays inside D forever.Said di�erently, the stopping time τσ,z∞ := inf{t ≥ 0 : Zσ,z

t 6∈ D} (with τσ,z∞ = +∞ if theunderlying set is empty) is almost-surely in�nite.Proof. The proof relies on a so-
alled lo
alization argument. For the sake of simpli
ity, weremove below the supers
ript (σ, z) in Zσ,z and in τσ,z∞ .Assume for the moment that (6.5) is indeed solvable. On the interval [0, τ∞), we then
ompute
dψ−1(Zt) = −ψ−3/2(Zt)Dzψ(Zt)σtdBt − ψ−3/2(Zt)Dz̄ψ(Zt)σ̄tdB̄t

− ψ−1(Zt)Trace
[
atDz,z̄ψ(Zt)

]
dt, 0 ≤ t < τ∞,with at = σtσ̄

∗
t , t ≥ 0. Here, the dt term must be understood as
− 2ψ−2(Zt)Dzψ(Zt)atD

∗
z̄ψ(Zt) + ψ(Zt)Trace

[
atD

2
z,z̄

(
ψ−1

)
(Zt)

]

= −ψ−1(Zt)Trace
[
atDz,z̄ψ(Zt)

]
.Therefore,

d

[
ψ−1(Zt) exp

(∫ t

0

Trace
[
asD

2
z,z̄ψ(Zs)

]
ds

)]

= exp

(∫ t

0

Trace
[
asD

2
z,z̄ψ(Zs)

]
ds

)

×
[
−ψ−3/2(Zt)Dzψ(Zt)σtdBt − ψ−3/2(Zt)Dz̄ψ(Zt)dB̄t

]
, 0 ≤ t < τ∞.

(6.6)We obtain a (lo
al) martingale.Indeed, setting τn := inf{t ≥ 0 : ψ(Zt) ≤ 1/n}, the sto
hasti
 integral may be de�nedrigorously between 0 and τn5. Therefore, for any t ≥ 0,(6.7) E

[
ψ−1(Zt∧τn) exp

(∫ t∧τn

0

Trace
[
asD

2
z,z̄ψ(Zs)

]
ds

)]
= ψ−1(z).Noting that ψ−1(Zt∧τn) = n if τn ≤ t, we dedu
e that, for some 
onstant C > 0 independentof n and t,(6.8) n exp(−Ct)P

{
τn ≤ t

}
≤ ψ−1(z).5This is the reason why the proof 
onsists of a �lo
alizing� argument.34



Thus,
∀n ≥ 1, t ≥ 0, n exp(−Ct)P

{
τ∞ ≤ t

}
≤ ψ−1(z),sin
e τ∞ ≥ τn. Dividing by n and letting it tend to +∞, we obtain

∀t ≥ 0, P
{
τ∞ ≤ t

}
= 0.In parti
ular, τ∞ = +∞ almost-surely.It now remains to prove that both existen
e and uniqueness hold. A
tually, we 
an solvethe trun
ated version of (6.5)(6.9) dZn

t =
(
ϕnψ

1/2
)
(Zn

t )σtdBt + ϕn(Z
n
t )atD

∗
z̄ψ(Zn

t )dt, t ≥ 0,where ϕn is some smooth 
ut-o� fun
tion with values in [0, 1]mat
hing 1 on the set {ψ ≥ 1/n}and 0 on the set {ψ ≤ 1/(2n)}, n ≥ 1. It is 
lear that (6.9) is uniquely solvable. (SeeSubse
tion 7.1.) Up to the stopping time ρn := inf{t ≥ 0 : ψ(Zn
t ) ≤ 1/n}, it satis�es (6.5)as well. In parti
ular, (6.8) holds with ρn instead of τn, so that ρn → +∞ almost-surely (as

n → +∞). Moreover, by uniqueness of the solution of a Cau
hy-Lips
hitz SDE, for m ≥ n,
(Zn

t )t≥0 and (Zm
t )t≥0 are equal up to time min(ρn, ρm) = ρn.We then set Zt = limn→+∞ Zn

t . For t ≤ ρn, n ≥ 0, Zt = Zn
t so that (Zt)0≤t≤ρn

satis�es(6.5) up to time ρn. Letting n tend to +∞, we dedu
e that (Zt)t≥0 satis�es (6.5) over thewhole R+.Uniqueness follows from the same argument. Any other solution (Z ′
t)t≥0 (with the sameinitial 
ondition) mat
hes (Zt)t≥0 up to the �rst time it exits from {ψ ≥ 1/n}. Letting ntend to +∞, we dedu
e that there exists a unique solution. �Obviously, 
hanging (Xσ,z

t )t≥0 into (Zσ,z
t )t≥0 breaks down the representation of vσ given inDe�nition 5.10 (and in (6.3)). The point is thus to provide a representation of v (or of −v,i.e. of the 
andidate to solve Monge-Ampère) in terms of the family ((Zσ,z

t )t≥0)σ.To do so, we �rst investigate the representation of ṽσ when (σt)t≥0 is deterministi
 and
onstant, i.e. σt = σ deterministi
, with det(σ) 6= 0.In the deterministi
 and 
onstant 
ase, we know that ṽσ given in (6.3) satis�es the PDE
−Trace

[
aD2

z,z̄ ṽ
σ(z)

]
= F (det(a), a, z), z ∈ D,with zero as boundary 
ondition. (Have in mind that F is here given by adding the

Trace[aD2
z,z̄(g −N0ψ)(z)] to the original sour
e term det1/d(a)f(z).)By Theorem 5.7, we know that ṽσ is C2 inside D and 
ontinuous up to the boundary. Inparti
ular, we 
an apply It�'s formula to (ψ−1(Zσ,z

t )ṽσ(Zσ,z
t ))t≥0:Lemma 6.8. Under the notation of Proposition 6.7, for any (possibly random) 
ontrol (σt)t≥0(with values in the set of 
omplex matri
es of size d × d su
h that Trace(σtσ̄

∗
t ) = 1, t ≥ 0)and for any fun
tion G in C2(D) with real values,

d

[
G(Zσ,z

t ) exp

(∫ t

0

Trace
[
asDz,z̄ψ(Zσ,z

s )
]
ds

)]

= exp

(∫ t

0

Trace
[
asDz,z̄ψ(Zσ,z

s )
]
ds

)[
DzG(Zσ,z

t )σtdBt +Dz̄G(Zσ,z
t )σ̄tdB̄t

]

+ exp

(∫ t

0

Trace
[
asDz,z̄ψ(Zσ,z

s )
]
ds

)
Trace

[
atDz,z̄(ψG)(Zσ,z

t )
]
dt, t ≥ 0,35



with at = σtσ̄
∗
t , t ≥ 0.In parti
ular, if σ is 
onstant and non-degenerate, we obtain by 
hoosing G = ψ−1ṽσ

ψ−1(z)ṽσ(z)

= E

∫ +∞

0

exp

(∫ t

0

Trace
[
aDz,z̄ψ(Zσ,z

s )
]
ds

)
F (det(a), a, Zσ,z

t )dt, z ∈ D.
(6.10)Proof. For simpli
ity, we get rid of the supers
ript (σ, z) in (Zσ,z

t )t≥0. The �rst part of theproof is similar to the proof of (6.6). For the se
ond part, it is ne
essary to lo
alize thedynami
s of (Zt)t≥0 up to the stopping time τn = inf{t ≥ 0 : ψ(Zt) ≤ 1/n} as in (6.7). For
ψ(z) ≥ 1/n, we obtain

ψ−1(z)ṽσ(z) = E

[
exp

(∫ t∧τn

0

Trace
[
aDz,z̄ψ(Zs)

]
ds

)
ψ−1(Zt∧τn)ṽσ(Zt∧τn)

]

+ E

∫ t∧τn

0

exp

(∫ s

0

Trace
[
aDz,z̄ψ(Zr)

]
dr

)
F (det(a), a, Zs)ds.We emphasize that the plurisuperharmoni
ity 
ondition here plays a 
ru
ial role: it says thatthe se
ond integral is exponentially 
onvergent. In parti
ular, the se
ond term in the RHS
learly 
onverges towards the announ
ed quantity as n and t tend to the in�nity. The �rstterm in the RHS may be a bit more di�
ult to handle. By (6.7), we 
an bound(6.11) E

[
exp

(∫ t∧τn

0

Trace
[
aDz,z̄ψ(Zs)

]
ds

)
ψ−1(Zt∧τn)ṽσ(Zt∧τn); τn ≤ t

]by ψ−1(z) sup{ṽσ(z′), ψ(z′) ≤ 1/n}: this quantity tends to 0 as n tends to the in�nity by
ontinuity of ṽσ up to the boundary. On the 
omplementary, i.e. on {τn > t}, we use theplurisuperharmoni
ity 
ondition to bound (6.11) by C exp(−Ct)n, for a 
onstant C inde-pendent of n and t. Letting t tend �rst to the in�nity, and then n, we 
omplete the proof. �We shall now explain what happens when the 
ontrol (σt)t≥0 in (6.3) and (6.5) is randomand evolves with time. Formally, when σ is non-
onstant, Eq. (6.10) breaks down: the term
ψ1/2 in Eq. (6.5) is understood as a 
hange of time speed6 and the pro
ess (Zσ,z

t )t≥0 appearsas a slower version of the original (Xσ,z
t )t≥0, so that the pro
ess (σt)t≥0 inside (6.10) 
annotbe the same as the original one in Eq. (6.3).The main idea is the following: Eq. (6.10) 
annot be a general formula for ṽσ, but, takingthe supremum w.r.t. σ, we re
over a representation formula for supσ ṽ

σ. The idea is notso surprising. Indeed, going ba
k to the proof of the Dynami
 Programming Prin
iple, seeLemma 5.12, we understand that the global supremum in (5.11) may be lo
alized, i.e. thevalues of (σt)t≥0 may be lo
ally frozen. Sin
e the representation of ṽσ in (6.10) holds fora 
onstant 
ontrol, we may expe
t the supremum w.r.t. to (general) σ to satisfy a similarrepresentation formula.This result turns out to be true: representation (6.10) holds for the value fun
tion of theoptimization problem. We thus 
laim6For the reader who knows a bit of sto
hasti
 analysis, the drift term in Eq. (6.5) follows from a Girsanovtransform. 36



Proposition 6.9. Given a 
ontrol (σt)t≥0 with values in the set of d × d 
omplex matri
essu
h that Trace(σtσ̄
∗
t ) = 1, t ≥ 0, 
onsider the fun
tion vσ as in De�nition 5.10 and modifyit into ṽσ = vσ − g +N0ψ as in (6.3) for some large enough N0, so that
(
ṽσ − g +N0ψ

)
(z)

= E

∫ τσ,z

0

[
det1/d(at)f(Xσ,z

t ) + Trace
(
atD

2
z,z̄g(X

σ,z
t )

)

−N0Trace
(
atD

2
z,z̄ψ(Xσ,z

t )
)]
dt,

:= E

∫ τσ,z

0

F (det(at), at, X
σ,z
t )dt, z ∈ D,with F non-negative.For a given initial 
ondition z ∈ D, 
onsider also the SDE(6.12) dZσ,z

t = ψ1/2(Zσ,z
t )σtdBt + atDz̄ψ

∗(Zσ,z
t )dt, t ≥ 0,with the initial 
ondition Zz,σ

0 = z ∈ D.Then, the value fun
tion supσ[v
σ − g +N0ψ] at point z may be expressed as

v(z) − g(z) +N0ψ(z) = sup
σ

[(
vσ − g +N0ψ

)
(z)

]
= ψ(z) sup

σ

[
V σ(z)

]
,where

V σ(z)

= sup
σ

E

[∫ +∞

0

exp

(∫ t

0

Trace
[
asDz,z̄ψ(Zσ,z

s )
]
ds

)
F (det(at), at, Z

σ,z
t )dt

]
,

z ∈ D. Below, we set V (z) := supσ V
σ(z).7. Derivative QuantityBy Proposition 6.9, we 
an now forget the boundary 
onstraints. In 
omparison with theformulation of the 
omplex Monge-Ampère equation given in Se
tion 5, the new representa-tion formula is set in in�nite time: we may think of di�erentiating with respe
t to the initial
ondition without taking 
are of the exit phenomenon.Unfortunately, there is a pri
e to pay for the new writing. The dynami
s of the 
ontrolledpaths involved in the new representation formula are mu
h less simple to handle with thanthe original ones. Even without any spe
i�
 knowledge in sto
hasti
 di�erential equations, itis well-guessed that the derivative of Z in (6.5), if exists, is the solution of a new sto
hasti
di�erential equation, obtained by di�erentiation: the whole problem is now to investigatethe di�erentiated equation on the long-run.7.1. A Word on SDEs. We said very few about sto
hasti
 di�erential equations. We herespe
ify some elementary fa
ts. (To simplify, things are here stated for real valued pro
esses,but all of them are extendable to the 
omplex 
ase in a standard way.)A sto
hasti
 di�erential equation may be set in real or 
omplex 
oordinates. It has thegeneral form(7.1) dXt = b(t, Xt)dt+ σ(t, Xt)dBt, t ≥ 0.37



Here, the 
oe�
ient b is 
alled the drift of the equation. It may depend on time, on thesolution at 
urrent time and on the randomness as well. The same is true for the di�usion
oe�
ient σ. Obviously, B here stands for a Brownian motion (with real or 
omplex valuesa

ording to the framework). We also indi
ate that the dimension of X may be di�erentfrom the dimension of B. This is not the 
ase in Proposition 6.9 sin
e the matrix σ is of size
d× d. When ne
essary, we will spe
ify by d the dimension of X and by dB the dimension of
B, so that σ is a matrix of size d× dB.Here are the standard solvability 
onditions. The standard framework for the regularityin spa
e is the Lips
hitz one, as we said above: 
oe�
ients are assumed to be Lips
hitz inspa
e, uniformly in randomness and in time in 
ompa
t subsets, i.e. ∀T > 0, ∃KT ≥ 0,
∀ω ∈ Ω, ∀t ∈ [0, T ], ∀x, x′,(7.2) |σ(t, x) − σ(t, x′)| + |b(t, x) − b(t, x′)| ≤ KT |x− x′|.To be sure that the underlying integrals are well-de�ned, some measurability property isne
essary: for any x, the pro
esses (b(t, x))t≥0 and (σ(t, x))t≥0 are progressively-measurable.Finally, to 
ontrol the growth of the 
oe�
ients, we ask(7.3) ∀T ≥ 0, E

∫ T

0

[
|b(s, 0)|2 + |σ(s, 0)|2

]
ds < +∞.Under these three 
onditions, existen
e and uniqueness of a solution to (7.1) with a giveninitial 
ondition in L2 hold, on the whole [0,+∞). The solution has 
ontinuous paths thatare adapted to the �ltration generated by B. Morever, the supremum of the solution is in

L2, lo
ally in time:(7.4) ∀T ≥ 0, E
[

sup
0≤t≤T

|XT |2
]
< +∞.In the 
ase when the initial 
ondition is in Lp, for some p > 2, and (7.3) holds in Lp aswell, for the same p, then (7.4) also holds in Lp.A
tually, global Lips
hitz 
onditions may be relaxed. Under lo
al Lips
hitz 
onditionsin spa
e, the solution exists on a random interval and may blow up at some random time.As easily-guessed, the blow-up time is a stopping time. It 
orresponds to the limit of thestopping times (��rst time when the modulus of the solution is larger than m�)m.Below, we will 
ompare the solutions to sto
hasti
 di�erential equations driven by di�erent
oe�
ients. The following result will be referred to as a stability property :Proposition 7.1. Consider two sets of 
oe�
ients (b, σ) and (b′, σ′) satisfying (7.2) and(7.3) and denote by (Xt)t≥0 and (X ′

t)t≥0 the asso
iated solutions for some initial 
onditions
X0 and X ′

0 in L2. Then, for any T > 0, there exists a 
onstant CT ≥ 0, only depending on
T and KT , su
h that, for any event A ∈ F0,

E
[
1A sup

0≤t≤T
|Xt −X ′

t|2
]
≤ CT

{
E
[
1A|X0 −X ′

0|2
]

+ E

[
1A

∫ T

0

(
|b− b′|2(t, Xt) + |σ − σ′|2(t, Xt)

)
dt

]}
.A similar version holds in Lp, for p > 2, if the initial 
onditions are in Lp and (7.3) holdsin Lp both for (b, σ) and (b′, σ′). 38



(The indi
ator 1A here permits to lo
alize the stability property w.r.t. the values of theinitial 
onditions.)In what follows, the generi
 equation we 
onsider is of real stru
ture, the 
omplex 
asebeing a parti
ular 
ase of the real one by doubling the dimension. The equation is alsoassumed to be set on the whole spa
e. (Eq. (6.5) is indeed set on the whole spa
e provided
ψ be extended to the whole Cd, but the solution stays inside D forever.)7.2. Di�erentiation of the Flow Generated by a SDE. Clearly, we have in mind todi�erentiate under the symbol E in the representation formula of Proposition 6.9. To do so,we here give some preliminary results about the di�erentiability of the �ow generated by asto
hasti
 di�erential equation.Spe
i�
ally, the following result guarantees the di�erentiability of the paths (Xx

t )t≥0 withrespe
t to the starting point x, the 
oordinates of x being possibly real or 
omplex.Theorem 7.2. Assume that, for every t ≥ 0 and (almost) every ω ∈ Ω, the 
oe�
ients
b(t, ·) : x ∈ Rd 7→ b(t, x) and σ(t, ·) : x ∈ Rd 7→ σ(t, x) are of 
lass C3, with boundedderivatives, uniformly in ω and in t in 
ompa
t sets. Then, P-almost surely, for all t ≥ 0,the mapping x ∈ Rd 7→ Xx

t is twi
e di�erentiable with respe
t to x.In parti
ular, for any family of initial 
onditions (Xs
0)s∈R su
h that, P-a.s., s ∈ R 7→ Xs

0is C3, with bounded derivatives, uniformly in ω, the mappings (s 7→ Xs
t := X

Xs
0

t )t≥0 are,
P almost-surely, di�erentiable with respe
t to s for all t ≥ 0. Moreover, (Ds[X

s
t ])t≥0 and

(D2
s,s[X

s
t ])t≥0 satisfy linear sto
hasti
 di�erential equations (with random 
oe�
ients):(7.5) ξst = γ′(s) +

∫ t

0

Dxb(r,X
s
r )ξ

s
rdr +

∫ t

0

dB∑

j=1

Dxσ·,j(r,X
s
r )ξ

s
rdW

j
r ,and

ηst = γ′′(s) +

∫ t

0

[
Dxb(r,X

s
r )η

s
r +D2

x,xb(r,X
s
r )ξ

s
r ⊗ ξsr

]
dr

+

∫ t

0

dB∑

j=1

(
Dxσ·,j(r,X

s
r )η

s
r +D2

x,xσ·,j(r,X
s
r )ξ

s
r ⊗ ξsr

)
dW j

r ,

(7.6)that is Ds[X
s
t ] = ξst and D2

s,s[X
s
t ] = ηst , t ≥ 0, s ∈ R.Proof. We refer the reader to the monograph by Protter [14, Chap. V, Se
. 7, Thm. 39℄for the proof.

�Below, the di�erentiability property in Theorem 7.2 is referred to as pathwise twi
e di�eren-tiability, that is the paths of the pro
ess are twi
e di�erentiable, randomness by randomness.In some sense, pathwise di�erentiability is too mu
h demanding for our purpose. Indeed,as we re
alled above, the point below is to di�erentiate under the symbol E only, so thatweaker notions of di�erentiability turn out to be su�
ient:De�nition 7.3. Under the notations of Theorem 7.2, the pro
ess (Xs
t )t≥0 is said to be twi
edi�erentiable in probability w.r.t. s if Eqs. (7.5) and (7.6) are uniquely solvable and, for any39



T > 0 and any s ∈ R,
∀ν > 0, lim

ε→0,ε 6=0
P
{

sup
0≤t≤T

∣∣δεXs
t − ξst

∣∣ ≥ ν
}

= 0,

lim
ε→0,ε 6=0

P
{

sup
0≤t≤T

∣∣δεξst − ηst
∣∣ ≥ ν

}
= 0,

(7.7)with the generi
 notation δεF
s
t = ε−1(F s+ε

t − F s
t ) for some fun
tional F depending on t, sand possibly ω.The pro
ess (Xs

t )t≥0 is said to be twi
e di�erentiable in the mean w.r.t. s if Eqs. (7.5) and(7.6) are uniquely solvable and, for any T > 0 and any s ∈ R,
∀p ≥ 1, lim

ε→0,ε 6=0
E
[

sup
0≤t≤T

∣∣δεXs
t − ξst

∣∣p] = 0,

lim
ε→0,ε 6=0

E
[

sup
0≤t≤T

∣∣δεξst − ηst
∣∣p] = 0.

(7.8)It turns out that di�erentiability in the mean holds under weaker assumptions than path-wise di�erentiability :Theorem 7.4. Assume that, for every t ≥ 0 and (almost) every ω ∈ Ω, the 
oe�
ients
b(t, ·) : x ∈ Rd 7→ b(t, x) and σ(t, ·) : x ∈ Rd 7→ σ(t, x) are of 
lass C2, with boundedderivatives, uniformly in t. Consider a family of initial 
onditions (Xs

0)s∈R that is twi
edi�erentiable in probability, i.e. su
h that, for any s ∈ R,(7.9) ξs0 = lim
ε→0,ε 6=0

δεX
s
0 and ηs0 = lim

ε→0,ε 6=0
δεξ

s
0exist in probability, i.e. as in (7.7). Then, the pro
ess (Xs

t )t≥0 is twi
e di�erentiable inprobability w.r.t. s.If the random variables (Xs
0)s∈R have �nite p-moments of any order p ≥ 1 and are di�eren-tiable in the mean, i.e. (7.9) holds as in (7.8), then the pro
ess (Xs

t )t≥0 is twi
e di�erentiablein the mean w.r.t. s.The proof is a 
onsequen
e of the stability property for SDEs. (See Proposition 7.1.)We now say a word about the 
onne
tion between the di�erent kinds of di�erentiability.As easily guessed by the reader, pathwise di�erentiability is stronger than di�erentiabilityin probability. (This is a straightforward 
onsequen
e of Lebesgue dominated 
onvergen
eTheorem. This is also well-understood by 
omparing the assumptions of Theorems 7.2and 7.4.) By Markov inequality, it is also 
lear that di�erentiability in the mean impliesdi�erentiability in probability.The 
onverse is true provided some uniform integrability 
onditions. Consider for examplea family of initial 
onditions (Xs
0)s∈R, with �nite p-moments of any order p ≥ 1, su
h thatthe mapping s ∈ R 7→ Xs

0 is C3 almost-surely, with derivatives in any Lp, p ≥ 1, uniformly in
s in 
ompa
t sets, and assume that, for some stopping τ , (Xs

t )0≤t≤τ is twi
e di�erentiable inprobability, uniformly in t ∈ [0, τ ]. (That is T in (7.8) is repla
ed by τ .) If sup0≤t≤τ |ξst | and
sup0≤t≤τ |ηst | are in any Lp, p ≥ 1, uniformly in s in 
ompa
t sets, then twi
e di�erentiabilityin the mean holds uniformly on [0, τ ]. As announ
ed, the proof relies on a 
lassi
al argumentin probability theory: 
onvergen
e in probability implies 
onvergen
e in any Lp, p ≥ 1,provided uniform integrability in any Lp, p ≥ 1. Spe
i�
ally, the point is to prove that,for any s ∈ R and p ≥ 1, sup0≤t≤τ |δεXs

t | and sup0≤t≤τ |δεζst | are in Lp, uniformly in ε in a40



neighborhood of 0 (ε being di�erent from zero). This may be seen as a 
onsequen
e of thebounds:
E
[

sup
0≤t≤τ

|δεXs
t |p

]
≤ 1

ε

∫ s+ε

s

E
[

sup
0≤t≤τ

|ζrt |p
]
dr,

E
[

sup
0≤t≤τ

|δεζst |p
]
≤ 1

ε

∫ s+ε

s

E
[

sup
0≤t≤τ

|ηrt |p
]
dr,

(7.10)for ε > 0. (Within the framework of Theorem 7.4 and with a similar inequality for ε < 0.)The above inequalities are a straightforward 
onsequen
e of the �rst-order Taylor formulawhen the family ((Xs
t )t≥0)s∈R is twi
e di�erentiable in the pathwise sense, that is when the
oe�
ients b and σ in Theorem 7.2 are smooth. When they are C2 only, we 
an approximatethem by a sequen
e of molli�ed 
oe�
ients: by the stability property for SDEs, the deriva-tives of the solutions to the molli�ed equations 
onverge towards the derivatives of the trueequation; passing to the limit in (7.10), we obtain the expe
ted bounds.Unless spe
i�ed, we will work below under the C2 framework of Theorem 7.4.7.3. Derivative Quantity. In the whole subse
tion, we 
hoose Xs

0 = γ(s), γ here standingfor a C2 deterministi
 
urve from R to Rd, with bounded derivatives. As a 
onsequen
e ofTheorem 7.4, we 
laim:Corollary 7.5. Keep the assumption and notation of Theorem 7.4. Given T > 0 and abounded progressively-measurable random fun
tion f : [0, T ] × Rd → R of 
lass C2 withrespe
t to the spatial parameter and with bounded derivatives, uniformly in time t and inrandomness, the real-valued fun
tion of the real variable
s ∈ [−1, 1] 7→ wT (s) = E

∫ T

0

f(r,Xs
r )dradmits as �rst and se
ond-order derivatives:

w′
T (s) = E

∫ T

0

Dxf(r,Xs
r )ξ

s
rdr

w′′
T (s) = E

∫ T

0

(
Dxf(r,Xs

r )η
s
r +D2

x,xf(r,Xs
r )ξ

s
r ⊗ ξsr

)
dr.Corollary 7.5 permits to bound w′

T and w′′
T . Indeed, sin
e the equations satis�ed by (ξst )t≥0and (ηst )t≥0 are linear (with random 
oe�
ients), standard stability te
hniques, based onGronwall's Lemma, would show that:(7.11) ∀p ≥ 0, ∀T > 0, sup

0≤t≤T
E
[
|ξst |p + |ηst |p

]
≤ C(p, T ),

C(p, T ) depending on p, T and the bounds for the derivatives of the 
oe�
ients.Unfortunately, Corollary 7.5 doesn't apply to Proposition 6.9 sin
e T is in�nite in Proposi-tion 6.9. Therefore, we must dis
uss the long-run behavior of (|ξst |)t≥0 and (|ηst |)t≥0 
arefullyand, spe
i�
ally, investigate the long-run integrability against the exponential weight gen-erated by the plurisuperharmoni
 fun
tion ψ, exa
tly as in the representation formula ofProposition 6.9.In this framework, we emphasize the following fa
ts. First, in light of Corollary 7.5, it issu�
ient to analyze the long-run behavior of the se
ond-order moments of (|ξst |)t≥0 and the41



�rst-order moments of (|ηst |)t≥0. Moreover, the linear stru
ture of (ηst )t≥0 being 
lose to theone of (ξst )t≥0 (the nonlinear terms in the dynami
s of (|ηst |)t≥0 being 
ontrolled by (|ξst |2)t≥0),it is more or less su�
ient to investigate the long-run beahvior of (|ξst |2)t≥0.Therefore, we now 
ompute the form of d|ξst |2. Using It�'s formula, we obtain
d|ξst |2 = 2

dB∑

i,j=1

(ξst )
iDxj

bi(t, Xs
t )(ξ

s
t )
jdt

+

d∑

i=1

n∑

j=1

( d∑

k=1

Dxk
σi,j(t, X

s
t )(ξ

s
t )
k

)2

dt+ dmt,

(7.12)
dmt standing for a martingale term, whi
h has no role when 
omputing the expe
tation. In
omparison with Krylov's orginal proof, we emphasize that Krylov makes use of the followingshorten notation:

Dξb
i
t :=

d∑

j=1

Dxj
bi(t, Xs

t )(ξ
s
t )
j, Dξσ

i,j
t :=

d∑

k=1

Dxk
σi,j(t, X

s
t )(ξ

s
t )
k,so that the dynami
s of |ξst |2 have the form:(7.13) d|ξst |2 =

[
2〈ξst , Dξbt〉 + |Dξσt|2

]
dt+ dmt.A typi
al 
ondition to obtain a long-run 
ontrol for (|ξst |2)t≥0 is(7.14) 2〈ξst , Dξbt〉 + |Dξσt|2 ≤ 0, t ≥ 0.Indeed, (7.14) implies that (E[|ξst |2])t≥0 is bounded.A
tually, the reader must understand that the 
hoi
e we here make is very restri
tive:instead of investigating the dynami
s of (|ξst |2)t≥0, we 
ould also investigate the dynami
s of

(〈ξst , A(Xs
t )ξ

s
t 〉)t≥0 for some smooth fun
tion A from Rd into the set of positive symmetri
matri
es of dimension d. Indeed, if the spe
trum of A is in a 
ompa
t subset of (0,+∞), itis equivalent to obtain a long-run 
ontrol for (〈ξst , A(Xs

t )ξ
s
t 〉)t≥0 and a long-run 
ontrol for

(|ξst |2)t≥0.By 
hoosing A possibly di�erent from the identity, we are able to plug some freedom into(7.13) and thus to relax the 
ondition (7.14).In what follows, we will 
all:De�nition 7.6. Under the notation and assumption of Theorem 7.4 and for a smooth fun
-tion A from Rd into the set of positive symmetri
 matri
es of size d, we 
all derivativequantity the quadrati
 pro
ess (〈A(Xs
t )ξ

s
t , ξ

s
t 〉)t≥0, denoted by (Γst)t≥0, and we 
all dynami
sof the derivative quantity its absolutely 
ontinuous part, denoted by (∂Γst )t≥0.Spe
i�
ally, we 
all dynami
s of derivative quantity (at point γ(s)) the pro
ess (also de-noted by (∂Γt(X

s
t , ξ

s
t ))t≥0) given by

∂Γst = 2〈ξst , A(Xs
t )Dxb(t, X

s
t )ξ

s
t 〉

+ 〈Dxσ(t, Xs
t )ξ

s
t , A(Xs

t )Dxσ(t, Xs
t )ξ

s
t 〉

+ 2Trace
[
(Dxσ

∗(t, Xs
t )ξ

s
t )(DxA(Xs

t )ξ
s
t )σ(t, Xs

t )
]
dt

+ 〈ξst , (LtA)(Xs
t )ξ

s
t 〉, t ≥ 0,42



where
Lt =

d∑

i=1

bi(t, ·)Dxi
+ (1/2)

d∑

i,j=1

(σσ∗)i,j(t, ·)D2
xi,xj

〈Dxσ(t, Xs
t )ξ

s
t , A(Xs

t )Dxσ(t, Xs
t )ξ

s
t 〉

=

dB∑

j=1

〈Dxσ·,j(t, X
s
t )ξ

s
t , A(Xs

t )Dxσ·,j(t, X
s
t )ξ

s
t 〉

Trace
[
(Dxσ

∗(t, Xs
t )ξ

s
t )(DxA(Xs

t )ξ
s
t )σ(t, Xs

t )
]

=
d∑

i,k=1

dB∑

j=1

(Dxσi,j(t, X
s
t )ξ

s
t )

(
(DxA·,k(ξ

s
t )k)σ(t, Xs

t )
)
i,j
.

(7.15)
Following (7.13), it satis�es(7.16) dΓst = d〈ξst , A(Xs

t )ξ
s
t 〉 = ∂Γstdt+ dmt, t ≥ 0.(In the 
omplex 
ase, A is an Hermitian fun
tional and Γst has the form 〈ξst , A(Xs

t )ξ̄
s
t 〉.)We 
laimProposition 7.7. Together with the notations given above, we are also given a real δ > 0and an [δ,+∞)-valued (progressively-measurable) random fun
tion c both depending on therandomness ω ∈ Ω and on (t, x) ∈ [0,+∞)× Rd su
h that, for every t ≥ 0 and for (almost)every ω ∈ Ω, c(t, ·) : x ∈ Rd 7→ c(t, x) ∈ [δ,+∞) is of 
lass C2, with bounded derivatives,uniformly in t and in ω.Given an open subset U ⊂ Rd su
h that γ(s) ∈ U for some s ∈ [−1, 1], assume that

∂Γst = ∂Γt(X
s
t , ξ

s
t ) ≤ (c(t, Xs

t ) − δ)Γst up to the exit time from U , i.e. for t ≤ τU := inf{t ≥
0 : Xs

t 6∈ U}, then, for any t ≥ 0,(7.17) E

[
exp

(
−

∫ t∧τU

0

(c(r,Xs
r ) − δ)dr

)
Γt∧τU

]
≤ 〈γ′(s), A(γ(s))γ′(s)〉.Assume for example that U = Rd. Then, with the notation and assumption of Corollary7.5, there exists a 
onstant C depending on δ and the L∞ norms (on U) of A−1, Dxc, f and

Dxf only su
h that, for any T > 0, the fun
tion(7.18) s ∈ [−1, 1] 7→ wT (s) = E

[∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)
f(t, Xs

t )dt

]
,satisfy |w′

T (s)| ≤ C|γ′(s)|. In parti
ular, the Lips
hitz 
onstant of wT is independent of T .Proof. The proof is almost straightforward. By (7.16),
d

[
exp

(
−

∫ t

0

(
c(r,Xs

r ) − δ
)
dr

)
Γst

]

d

[
exp

(
−

∫ t

0

(
c(r,Xs

r ) − δ
)
dr

)
〈ξst , A(Xs

t )ξ
s
t 〉

]

= exp

(
−

∫ t

0

(
c(r,Xs

r ) − δ
)
dr

)[(
∂Γst − (c(t, Xs

t ) − δ)Γst
)
dt+ dmt

]
.43



Taking the expe
tation, we get rid of the martingale term. Having, in mind the sign 
onditionon ∂Γst − (c(t, Xs
t ) − δ)Γst , we dire
tly dedu
e (7.17).To prove the Lips
hitz estimate, we �rst emphasize that, for any s ∈ [−1, 1],

|w′
T (s)| =

∣∣∣∣E
∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)[
Dxf(t, Xs

t )ξ
s
t

− f(t, Xs
t )

∫ t

0

Dxc(r,X
s
r )ξ

s
rdr

]∣∣∣∣

≤ CE

[∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)[
|ξst | +

∫ t

0

|ξsr |dr
]
dt

]
,

(7.19)
for some 
onstant C depending on ‖f‖∞, ‖Dxf‖∞ and ‖Dxc‖∞ only.The result then follows from Lemma 7.8 below. �Lemma 7.8. Consider a non-negative pro
ess (ct)t≥0 together with an Rd-valued pro
ess
(ξt)t≥0 su
h that ct ≥ δ, t ≥ 0, and

E

[
exp

(
−

∫ t

0

crdr

)
|ξt|2

]
≤ C exp(−δt), t ≥ 0,for some C ≥ 0 and δ > 0, then

E

[∫ +∞

0

exp

(
−

∫ t

0

crdr

)(
|ξt| +

∫ t

0

|ξr|dr
)
dt

]
≤ C ′,for some C ′ depending on C and δ only.Proof. From Cau
hy-S
hwarz inequality and from the bound c ≥ δ, we obtain the L1version:

E

[
exp

(
−

∫ t

0

crdr

)
|ξst |

]
≤ E

[
exp

(
−2

∫ t

0

crdr

)
|ξst |2

]1/2

≤ exp
(
−δ

2
t
)
E

[
exp

(
−

∫ t

0

crdr

)
|ξst |2

]1/2

≤ C1/2 exp(−δt), t ≥ 0.

(7.20)In parti
ular, sin
e c is always larger than δ, Inequality (7.20) yields
E

[∫ +∞

0

exp

(
−

∫ t

0

crdr

)(
|ξt| +

∫ t

0

|ξr|dr
)
dt

]

≤ E

[∫ +∞

0

(
exp

(
−

∫ t

0

crdr

)
|ξt|

+ exp(−δt)
∫ t

0

exp(δr) exp

(
−

∫ r

0

cudu

)
|ξr|dr

)
dt

]

≤ C1/2

∫ +∞

0

exp(−δt)
(
1 + t

)
dt.

(7.21)
This 
ompletes the proof. �We now perform a similar analysis, but for the se
ond-order derivative (〈ηst , A(Xs

t )η
s
t 〉)t≥0(see Theorems 7.2 and 7.4) and then for w′′

T (s).44



Proposition 7.9. Assume that the assumption of Proposition 7.7 are in for
e and that
σ is bounded. For any s ∈ [−1, 1], denote by (∆s

t )t≥0 (or by (Γt(X
s
t , η

s
t ))t≥0) the pro
ess

(〈ηst , A(Xs
t )η

s
t 〉)t≥0 and by (∂∆s

t )t≥0 the pro
ess
∂∆s

t = 2〈ηst , A(Xs
t )Dxb(t, X

s
t )η

s
t 〉dt

+ 〈Dxσ(t, Xs
t )η

s
t , A(Xs

t )Dxσ(t, Xs
t )η

s
t 〉dt

+ 2Trace
[
(Dxσ

∗(t, Xs
t )η

s
t )(DxA(Xs

t )η
s
t )σ(t, Xs

t )
]
dt

+ 〈ηst , (LtA)(Xs
t )η

s
t 〉, t ≥ 0.(Be 
areful that (∂∆s

t )t≥0 is not the absolutely 
ontinuous part of (∆s
t )t≥0. It is obtained byrepla
ing (ξst )t≥0 by (ηst )t≥0 in the de�nition of (∂Γst )t≥0.)Given an open subset U ⊂ Rd su
h that γ(s) ∈ U for some s ∈ [−1, 1], assume that, for all

t ≤ τU := inf{t ≥ 0 : Γst 6∈ U}, ∂∆t ≤ (c(t, Xs
t )−δ)∆t. (Pay attention that this is exa
tly thesame inequality as the one in Proposition 7.7, but with (ξst )t≥0 repla
ed by (ηst )t≥0. Clearly,if the one in Proposition 7.7 is true, the 
urrent one is expe
ted to be true as well.) Then,there exists a 
onstant C, depending on δ and the L∞ norms (on U) of A, A−1, DxA, c,

D2
x,xb, σ, Dxσ and D2

x,xσ only, su
h that, for any t ≥ 0,
E

[
exp

(
−

∫ t∧τU

0

(c(r,Xs
r ) − δ/2)dr

)(
[Γst∧τU ]2 + ∆s

t∧τU

)1/2
]

≤
(
〈γ′(s), A(γ(s))γ′(s)〉2 + 〈γ′′(s), A(γ(s))γ′′(s)〉

)1/2

+ C〈γ′(s), A(γ(s))γ′(s)〉.

(7.22)For example if U = Rd, the fun
tion wT in (7.18) satis�es
|w′′

T (s)| ≤ C

(1 ∧ δ)3

(
|γ′(s)|2 + |γ′′(s)|

)
, s ∈ [−1, 1].for a possible modi�ed value of the 
onstant C, depending on the L∞ norms (on U) of Dxc,

D2
x,xc, f , Dxf and D2

x,xf as well. (In parti
ular, it is independent of T and s.)Proof. For simpli
ity, we make use of Krylov's notations, i.e. we set: Dηb
s
t := Dxb(t, X

s
t )η

s
t ,

D2
ξ,ξb

s
t := D2

x,xb(t, X
s
t )ξ

s
t⊗ξst ,Dη(σ

s
t )·,j := Dxσ·,j(t, X

s
t )η

s
t and �nallyD2

ξ,ξ(σ
s
t )·,j := D2

x,xσ·,j(t, X
s
t )ξ

s
t⊗

ξst . With these notations, η in Theorem 7.2 has the form:
dηst = Dηb

s
tdt+D2

ξ,ξb
s
tdt+

dB∑

j=1

Dη(σ
s
t )·,jdW

j
t +

dB∑

j=1

D2
ξ,ξ(σ

s
t )·,jdW

j
t ,

t ≥ 0. Considering the quadrati
 form driven by A, we obtain (with the notation Ast =
A(Xs

t ))
d〈ηst , Astηst 〉
= 2〈ηst , AstDηb

s
t〉dt+ 2〈ηst , AstD2

ξ,ξb
s
t〉dt

+ 2Trace
[
(Dησ

∗(t, Xs
t ) +D2

ξ,ξσ
∗(t, Xs

t ))(DxA(Xs
t )η

s
t )σ(t, Xs

t )
]
dt

+ 〈
(
Dησ

s
t +D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
〉dt+ 〈ηst , LtAstηst 〉dt+ dmt,

t ≥ 0, (mt)t≥0 standing for a generi
 martingale term that is (more or less) useless in whatfollows. (See (7.15) for the de�nition of 〈(Dησ
s
t + D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t + D2

ξ,ξσ
s
t

)
〉.) Following45



the proof of (7.16),
d
[
〈ξst , Astξst 〉2

]
= 2〈ξst , Astξst 〉∂Γstdt+

∣∣2AstDξσ
s
t ξ
s
t + 〈ξst , DσA(Xs

t )ξ
s
t 〉

∣∣2dt+ dmt.(Here again, the generi
 notation (mt)t≥0 stands for a martingale. Morever, the term
|2AstDξσ

s
t ξ
s
t+〈ξst , DσA(Xs

t )ξ
s
t 〉|2 stands for ∑dB

j=1 |2〈AstDξ(σ
s
t )·,j, ξ

s
t 〉+

∑d
k=1〈ξst , Dxk

A(Xs
t )ξ

s
t 〉σk,j(t, Xs

t )|2.)Therefore,
d
(
〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)

= 2〈ηst , AstDηb
s
t 〉dt+ 2〈ηst , AstD2

ξ,ξb
s
t〉dt+ 〈ηst , LtAstηst 〉dt

+ 2Trace
[
(Dησ

∗(t, Xs
t ) +D2

ξ,ξσ
∗(t, Xs

t ))(DxA(Xs
t )η

s
t )σ(t, Xs

t )
]
dt

+ 〈
(
Dησ

s
t +D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
〉dt+ 2〈ξst , Astξst 〉∂Γstdt

+
∣∣2AstDξσ

s
t ξ
s
t + 〈ξst , DσA(Xs

t )ξ
s
t 〉

∣∣2dt+ dmt.Apply now the fun
tion x ∈ R 7→ (a + x)1/2, for some small a > 0. It is a 
on
ave fun
tion,so that the se
ond-order term deriving from It�'s formula is non-in
reasing. In parti
ular,we write (in a little bit 
rude way)
d
(
a+ 〈ξst , Astξt〉2 + 〈ηst , Astηst 〉

)1/2

≤ 1

2

(
a+ 〈ξst , Astξt〉2 + 〈ηst , Astηst 〉

)−1/2[
2〈ηst , AstDηb

s
t〉 + 2〈ηst , AstD2

ξ,ξb
s
t〉

+ 2Trace
[
(Dησ

∗(t, Xs
t ) +D2

ξ,ξσ
∗(t, Xs

t ))(DxA(Xs
t )η

s
t )σ(t, Xs

t )
]
dt

+ 〈ηst , LtAstηst 〉 + 〈
(
Dησ

s
t +D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
〉

+ 2〈ξst , Astξst 〉∂Γstdt+
∣∣2AstDξσ

s
t ξ
s
t + 〈ξst , DσA(Xs

t )ξ
s
t 〉

∣∣2] + dmt.

(7.23)
We now 
laim that

2〈ηst , AstDηb
s
t〉 + 〈ηst , LtAstηst 〉 + 〈

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
, Ast

(
Dησ

s
t +D2

ξ,ξσ
s
t

)
〉

+ 2Trace
[
(Dησ

∗(t, Xs
t ) +D2

ξ,ξσ
∗(t, Xs

t ))(DxA(Xs
t )η

s
t )σ(t, Xs

t )
]

= ∂∆s
t + 2〈Dησ

s
t , A

s
tD

2
ξ,ξσ

s
t 〉 + 〈D2

ξ,ξσ
s
t , A

s
tD

2
ξ,ξσ

s
t 〉

+ 2Trace
[
D2
ξ,ξσ

∗(t, Xs
t )(DxA(Xs

t )η
s
t )σ(t, Xs

t )
]

= ∂∆s
t +O

(
(a+ |ξst |4 + |ηst |2)1/2|ξst |2

)
,the notation O(. . . ) standing for the Landau notation. Here, we emphasize that the under-lying 
onstant in O(· · · ) depends on the L∞ norms (on U) of A, DxA, σ, Dxσ and D2

x,xσonly and, in parti
ular, is independent of t and ω. A
tually, all the remaining terms in(7.23) ex
ept the martingale term 
an be bounded by O((a + |ξst |4 + |ηst |2)1/2|ξst |2) as well,the underlying 
onstant in O(· · · ) possibly depending on the L∞ norms (on U) of A−1, cand D2
x,xb also. Therefore, we 
an �nd some 
onstant C > 0, depending on the L∞ norms(on U) of A, A−1, DxA, c, D2

x,xb, σ, Dxσ and D2
x,xσ only, su
h that

d
(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)1/2

≤ 1

2

(
a + 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)−1/2
∂∆s

tdt+ C|ξst |2dt+ dmt.46



Finally, following the proof of Proposition 7.7,
d

[
exp

(
−

∫ t

0

(c(r,Xs
r ) − δ)dr

)(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)1/2
]

≤ 1

2
exp

(
−

∫ t

0

(c(r,Xs
r ) − δ)dr

){(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)−1/2

×
[
∂∆s

t − 2(c(t, Xs
t ) − δ)

(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)]

+ C|ξst |2dt+ dmt

}
.By assumption, ∂∆t ≤ (c(t, Xs

t ) − δ)〈ηst , Astηst 〉 ≤ 2(c(t, Xs
t ) − δ)〈ηst , Astηst 〉 sin
e c is greaterthan δ, so that

d

[
exp

(
−

∫ t

0

(c(r,Xs
r ) − δ)dr

)(
a+ 〈ξst , Astξst 〉2 + 〈ηst , Astηst 〉

)1/2
]

≤ exp

(
−

∫ t

0

(c(r,Xs
r ) − δ)dr

){
C|ξst |2dt+ dmt

}
.Integrating from 0 to t ∧ τU , taking the expe
tation and letting a tend to 0,

E

[
exp

(
−

∫ t∧τU

0

(
c(r,Xs

r ) − δ
)
dr

)(
〈ξst∧τU , Ast∧τU ξst∧τU 〉2

+ 〈ηst∧τU , Ast∧τU ηst∧τU 〉
)1/2

]

≤
(
〈γ′(s), A(γ(s))γ′(s)〉2 + 〈γ′′(s), A(γ(s))γ′′(s)〉

)1/2

+ CE

∫ t∧τU

0

[
exp

(
−

∫ r

0

(c(u,Xs
u) − δ)du

)
|ξsr |2

]
dr.Obviously, the above inequality applies with δ/2 instead of δ. Then, from Proposition 7.7,the last term in the RHS has the form

E

∫ t∧τU

0

[
exp

(
−

∫ r

0

(c(u,Xs
u) − δ/2)du

)
|ξsr |2

]
dr

≤
∫ +∞

0

[
exp

(
−(δ/2)r

)
E

[
exp

(
−

∫ r∧τU

0

(c(u,Xs
u) − δ)du

)
|ξsr∧τU |2

]
dr

]

≤ C〈γ′(s), A(γ(s)), γ′(s)〉
∫ +∞

0

exp
(
−(δ/2)r

)
dr,for a possibly new value of C, possibly depending on δ as well. This 
ompletes the proof of(7.22).We now investigate w′′

T . Following the proof of (7.19), we 
laim
|w′′

T (s)| ≤ CE

[∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)[
|ηst | +

∫ t

0

|ηsr|dr

+ |ξst |2 +

∫ t

0

|ξsr |2dr + |ξst |
∫ t

0

|ξsr |dr +

(∫ t

0

|ξsr |dr
)2]]

.
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We now apply (7.21) and (7.22). For some possibly new value of the 
onstant C, alsodepending on the L∞ norms (on U) of c, Dxc, D2
x,xc, f , Dxf and D2

x,xf ,(7.25) E

[∫ T

0

exp

(
−

∫ t

0

c(r,Xs
r )dr

)
[|ηst | +

∫ t

0

|ηsr |dr
]]

≤ C
(
|γ′(s)|2 + |γ′′(s)|

)
.This shows how to deal with the terms in ηs in (7.24). The terms in ξs 
an be handled asfollows. Note from Young's inequality and Cau
hy-S
hwarz inequality that

|ξst |2 +

∫ t

0

|ξsr |2dr + |ξst |
∫ t

0

|ξsr |dr +

(∫ t

0

|ξsr |dr
)2

≤ C

(
|ξst |2 + (1 + t)

∫ t

0

|ξsr|2
)
, t ≥ 0.

(7.26)Following (7.21), we 
omplete the proof. �7.4. Con
lusion. Before we 
arry on the analysis of the Monge-Ampère equation, we men-tion the following points:(1) We let the reader adapt the statements of Propositions 7.7 and 7.9 to the 
omplex
ase, then 
onsidering A as an Hermitian fun
tional.(2) As well guessed from Proposition 6.9, the (random) fun
tion c in the statements ofPropositions 7.7 and 7.9 must be understood as Trace(atD
2
z,z̄ψ(z)) in the spe
i�
framework of Monge-Ampère.(3) We also emphasize how the rule obtained by Krylov has a very simple form. Thewhole problem is now to 
ompare two quadrati
 (or Hermitian in the 
omplex 
ase)forms: ξ ∈ Rd 7→ ∂Γt(x, ξ) and ξ ∈ Rd 7→ (c(t, x) − δ)|ξ|2, with t ≥ 0 and x ∈ Rd (or

x in a domain of Rd or Cd: for instan
e D in the Monge-Ampère 
ase). If 
omparisonholds, then both the �rst and se
ond-order derivatives of wT in the statement ofProposition 7.7 
an be 
ontrolled uniformly in T . In the Hamilton-Ja
obi-Bellmanframework, the 
omparison rule between ∂Γt(x, ξ) and (c(t, x)− δ)|ξ|2 must hold forany value of the underlying parameter (denoted by σ in the spe
i�
 
ase of Monge-Ampère, see Proposition 6.9). Obviously, establishing su
h a 
omparison rule mightbe really 
hallenging in pra
ti
e: it is indeed in the Monge-Ampère 
ase!(4) Below, we sometimes 
all the pro
ess (∂Γst )t≥0 in De�nition 7.6 derivative quantityitself whereas the derivative quantity stands for the the pro
ess (〈ξst , A(Xs
t )ξ

s
t 〉)t≥0.We feel that it is not 
onfusive for the reader.8. Almost Proof of the C1 RegularityIn this se
tion, we explain how to derive the C1 property of the solution to Monge-Ampèreequation from the program developed in the previous Subse
tion 7.4. Unfortunately, weare not able to provide a 
ompletely rigorous proof at this stage of the notes: some �holes�are indeed left open in the proof. Spe
i�
ally, some quantities under 
onsideration are notrigorously shown to be di�erentiable. The plan is thus the following: we here explain howthings work without paying too mu
h attention to the di�erentiability arguments and wepostpone to the �nal Se
tion 9 the 
omplete argument. We will deal with the se
ond-orderestimates in Se
tion 9 as well.For all these reasons, the following statement is 
alled a �Meta-Theorem�:48



Meta-Theorem 8.1. Assume that Assumption (A) is in for
e and keep the notation ofProposition 6.9. Then, up to the proof of some di�erentiability properties, it may be shownthat, for any 
ompa
t subset K ⊂ D, there exists a 
onstant C, depending on (A) and K only,su
h that, for every smooth 
urve γ : [−1, 1] → D, the fun
tion s 7→ V (γ(s)) is Lips
hitzwith C‖γ′‖∞ as Lips
hitz 
onstant.Obviously, the whole idea is to apply Points (2) and (3) in Con
lusion 7.4 to the solutionof the res
aled SDE (6.5), i.e.(8.1) dZs
t = ψ1/2(Zs

t )σtdBt + atD
∗
z̄ψ(Zs

t )dt, t ≥ 0.with Zs
0 = γ(s), where γ : s ∈ [−1, 1] 7→ γ(s) ∈ D is a 
urve as in the statement of Theorem8.1. (Note that the 
ompa
t set K is not spe
i�ed at this stage of the proof.) Here, (σt)t≥0denotes a generi
 
ontrol pro
ess (i.e. a progressively-measurable pro
ess with values in Cd×dsu
h that Trace(σσ̄∗

t ) = 1.)The reader may then easily understand what �Meta� means: be
ause of the exponent 1/2,the fun
tion ψ1/2 is singular at the boundary so that Theorems 7.2 and 7.4 do not apply toEq. (8.1). In parti
ular, it may be a bit tri
ky to establish the di�erentiability of (Zs
t )t≥0w.r.t. s. As announ
ed above, we forget this di�
ulty in the whole se
tion and assume thatEq. (8.1) is di�erentiable in the mean w.r.t. s. Setting ζst = dZs

t /ds, t ≥ 0, we write (atleast formally)
dζst = ψ−1/2(Zs

t )Re
[
Dzψ(Zs

t )ζ
s
t

]
σtdBt

+
[
atDz̄,zψ(Zs

t )ζ
s
t + atDz̄,z̄ψ(Zs

t )ζ̄
s
t

]
dt.

(8.2)Applying It�'s formula, we 
ould 
ompute the dynami
s of (|ζst |2)t≥0 as in (7.16) and thusexpress the form of the asso
iated derivative quantity. We won't do it here: the strategyfails when applied in a straightforward way. Said di�erently, there are very little 
han
es tobe able to bound the derivative quantity as in the statements of Propositions 7.7 and 7.9.8.1. Pro
edure to Estimate the Derivative Quantity in the General Case. Themajor idea of Krylov 
onsists in perturbing as most as possible the probabilisti
 ingredients ofthe Monge-Ampère equation to improve the long-run 
ontrol of the derivative quantity. Here,the word �perturbing� doesn't mean that we are seeking for another new representation: thegeneral stru
ture given by Proposition 6.9 is the right one. The whole problem is to perturbit in a 
onvenient way to obtain the desired long-run estimate.There are three general ways to perturb the system:(1) sin
e the problem is stationary, time speed may be 
hanged,(2) using sto
hasti
 pro
esses theory, the underlying probability measure may be per-turbed itself,(3) �nally, additional �ghost� 
ontrol parameters may be plugged into the 
ontrol repre-sentation and used as perturbation parameters.We here try to explain the main ideas of this perturbation pro
edure. In the next subse
-tions, we will show how to apply them to the Monge-Ampère equation expli
itly. Unfortu-nately, to do so, the method given in Proposition 6.6 must be revisited �rst.49



Having in mind the general notation used in Proposition 6.6, the revisited strategy maybe explained as follows. Consider indeed a generi
 family:(8.3) wβ(s) = E

∫ +∞

0

F (βr, X
s,β
r )dr,where

dXs,β
t = σ(βt, X

s,β
t )dBt + b(βt, X

s,β
t )dt, t ≥ 0 ; Xs,β

0 = γ(s),just as in Propositions 6.6 and 6.9. Assume also that, for a given s, we are able to �nd afamily (ŵβ(s+ ε))ε, indexed by a small parameter ε, su
h that, for any β,(8.4) ŵβ(s+ ε) ≤W (s+ ε) := sup
β
wβ(s+ ε) and ŵβ(s) = wβ(s).If the Lips
hitz assumption of Proposition 6.6 is satis�ed for the family ŵβ(s+ ε), i.e.(8.5) ∣∣ŵβ(s+ ε) − ŵβ(s)

∣∣ ≤ r1(ε),(say) for s, s+ ε ∈ (−1, 1) and some fun
tion r1, then
W (s+ ε) − wβ(s) ≥ −r1(ε),by the inequality in (8.4), so that(8.6) W (s+ ε) −W (s) ≥ −r1(ε),by using the equality in (8.4) and by taking the in�mum with respe
t to β. Obviously, if theargument holds for any s in (−1, 1), s and s+ ε may be ex
hanged to bound the in
rementfrom above.Similarly, if the 
onvexity assumption of Proposition 6.6 is satis�ed for the family ŵβ(s+ε),i.e.(8.7) ε 7→ ŵβ(s+ ε) + r2(s+ ε)is 
onvex (say) for s, s+ ε, s− ε ∈ (−1, 1) and some fun
tion r2, then, for all β,

lim inf
ε→0

ε−2
(
W (s+ ε) + r2(s+ ε) +W (s− ε) + r2(s− ε)

− 2W (s) − 2r2(s)
)

≥ lim inf
ε→0

ε−2
(
ŵβ(s+ ε) + r2(s+ ε) + ŵβ(s− ε) + r2(s− ε)

− 2W (s) − 2r2(s)
)
.Choosing β of the form βε so that

wβ
ε

(s) ≥W (s) − ε3,we obtain
lim inf
ε→0

ε−2
(
W (s+ ε) + r2(s+ ε) +W (s− ε) + r2(s− ε)

− 2W (s) − 2r2(s)
)

≥ lim inf
ε→0

ε−2
(
ŵβ

ε

(s+ ε) + r2(s+ ε) + ŵβ
ε

(s− ε) + r2(s− ε)

− 2ŵβ
ε

(s) − 2r2(s)
)
.
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Now, by 
onvexity, the right-hand side is non-negative. (Pay attention, we say so withoutpassing to the limit.) If su
h a strategy holds for all s in (−1, 1), we dedu
e that W + r2 is
onvex.8.2. Enlarging the Set of Controls. We now explain how the family (ŵβ)β>0 
an be
onstru
ted in the framework of Monge-Ampère.The starting point is the following: in the spe
i�
 
ase of Hamilton-Ja
obi-Bellman equa-tions, the set of 
ontrols may exhibit some invarian
e properties; if so, it is 
on
eivable toperturb the system along some transformation that let the system invariant. For instan
e,for the Monge-Ampère equation, the generi
 matri
ial 
ontrol (σt)t≥0 
an be repla
ed by
(exp(pt)σt)t≥0 for some pro
ess (pt)t≥0 with values in the set of anti-Hermitian matri
es:obviously, the tra
e of exp(pt)at exp(p̄∗t ) = exp(pt)at exp(−pt) is still equal to 1.The auxiliary 
ontrol parameter (pt)t≥0 appears as a �ghost� parameter along whi
h thesystem may be perturbed. To explain how things work, we go ba
k to Eq. (8.1):(8.9) dZs

t = ψ1/2(Zs
t )σtdBt + atD

∗
z̄ψ(Zs

t )dt, t ≥ 0,whi
h is the generi
 
ontrolled equation used to represent the Monge-Ampère equation asthe value fun
tion of some optimization problem with an in�nite horizon.As said in introdu
tion of Se
tion 8, we may 
onsider a 
urve (γ(s))s∈[−1,1] with valuesin D. For a �xed value of s, we de�ne (Ẑs
t )t≥0 as above: it is the solution of Eq. (8.9)(or equivalently of Eq. (8.1)) with Ẑs

0 = γ(s) as initial solution, so that Ẑs
t = Zs

t for any
t ≥ 0. Now, for ε in the neighborhood of 0 (but di�erent from 0), we de�ne (Ẑs+ε

t )t≥0 as thesolution of
dẐs+ε

t

= ψ1/2(Ẑs+ε
t ) exp

(
P (Ẑs

t , Ẑ
s+ε
t − Ẑs

t )
)
σtdBt

+ exp
(
P (Ẑs

t , Ẑ
s+ε
t − Ẑs

t )
)
at exp

(
P̄ ∗(Ẑs

t , Ẑ
s+ε
t − Ẑs

t )
)
D∗
z̄ψ(Ẑs+ε

t )dt,

(8.10)
t ≥ 0, with Ẑs+ε

0 = γ(s + ε) as initial 
ondition. Here P (z, z′) is some fun
tion of theparameters z in D and z′ in Cd with values in the set of anti-Hermitian matri
es. It isassumed to be regular in z′, with bounded derivatives, uniformly in z so that existen
e anduniqueness hold for (8.10). (See the proof of Proposition 6.7.) It is also assumed to satisfy
P (z, 0) = 0 so that (Ẑs+ε

t )t≥0 mat
hes (Zs
t )t≥0 in (8.9) when ε = 0.The typi
al 
hoi
e we perform below for P (z, z′) is (at least for z 
lose to the boundaryso that Dzψ(z) is non-zero)

P (z, z′) = ρ
(
|Dzψ(z)|−2

[
D2
z̄,zψ(z)z′Dzψ(z) +D2

z̄,z̄ψ(z)z̄′Dzψ(z)

−D∗
z̄ψ(z)(D2

z,z̄ψ(z)z̄′)∗ −D∗
z̄ψ(z)(D2

z,zψ(z)z′)∗
])
,

(8.11)where ρ is some smooth fun
tion from Cd×d into itself, with 
ompa
t support, mat
hing theidentity on the neighborhood of 0 and preserving the anti-Hermitian stru
ture7. (Have in7Think of
ρ : (zi,j)1≤i,j≤d ∈ Cd×d 7→ ρ1

( d∑

i,j=1

|zi,j |2
)
(zi,j)1≤i,j≤d,where ρ1 stands for a smooth fun
tion from R to R with a 
ompa
t support mat
hing 1 in the neighborhoodof zero. 51



mind that Dzψ(z) above is seen as a row ve
tor and z′ as a 
olumn ve
tor.) We let thereader 
he
k that P (z, z′) is anti-Hermitian.For ε as above, we set ps+εt = P (Ẑs
t , Ẑ

s+ε
t − Ẑs

t ) = P (Zs
t , Ẑ

s+ε
t −Zs

t ), so that (8.10) has theform
dẐs+ε

t = ψ1/2(Ẑs+ε
t ) exp(ps+εt )σtdBt + exp(ps+εt )at exp(−ps+εt )D∗

z̄ψ(Ẑs+ε
t )dt,

t ≥ 0. Now, we 
an follow Proposition 6.9 and 
onsider
V̂ σ(s+ ε)

= E

∫ +∞

0

[
exp

(∫ t

0

Trace[exp(ps+εr )ar exp(−ps+εr )D2
z,z̄ψ(Ẑs+ε

r )]dr

)

× F
(
det(at), exp(ps+εt )at exp(−ps+εt ), Ẑs+ε

t

)]
dt.

(8.12)(Pay attention that the determinant of at is the same as the determinant of the perturbedmatrix exp(ps+εt )at exp(−ps+εt ).) Clearly, we have V̂ σ(s) = V σ(γ(s)) (see the notation ofProposition 6.9). Moreover, V̂ σ(s+ ε) ≤ supσ(V
σ(γ(s+ ε))). (The 
ontrol (exp(ps+εt )σt)t≥0is a parti
ular 
ontrol of the same type as (σt)t≥0.)Di�erentiating (8.12) with respe
t to ε, we expe
t8 a generi
 expression of the form

d

dε

[
V̂ σ(s+ ε)

]
|ε=0

= E

∫ +∞

0

[
exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)

×
{

Λ1,s
t πst + Λ̄1,s

t π̄st + Λ2,s
t ζ̂st + Λ̄2,s

t
¯̂
ζst

+

∫ t

0

(
Λ3,s
r πsr + Λ̄3,s

r π̄sr + Λ4,s
r ζ̂sr + Λ̄4,s

r
¯̂
ζsr

)
dr

}
dt

]
.

(8.13)
Here, Λi,s

r , Λ̄
i,s
r , i = 1, 2, stand for the derivatives of the 
oe�
ients appearing in (8.12) and

ζ̂st =
d

dε

[
Ẑs+ε
t

]
|ε=0

and πst =
d

dε

[
ps+εt

]
|ε=0

.Sin
e ps+εt = P (Ẑs
t , Ẑ

s+ε
t − Ẑs

t ), the term πst writes as Dz′P (Ẑs
t , 0)ζ̂st +Dz̄′P (Ẑs

t , 0)
¯̂
ζst so that(8.13) redu
es to

d

dε

[
V̂ σ(s+ ε)

]
|ε=0

= E

∫ +∞

0

[
exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r)]dr

)

×
{

Λ̂1,s
t ζ̂st +

¯̂
Λ1,s
t

¯̂
ζst +

∫ t

0

(
Λ̂2,s
r ζ̂sr +

¯̂
Λ2,s
r

¯̂
ζsr

)
dr

}]
dt,

(8.14)
for two new 
oe�
ients Λ̂1,s and Λ̂2,s.8We here say �expe
t� only sin
e the di�erentiation argument under the integral symbol is not justi�edat this stage of the proof. 52



Before we 
arry on the analysis, we emphasize that the rigorous proof of (8.14) is far frombeing easy: it relies on a di�erentiation argument under the integral symbol that may bevery di�
ult to justify be
ause of the long-run integration. To over
ome this problem, apossible strategy is to multiply F by some smooth 
ut-o� fun
tion φ(·/S), S standing for alarge positive real and φ for a fun
tion mat
hing 1 on some [0, 1] and vanishing on [2,+∞).In that 
ase, the di�erentiation is expe
ted to make sense: for example, it makes sense in theframework of De�nition 7.3 be
ause of the supremum over t in [0, T ] in the di�erentiabilityproperty. Obviously, the in�nite horizon framework 
an be re
overed by letting S tend to
+∞ at the end of the analysis, provided the bound we have for the RHS in (8.14) is uniformin the 
ut-o� pro
edure9.The basi
 argument to bound the RHS in (8.14) is the following. By the very assumptionon the 
oe�
ients and for the typi
al 
hoi
e of P we have in mind, the terms Λ̂1,s and Λ̂2,s arebounded in the neighborhood of the boundary only, i.e. for Ẑs

t = Zs
t 
lose to ∂D. (Indeed,have in mind that Dzψ is non-zero in the neighborhood of ∂D.) Just for the moment, assumethat they are bounded on the whole time interval [0,+∞). Then, to bound the right-handside above, it is su�
ient to prove an equivalent of (7.17), i.e.(8.15) E

[
exp(−

∫ t

0

crdr)|ζ̂st |2
]
≤ exp(−δt)|ζ̂s0 |2 = exp(−δt)|γ′(s)|2for all t ≥ 0, with −cr = Trace[arD

2
z,z̄ψ(Zs

r)].In some sense, we are redu
ed to the original problem of long-run estimate for the derivativeof the di�usion pro
ess, but for a new derivative ζ̂s, namely for the solution of the SDE
dζ̂st =

[
Dz[ψ

1/2](Zs
t ) + ψ1/2(Zs

t )Dz′P (Zs
t , 0)

]
ζ̂st σtdBt

+
[
Dz̄[ψ

1/2](Zs
t ) + ψ1/2(Zs

t )Dz̄′P (Zs
t , 0)

] ¯̂
ζst σtdBt

+
{(
Dz′P (Zs

t , 0)ζ̂st +Dz̄′P (Zs
t , 0)

¯̂
ζst

)
at

− at
(
Dz′P (Zs

t , 0)ζ̂st +Dz̄′P (Zs
t , 0)

¯̂
ζst

)}
D∗
z̄ψ(Zs

t )dt

+ at
[
D∗
z̄,zψ(Zs

t )ζ̂
s
t +D∗

z̄,z̄ψ(Zs
t )

¯̂
ζst

]
dt, t ≥ 0,

(8.16)
with the initial 
ondition ζ̂s0 = γ′(s). The whole point is then to 
he
k that the typi
al 
hoi
e(8.11) for P (z, z′) permits to derive the long-run estimate (8.15). Unfortunately, we will seebelow that it permits to obtain (8.15) for Zs

t 
lose to ∂D only. (A
tually, this is well-guessed:remember that, for the typi
al 
hoi
e we have in mind for P (z, z′), we 
annot bound Λ̂1,s and
Λ̂2,s away from the boundary. Indeed, P (z, z′) may explode for z away from the boundary.)The strategy we follow below 
onsists in lo
alizing the perturbation argument. If thestarting point γ(s) of Zs is 
lose enough to the boundary, the perturbation argument appliesup to the stopping time t := inf{t ≥ 0 : ψ(Zs

t ) ≥ ǫ}, ǫ standing for some small positiveparameter10; if the starting point γ(s) of Zs is far away from the boundary, we 
an apply theperturbation argument when (ψ(Zs
t ))t≥0 be
omes small enough, i.e. when (Zs

t )t≥0 enters intothe neighborhood of ∂D. Spe
i�
ally, if s is some (�nite) stopping time at whi
h ψ(Zs
s
) < ǫ,we 
an apply the perturbation argument up to the stopping time t := inf{t ≥ s : ψ(Zs

t ) ≥ ǫ}:9We will detail this argument in Se
tion 9 rigorously.10Pay attention that ǫ and ε stand for two di�erent parameters.53



Proposition 8.2. Let S > 0 be a positive real, φ be a smooth fun
tion from R+ to [0, 1]mat
hing 1 on [0, 1] and 0 outside [0, 2], ǫ > 0 be a small enough real su
h that |Dzψ(z)| > 0for ψ(z) ≤ ǫ and s be some (�nite) stopping time su
h that ψ(Zs
s
) < ǫ. For t := inf{t ≥

s : ψ(Zs
t ) ≥ ǫ}, 
onsider some pro
ess (Ẑs+ε

t )0≤t≤t for whi
h ([d/dε](Ẑs+ε
t )|ε=0)0≤t≤t and

([d2/dε2](Ẑs+ε
t )|ε=0)0≤t≤t exist and for whi
h the perturbed SDE (8.10) holds from s to t andde�ne
V̂ σ,s,t
S (s+ ε)

= E

∫
t

s

[
exp

(∫ t

0

Trace[exp(ps+εr )ar exp(−ps+εr )D2
z,z̄ψ(Ẑs+ε

r )]dr

)

× F
(
det(at), exp(ps+εt )at exp(−ps+εt ), Ẑs+ε

t

)
φ
( t
S

)]
dt,

(8.17)as the 
ut-o� lo
alized version of (8.12), with ps+εt = P (Zs
t , Ẑ

s+ε
t − Zs

t ), s ≤ t ≤ t, P beinggiven by (8.11).If the di�erentiation operator w.r.t. ε and the expe
tation and integral symbols in the RHSof (8.17) 
an be ex
hanged, then there exists a 
onstant C > 0, depending on Assumption(A) and on ǫ only (in parti
ular, it is independent of S and (σt)t≥0), su
h that
∣∣ d
dε

[
V̂ σ,s,t
S (s+ ε)

]
|ε=0

∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)[
|ζ̂st | +

∫ t

0

|ζ̂sr |dr
]
dt

]
,where ζ̂st = [d/dε](Ẑs+ε

t )|ε=0.Say a word about the 
on
rete meaning of Proposition 8.2: from time 0 to time s, thepro
ess (Ẑs+ε
t )0≤t≤s is 
hosen abritrarily provided it be twi
e di�erentiable (in the mean)w.r.t. ε. Below, we expli
itly say how it is 
hosen: roughly speaking, it is built from another(lo
al) perturbation argument. We also emphasize, that the value fun
tion V̂ σ,s,t

S has nostraightforward 
onne
tion with the original V : again, we will see below how to gather allthe lo
al value fun
tions into a single one, dire
tly 
onne
ted to Monge-Ampère.Obviously, we 
an iterate the argument to bound the se
ond-order derivatives:Proposition 8.3. Keep the assumption and notation of Proposition 8.2 and assume thatthe se
ond-order di�erentiation operator w.r.t. ε and the expe
tation and integral symbolsin the RHS of (8.17) 
an be ex
hanged, then there exists a 
onstant C > 0, depending onAssumption (A) and on ǫ only, su
h that
∣∣ d

2

dε2

[
V̂ σ,s,t
S (s+ ε)

]∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)

×
[
|η̂st | + |ζ̂st |2 +

∫ t

0

|η̂sr|dr +

∫ t

0

|ζ̂sr |2dr +

(∫ t

0

|ζ̂sr |dr
)2]

dt

]
,where η̂st = [d2/dε2](Ẑs+ε

t )|ε=0. 54



8.3. Time Change. Here is another example of perturbation. The starting point is thefollowing. In the Hamilton-Ja
obi-Bellman formulation (5.13) of Monge-Ampère, the nor-malizing 
ondition for the tra
e of the matrix a is purely arbitrary. Indeed, the equationremains un
hanged when multiplied by any positive 
onstant, so that the tra
e may be askedto mat
h any other positive real value.Intuitively, this means that, in Eq. (8.2), the normalizing 
ondition for the tra
e of (at)t≥0might be useless, or said di�erently, that we might 
onsider a res
aled version of (at)t≥0instead of (at)t≥0 itself.Now, have in mind that we are here seeking for a perturbed writing of Eq. (8.2) wheninitialized at γ(s + ε) for ε in the neighborhood of zero. We are thus thinking of res
aling
(at)t≥0 by some positive s
ale fun
tion (|τ εt |2)t≥0 depending on the perturbation variable ε.Here, (τ εt )t≥0 stands for an arbitrary progressively-measurable real-valued pro
ess that isdi�erentiable with respe
t to the parameter ε. Spe
i�
ally, we 
onsider the perturbed SDE(8.18) dẐs+ε

t = ψ1/2(Ẑs+ε
t )τ εt σtdBt + |τ εt |2atD∗

z̄ψ(Zs+ε
t )dt, t ≥ 0.with Ẑs+ε

0 as initial 
ondition. (Solvability is proven as in Proposition 6.7.)Exa
tly as in the previous subse
tion, the perturbation we here 
hoose vanishes at ε = 0,i.e. τ εt is 
hosen as T (Zs
t , Ẑ

s+ε
t − Zs

t ) for a smooth fun
tion T : (z, z′) ∈ D × Cd → R su
hthat T (z, 0) = 1. In other words, Ẑs and Zs stand for the same pro
ess. In parti
ular, whendi�erentiating T (Zs
t , Ẑ

s+ε
t − Zs

t ) with respe
t to 0, we obtain 2Re[Dz′T (Zs
t , 0)ζ̂st ] where ζ̂ststands for the derivative of Zs+ε

t with respe
t to ε at ε = 0, i.e.
ζ̂st :=

d

dε

[
Ẑs+ε
t

]
|ε=0

.The typi
al 
hoi
e we have in mind for T (z, z′) is(8.19) T (z, z′) = 1 + ρ
(
ψ−1(z)Re

[
Dzψ(z)z′

])
,where ρ is some smooth fun
tion with values in [−1/2, 1/2], su
h that ρ(0) = 0 and ρ′(0) = 1,so that

Re
[
Dz′T (z, 0)ζ

]
= ψ−1(z)Re

[
Dzψ(z)ζ

]
, ζ ∈ Cn,and(8.20) d

dε

[
T 2

(
Zs
t , Ẑ

s+ε
t − Zs

t

)]
|ε=0

= 2ψ−1(Zs
t )Re

[
Dzψ(Zs

t )ζ̂
s
t

]
.The resulting dynami
s for (ζ̂st )t≥0 is 
omputed below.The problem is to understand �rst how this perturbed pro
ess is 
onne
ted with therepresentation of the solution of Monge-Ampère. Here is the whole point: the pro
ess

(Ẑs+ε
t )t≥0 appears as a time-
hange solution of a SDE of the same type as (8.2). Said in anon-rigorous way, we may think of (Ẑs+ε

t ) as (Zs+ε
Tε

t
)t≥0 where Ṫε

t = |τ εt |2, t ≥ 0, and(8.21) dZs+ε
t = ψ1/2(Zs+ε

t )
τ ε
(Tε)−1

t

|τ ε
(Tε)−1

t

|σ(Tε)−1
t
dBt + a(Tε)−1

t
D∗
z̄ψ(Zs+ε

t )dt, t ≥ 0.(Here, (Tε)−1 stands for the 
onverse of Tε. We will explain right below why we keep thesame notation for this Zs+ε as in the originial Eq. (8.1).) We won't provide a rigorous proof55



for this time-
hange formula11, but the idea is very intuitive: roughly speaking, the a
tion ofthe time-
hange on the dBt term must be understood as a multipli
ation by [Ṫs+ε
t ]1/2 sin
e

dBt is understood itself as [dt]1/2; obviously, the a
tion of the time-
hange on the dt termsis the same as in an ODE.A
tually, Eq. (8.21) is false. The reader might guess that, one way or another, thetime-
hange a�e
ts the dynami
s of the Brownian motion (Bt)t≥0. The right version is(8.22) dZs+ε
t = ψ1/2(Zs+ε

t )
τ ε
(Tε)−1

t

|τ ε
(Tε)−1

t

|σ(Tε)−1
t
dB̂ε

t + a(Tε)−1
t
D∗
z̄ψ(Zs+ε

t )dt, t ≥ 0,where
B̂ε
t =

∫ (Tε)−1
t

0

|τ εr |dBr, t ≥ 0.Here, (B̂ε
t )t≥0 is a Brownian motion again12 w.r.t. to the time-res
aled �ltration (F(Tε

t )
−1)t≥0.Now, the time-res
aled term ((τ ε

(Tε)−1
t

/|τ ε
(Tε)−1

t

|)σ(Tε)−1
t

)t≥0 may be seen as a new 
ontrolpro
ess with (a(Tε)−1
t

)t≥0 as Hermitian square, so that we are redu
ed to the original formu-lation of Monge-Ampère, but w.r.t. to a di�erent Brownian set-up (the set-up is the pairgiven by the Brownian motion and the underlying �ltration). It may be well-understoodthat the representation of the Monge-Ampère equation is kept preserved by modi�
ation ofthe underlying Brownian set-up13, so that
V

(
γ(s + ε)

)
≥ E

[∫ +∞

0

exp

(∫ t

0

Trace[a(Tε)−1
r
D2
z,z̄ψ(Zs+ε

r )]dr

)

× F (det(a(Tε)−1
t

), a(Tε)−1
t
, Zs+ε

t )dt

]
.11We refer the reader to the original paper by Krylov [8℄ for the 
omplete argument.12Clearly, (B̂ε

t )t≥0 is a martingale with values in Cd. A
tually, for any 
oordinates 1 ≤ j, k ≤ d,(8.23) d[(B̂ε
t )j(B̂ε

t )k] = 0, d[(B̂ε
t )j(B̂ε

t )k] = δj,kdt,where δj,k stands for the Krone
ker symbol. There is a famous theorem in sto
hasti
 
al
ulus, due to PaulLévy, that says that any 
ontinuous martingale starting from 0 and satisfying (8.23) is a 
omplex Brownianmotion of dimension d. A
tually, this may be explained as follows: Eq. (8.23), together with the martingaleproperty, provide the lo
al in�nitesimal dynami
s of B̂ε; this makes the 
onne
tion between W and theLapla
e operator in R2d through It�'s formula. In some sense, there is one and only one sto
hasti
 pro
essasso
iated with the Lapla
e operator in R2d: the 2d-dimensional real Brownian motion or, equivalently, the
d-dimensional 
omplex Brownian motion. (For further details, we refer the reader to [14, Thm II. 40℄.)13A
tually, the proof is not so easy: the problem is to understand how the modi�
ation of the Brownianpaths and of the underlying �ltration a�e
ts the representation. We refer the reader to the monograph byKrylov [4℄, Remark III.3.10 for a 
omplete dis
ussion.56



(Use Proposition 6.9.) Changing time-speed in the integrals above, we dedu
e that V (γ(s+

ε)) ≥ V̂ σ(s+ ε) where
V̂ σ(s+ ε)

:= E

[∫ +∞

0

exp

(∫ t

0

Ṫ
ε
rTrace[arD

2
z,z̄ψ(Ẑs+ε

r )]dr

)

× F (det(at), at, Ẑ
s+ε
t )Ṫε

tdt

]

= E

[∫ +∞

0

exp

(∫ t

0

|τ εr |2Trace[arD
2
z,z̄ψ(Ẑs+ε

r )]dr

)

× F (det(at), at, Ẑ
s+ε
t )|τ εt |2dt

]
.

(8.24)
Of 
ourse, when ε = 0, V̂ σ(s) = V σ(s) so that supσ[V̂

σ(s)] = V (γ(s)).The reader may noti
e that everything works as if (at)t≥0 had been multiplied by thes
aling fa
tor (|τ εt |2)t≥0 as dis
ussed at the very beginning of the paragraph: rememberindeed that F is homogeneous with respe
t to a.It now remains to understand what happens when di�erentiating (8.24) w.r.t. ε. We let thereader 
he
k that the resulting formula for [d/dε](v̂σ(s+ ε)) is similar to (8.14). Spe
i�
ally,the terms Λ̂1,s and Λ̂2,s therein are bounded in the 
urrent framework ifDz′T (z, 0) is bounded.With the typi
al 
hoi
e (8.19) we have in mind, it is bounded away from the boundary, i.e.for ψ(z) away from 0. A
tually, the main te
hni
al problem is the same as in (8.13): the pointis to justify the di�erentiation. To do, we use the same tri
k as in the previous subse
tionby 
onsidering some 
ut-o� version of F . We thus dedu
e the analogs of Propositions 8.2and 8.3:Proposition 8.4. Let S be a positive real, φ be a smooth fun
tion mat
hing one on [0, 1]and vanishing outside [0, 2], ǫ be a positive real and s be some (�nite) stopping time su
hthat ψ(Zs
s
) > ǫ. For t := inf{t ≥ s : ψ(Zs

t ) ≤ ǫ}, 
onsider some pro
ess (Ẑs+ε
t )0≤t≤t for whi
h

([d/dε](Ẑs+ε
t )|ε=0)0≤t≤t and ([d2/dε2](Ẑs+ε

t )|ε=0)0≤t≤t exist and for whi
h the perturbed SDE(8.18) holds from s to t and de�ne
V̂ σ,s,t
S (s+ ε)

= E

∫
t

s

[
exp

(∫ t

0

|τ εr |2Trace[arD
2
z,z̄ψ(Ẑs+ε

r )]dr

)

× F
(
det(at), at, Ẑ

s+ε
t

)
φ
(Tε

t

S

)
|τ εt |2

]
dt,as the lo
alized version of (8.24), with τ εt = T (Zs

t , Ẑ
s+ε
t − Zs

t ), s ≤ t ≤ t, T being given by(8.19), and Ṫε
t = |τ εt |2 (with Tε

0 = 1).If the di�erentiation operators of order 1 and 2 w.r.t. ε and the expe
tation and integralsymbols in the de�nition of V̂ σ,s,t
S 
an be ex
hanged, there exists a 
onstant C > 0, depending57



on Assumption (A) and on ǫ only, su
h that
∣∣ d
dε

[
V̂ σ,s,t
S (s+ ε)

]∣∣ ≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)

×
[
|ζ̂st | +

∫ t

0

|ζ̂sr |dr
]
dt

]

∣∣ d
2

dε2

[
V̂ σ,s,t
S (s+ ε)

]∣∣ ≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)

×
[
|η̂st | + |ζ̂st |2 +

∫ t

0

|η̂sr|dr +

∫ t

0

|ζ̂sr |2dr +

(∫ t

0

|ζ̂sr |dr
)2]

dt

]
,where ζ̂st = [d/dε](Zs+ε

t )|ε=0 and η̂st = [d2/dε2](Zs+ε
t )|ε=0.The reader may wonder about the spe
i�
 
hoi
e for the 
ut-o�. First, the time-
hangeis plugged as an argument of the 
ut-o� fun
tion: when performing the 
hange of variable,we re
over (φ(t/S))t≥0 as 
ut-o�. Se
ond, we emphasize that the 
ut-o� permits to get ridof times t at whi
h Tε

t ≥ 2S. By assumption, we know that |τ ε|2 is always greater than 1/4so that Tε
t is always greater than t/4, t ≥ 0. In parti
ular, the 
ut-o� vanishes at times t atwhi
h t/4 ≥ 2S. In other words, the de�nition of V̂ σ,s,t

S is understood as a �nite horizon valuefun
tion: this permits to justify the di�erentation argument w.r.t. ε provided (Ẑs+ε
t )0≤t≤tsatis�es the assumption of Corollary 7.5. (Have in mind that Corollary 7.5 holds in �nitehorizon.) Unfortunately, be
ause of the singularity of the 
oe�
ient ψ1/2 in (8.1) in theneighborhood of ∂D, it is not so easy to prove that (Ẑs+ε

t )0≤t≤t satis�es the assumption ofCorollary 7.5. At this stage of the proof, this point is left open: this is the �meta�-part ofMeta-Theorem 8.1.8.4. Perturbation of the Measure: Girsanov Theorem. The last perturbation methodwe here dis
uss 
onsists in modifying the measure of the underlying probability spa
e. This atypi
al probabilisti
 way to estimate the solution of a partial di�erential equation of se
ond-order: we may refer the reader to the le
tures by Krylov in Pisa [9℄ for a detailed overview;we also mention the personal work [2℄ and the referen
es therein.We here explain �rst how the probability measure may be 
hanged to establish somesmoothness property for the solution of a se
ond-order partial di�erential equation. Gener-ally speaking, the modi�
ation of the referen
e measure is a 
ommon argument in sto
hasti
analysis, whi
h turns out to be really e�
ient to quantify the sensitivity of a system withrespe
t to the input noise. More or less, this is the starting point of the Malliavin Cal-
ulus, used to prove by probabilisti
 tools the so-
alled �Sum of squares� Theorem due toHörmander. (See the monograph [13℄.)In the spe
i�
 
ase of heat equation, the problem may be understood as follows. Indeed,as already explained in (3.1) and (3.2), the solution of the one-dimensional heat equation
Dtu(t, x) −

1

2
D2
x,xu(t, x) = 0, (t, x) ∈ (0,+∞) × R,58



with an initial 
ondition of the form u(0, ·) = u0(·) (say, with u0 
ontinuous and bounded)is given by
u(t, x) =

1√
2πt

∫

R

u0(y) exp
(
−|x− y|2

2t

)
dy, x ∈ R,Clearly, at �xed t > 0, and for any ε ∈ R, the Gaussian measures

1√
2πt

exp
(
−|x− y|2

2t

)
dy and

1√
2πt

exp
(
−|x+ ε− y|2

2t

)
dyare equivalent, so that u(t, x+ ε) 
an be written as

u(t, x+ ε)

=
1√
2πt

∫

R

u0(y) exp
(
−|x+ ε− y|2 − |x− y|2

2t

)
exp

(
−|x− y|2

2t

)
dy

=
1√
2πt

∫

R

u0(x+ y) exp
(
−|ε− y|2 − |y|2

2t

)
exp

(
−|y|2

2t

)
dy.Thinking of the Gaussian density as the density of the (marginal) law of the position of someBrownian B at time t, we may write as well:

u(t, x+ ε) = E
[
u0(x+Bt) exp

(
−|ε−Bt|2 − |Bt|2

2t

)]

= E
[
u0(x+Bt) exp

(
ε
Bt

t
− ε2

2t

)]
.Now, the term Mε = exp(εBt/t − ε2/(2t)) appears as a density on the probability spa
e

(Ω,F ,P) on whi
h the Brownian motion is de�ned. Said di�erently, the representation of
u(t, x+ ε) 
onsists in integrating u0(x+Bt), as for u(t, x), but under the measure Mε ·P. Inparti
ular, the smoothness of u(t, ·) with respe
t to the spatial parameter is dire
tly givenby the smoothness of the density Mε with respe
t to the parameter ε.This example is very simple be
ause the 
hange of measure is of �nite dimension. Never-theless, there exists an in�nite dimensional 
ounterpart, known as Girsanov Theorem14.To understand how things work, go ba
k to the statement of Theorem 7.2 and 
onsider a
urve γ of the form γ(s) = x0 + (T − s)ν, where T is some positive real, and x0 and ν someve
tors in Rd. (Re
all that, for more simpli
ity, the framework of Theorem 7.2 is real andnot 
omplex.) The whole idea now 
onsists in 
onsidering (X

γ(t)
t )0≤t≤T : it both depends ontime t through the time index of X and through the initial 
ondition γ(t). (Keep in mindthat Xγ(t)

0 = γ(t).) It 
an be proven (see e.g. the monograph by Kunita [10℄) that
dX

γ(t)
t = b(t, X

γ(t)
t )dt+ σ(t, X

γ(t)
t )dBt + ξ

γ(t)
t dt,where ξγ(t)t is the value of ξst = Ds[X

γ(s)
t ] at s = t. (That is, ξγ(t)t = DxX

γ(t)
t γ′(t). See thestatement of Theorem 7.2.)The big deal is the following. If σ is invertible and σ−1 is bounded, uniformly in time andspa
e, we write

dX
γ(t)
t = b(t, X

γ(t)
t )dt+ σ(t, X

γ(t)
t )

(
dBt + σ−1(t, X

γ(t)
t )ξ

γ(t)
t dt

)
.14We won't give the expli
it form of Girsanov Theorem here. It would require an additional e�ort whi
hseems useless. We refer to the monograph by Protter [14℄.59



What Girsanov Theorem says is: we 
an �nd a new measure Q, equivalent to P on the σ-algebra generated by (Bt)0≤t≤T , su
h that the pro
ess in parentheses be a Brownian motion,i.e. (
Bt +

∫ t

0

σ−1(r,Xγ(r)
r )ξγ(r)r dr

)

0≤t≤T

,is a Brownian motion under Q15. As a 
onsequen
e, under the new probability measure Q,the pro
ess (X
γ(t)
t )0≤t≤T behaves as the initial pro
ess (X

γ(0)
t )0≤t≤T under P. In parti
ular,if u stands for the solution of the Cau
hy problem

Dtu(t, x) + 〈b(t, x), Dxu(t, x)〉 +
1

2
Trace

[
a(t, x)D2

x,xu(t, x)
]

= 0,with the boundary 
ondition u(T, x) = uT (x). (Note that the problem is set in a ba
kwardway for notational simpli
ity only), the initial 
ondition u(0, γ(0)) 
an be written on thesame model as (5.3) as EP[uT (X
γ(0)
T )] and therefore as EQ[uT (X

γ(T )
T )]. (Here, the indi
es Pand Q denote the probability used to perform the integration.) In parti
ular,

u(0, x0 + Tν) = EQ

[
u(T,X

γ(T )
T )

]
.Now, the tri
k is: γ(T ) = x0 so that

u(0, x0 + Tν) = EQ

[
u(T,Xx0

T )
]
.Finally, it remains to give the form of Q. It is given by Girsanov Theorem as

dQ

dP
= ρνT

:= exp

(
−

∫ T

0

〈σ−1(r,Xγ(r)
r )ξ

γ(t)
t , dBt〉 −

1

2

∫ T

0

|σ−1(t, X
γ(t)
t )ξ

γ(t)
t |2dt

)
.Finally,

u(0, x0 + Tν) = EP

[
u(T,Xx0

T )ρνT
]
.In other words, the regularity of u with respe
t to the spatial parameter follows from theregularity of ρνT , independently of the regularity of the boundary 
ondition: this is the typi-
al probabilisti
 argument to understand the regularizing e�e
t of non-degenerate di�usionoperators. Of 
ourse, the pri
e to pay is the same as in analysis: the underlying di�usionmatrix has to be non-degenerate.Obviously, this is not the 
ase in the Monge-Ampère problem. However, we will useGirsanov Theorem as a perturbation tool.The idea is the following: go ba
k to Eq. (8.1) and 
onsider at s + ε the perturbeddynami
s

dẐs+ε
t = ψ1/2(Ẑs+ε

t )σt
[
dBt + G(Zs

t , Ẑ
s+ε
t − Zs

t )dt
]

+ atD
∗
z̄ψ(Ẑs+ε

t )dt, t ≥ 0.
(8.25)Here, the fun
tion G satis�es G(z, 0) = 0 so that (Ẑs

t )t≥0 and (Zs
t )t≥0 are equal as requiredin the perturbation method. When G (seen as a fun
tion of two arguments) is a smooth15The reader who knows Girsanov Theorem already may noti
e that the exponential martingale propertyshould be 
he
ked to apply the theorem. Obviously, it should be: a
tually, the whole argument relies on alo
alization pro
edure that is a little bit involved. For simpli
ity, we do not dis
uss it here.60



fun
tion with a 
ompa
t support, the unique solvability of (8.25) may be proven as inProposition 6.7: the sket
h is given in footnote below 16. (The reader 
an skip it.) To makethe 
onne
tion with the original dynami
s, we are then seeking for a new measure Pε underwhi
h the pro
ess (
B̂ε
t := Bt +

∫ t

0

G(Zs
r , Ẑ

s+ε
r − Zs

r)dr

)

t≥0is a Brownian motion. (So that, under Pε, the pro
ess (Ẑs+ε
t )t≥0 has the right dynami
s.)What Girsanov Theorem17 says is the following: if G is bounded, there exists a measure

Pε given by
Pε(A) = E

[
exp

(
−

∫ t

0

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
]

−
∫ t

0

|G|2(Zs
r , Ẑ

s+ε
r − Zs

r)dr

)
1A

]
, A ∈ Ft, t ≥ 0,

(8.26)under whi
h (B̂ε
t )t≥0 is a 
omplex Brownian motion of dimension d. (In parti
ular, Pε admitsa density with respe
t to P (and is even equivalent to P) when restri
ted to the σ-subalgebra

Ft, t ≥ 0.)We now go ba
k to (8.25): we understand that (Ẑs+ε
t )t≥0 has the same dynami
s as

(Zs+ε
t )t≥0 in (8.1) but with (Bt)t≥0 repla
ed by (B̂ε

t )t≥0. Sin
e (B̂ε
t )t≥0 is a Brownian motionunder Pε, we expe
t (Ẑs+ε

t )t≥0 to have the same dynami
s (i.e. the same distribution)under Pε as (Zs+ε
t )t≥0 under P. Under lo
al Cau
hy-Lips
hitz like type assumption on the
oe�
ients of (8.1), this is true: this is the so-
alled Yamada and Watanabe Theorem, seee.g. Stroo
k and Varadhan [17℄.16The argument is almost the same as in Proposition 6.7 but the right martingale to 
onsider in (6.6) is

mt = ψ−1(Ẑs+ε
t ) × exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs+ε

r )]dr

−
∫ t

0

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
]
−

∫ t

0

|G|2(Zs
r , Ẑ

s+ε
r − Zs

r )dr

)
,

t ≥ 0. Indeed, by It�'s formula, we 
an prove that it is a lo
al martingale.Then, denoting by τn = inf{t ≥ 0 : ψ−1(Zs+ε
t ) ≤ 1/n},

n1/2P{τn ≤ t} ≤ E
[
ψ−1/2(Ẑs+ε

t )
]

≤ E

[
ψ−1(Ẑs+ε

t ) exp

(
−

∫ t

0

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
])]1/2

× E

[
exp

(∫ t

0

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
])]1/2

≤ C exp(Ct)E[mt] = C exp(Ct)ψ−1(z).The last line follows from the bound
E

[
exp

(∫ t

0

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
])]1/2

≤ exp(C‖G‖∞t).See Rogers and Williams [15℄.17Pay attention that Girsanov Theorem is here given for the 
omplex Brownian motion.61



Consider now the perturbed value fun
tion
V̂ σ(s+ ε)

=

∫ +∞

0

E

[
exp

(
−

∫ t

0

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
]

−
∫ t

0

|G|2(Zs
r , Ẑ

s+ε
r − Zs

r )dr

)

× exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Ẑs+ε

r )]dr

)
F

(
det(at), at, Ẑ

s+ε
t

)]
dt.

(8.27)
(Note that the integral and the expe
tation have been ex
hanged in 
omparison with theoriginal formulation in Proposition 6.9. This new writing permits to apply Girsanov Theoremeasily. Nevertheless, by boundedness of F and superharmoni
ity of ψ, Fubini's Theoremapplies and the integrals may be ex
hanged.) We may write it as

V̂ σ(s+ ε) =

∫ +∞

0

EPε

[
exp

(∫ t

0

Trace
[
arD

2
z,z̄ψ(Ẑs+ε

r )
]
dr

)

× F
(
det(at), at, Ẑ

s+ε
t

)]
dt,where EPε denotes the expe
tation under Pε. We then repla
e Ẑs+ε by Zs+ε by saying thatthe dynami
s of the �rst one under Pε are the same as the dynami
s of the se
ond one under

P. We dedu
e that the supremum supσ v̂
σ(s+ ε) is equal to V (γ(s+ ε))18.It now remains to spe
ify the 
hoi
e for G. A
tually, we 
an 
hoose it su
h that(8.28) d

dε

[
Ḡ(Zs

t , Ẑ
s+ε
t − Zs

t )
]
|ε=0

= Ξ(Zs
t )ζ̂

s
t ,where Ξ(z) is a 
omplex matrix of size d×d and ζ̂st = [d/dε](Ẑs+ε
t )|ε=0. (Choose for example

G(z, z′) = Ξ(z)ρ(z′), the fun
tion ρ being bounded and satisfying ρ(0) = 0, Dz′ρ(0) = Idand Dz̄′ρ(0) = 0.19) Below, the matrix Ξ(z) we use is bounded in z on every 
ompa
t subsetof D only. (In parti
ular, Ξ(z) may explode as z tends to ∂D.)To 
omplete the argument, it remains to explain what happens when di�erentiating (8.27)w.r.t. ε. (Again, we assume that we 
an do so: this is a part of the �meta� in Meta-Theorem 8.1.) The story is a bit di�erent from what we explained above for the two otherperturbations. Indeed, when di�erentiating (8.27), we obtain a new term to bound whi
h is
E

∫ +∞

0

∣∣∣∣
∫ t

0

〈Ξ(Zs
r )ζ̂

s
r , dBr〉 exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r )
]
dr

)∣∣∣∣dt.Here is what we 
an say:Lemma 8.5. Consider a pro
ess (ςt)t≥0 with values in Cd, solution to a SDE of the form
dςt =

(
βtςt + β ′

tς̄t
)
dt+ (αtςt + α′

tς̄t)dBt,18Here, the story is the same as for time-
hange. To have a 
ompletely rigorous argument, we should 
he
k�rst that the representation of Monge-Ampère remains the same when the underlying Brownian motion ismodi�ed. Again, we refer to Remark III.3.10 in the monograph [4℄ for a 
omplete dis
ussion.19A typi
al example is ρ(z′) = (ρ0(z
′
i))1≤i≤d with ρ0(z

′
i) = z′i exp(−|z′i|2), z′i ∈ C.62



the 
oe�
ients (βt)t≥0, (β ′
t)t≥0 and (αt)t≥0, (α′

t)t≥0 being Cd ⊗ Cd and Cd×d ⊗ Cd-valuedrespe
tively (i.e. βtςt and β ′
tς̄t are in Cd and αtςt and α′

tς̄t are in Cd×d) and being possiblyrandom as well. Set
mt =

∫ t

0

〈Ξrςr, dBr〉, t ≥ 0,for another bounded Cd×d-valued pro
ess (Ξt)t≥0. Assume �nally that (Ξt)t≥0 vanishes whenthe pro
ess (ψ(Zs
t ))t≥0 is less than some ǫ00 > 0. Then, for a non-positive pro
ess (ct)t≥0,

E

[
|mt| exp

(∫ t

0

crdr

)]
≤ CE

[∫ t

0

|ςr|
(
1 + r−1/2

)
exp

(∫ r

0

cudu

)
dr

]
,the 
onstant C only depending on the bound of Ξ and on the bounds of α, α′, β and β ′ attimes t for whi
h ψ(Zs

t ) > ǫ00/2.Proof. We follow the proof of (7.23). We 
onsider a smooth 
ut-o� fun
tion ϕ with valuesin [0, 1] mat
hing 1 on [ǫ00,+∞) and vanishing on (−∞, ǫ00/2]. Applying It�'s formula, wewrite
d
[
ϕ(ψ(Zs

t ))
]

= ϕ′(ψ(Zs
t ))d

(1)
t dt+ ϕ′′(ψ(Zs

t ))
∣∣d(2)
t

∣∣2dt
+ ϕ′(ψ(Zs

t ))〈d(2)
t , dBt〉 + ϕ′(ψ(Zs

t ))〈d̄(2)
t , dB̄t〉,

t ≥ 0, where (d
(1)
t )t≥0 and (d

(2)
t )t≥0 stand for the 
oe�
ients of the It� expansion of (ψ(Zs

t ))t≥0,i.e.
d
[
ψ(Zs

t )
]

= d
(1)
t dt+ 〈d(2)

t , dBt〉 + 〈d̄(2)
t , dB̄t〉, t ≥ 0.Note also that

d
[
|ςt|2

]
=

(
2Re

[
〈ς̄t, βtςt + β ′

tς̄t〉
]
+ |αtςt + α′

tς̄t|2
)
dt

+ 2Re
[
〈(αtςt + α′

tς̄t)
∗ς̄t, dBt〉

]
, t ≥ 0.Therefore,

d
(
|mt|2 + tϕ(ψ(Zs

t ))|ςt|2
)

=
[
|Ξtςt|2 + ϕ(ψ(Zs

t ))|ςt|2

+ 2tϕ(ψ(Zs
t ))Re

[
〈ς̄t, βtςt + β ′

tς̄t〉
]
+ tϕ(ψ(Zs

t ))
∣∣αtςt + α′

tς̄t
∣∣2

+ t|ςt|2ϕ′(ψ(Zs
t ))d

(1)
t + t|ςt|2ϕ′′(ψ(Zs

t ))
∣∣d(2)
t

∣∣2

+ 2tϕ′(ψ(Zs
t ))Re

[
〈(αtςt + α′

tς̄t)
∗ς̄t, d̄

(2)
t 〉

]
dt+ dnt, t ≥ 0,where (nt)t≥0 stands for a new martingale term whose value may vary from line to line.Then, for any small a > 0, by 
on
avity of the fun
tion x ∈ R+ 7→ (a + x)1/2 and by the63



bound |Ξtςt|2 ≤ ε
−1/2
00 |Ξt1{ψ(Zs

t )≥ε00}|2ϕ1/2(ψ(Zs
t ))|ςt|2,

d
(
a+ |mt|2 + tϕ(ψ(Zs

t ))|ςt|2
)1/2

≤ 1

2

(
a + |mt|2 + tϕ(ψ(Zs

t ))|ςt|2
)−1/2{|Ξtςt|2 + ϕ(ψ(Zs

t ))|ςt|2

+ 2tϕ(ψ(Zs
t ))Re

[
〈ς̄t, βtςt + β ′

tς̄t〉
]
+ tϕ(ψ(Zs

t ))
∣∣αtςt + α′

tς̄t
∣∣2

+ t|ςt|2ϕ′(ψ(Zs
t ))d

(1)
t + t|ςt|2ϕ′′(ψ(Zs

t ))
∣∣d(2)
t

∣∣2

+ 2tϕ′(ψ(Zs
t ))Re

[
〈(αtςt + α′

tς̄t)
∗ς̄t, d̄

(2)
t 〉

]}
dt+ dnt,

≤ C
(
1 + t−1/2

)
|ςt|dt+ dnt,

(8.29)
the 
onstant C here depending on the bound of (Ξt)t≥0, the bounds of the pro
esses (αt1{ψ(Zs

t )>ǫ00/2})t≥0,
(α′

t1{ψ(Zs
t )>ǫ00/2})t≥0, (βt1{ψ(Zs

t )>ǫ00/2})t≥0 and (β ′
t1{ψ(Zs

t )>ǫ00/2})t≥0 and the supremum norm of
ϕ′/ϕ1/2 and ϕ′′/ϕ1/2. (Note that (d

(1)
t )t≥0 and (d

(2)
t )t≥0 are bounded by known 
onstants.)In parti
ular, C is independent of a.Now, we 
an 
hoose ϕ su
h that ϕ′/ϕ1/2 and ϕ′′/ϕ1/2 be bounded. For example, think of

ϕ(x) = exp[−ǫ200/(x2 − (ǫ00/2)2)] for x ∈ (ǫ00/2, ǫ00/
√

2), ϕ(x) = 0 for x ≤ ǫ00/2, ϕ(x) = 1for x ≥ ǫ00 and ϕ(x) ∈ [exp(−4), 1] for x ∈ (ǫ00/
√

2, ǫ00). As a 
onsequen
e, we 
an assumethat the 
onstant C in (8.29) only depends on the bounds of (Ξt)t≥0, (αt1{ψ(Zs
t )>ǫ00/2})t≥0and (βt1{ψ(Zs

t )>ǫ00/2})t≥0.Finally, using the non-positivity of (ct)t≥0, we dedu
e
d

[(
a+ |mt|2 + tϕ(ψ(Zs

t ))|ςt|2
)1/2

exp

(∫ t

0

crdr

)]

≤ C
(
1 + t−1/2

)
|ςt| exp

(∫ t

0

crdr

)
dt+ dnt, t ≥ 0.Taking the expe
tation and letting a tend to 0, we 
omplete the proof. �Obviously, we wish to apply Lemma 8.5 with

ςt = ζ̂st , Ξt = Ξ(Zs
t ), ct = Trace

[
atD

2
z,z̄ψ(Zs

t )
]
,provided we have a bound for the term Ξ(Zs

t ) in (8.28) and for ǫ00 to be �xed later on.(Basi
ally, we 
annot 
hoose ǫ00 = 0 sin
e the 
oe�
ients driving the SDE satis�ed by
(ζ̂st )t≥0 are expe
ted to be singular in the neighborhood of the boundary. See (8.1).)As explained above, for the 
hoi
e of Ξ we use below, the term Ξ(Zs

t ) is bounded for Zs
taway from the boundary of the domain only. Following Propositions 8.2 and 8.4, we are tolo
alize the perturbation argument. Spe
i�
ally,De�nition 8.6. For some real S > 0, some smooth 
ut-o� fun
tion φ : R+ → [0, 1] mat
hing

1 on [0, 1] and 0 outside [2,+∞), some given positive real ǫ > 0 and some (�nite) stoppingtime s at whi
h ψ(Zs
s
) > ǫ, we 
all lo
alized perturbation argument of Girsanov type fromtime s to time t := inf{t > s : ψ(Zs

t ) ≤ ǫ} (t being possibly in�nite) the perturbation of theBrownian motion (Bt)t≥0 on the interval [s, t] only. In su
h a 
ase, the 
hange of measure64



in (8.26) takes the form
Pε(A) = E

[
exp

(
−

∫ t∧t

s

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
]

−
∫ t∧t

s

|G|2(Zs
r , Ẑ

s+ε
r − Zs

r )dr

)
1A

]
, A ∈ Ft, t ≥ 0,and the perturbed value fun
tion (with 
ut-o�) in (8.27) writes

V̂ σ,s,t
S (s+ ε)

= E

∫
t

s

[
exp

(
−

∫ t

s

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
]

−
∫ t

s

|G|2(Zs
r , Ẑ

s+ε
r − Zs

r)dr

)

× exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Ẑs+ε

r )]dr

)
F

(
det(at), at, Ẑ

s+ε
t

)
φ
( t
T

)]
dt,

(8.30)
for some (progressively-measurable) extension of (Ẑs+ε

t )0≤t≤s to the time indi
es less than
s for whi
h ([d/dε](Ẑs+ε

t )|ε=0)0≤t≤t and ([d2/dε2](Ẑs+ε
t )|ε=0)0≤t≤t exist. In su
h a 
ase, byLemma 8.5,

E

[∣∣∣∣
∫ t∧t

s

〈Ξ(Zs
r)ζ̂

s
r , dBr〉

∣∣∣∣ exp

(∫ t∧t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)]

≤ CE

[∫ t∧t

0

(1 + r−1/2)|ζ̂sr | exp

(∫ r

0

Trace[auD
2
z,z̄ψ(Zs

u)]du

)
dr

]
,for some 
onstant C > 0, only depending on (A) and on the bounds of (Ξ(Zs

t ))s≤t≤t andof the 
oe�
ients appearing in the It� writing of (ζst )0≤t≤t at times 0 ≤ t ≤ t for whi
h
ψ(Zs

t ) ≥ ǫ/2. (Pay attention that we here start from time 0 to bene�t from a as initial
ondition in (8.29).)We then dedu
e the analog of Proposition 8.2Proposition 8.7. Keep the assumptions of De�nition 8.6 and assume that the fun
tion Ξis bounded on the set {ψ ≥ ǫ} If the di�erentiation operator w.r.t. ε and the expe
tationand integral symbols in the de�nition of V̂ σ,s,t
S 
an be ex
hanged, then there exists a 
onstant

C > 0, only depending on Assumption (A) and on the bounds of (Ξ(ζst ))s≤t≤t and of the
oe�
ients appearing in the It� writing of (ζst )0≤t≤t at times 0 ≤ t ≤ t for whi
h ψ(Zs
t ) ≥ ǫ/2,su
h that

∣∣ d
dε

[
V̂ σ,s,t(s+ ε)

]∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)[
|ζ̂st | +

∫ t

0

(1 + r−1/2)|ζ̂sr |dr
]
dt

]
,where ζ̂st = [d/dε](Ẑs+ε

t )|ε=0. 65



A
tually, the same strategy applies when di�erentiating twi
e in (8.30). It is then ne
essaryto bound(8.31) E

∫
t

s

[∣∣∣∣
∫ t

s

〈Ξ(Zs
r)ζ̂

s
r , dBr〉

∣∣∣∣
2

exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r )
]
dr

)]
dt,and(8.32) E

∫
t

s

∣∣∣∣
∫ t

s

〈Ξ(Zs
r )η̂

s
r , dBr〉 exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r)
]
dr

)∣∣∣∣dt,with η̂st = [d/dε](Ẑs+ε
t )|ε=0, and

E

∫
t

s

∣∣∣∣
∫ t

s

〈
(
DzΞ(Zs

r )ζ̂
s
r +Dz̄Ξ(Zs

r )
¯̂
ζsr

)
ζ̂sr , dBr〉

× exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r )
]
dr

)∣∣∣∣dt.
(8.33)For (8.32) and (8.33), the proof is the same as the one of Lemma 8.5. With the samenotations as the ones used therein, the point is to 
onsider (for a > 0)

d
[(
a+ |mt|2 + tϕ(ψ(Zs

t ))[|ζ̂st |4 + |η̂st |2]
)1/2]

, s ≤ t ≤ t,with
mt =

∫ t

s

〈Ξ(Zs
r )η̂

s
r , dBr〉, s ≤ t ≤ t,or

mt =

∫ t

0

〈
(
DzΞ(Zs

r)ζ̂
s
r +Dz̄Ξ(Zs

r )ζ̂r
)
ζ̂sr , dBr〉, s ≤ t ≤ t.For (8.31), it is su�
ient to expand

[∣∣∣∣
∫ t

s

〈Ξ(Zs
r)ζ̂

s
r , dBr〉

∣∣∣∣
2

exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zs

r )
]
dr

)]

s≤t≤tby It�'s formula to get an analog of Lemma 8.5.We then dedu
eProposition 8.8. Keep the assumption Proposition 8.7. If the di�erentiation operator oforder 2 w.r.t. ε and the expe
tation and integral symbols in the de�nition of V̂ σ,s,t
S 
an beex
hanged, then there exists a 
onstant C > 0, only depending on Assumption (A) and onthe bounds of (Ξ(ζst ))s≤t≤t and of the 
oe�
ients appearing in the It� writing of (ζst )0≤t≤t and

(ηst )0≤t≤t at times 0 ≤ t ≤ t for whi
h ψ(Zs
t ) ≥ ǫ/2, su
h that

∣∣ d
2

dε2

[
V̂ σ,s,t(s+ ε)

]∣∣ ≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)

×
[
|η̂st | + |ζ̂st |2 +

∫ t

0

(1 + r−1/2)|η̂sr|dr

+

∫ t

0

(1 + r−1/2)|ζ̂sr |2dr +

(∫ t

0

|ζ̂sr |dr
)2]

dt

]
,where η̂st = [d2/dε2](Ẑs+ε

t )|ε=0. 66



8.5. Expli
it Computations at the Boundary. We are now in position to expand the
omputations. We start with the so-
alled �enlargement of the set of 
ontrols� method.Following the lo
alization pro
edure des
ribed in the statement of Proposition 8.2, the timeindi
es t we 
onsider below are always assumed to belong to the interval [s, t], the 
hoi
e ofthe parameter ǫ in Proposition 8.2 being 
learly spe
i�ed at the end of the dis
ussion. Re
allthat for t ∈ [s, t], ψ(Zs
t ) is less than ǫ. Re
all also from (8.10) that the perturbation reads

dẐs+ε
t = ψ1/2(Ẑs+ε

t ) exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
σtdBt

+ exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
at exp

(
P̄ ∗(Zs

t , Ẑ
s+ε
t − Zs

t )
)
D∗
z̄ψ(Ẑs+ε

t )dt,
(8.34)where t ∈ [s, t], and (see (8.11))

d

dε

[
P (Zs

t , Ẑ
s+ε
t − Zs

t )
]

= |Dzψt|−2
[
D2
z̄,zψtζtDzψt +D2

z̄,z̄ψtζ̄tDzψt

−D∗
z̄ψt(D

2
z,z̄ψtζ̄t)

∗ −D∗
z̄ψt(D

2
z,zψtζt)

∗
]
,

:= Qtζt, t ∈ [s, t],

(8.35)
ζt being given by ζt = [d/dε][Zs+ε

t ], t ∈ [s, t].We emphasize that (8.35) makes sense for ǫ small enough: sin
e ψ(Zs
t ) ≤ ǫ for t ∈ [s, t],

|Dzψt(Z
s
t )| 6= 0 for ǫ small enough and t ∈ [s, t].We also make use of the following abbreviated notation: we get rid of the symbol hat� �̂ and of the supers
ript s for more simpli
ity in (ζ̂st )s≤t≤t (
ompare with the statement ofProposition 8.2); we also write ψt for ψ(Zs

t ) and Lψt for Trace[atD
2
z,z̄ψ(Zs

t )], s ≤ t ≤ t.We then write the derivative (ζt)s≤t≤t as the solution of20
dζt =

{
ψ

−1/2
t Re

[
Dzψtζt

]
+ ψ

1/2
t Qtζt

}
σtdBt

+
[
atDz̄,zψtζt + atDz̄,z̄ψtζ̄t

]
dt+

[
QtζtatD

∗
z̄ψt − atQtζtD

∗
z̄ψt

]
dt.Above, the ve
tor (

∑d
j,k=1(at)i,jD

2
z̄j ,zk

ψ(Zs
t )(ζt)k)1≤i≤d is represented by the produ
t atDz̄,zψtζt.From (8.35), we have (pay attention that DzψtatD

∗
z̄ψt and [(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗]D∗

z̄ψtbelow stand for s
alar quantities as produ
ts of row and 
olum ve
tors)
atDz̄,zψtζt + atDz̄,z̄ψtζ̄t +QtζtatD

∗
z̄ψt − atQtζtD

∗
z̄ψt

= |Dzψt|−2DzψtatD
∗
z̄ψt

(
D2
z̄,zψtζt +D2

z̄,z̄ψtζ̄t
)

− |Dzψt|−2D∗
z̄ψt

[
(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗
]
atD

∗
z̄ψt

+ |Dzψt|−2
[
(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗
]
D∗
z̄ψtatD

∗
z̄ψt

:= |Dzψt|−2DzψtatD
∗
z̄ψt

(
D2
z̄,zψtζt +D2

z̄,z̄ψtζ̄t
)

+HtatD
∗
z̄ψt,

(8.36)
(Ht)s≤t≤t here standing for the auxiliary pro
ess

Ht = |Dzψt|−2
{
−D∗

z̄ψt
[
(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗
]

+
[
(D2

z,z̄ψtζ̄t)
∗ + (D2

z,zψtζt)
∗
]
D∗
z̄ψt

}
,

(8.37)with values in Cd×d.20Again, the di�erentiation is purely formal sin
e no di�erentiability property has been established yet.This is the so-
alled �meta� part of Meta-Theorem 8.1.67



We dedu
e that
dζt =

{
ψ

−1/2
t Re

[
Dzψtζt

]
+ ψ

1/2
t Qtζt

}
σtdBt

+ |Dzψt|−2DzψtatD
∗
z̄ψt

(
D2
z̄,zψtζt +D2

z̄,z̄ψtζ̄t
)
dt+HtatD

∗
z̄ψtdt.Taking the square norm, we obtain

d|ζt|2

= 2|Dzψt|−2DzψtatD
∗
z̄ψtRe

[
〈ζ̄t,

(
D2
z̄,zψtζt +D2

z̄,z̄ψtζ̄t
)]
dt

+ 2Re
[
〈ζ̄t, HtatD

∗
z̄ψt〉

]
dt

+ Trace
[(
ψ

−1/2
t Re

[
Dzψtζt

]
Id + ψ

1/2
t Qtζt

)

× at
(
ψ

−1/2
t Re

[
Dzψtζt

]
Id − ψ

1/2
t

(
Qtζt

)∗)]
dt

+ ψ
−1/2
t Re

[
Dzψtζt

]
〈ζ̄t, σtdBt〉 + ψ

−1/2
t Re

[
Dzψtζt

]
〈ζt, σ̄tdB̄t〉

+ ψ
1/2
t

[
〈ζ̄t, QtζtσtdBt〉 + 〈ζt, Qtζtσ̄tdB̄t〉

]
, s ≤ t ≤ t.

(8.38)
In what follows, we modify the 
hoi
e of ψ a

ording to the following observation: forany 
onstant c > 0, cψ is again a plurisuperharmoni
 fun
tion des
ribing the domain. Tomake things 
lear, we denote by ψ0 some referen
e plurisuperharmoni
 fun
tion su
h that,for any Hermitian matrix a of tra
e 1 and for any z ∈ D, Trace[aD2

z,z̄ψ
0(z)] ≤ −1. Then, weunderstand ψ as Nψ0 for some free parameter N ≥ 1 that will be �xed later on.As a �rst appli
ation, we 
an simplify the form of d|ζt|2, or at least we 
an bound it. Asalready said, for ǫ > 0 small, ψ0

t ≤ Nψ0
t ≤ ǫ, t ∈ [s, t], so that |Dzψ

0
t | ≥ κ for some given
onstant κ > 0, s ≤ t ≤ t. For example, we noti
e that |Qtζt| in (8.35) and |Ht| in (8.37) by
an be bounded by C|ζt|, i.e.(8.39) |Qtζt|, |Ht| ≤ C|ζt|, s ≤ t ≤ t,for some 
onstant C depending on κ, ‖Dψ0‖∞ and ‖D2ψ0‖∞, but independent of N . There-fore, denoting by (rt)s≤t≤t a generi
 bounded pro
ess, bounded by some 
onstant C at anytime in [s, t], and setting E0

t := Dzψ
0
t atD

∗
z̄ψ

0
t , we write

d|ζt|2

= ψ−1
t Re2

[
Dzψtζt

]
dt+ Re

[
Dzψtζt

]
|ζt|rtdt+ ψt|ζt|2rtdt

+N |ζt|2
(
(E0
t )

1/2 + E0
t

)
rtdt

+ ψ
−1/2
t Re

[
Dzψtζt

]
〈ζ̄t, σtdBt〉 + ψ

−1/2
t Re

[
Dzψtζt

]
〈ζt, σ̄tdB̄t〉

+ ψ
1/2
t

[
〈ζ̄t, QtζtσtdBt〉 + 〈ζt, Qtζtσ̄tdB̄t〉

]
, s ≤ t ≤ t,

(8.40)
the 
onstant C in the bound of (rt)s≤t≤t depending on (A) only (and not onN). In parti
ular,
C may depend on κ. (Above, the writing ((E0

t )
1/2 + E0

t )rt is an abuse of notation. It standsfor (E0
t )

1/2rt+E0
t rt for possibly di�erent values of r. We will use this simpli�
ation quite oftenbelow.) One way or another, we understand that the terms (ψ−1

t Re2[Dzψtζt])t≥0 and (E0
t )t≥0are to be 
ontrolled to 
ontrol the derivative quantity a

ording to the program announ
edin Se
tion 7. 68



The strategy we here develop (and inspired by the one of Krylov) 
onsists in 
onsideringa modi�ed version of the derivative quantity. Below, we 
onsider(8.41) Γ̄t = exp(−Kψt)|ζt|2 + ψ−1
t Re2

[
Dzψtζt

]
, s ≤ t ≤ t,for some 
onstant K > 0 to be 
hosen later on.To 
ompute (dΓ̄t)s≤t≤t, we use the following writing for (dψt)s≤t≤t(8.42) dψt = ψ

1/2
t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]
+ 2DzψtatD

∗
z̄ψtdt+ ψtLψtdt, s ≤ t ≤ t.(Apply It�'s formula to (ψ(Zs

t ))s≤t≤t and have in mind that P (Zs, Ẑs − Zs) = 0 when Ẑs in(8.34) is Zs itself.) We �rst write
d exp(−Kψt)
= −2K exp(−Kψt)ψ1/2

t Re
[
Dzψ(Zs

t )σdBt

]

+ [K2ψt − 2K] exp(−Kψt)〈Dzψt, atDz̄ψt〉dt
−K exp(−Kψt)ψtLψtdt

= −2K exp(−Kψt)ψ1/2
t Re

[
Dzψ(Zs

t )σdBt

]

+N2[K2ψt − 2K] exp(−Kψt)E0
t dt−NK exp(−Kψt)ψtLψ0

t dt.

(8.43)
Using (8.40),

d
[
exp(−Kψt)|ζt|2

]

= exp(−Kψt)
[
ψ−1
t Re2[Dzψtζt] + Re[Dzψtζt]|ζt|rt

+ ψt|ζt|2rt +N |ζt|2
(
(E0
t )

1/2 + E0
t

)
rt

]
dt

+ |ζt|2 exp(−Kψt)
[
N2[K2ψt − 2K]E0

t −NKψtLψ
0
t

]
dt

+NK exp(−Kψt)
[
Re[Dzψtζt]|ζt| + ψt|ζt|2

]
rt + dmt, s ≤ t ≤ t,where (mt)t≥0 stands for a generi
 martingale term. We are now in position to 
ompute dΓ̄tat any time t ∈ [s, t]. Have in mind that, for su
h t's, ψt is less than ǫ and (rt)s≤t≤t is ageneri
 pro
ess satisfying |rt| ≤ C, for some C depending on (A) only. Think in parti
ularof the useful bound: |Re[Dzψtζt]| ≤ ǫ1/2ψ

−1/2
t |Re[Dzψtζt]|, t ∈ [s, t]. Then, applying Young'sinequality to the term N(E0

t )
1/2, the above equation has the form

d
[
exp(−Kψt)|ζt|2

]

≤ exp(−Kψt)
[
ψ−1
t Re2[Dzψtζt] + C(1 + ǫ1/2 + ǫ)|ξt|2

+ C(N +N2)|ζt|2E0
t

]
dt

+ |ζt|2 exp(−Kψt)
[
N2[K2ǫ− 2K]E0

t + CNKǫ
]
dt

+NK exp(−Kψt)
[
Cǫ1/2|ξt|2 + Cǫ|ξt|2

]
+ dmt,

(8.44)
where |ξt|2 = |ζt|2 + ψ−1

t Re2[Dzψtζt]. To 
omplete the analysis (in the neighborhood of theboundary), we must 
ompute d[ψ−1
t Re2[Dzψtζt]], s ≤ t ≤ t. To do so, we start with (8.42)69



at s+ ε (so that at is understood as exp(pεt )at exp(−pεt )). Taking the square root, we write
dψ1/2(Zs+ε

t )

=
1

2

[
Dzψ(Zs+ε

t ) exp(pεt )σtdBt +Dz̄ψ(Zs+ε
t ) exp(p̄εt)σ̄tdB̄t

]

+
3

4
ψ−1/2(Zs+ε

t )Dzψ(Zs+ε
t ) exp(pεt)at exp(−pεt )D∗

z̄ψ(Zs+ε
t )dt

+
1

2
ψ1/2(Zs+ε

t )Trace
[
exp(pεt)at exp(−pεt )D2

z,z̄ψ(Zs+ε
t )

]
dt.We now di�erentiate with respe
t to ε at ε = 0. We obtain (with the notation Et =

DzψtatD
∗
z̄ψt = N2E0

t )
1

2
d
[
ψ

−1/2
t Re[Dzψ(Zt)ζt]

]

= Re
[(

(Dz,zψtζt)
∗ + (Dz,z̄ψtζ̄t)

∗ +DzψtQtζt
)
σtdBt

]

− 3

4
ψ

−3/2
t Re[Dzψtζt]Etdt

+
3

4
ψ

−1/2
t

[(
(Dz,zψtζt)

∗ + (Dz,z̄ψtζ̄t)
∗ +DzψtQtζt

)
atDz̄∗ψt

]
dt

+
3

4
ψ

−1/2
t

[
Dzψtat

(
Dz̄,zψtζt +Dz̄,z̄ψtζ̄t −QtζtD

∗
z̄ψt

)]
dt

+
1

2
ψ

1/2
t Trace

[(
Qtζtat − atQtζt

)
D2
z,z̄ψt + atD

2
z,z̄,zψtζt + atD

2
z,z̄,z̄ψtζ̄t

]
dt

+
1

2
Re[Dzψtζt]ψ

−1/2
t Lψtdt.

(8.45)
Plugging the de�nition of (Qtζt)s≤t≤t (see (8.35)), we dedu
e

(Dz,zψtζt)
∗ + (Dz,z̄ψtζ̄t)

∗ +DzψtQtζt

= |Dzψt|−2
(
DzψtD

2
z̄,zψtζt +DzψtD

2
z̄,z̄ψtζ̄t

)
Dzψt

= rt|ζt|Dzψt.

(8.46)It is important to noti
e that the pro
ess (rt)s≤t≤t in (8.46) is s
alar as the produ
t of rowand 
olumn ve
tors. (It is also bounded independently of N .) We dedu
e
d
[
ψ

−1/2
t Re[Dzψtζt]

]

= 2Re
[
rt|ζt|DzψtσtdBt

]
− 3

2
ψ

−3/2
t Re[Dzψtζt]Etdt

+ ψ
−1/2
t rtEt|ζt|dt+Nψ

1/2
t rt|ζt|dt+ Re[Dzψtζt]ψ

−1/2
t Lψtdt.Taking the square, we �nally 
laim (use the following tri
k to pass from the equality tothe inequality : ψ−1

t rt|ζt|Re[Dzψtζt]Et ≤ ψ−2
t Re2[Dzψtζt]Et + r2

t |ζt|2Et, Nrt|ζt|Re[Dzψtζt] ≤70



Nψtr
2
t |ζt|2 +Nψ−1

t Re2[Dzψtζt] and Lψt ≤ −N)
d
[
ψ−1
t Re2[Dzψtζt]

]

= dmt + rt|ζt|2Etdt− 3ψ−2
t Re2[Dzψtζt]Etdt+ ψ−1

t rt|ζt|Re[Dzψtζt]Etdt
+Nrt|ζt|Re[Dzψtζt]dt+ 2ψ−1

t Re2[Dzψtζt]Lψtdt

≤ dmt + C(1 + Et)|ζt|2dt+ CNψt|ζt|2dt−Nψ−1
t Re2[Dzψtζt]dt,

(8.47)for a possibly new value of C.Making the sum with (8.44) and assuming ǫ < 1 and N ≥ 1, we dedu
e
dΓ̄t ≤ exp(−Kψt)(1 −N)ψ−1

t Re2[Dzψtζt]dt

+ |ξt|2
(
C ′ + C ′Nǫ1/2 + C ′NKǫ1/2

)
dt

+ |ζt|2 exp(−Kψt)N2
[
K2ǫ− 2K + C ′ exp(Kψt)

]
E0
t dt+ dmt,the 
onstant C ′ depending on C only. (In parti
ular, C ′ is independent of K, N , ǫ, s and t.)Choose now K = ǫ−1/4. We obtain

dΓ̄t ≤ exp(−Kψt)(1 −N)ψ−1
t Re2[Dzψtζt]dt+ 2(C ′ + 2C ′Nǫ1/4)|ξt|2dt

+ |ζt|2 exp(−Kψt)N2
[
ǫ1/2 − 2ǫ−1/4 + C ′ exp(ǫ3/4)

]
E0
t dt+ dmt.Choose ǫ small enough su
h that(8.48) ǫ1/2 − 2ǫ−1/4 + C ′ exp(ǫ3/4) < 0.Then,

dΓ̄t ≤ exp(−Kψt)(1 −N)ψ−1
t Re2[Dzψtζt]dt+ 2

(
C ′ + 2C ′Nǫ1/4

)
|ξt|2dt+ dmt,for s ≤ t ≤ t. Finally for N = ǫ−1/4 and exp(ǫ3/4) ≤ 2, we obtain:(8.49) dΓ̄t ≤ 6C ′|ξt|2dt+ dmt ≤ 6C ′ exp(ǫ3/4)Γ̄t + dmt ≤ 12C ′Γ̄t + dmt,for s ≤ t ≤ t.Exa
tly as in the statement of Proposition 7.7 (see in parti
ular (7.17)), the right quantityto 
onsider is

exp

(∫ t

0

Lψrdr

)
Γ̄t = exp

(∫ t

0

NLψ0
rdr

)
Γ̄t, s ≤ t ≤ t.Again, for s ≤ t ≤ t,

d

[
exp

(∫ t

0

NLψ0
rdr

)
Γ̄t

]

≤ exp

(∫ t

0

NLψ0
rdr

)[
NLψ0

t Γ̄t + 12C ′Γ̄t

]
dt+ dmt

≤ exp

(∫ t

0

NLψ0
rdr

)[
−N Γ̄t + 12C ′Γ̄t

]
dt+ dmt.Having in mind that N = ǫ−1/4, we dedu
e that, for ǫ−1/4 ≥ 12C ′ (obviously, this is 
ompat-ible with (8.48)),(8.50) d

[
exp

(∫ t

0

NLψ0
rdr

)
Γ̄t

]
≤ dmt, s ≤ t ≤ t.71



A
tually, it is plain to see that, for ǫ small enough, the same holds with NLψ0
s repla
ed by

(N − 1)Lψ0
s , i.e.(8.51) d

[
exp

(∫ t

0

(N − 1)Lψ0
sds

)
Γ̄t

]
≤ dmt, s ≤ t ≤ t.We dedu
eProposition 8.9. There exists a positive real ǫ1 su
h that for 0 < ǫ < ǫ1, for N = K = ǫ−1/4,for ψ = Nψ0, where ψ0 is the referen
e plurisuperharmoni
 fun
tion des
ribing D su
h that

Trace[aD2
z,z̄ψ

0(z)] ≤ −1, z ∈ D, for a stopping time s at whi
h ψ(Zs
s
) < ǫ, the derivativequantity obtained by perturbing the 
ontrol parameter as in (8.10) and (8.35)

Γ̄
(1)
t = exp

(
−Kψ(Zs

t )
)
|ζt|2 + ψ−1(Zs

t )Re2
[
Dzψ(Zs

t )ζt
]
, t ≥ s,satis�es up to time t = inf{t ≥ s : ψ(Zs

t ) ≥ ǫ} (provided that (Ẑs+ε
t )0≤t≤t is well di�erentiablew.r.t. ε)

E

[
exp

(∫ t∧t

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r )]dr

)
Γ̄

(1)
t∧t|Fs

]

≤ exp

(∫
s

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r)]dr

)
Γ̄(1)

s , t ≥ s,with δ = 1/N = ǫ1/4.8.6. Away from the Boundary. We now investigate the derivative quantity away fromthe boundary. The idea 
onsists in perturbing the system in two di�erent ways as thesame time, or said di�erently, in applying two perturbations. In the subse
tions above, thispossiblity has not been dis
ussed, but we feel it quite simple to understand: it is even plainto see that provided that the 
orresponding versions of Propositions 8.2, 8.4 or 8.7 be truefor ea
h perturbation under 
onsideration, the 
ommon a
tion of both perturbations on theperturbed value fun
tion is of the same type, i.e. the statements of Propositions 8.2, 8.4 or8.7 (a

ording to the framework) remain true under the 
ommon a
tion.Away from the boundary, the idea is to perturb both the underlying time speed, as ex-plained in Subse
tion 8.3, and the probability measure, as explained in Subse
tion 8.4.Following the lo
alization pro
edure des
ribed in the statement of Propositions 8.4 and 8.7,the time indi
es t we 
onsider in this subse
tion are always assumed to belong to the interval
[s, t], where s is some stopping time at whi
h ψ(Zs

t ) > ǫ21 and t = inf{t > s : ψ(Zs
t ) ≤ ǫ}.(As above, the 
hoi
e of the parameter ǫ is 
learly spe
i�ed at the end of the dis
ussion.) Inparti
ular for t ∈ [s, t], ψ(Zs

t ) is greater than ǫ.We also make use of the same abbreviated notation as above: we get rid of the symbolhat � �̂ and of the supers
ript s for more simpli
ity in (ζ̂st )s≤t≤t; we also write ψt for ψ(Zs
t )and Lψt for Trace[atD

2
z,z̄ψ(Zs

t )], s ≤ t ≤ t. Finally, we emphasize that ψ is here arbitrary:the 
onne
tion with the form ψ = Nψ0 used in Proposition 8.9 is explained later on.The time-
hange we here use is given by a variation of (8.20), namely(8.52) d

dε

[
T (Zs

t , Ẑ
s+ε
t − Zs

t )
]
|ε=0

= −ψ−1(Zs
t )Re

[
Dzψ(Zs

t )ζt
]
, s ≤ t ≤ t.21Pay attention that the values of ǫ may be di�erent from the ones given by Proposition 8.9.72



Moreover, the measure perturbation we 
hoose in (8.28) is(8.53) d

dε

[
G(Zs

t , Ẑ
s+ε
t − Zs

t )
]
|ε=0

= −Λσ̄∗
t ζt, s ≤ t ≤ t,for some 
onstant Λ to be 
hosen. (In other words, Ξ(Zs
t ) = −Λσ̄∗

t in (8.28).)We emphasize that both perturbations (8.52) and (8.53) are linear fun
tionals of ζ , witha bounded linear 
oe�
ient. (Again, ψ−1(Zs
t ) is bounded by ǫ−1 away for t ∈ [s, t].)The dynami
s of (Ẑs+ε

t )s≤t≤t then read (
ompare with (8.18) and (8.25))
dẐs+ε

t = ψ1/2(Ẑs+ε
t )T (Zs

t , Ẑ
s+ε
t − Zs

t )σt
[
dBt +G(Zs

t , Ẑ
s+ε
t − Zs

t )dt
]

+ T 2(Zs
t , Ẑ

s+ε
t − Zs

t )atD
∗
z̄ψ(Zs+ε

t )dt, s ≤ t ≤ t.Di�erentiating (at least formally), we obtain
dζt = −Λatζtdt+ atD

∗
z̄,zψtζtdt+ atD

∗
z̄,z̄ψtζ̄tdt− 2ψ−1

t Re[Dzψtζt]atD
∗
z̄ψtdt.(Pay attention that the dBt terms 
an
el.)Then,

d|ζt|2 = −2Λ〈ζ̄t, atζt〉dt+ 2Re
[
〈ζ̄t, atD∗

z̄,zψtζt〉 + 〈ζ̄t, atD∗
z̄,z̄ψtζ̄t〉

]
dt

− 4ψ−1
t Re[Dzψtζt]Re[Dzψtatζt]dt.Have in mind that ψt ≥ ǫ for t ∈ [s, t]. Then, by Young's inequality, we 
an �nd some
onstant C(ǫ, ψ) depending on ǫ and ψ only22, su
h that(8.54) d|ζt|2 ≤

[
C(ǫ, ψ) − 2Λ

]
〈ζ̄t, atζt〉dt+ ǫ2|ζt|2dt, s ≤ t ≤ t.Consider now some real R su
h that R2 ≥ 2 supz∈D[|z|2]. Then, by Lemma 6.8,

d

[[
(R2 − |Zt|2)ψ−1

t

]
exp

(∫ t

0

Lψrdr

)]
= − exp

(∫ t

0

Lψrdr

)
dt+ dmt,where (mt)t≥0 stands for a generi
 martingale term whose value may vary from line to line.In parti
ular, for a small real δ > 0,

d

[[
(R2 − |Zt|2)ψ−1

t

]
exp

(∫ t

0

(1 − δ)Lψrdr

)]

=
[
−δ(R2 − |Zt|2)ψ−1

t Lψt − 1
]
exp

(∫ t

0

(1 − δ)Lψrdr

)
dt+ dmt, t ≥ 0.

(8.55)Finally, from (8.54) and (8.55),
d

[[
(R2 − |Zt|2)ψ−1

t |ζt|2
]
exp

(∫ t

0

(1 − δ)Lψrdr

)]

≤
[(
ǫ2 − δLψt

)
(R2 − |Zt|2)ψ−1

t − 1
]
|ζt|2 exp

(∫ t

0

(1 − δ)Lψrdr

)
dt

+
(
C(ǫ, ψ) − 2Λ

)[
(R2 − |Zt|2)ψ−1

t

]
〈ζ̄t, atζt〉 exp

(∫ t

0

(1 − δ)Lψrdr

)
dt

+ dmt,

(8.56)
22We here spe
ify the dependen
e on ψ sin
e ψ may vary in the statement of Proposition 8.9.73



for s ≤ t ≤ t. Choose ǫ small enough su
h that ǫR2 ≤ 1/2 and then δ small enough su
hthat(8.57) δ−1 ≥ 2R2ǫ−1 sup
{
−Trace(aD2

z,z̄ψ(z)), z ∈ D, a ∈ Hd : Trace(a) = 1
}
,so that

δR2ǫ−1 sup
{
−Trace(aD2

z,z̄ψ(z)), z ∈ D, a ∈ Hd : Trace(a) = 1
}
≤ 1

2
.Then, for any s ≤ t ≤ t,

(
ǫ2 − δLψt

)
(R2 − |Zt|2)ψ−1

t − 1 ≤
(
ǫ2 − δLψt

)
R2ǫ−1 − 1 ≤ 0,so that the �rst term in the RHS in (8.56) is non-positive. Choose �nally Λ = C(ǫ, ψ)/2 to
an
el the se
ond term in the RHS in (8.56). Then,

d

[[
(R2 − |Zt|2)ψ−1

t |ζt|2
]
exp

(∫ t

0

(1 − δ)Lψrdr

)]
≤ dmt, s ≤ t ≤ t.Finally,Proposition 8.10. Let ψ be a plurisuperharmoni
 fun
tion des
ribing the domain D as in(A). Then, there exists a positive real ǫ3 > 0 su
h that for any 0 < ǫ < ǫ3, we 
an �nd a
onstant C(ǫ, ψ), depending on ǫ and ψ only, su
h that, for any stopping time s at whi
h

ψ(Zs
s) > ǫ, for Λ = C(ǫ, ψ)/2 in (8.53) and R2 ≥ 2 supz∈D[|z|2], the derivative quantityobtained by perturbing the time speed as in (8.52) and the measure as in (8.53)

Γ̄
(3)
t = (R2 − |Zs

t |2)ψ−1(Zs
t )|ζt|2, t ≥ s,satis�es up to time t = inf{t ≥ s : ψ(Zs

t ) ≤ ǫ} (provided that (Ẑs+ε
t )0≤t≤t is well di�erentiablew.r.t. ε)

E

[
exp

(∫ t∧t

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r )]dr

)
Γ̄

(3)
t∧t|Fs

]

≤ exp

(∫
s

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r)]dr

)
Γ̄(3)

s , t ≥ s,with δ as in (8.57).8.7. Interpolation between the Interior and the Boundary. It now remains to gatherthe estimates at and away the boundary. To do, we introdu
e an interpolated version of thederivative quantity.The idea is the same as in the previous subse
tion: we 
ouple at the same time severalperturbations. Spe
i�
ally, we here make use of the three possible types of perturbationsdis
ussed in Subse
tions 8.1, 8.2 and 8.4: the 
ontrol perturbation is given by (8.11) and(8.35), i.e.
d

dε

[
P (Zs

t , Ẑ
s+ε
t − Zs

t )
]

= |Dzψt|−2
[
D2
z̄,zψtζtDzψt +D2

z̄,z̄ψtζ̄tDzψt

−D∗
z̄ψt(D

2
z,z̄ψtζ̄t)

∗ −D∗
z̄ψt(D

2
z,zψtζt)

∗
]
,

:= Qtζt,

(8.58) 74



the time-
hange perturbation is given by a variation of (8.20), namely(8.59) d

dε

[
T (Zs

t , Ẑ
s+ε
t − Zs

t )
]
|ε=0

= (λ− 1)ψ−1(Zs
t )Re

[
Dzψ(Zs

t )ζt
]
,for some real λ ∈ (0, 1) to be 
hosen later on, and the measure perturbation is given as avariation of (8.28):

d

dε

[
G(Zs

t , Ẑ
s+ε
t − Zs

t )
]
|ε=0

= (−2λ+ λ2 + 2)ψ−3/2(Zs
t )Re

[
Dzψ(Zs

t )ζt
]
σ̄∗
tDz̄ψ(Zs

t ).
(8.60)(We here say a variation of (8.28) sin
e the perturbation now involves (ζ̄t)s≤t≤t as well.Obviously, this doesn't 
hange the global strategy.) The dynami
s of (Ẑs+ε

t )s≤t≤t then read(
ompare with (8.10), (8.18) and (8.25))
dẐs+ε

t = ψ1/2(Ẑs+ε
t )T (Zs

t , Ẑ
s+ε
t − Zs

t ) exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)

× σt
[
dBt +G(Zs

t , Ẑ
s+ε
t − Zs

t )dt
]

+ T 2(Zs
t , Ẑ

s+ε
t − Zs

t ) exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
D∗
z̄ψ(Zs+ε

t )dt,for s ≤ t ≤ t.Following the lo
alization pro
edure des
ribed in the statement of Propositions 8.2, 8.4and 8.7, the time indi
es t we 
onsider in this subse
tion are always assumed to belong tothe interval [s, t], where s is some stopping time at whi
h ǫ′ < ψ(Zs
t ) < ǫ, for an additionalpositive real ǫ′ 23 and t = inf{t > s : ψ(Zs

t ) 6∈]ǫ′, ǫ[}. In parti
ular for t ∈ [s, t], ψ(Zs
t ) belongsto [ǫ′, ǫ].We also make use of the same abbreviated notation as above: we get rid of the symbolhat � �̂ and of the supers
ript s for more simpli
ity in (ζ̂st )s≤t≤t; we also write ψt for ψ(Zs

t )and Lψt for Trace[atD
2
z,z̄ψ(Zs

t )], s ≤ t ≤ t.Then, we 
an di�erentiate the dynami
s of (Ẑs+ε
t )t≥0 a

ording to the rules pres
ribedabove. Following (8.36), we obtain

dζt

=
[
λψ

−1/2
t Re

[
Dzψtζt

]
+ ψ

1/2
t Qtζt

]
σtdBt + ψ

1/2
t ΞtatD

∗
z̄ψtdt

+
(
N−1Et + E1/2

t

)
|ζt|rtdt+ 2(λ− 1)ψ−1

t Re
[
Dzψtζt

]
atD

∗
z̄ψtdt, t ≥ 0,where (rt)s≤t≤t stands for a generi
 pro
ess, bounded by some 
onstant C depending on(A) only. (Here and only here (rt)s≤t≤t has values in Cd. Below, it has values in C.)Above, Et := DzψtatD

∗
z̄ψt and N denotes a real greater than 1 su
h that ψ = Nψ0 where

ψ0 is some referen
e 
hoi
e of the plurisuperharmoni
 fun
tion des
ribing D, su
h that
Trace[aD2

z,z̄ψ
0(z)] ≤ −1 for any z ∈ D and any positive Hermitian matrix a of tra
e 1.Now, N−1Et is bounded by CE1/2

t , s ≤ t ≤ t, up to a modi�
iation of C. (Pay attentionthat C is independent of N .) Therefore, using the boundedness of |Qtζt|/|ζt| (see (8.35)),23The values of both ǫ and ǫ′ will be spe
i�ed later on.75



s ≤ t ≤ t,
d|ζt|2

= λψ
−1/2
t Re

[
Dzψtζt

](
〈ζ̄t, σtdBt〉 + 〈ζt, σ̄tdB̄t〉

)

+ ψ
1/2
t

(
〈ζ̄t, QtζtσtdBt〉 + 〈ζt, Qtζtσ̄tdB̄t〉

)

+ 4(λ− 1)ψ−1
t Re

[
Dzψtζt

]
Re

[
Dzψtatζt

]
dt+ 2ψ

1/2
t ΞtRe

[
Dzψtatζt

]
dt

+
[
λ2ψ−1

t Re2[Dzψtζt] + λN |ζt|2rt + ψt|ζt|2rt + E1/2
t |ζt|2rt

]
dt.

(8.61)
Now, from (8.42),

dψ−λ
t = −λψ−λ−1/2

t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

− λ(1 − λ)ψ
−(1+λ)
t DzψtatD

∗
z̄ψtdt− λψ−λ

t Lψtdt.
(8.62)By (8.43), for K ≥ 1 to be 
hosen later on,

d
[
exp(−Kψt)

]

= −K exp(−Kψt)ψ1/2
t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+ [K2ψt − 2K] exp(−Kψt)DzψtatD
∗
z̄ψtdt−K exp(−Kψt)ψtLψtdt,so that

d
[
exp(−Kψt)ψ−λ

t ]

= −
[
λψ

−1/2
t +Kψ

1/2
t

]
exp(−Kψt)ψ−λ

t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+
[
K2ψt + 2λK − 2K − λ(1 − λ)ψ−1

t

]
exp(−Kψt)ψ−λ

t DzψtatD
∗
z̄ψtdt

−
[
λ+Kψt

]
exp(−Kψt)ψ−λ

t Lψtdt.Then, by (8.61) and the above equality,
d
[
exp(−Kψt)ψ−λ

t |ζt|2
]

= (4λ− 2λ2 − 4 − 2λKψt) exp(−Kψt)ψ−(1+λ)
t Re

[
Dzψtζt

]
Re

[
Dzψtatζt

]
dt

+ 2Ξt exp(−Kψt)ψ1/2−λ
t Re

[
Dzψtatζt

]
dt

+ exp(−Kψt)ψ−λ
t

[
λ2ψ−1

t Re2[Dzψtζt] + λN |ζt|2rt
+NKψt|ζt|2rt + E1/2

t |ζt|2rt
]
dt

+
[
K2ψt + 2λK − 2K − λ(1 − λ)ψ−1

t

]
exp(−Kψt)ψ−λ

t Et|ζt|2dt
−

[
λ+Kψt

]
exp(−Kψt)ψ−λ

t Lψt|ζt|2dt+ dmt,

(8.63)
where (mt)s≤t≤s stands for a generi
 martingale term.76



By the spe
i�
 
hoi
e we made for (Ξt)s≤t≤t, see (8.60), and by Young's inequality,
d
[
exp(−Kψt)ψ−λ

t |ζt|2
]

≤ λ2ψ
−(1+λ)
t Re2[Dzψtζt]dt

+ C
(
λKN2 + λN +K−1 +NKψt

)
exp(−Kψt)ψ−λ

t |ζt|2dt
+

[
K2ψt − (1 − 2λ)K

]
exp(−Kψt)ψ−λ

t Et|ζt|2dt
−

[
λ+Kψt

]
exp(−Kψt)ψ−λ

t Lψt|ζt|2dt+ dmt.

(8.64)
Repla
ing −λ by (1 − λ)/2 in (8.62), we obtain in a similar way

dψ
(1−λ)/2
t

=
1 − λ

2
ψ

−λ/2
t

[
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+
(1 − λ)(3 − λ)

4
ψ

−(1+λ)/2
t DzψtatD

∗
z̄ψtdt+

1 − λ

2
ψ

(1−λ)/2
t Lψtdt.

(8.65)
Below, we make use of (8.65) but at point s+ ε instead of ε. We obtain

d
[
ψ(1−λ)/2(Ẑs+ε

t )
]

=
1 − λ

2
ψ−λ/2(Ẑs+ε

t )T (Zs
t , Ẑ

s+ε
t − Zs

t )

×
[
Dzψ(Ẑs+ε

t ) exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
σt

(
dBt +G(Zs

t , Ẑ
s+ε
t − Zs

t )dt
)

+Dz̄ψ(Ẑs+ε
t ) exp

(
P̄ (Zs

t , Ẑ
s+ε
t − Zs

t )
)
σ̄t

(
dB̄t + Ḡ(Zs

t , Ẑ
s+ε
t − Zs

t )dt
)]

+
(1 − λ)(3 − λ)

4
ψ−(1+λ)/2(Ẑs+ε

t )T 2(Zs
t , Ẑ

s+ε
t − Zs

t )Dzψ(Ẑs+ε
t )

× exp
(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
at exp

(
−P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
D∗
z̄ψ(Ẑs+ε

t )dt

+
1 − λ

2
ψ(1−λ)/2(Ẑs+ε

t )T 2(Zs
t , Ẑ

s+ε
t − Zs

t )

× Trace
[
exp

(
P (Zs

t , Ẑ
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Ẑ
s+ε
t − Zs

t )
)
D2
z,z̄ψ(Ẑs+ε

t )
]
dt.

(8.66)
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We now di�erentiate a

ording to the rules pres
ribed above (see in parti
ular (8.58),(8.59) and (8.60)). Using (8.46), we obtain
(1 − λ)d

[
ψ

−(1+λ)/2
t Re[Dzψtζt]

]

=
1 − λ

2
ψ

−λ/2
t

[
−ψ−1

t Re[Dzψtζt] + rt|ζt|
][
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+ (1 − λ)ψ
−λ/2
t ΞtDzψtatD

∗
z̄ψtdt

+
(1 − λ)(3 − λ)

4

[
−1 − λ− 2 + 2λ

]
ψ

−(3+λ)/2
t Re[Dzψtζt]DzψtatD

∗
z̄ψtdt

+
(1 − λ)(3 − λ)

4
ψ

−(1+λ)/2
t rt|ζt|DzψtatD

∗
z̄ψtdt

+
1 − λ

2

[
1 − λ− 2 + 2λ

]
ψ

−(1+λ)/2
t Re[Dzψtζt]Lψtdt

+ (1 − λ)ψ
(1−λ)/2
t

[
Re

(
DzLψtζt

)
+ Re

(
Trace[QtζtatD

2
z,z̄ψt]

)]
dt.In a shorter way,

d
[
ψ

−(1+λ)/2
t Re[Dzψtζt]

]

=
1

2
ψ

−λ/2
t

[
−ψ−1

t Re[Dzψtζt] + rt|ζt|
][
DzψtσtdBt +Dz̄ψtσ̄tdB̄t

]

+
3 − λ

4
(λ− 3)ψ

−(3+λ)/2
t Re[Dzψtζt]DzψtatD

∗
z̄ψtdt

+
3 − λ

4
ψ

−(1+λ)/2
t rt|ζt|DzψtatD

∗
z̄ψtdt+ ψ

−λ/2
t ΞtDzψtatD

∗
z̄ψtdt

+
1

2
(λ− 1)ψ

−(1+λ)/2
t Re[Dzψtζt]Lψtdt

+ ψ
(1−λ)/2
t

[
Re

(
DzLψtζt

)
+ Re

(
Trace[QtζtatD

2
z,z̄ψt]

)]
dt.Finally, taking the square, we obtain

d
[
ψ

−(1+λ)
t Re2[Dzψtζt]

]

=

{
1

2
ψ

−(2+λ)
t Re2[Dzψtζt] + ψ−λ

t rt|ζt|2 + ψ
−(1+λ)
t Re[Dzψtζt]rt|ζt|

+
(3 − λ)

2
(λ− 3)ψ

−(2+λ)
t Re2[Dzψtζt] + 2ψ

−(1/2+λ)
t Re[Dzψtζt]Ξt

}

×DzψtatD
∗
z̄ψtdt

+ (λ− 1)ψ
−(1+λ)
t Re2[Dzψtζt]Lψtdt

+ 2ψ−λ
t Re[Dzψtζt]

[
Re

(
DzLψtζt

)
+ Re

(
Trace[QtζtatD

2
z,z̄ψt]

)]
dt+ dmt.78



In abbreviated notations, we dedu
e
d
[
ψ

−(1+λ)
t Re2[Dzψtζt]

]

=
1 + (3 − λ)(λ− 3)

2
ψ

−(2+λ)
t Re2[Dzψtζt]Etdt

+ 2ψ
−(1/2+λ)
t Re[Dzψtζt]ΞtEtdt

+ ψ
−(1+λ)
t Re[Dzψtζt]Et|ζt|rtdt

+ (λ− 1)ψ
−(1+λ)
t Re2[Dzψtζt]Lψtdt+N2ψ−λ

t |ζt|2rtdt+ dmt.Re
all now from (8.60) that Ξt = (−2λ + λ2 + 2)ψ
−3/2
t Re[Dzψtζt]. Then, applying Young'sinequality to the se
ond term in the above RHS,

d
[
ψ

−(1+λ)
t Re2[Dzψtζt]

]

≤
(
−1

2
λ+

3

2
λ2

)
ψ

−(2+λ)
t EtRe2[Dzψtζt]dt

+ C(λ−1Et +N2)ψ−λ
t |ζt|2dt+ (λ− 1)ψ

−(1+λ)
t Re2[Dzψtζt]Lψtdt+ dmt.

(8.67)Choose now ǫ ≤ 1 and λ ≤ ǫ small enough su
h that −λ/2 + 3λ2/2 < 0 and N = K = ǫ−1/4.Then, (8.64) writes for ψt ≤ ǫ

d
[
exp(−Kψt)ψ−λ

t |ζt|2
]

≤ λ2ψ
−(1+λ)
t Re2[Dzψtζt]dt+ Cǫ1/4 exp(−Kψt)ψ−λ

t |ζt|2dt
+

[
3ǫ1/2 − ǫ−1/4

]
exp(−Kψt)ψ−λ

t Et|ζt|2dt+ dmt.

(8.68)In the same way, (8.67) has the form
d
[
ψ

−(1+λ)
t Re2[Dzψtζt]

]
≤ C(λ−1Et + ǫ−1/2) exp(−Kψt)ψ−λ

t |ζt|2dt
+ (λ− 1)ψ

−(1+λ)
t Re2[Dzψtζt]Lψtdt+ dmt.

(8.69)Consider now the modi�ed derivative quantity
Γ̄t = exp(−Kψt)ψ−λ

t |ζt|2 + 2λǫ1/4ψ
−(1+λ)
t Re2[Dzψtζt].From (8.68) and (8.69), we obtain

dΓ̄t ≤ Cǫ1/4 exp(−Kψt)ψ−λ
t |ζt|2dt

+
(
Cǫ1/4 − ǫ−1/4

)
exp(−Kψt)ψ−λ

t Et|ζt|2dt
+

[
2λ(λ− 1)ǫ1/4Lψt + λ2

]
ψ

−(1+λ)
t Re2[Dzψtζt]dt+ dmt.For Cǫ1/4 − ǫ−1/4 < 0, we dedu
e

dΓ̄t ≤ Cǫ1/4 exp(−Kψt)ψ−λ
t |ζt|2dt

+
[
λ2(2Lψ0

t + 1) − 2λǫ1/4Lψt
]
ψ

−(1+λ)
t Re2[Dzψtζt]dt+ dmt.79



Sin
e Lψ0
t ≤ −1, we �nally dedu
e

dΓ̄t ≤ Cǫ1/4 exp(−Kψt)ψ−λ
t |ζt|2dt

+
[
λ2Lψ0

t − 2λǫ1/4Lψt
]
ψ

−(1+λ)
t Re2[Dzψtζt]dt+ dmt

≤ Cǫ1/4 exp(−Kψt)ψ−λ
t |ζt|2dt

+ 2
[
(λ/2 − 1)Lψt

]
λǫ1/4ψ

−(1+λ)
t Re2[Dzψtζt]dt+ dmt.Following (8.50) and (8.51), we dedu
e that(8.70) d

[
exp

(∫ t

0

(1 − λ/2)Lψrdr

)
Γ̄t

]
≤ dmt, s ≤ t ≤ t,for ǫ small enough and λ ≤ ǫ.We dedu
eProposition 8.11. Let ψ be a plurisuperharmoni
 fun
tion des
ribing the domain D asin (A). Then, there exists a positive real ǫ2 > 0 su
h that for any 0 < ǫ′ < ǫ < ǫ2 and

0 < λ < ǫ, for N = K = ǫ−1/4, ψ = Nψ0 (with ψ0 as in the statement of Proposition8.9) and any stopping time s at whi
h ψ(Zs
s) ∈ [ǫ′, ǫ], the derivative quantity obtained byperturbing the 
ontrol parameter as in (8.58), the time speed as in (8.59) and the measureas in (8.60):

Γ̄
(2)
t = exp(−Kψt)ψ−λ(Zs

t )|ζt|2 + 2λǫ1/4ψ
−(1+λ)
t Re2[Dzψ(Zs

t )ζt], t ≥ s,satis�es up to time t = inf{t ≥ s : ψ(Zs
t ) 6∈]ǫ′, ǫ[} (provided that (Ẑs+ε

t )s≤t≤t is well di�eren-tiable w.r.t. ε)
E

[
exp

(∫ t∧t

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r )]dr

)
Γ̄

(2)
t∧t|Fs

]

≤ exp

(∫
s

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r)]dr

)
Γ̄(2)

s
, t ≥ s,with δ = λ/2.8.8. Global Derivative Quantity. The reader might understand the problem we are fa
ingright now: above, we have de�ned three di�erent derivative quantities a

ording to theposition of the underlying representation pro
ess in the domain D. Surely, we must gatherinto a single one the three di�erent parts to 
ontrol the dynami
s on the whole spa
e.A
tually, the strategy is not so 
ompli
ated. In what follows, we are given 0 < ǫ <

min(ǫ1, ǫ2, ǫ3) in the statements of Propositions 8.9, 8.10 and 8.11 and we 
hoose ψ = ǫ−1/4ψ0in ea
h statement and λ = ǫ2 in the statement of Proposition 8.11. Then, the three di�erentderivative quantities have the forms
Γ̄

(1)
t = exp(−ǫ−1/4ψt)|ζt|2 + ψ−1

t Re2
[
Dzψtζt

]
,

Γ̄
(2)
t = exp(−ǫ−1/4ψt)ψ

−ǫ2

t |ζt|2 + 2ǫ9/4ψ
−(1+ǫ2)
t Re2

[
Dzψtζt

]
,

Γ̄
(3)
t = (R2 − |Zt|2)ψ−1

t |ζt|2.
(8.71)At this stage of the proof, the de�nitions of Γ̄(1), Γ̄(2) and Γ̄(3) are purely formal sin
e theperturbed pro
ess (Ẑs+ε

t )t≥0 has not been de�ned in a global way yet. Obviously, (Zt)t≥0,80



(ψt)t≥0, (ζt)t≥0 and (Dzψt)t≥0 will be understood as (Zs
t )t≥0, solution of (8.9), (ψ(Zs

t ))t≥0,
([d/dε][Ẑs+ε

t ])t≥0 and (Dzψ(Zs
t ))t≥0.For the moment, we 
laimProposition 8.12. Let (Zt)t≥0 be a pro
ess with values in D and (ζt)t≥0 be another pro
esswith values in Cd. Setting ψt = ψ(Zt) and Dzψt = Dzψ(Zt), t ≥ 0, 
onsider (Γ̄

(1)
t )t≥0,

(Γ̄
(2)
t )t≥0 and (Γ̄

(3)
t )t≥0 as in (8.71).Then, there exists a real 0 < ǫ0 < min(ǫ1, ǫ2, ǫ3), depending on Assumption (A) only, su
hthat for ǫ < ǫ0, we 
an �nd three reals ǫ4 < ǫ/4 and µ2, µ3 > 0, depending on ǫ and (A) only,su
h that
ψt = ǫ⇒ µ2Γ̄

(2)
t ≥ µ3Γ̄

(3)
t

ψt = ǫ/2 ⇒ Γ̄
(1)
t ≥ µ2Γ̄

(2)
t

(
+(1 − 2ǫ9/4)ψ−1

t Re2
[
Dzψtζt

])

ψt = ǫ/4 ⇒ µ3Γ̄
(3)
t ≥ µ2Γ̄

(2)
t

ψt = ǫ4 ⇒ µ2Γ̄
(2)
t ≥ Γ̄

(1)
t

(
+

[( ǫ

2ǫ4

)ǫ2 − 1
]
|ζt|2

)
.Above, additional terms in parentheses are positive for ǫ0 small enough. They are uselessin the whole Se
tion 8. They will be useful in Se
tion 9.Proposition 8.12 may be understood through Figure 8.8 below. Ea
h drawn 
urve standsfor a possible graph of one of the three derivative quantities in Proposition 8.12. Theboundary points of ea
h 
urve (ex
ept the ones in 0 and ǫ) are bounded from below bythe 
urrent point of another 
urve.
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ψtε

4
ε4
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ε

•
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Figure 8.8. Representation of the derivative quantities.Proof. When ψt = ǫ/2, it is 
lear that
( ǫ
2

)ǫ2
Γ̄

(2)
t ≤ Γ̄

(1)
t ,provided 2ǫ9/4 ≤ 1 (whi
h is obviously true for ǫ small enough).81



If 2(ǫ/2)ǫ
2

ǫ9/4ψ−ǫ2

t = 1 (i.e. ψt = ǫ4, with ǫ4 mu
h more smaller than ǫ/2), then
( ǫ
2

)ǫ2
Γ̄

(2)
t ≥ Γ̄

(1)
t .We thus 
hoose µ2 = (ǫ/2)ǫ

2.When ψt = ǫ,(8.72) ǫ1−ǫ
2

R−2 exp(−ǫ3/4)Γ̄(3)
t ≤ Γ̄

(2)
t .When ψt = ϑǫ,

Γ̄
(2)
t ≤ (ϑǫ)1−ǫ2ψ−1

t |ζt|2 + 2ǫ9/4−ǫ
2

ϑ−ǫ
2‖Dzψ‖2

∞ψ
−1
t |ζt|2

≤ (ϑǫ)1−ǫ2ψ−1
t |ζt|2 + 2ǫ7/4−ǫ

2

ϑ−ǫ
2‖Dzψ

0‖2
∞ψ

−1
t |ζt|2,sin
e ψ = ǫ−1/4ψ0.Sin
e R2 ≥ 2 supz∈D[|z|2], we have R2− supz∈D[|z|2] ≥ R2/2 so that Γ̄

(3)
t ≥ (R2/2)ψ−1

t |ζt|2.We dedu
e
Γ̄

(2)
t ≤ 2R−2

[
(ϑǫ)1−ǫ2 + 2ǫ7/4−ǫ

2

ϑ−ǫ
2‖Dzψ

0‖2
∞

]
Γ̄

(3)
t .Finally,

Γ̄
(2)
t ≤ 2R−2

[
(ϑǫ)1−ǫ2 + 2ǫ7/4−ǫ

2

ϑ−ǫ
2‖Dzψ

0‖2
∞

]
Γ̄

(3)
t

≤ 2 exp(ǫ3/4)
[
ϑ1−ǫ2 + 2ǫ3/4ϑ−ǫ

2‖Dzψ
0‖2

∞

]
ǫ1−ǫ

2

R−2 exp(−ǫ3/4)Γ̄(3)
t .Choose ϑ = 1/4. Then,

Γ̄
(2)
t ≤ 2 exp(ǫ3/4)

[
4−1+ǫ2 + 2 · 4ǫ2ǫ3/4‖Dzψ

0‖2
∞

]
ǫ1−ǫ

2

R−2 exp(−ǫ3/4)Γ̄(3)
t .Then, for ǫ small enough,

Γ̄
(2)
t ≤ ǫ1−ǫ

2

R−2 exp(−ǫ3/4)Γ̄(3)
t .We �nally 
hoose µ3 = [ǫ1−ǫ

2

R−2 exp(−ǫ3/4)]µ2, so that µ2Γ̄
(2)
t ≤ µ3Γ̄

(3)
t when ψt = ǫ/4. By(8.72), µ3Γ̄

(3)
t ≤ µ2Γ̄

(2)
t when ψt = ǫ. �Proposition 8.13. Let ǫ ∈ (0, ǫ0) and ǫ4 be as in Proposition 8.12, de�ne the following sets:

U0 =
{
z ∈ D : ψ(z) ≤ ǫ4

}

U1 =
{
z ∈ D : ǫ4 ≤ ψ(z) ≤ ǫ/2

}

U2 =
{
z ∈ D : ǫ/4 ≤ ψ(z) ≤ ǫ

}

U3 =
{
z ∈ D : ψ(z) ≥ ǫ

}
.Let γ be a smooth path from [−1, 1] into U3, s be some �xed point in (−1, 1) and (Zs

t )t≥0 bethe solution of (8.1) with γ(s) as initial 
ondition.82



De�ne as well (τn)n≥1 as the sequen
e of exit times of the pro
ess (ψ(Zs
t ))t≥0 from the sets

[ǫ/4,+∞), [ǫ4, ǫ] and [0, ǫ/2], i.e.
τ1 := inf

{
t ≥ 0 : ψt = ψ(Zs

t ) ≤ ǫ/4
}
,

τ2 := inf
{
t > τ1 : ψt 6∈]ǫ4, ǫ[

}
,

τ3 := inf
{
t > τ2 : ψt 6∈ [0, ǫ/2[

}
if ψτ2 = ǫ4,

τ3 := inf
{
t > τ2 : ψt ≤ ǫ/4

}
if ψτ2 = ǫ,

· · ·(If τn = +∞, then τn+1 = +∞ as well, n ≥ 1.)For initial 
onditions of the form γ(s+ε), 
onsider the perturbed version (Ẑs+ε
t )0≤t≤τ1 as inProposition 8.10 (ǫ/4 playing the role of ǫ) up to time τ1. If τ1 < +∞, extend the perturbedpro
ess as (Ẑs+ε

t )τ1≤t≤τ2 a

ording to the perturbation of Proposition 8.11 (ǫ/2 playing therole of ǫ, ǫ′ being equal to ǫ4 and λ to ǫ2) up to time τ2. And so on. . . a

ording to Figure8.13 below.
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Figure 8.13. Choi
e of the perturbations.Assume that the whole pro
ess (Ẑs+ε
t )t≥0 is di�erentiable in the mean w.r.t. ε and that thederivative pro
ess (ζt = (d/dε)[Ẑs+ε

t ]|ε=0)t≥0 satis�es the SDE obtained by di�erentiation ofthe 
oe�
ients of the perturbations as in Theorem 7.2. Then, from time 0 to time τ1, 
onsideras derivative quantity the pro
ess (µ3Γ̄
(3)
t )0≤t≤τ1 de�ned in Proposition 8.10. From time τ1(if �nite) to time τ2, 
onsider as derivative quantity the pro
ess (µ2Γ̄

(2)
t )τ1<t≤τ2 de�ned inProposition 8.11. And so on. . . a

ording to Figure 8.8. Denote by (Γ̄t)t≥0 the resulting globalderivative quantity. (So that the pro
ess is left-
ontinuous.)Then, we 
an �nd α ∈ (0, 1), depending on (A) and ǫ only, su
h that

E

[
Γ̄t exp

(∫ t

0

αLψ(Zs
r )dr

)]
≤ Γ̄0, t ≥ 0.83



Moreover, there exists a 
onstant C ≥ 0, depending on (A) and ǫ only, su
h that(8.73) E

[
|ζt|2 exp

(∫ t

0

αLψrdr

)]
≤ CΓ̄0, t ≥ 0.Proof. By Proposition 8.10, we 
an �nd some exponent α < 1 (depending on (A) and ǫonly) su
h that(8.74) d

[
Γ̄

(3)
t exp

(∫ t

0

αLψrdr

)]
≤ dmt, 0 ≤ t ≤ τ1,

(mt)t≥0 standing for a generi
 martingale term (whose value may vary from line to line).Consider the 
ase when τ1 < +∞. By Proposition 8.11, we 
an modify α so that(8.75) d

[
Γ̄

(2)
t exp

(∫ t

0

αLψrdr

)]
≤ dmt, τ1 ≤ t ≤ τ2We then gather both derivative quantities (µ3Γ̄
(3)
t )0≤t≤τ1 and (µ2Γ̄

(2)
t )τ1≤t≤τ2 into a singleone, denoted by (Γ̄t)0≤t≤τ2 . Obviously, it may be dis
ontinuous at time τ1: by 
onvention,we assume it to be left-
ontinuous so that Γ̄τ1 = µ3Γ̄

(3)
τ1 . Then, we 
an rewrite (8.74) and(8.75) as

E

[
µ3Γ̄

(3)
τ1

exp

(∫ τ1

0

αLψrdr

)
1{τ1<+∞}

]
≤ µ3Γ̄

(3)
0 = Γ̄0

E

[
µ2Γ̄

(2)
t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
|Fτ1

]
1{τ1<+∞}

≤ µ2Γ̄
(2)
t∧τ1 exp

(∫ t∧τ1

0

αLψrdr

)
1{τ1<+∞}.

(8.76)
(The se
ond inequality above is obviously true if t ≤ τ1: in that 
ase, everything is knownat time t∧ τ2 and the 
onditional expe
tation is useless. Otherwise, i.e. if t > τ1, the se
ondinequality is a 
onsequen
e of (8.75). Add also that {τ1 < +∞} ∈ Fτ1 : at time τ1, τ1 isknown to be �nite or not.)We now apply Proposition 8.12. If τ1 < +∞ and t > τ1, we know that ψt∧τ1 = ψτ1 = ǫ/4so that µ2Γ̄

(2)
τ1 ≤ µ3Γ̄

(3)
τ1 . Then, for t > τ1 (and τ1 < +∞), (8.76) yields

E

[
µ2Γ̄

(2)
t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
|Fτ1

]
≤ µ3Γ̄

(3)
τ1 exp

(∫ τ1

0

αLψrdr

)
,i.e.

E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
|Fτ1

]
≤ Γ̄τ1 exp

(∫ τ1

0

αLψrdr

)
.84



Finally, for any t ≥ 0,
E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)]

= E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
1{τ1<t}

]

+ E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
1{τ1≥t}

]

= E

[
E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
1{τ1<t}

]∣∣Fτ1

]

+ E

[
E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)
1{τ1≥t}

]∣∣Fτ1

]
.Therefore,

E

[
Γ̄t∧τ2 exp

(∫ t∧τ2

0

αLψrdr

)]

≤ E

[
Γ̄τ1 exp

(∫ τ1

0

αLψrdr

)
1{τ1<t}

]

+ E

[
Γ̄t∧τ1 exp

(∫ t∧τ1

0

αLψrdr

)
1{τ1≥t}

]

= E

[
Γ̄t∧τ1 exp

(∫ t∧τ1

0

αLψrdr

)]
≤ Γ̄0.In other words, we are able to gather the two inequalities in (8.76) into a single one overthe whole interval [0, τ2). By indu
tion, we 
an pro
ess further: if τ2 < +∞ and ψτ2 = ǫ4,we make use of Proposition 8.9 up to τ3 = inf{t > τ2 : ψt ≥ ǫ/2}; if τ2 < +∞ and ψτ2 = ǫ,we make use of Proposition 8.10 up to τ3 = inf{t > τ2 : ψt ≤ ǫ/4}; we then extend Γ̄t to

[0, τ3) by using Proposition 8.12 (at time τ2, µ2Γ̄
(2)
τ2 is greater than the two other derivativequantities); and so on... We then extend the derivative quantity to the whole [0,+∞) insu
h a way that

E

[
Γ̄t exp

(∫ t

0

αLψrdr

)]
≤ Γ̄0.Of 
ourse, the value of Γ̄t is given by one of the three original derivative quantities Γ̄

(1)
t ,

µ2Γ̄
(2)
t and µ3Γ̄

(3)
t a

ording to the position of Zs

t in D. (See Figure 8.8.) What is importantis that, in any 
ase, Γ̄t ≥ c|ζt|2, for some positive c depending on (A) and ǫ only. Eq. (8.73)follows. �8.9. Con
lusion. It now remains to gather all the lo
alized value fun
tions into a singleone:Proposition 8.14. Keep the assumption and notation of Proposition 8.13. (In parti
ular,
s stands below for some �xed real in (−1, 1).) Given S > 0 and ε with s+ε ∈ (−1, 1), de�ne85



the globally perturbed analog of V in Proposition 6.9
V̂ σ
S (s+ ε)

= E

∫ +∞

0

[
exp

(
−

∫ t

0

2Re
[
〈Ḡ(Zs

r , Ẑ
s+ε
r − Zs

r ), dBr〉
]

−
∫ t

0

|G|2(Zs
r , Ẑ

s+ε
r − Zs

r )dr

)

× exp

(∫ t

0

|τ εr |2Trace[exp(pεr)ar exp(−pεr)D2
z,z̄ψ(Ẑs+ε

r )]dr

)

× F
(
det(at), exp(pεt )at exp(−pεt ), Ẑs+ε

t

)
φ
(Tε

t

S

)]
|τ εt |2dt,

(8.77)
where the quantities (pεt = P (Zs

t , Ẑ
s+ε
t −Zs

t ))t≥0, (τ εt = T (Zs
t , Ẑ

s+ε
t −Zs

t ))t≥0 and (G(Zs
t , Ẑ

s+ε
t −

Zs
t ))t≥0 stand for the di�erent possible perturbations used in Proposition 8.13. Pre
isely, pεis set equal to 0 outside the intervals on whi
h the perturbation of Proposition 8.2 applies,

τ ε is set equal to 1 outside the intervals on whi
h the perturbation of Proposition 8.4 appliesand (G(Zs
t , Ẑ

s+ε
t − Zs

t ))t≥0 is set equal to 0 outside the intervals on whi
h the perturbationof Proposition 8.7 applies. Moreover, Ṫε
t = |τ εt |2, t ≥ 0.Then, at point s, supσ V̂

σ
S (s) = VS(γ(s)) exa
tly, where VS(γ(s)) stands for the �nite-horizon version of V (γ(s)) in Proposition 6.9, i.e.

VS(z) = sup
σ
V σ
S (z), z ∈ D,where

V σ
S (z) = E

[∫ +∞

0

exp

(∫ t

0

Trace
[
arDz,z̄ψ(Zσ,z

r )
]
dr

)

× F (det(at), at, Z
σ,z
t )φ

( t
S

)
dt

]
.Moreover, for any 
ontrol (σt)t≥0, V̂ σ

S (s+ ε) ≤ VS(γ(s+ ε)).Sket
h of the Proof. The equality supσ V̂
σ
S (s) = VS(γ(s)) is easily seen.The proof of the inequality supσ V̂

σ
S (s + ε) ≤ VS(γ(s + ε)) is a bit more 
hallenging. Wewon't perform it in a 
omplete way. We refer the reader to the original arti
les by Krylov[6, 8℄: the argument is explained therein in a very detailed way. However the idea is quite
lear and 
onsists in 
oupling the arguments given in Subse
tions 8.2, 8.3 and 8.4: modi�-
ation of the 
ontrol, of the time speed and of the measure. �Here is the �nal step:Proposition 8.15. Keep the assumption and notation of Propositions 8.13 and 8.14. As-sume in addition that, for any S > 0 and s ∈ [−1, 1],(8.78) lim sup

ε→0
sup
σ

sup
|ε′|<|ε|

[∣∣ ∂
∂ε′

[
V̂ σ
S (s+ ε′)

]∣∣] =
∣∣ ∂
∂ε′

[
V̂ σ
S (s+ ε′)

]
|ε′=0

∣∣.86



Assume also that, for every 
ompa
t interval I ⊂ (−1, 1), for ε small enough, the quantity
supσ sup|ε′|<|ε|[|(∂/∂ε′)[V̂ σ

S (s + ε′)]|] is uniformly bounded w.r.t. s ∈ I. (Pay attention thatthe de�nition of the fun
tion V̂ σ
S depends on s itself.)Then, there exists a 
onstant C > 0, depending on (A) and the distan
e from γ([−1, 1])to ∂D only, su
h that, for any S > 0, the fun
tion s ∈ (−1, 1) 7→ VS(γ(s))+C

∫ s

0
|γ′(r)|dr isnon-de
reasing and the fun
tion s ∈ (−1, 1) 7→ VS(γ(s)) − C

∫ s

0
|γ′(r)|dr is non-in
reasing.Proof. Without loss of generality, we 
an assume ǫ to be small enough so that γ([−1, 1]) ⊂

U3, with U3 as in Proposition 8.13. Following the proofs of Propositions 8.2, 8.4 and 8.7, wethen 
laim that (C being as in the statement)
∣∣ d
dε

[
V̂ σ
S (s+ ε)

]
|ε=0

∣∣ ≤ CE

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)

×
[
|ζt| +

∫ t

0

(1 + r−1/2)|ζr|dr
]
dt

]
.

(8.79)Re
all that Trace[arD
2
z,z̄ψ(Zs

r )] ≤ −N = ǫ−1/4. By (8.73), we dedu
e
∣∣ d
dε

[
V̂ σ
S (s+ ε)

]
|ε=0

∣∣

≤ CE

[∫ +∞

0

exp
(
−N(1 − α/2)t

)[
|ζ̂t| exp

(∫ t

0

(α/2)Lψrdr

)

+

∫ t

0

(1 + r−1/2)|ζ̂r| exp

(∫ r

0

(α/2)Lψudu

)
dr

]
dt

]

= C

∫ +∞

0

exp
(
−N(1 − α/2)t

){
E

[
|ζ̂t| exp

(∫ t

0

(α/2)Lψrdr

)]

+

∫ t

0

(1 + r−1/2)E

[
|ζ̂r| exp

(∫ r

0

(α/2)Lψudu

)]
dr

}
dt

≤ CΓ̄
1/2
0

∫ +∞

0

exp
(
−N(1 − α/2)t

)
(1 + t)dt ≤ CΓ̄

1/2
0 ,the last line following from Cau
hy-S
hwarz inequality.Sin
e Γ̄0 = Γ̄

(3)
0 , we dedu
e that(8.80) ∣∣ d

dε

[
V̂ σ
S (s+ ε)

]
|ε=0

∣∣ ≤ CR|γ(s)|−1/2|γ′(s)|.Unfortunately, the above estimate is a bit weaker than (8.5) and is not su�
ient to re
over(8.81) lim inf
ε→0,ε 6=0

VS(γ(s+ ε)) − VS(γ(s))

|ε| ≥ −CR|γ(s)|−1/2|γ′(s)|,as in (8.6). 87



To re
over (8.6), we take bene�t of (8.78). Indeed, by the mean value Theorem, we 
angeneralize (8.80) and write (for a possibly new value of the 
onstant C)
VS(γ(s+ ε)) − VS(γ(s)) ≥ inf

σ

[
V̂ σ
S (s+ ε) − V̂ σ

S (s)
]

≥ −C|ε| sup
|ε′|<|ε|

sup
σ

[∣∣ d
dε′

[
V̂S(s+ ε′)

]∣∣].
(8.82)By (8.78) and (8.80), we dedu
e (8.81). Modifying the 
onstant C in (8.81) (have in mindthat C may depend on ǫ but is independent of S and s), we dedu
e that

lim inf
ε→0,ε>0

ε−1

[
VS(γ(s+ ε)) + CR

∫ s+ε

0

|γ′(r)|dr

− VS(γ(s)) − CR

∫ s

0

|γ′(r)|dr
]
≥ 0.

(8.83)A
tually, (8.82) says a little bit more. Sin
e sup|ε′|<|ε| supσ[|[d/dε′](V̂S(s+ε′))|] is bounded in
s in 
ompa
t subsets of (−1, 1) (at least for |ε| small enough), we dedu
e that the fun
tion
VS◦γ is Lips
hitz 
ontinuous and thus 
ontinuous. (Pay attention that the Lips
hitz 
onstantmay depend on S at this stage of the proof.) Indeed, the LHS in (8.82) being bounded frombelow uniformly in s, the points s and s + ε may be ex
hanged, so that the bound holdsfrom above as well.We then dedu
e from (8.83) that the fun
tion s ∈ (−1, 1) 7→ VS(γ(s)) + C

∫ s

0
|γ′(r)|dr isnon-de
reasing.Letting S tend to +∞, we dedu
e that the fun
tion s ∈ (−1, 1) 7→ V (γ(s))+C
∫ s

0
|γ′(r)|dris non-de
reasing. Similarly (i.e. by 
hanging ε into −ε), we 
an prove that the fun
tion

s ∈ (−1, 1) 7→ V (γ(s)) − C
∫ s

0
|γ′(r)|dr is non-in
reasing.To 
omplete the proof of Meta-Theorem 8.1, it remains to 
hoose γ. For some point zsu
h that ψ(z) > ǫ, we 
an set γ(s) = z + sν, s ∈ [−1, 1], for some ν ∈ Cd su
h thatthe 
omplex 
losed ball of 
enter z and of radius |ν| be in
luded in U3. (See the de�ni-tion of U3 in the statement of Proposition 8.13.) Then, V (γ(1)) − V (γ(0)) + C|ν| ≥ 0 and

V (γ(1)) − V (γ(0)) − C|ν| ≤ 0, i.e. |V (z + ν) − V (z)| ≤ C|ν|, the 
onstant C here depend-ing on ǫ. Going ba
k to the 
onne
tion between V and the solution to Monge-Ampère inProposition 6.9, we understand that the solution to Monge-Ampère is Lips
hitz 
ontinuousin every 
ompa
t subset of D. �Unfortunately, the argument fails for the se
ond-order derivatives. The reason is quite sim-ple. Indeed, we wish to apply Proposition 7.9. Repla
ing (ζt)t≥0 by (ηt = [d2/dε2](Ẑs+ε
t ))t≥0in the de�nition of Γ̄

(1)
t , Γ̄

(2)
t and Γ̄

(3)
t in (8.71), the problem is to prove that the result-ing global se
ond-order derivative quantity, denoted by (Γ̄t(ηt))t≥0, satis�es (
ompare with(8.73))

E

[
Γ̄

1/2
t (ηt) exp

(∫ t

0

αLψ(Zs
r )dr

)]
≤ CΓ̄

1/2
0 , t ≥ 0.In some sense, this mat
hes (7.22) in Proposition 7.9.The problem is not to prove ∂Γ̄t(ηt) ≤ α′Lψ(Zs

r )Γ̄t(ηt), t ≥ 0. (The notation (∂Γ̄t(ηt))t≥0has the same meaning as in Proposition 7.9.) Basi
ally, if the inequality is satis�ed for ζt, itis satis�ed for ηt as well: it is su�
ient to repla
e ζt by ηt therein. The problem is somewhere88



else: in Proposition 7.9, the derivative quantity is assumed to be driven by a quadrati
 formequivalent to the Hermitian (Eu
lidean in the real 
ase) one. Obviously, this is not the 
asewhen using (Γ̄t(ηt))t≥0 sin
e (Γ̄
(1)
t )t≥0 in (8.71), whi
h is the derivative quantity we used inthe neighborhood of the boundary, has some singular 
oe�
ient inside: (ψ−1

t )t≥0.9. Proof of the C1,1-Regularity up to the BoundaryWe now 
omplete the proof of Theorem 6.1.In 
omparison with Se
tion 8, Krylov's program 
onsists in introdu
ing an alternativerepresentation of the solution of the Monge-Ampère equation in the neighborhood of theboundary and to asso
iate a new derivative quantity with it, free of any singularities, so thatProposition 7.9 may apply.9.1. Representation Pro
ess on a Zero Surfa
e. The tri
k 
onsists in introdu
ing aparameterized version of Eq. (6.12) in the statement of Proposition 6.9. In what follows, wethus 
onsider the system (with values in Cd × C2)
dZt =

∑

i=1,2

Y i
t σtdB

i
t + atDz̄ψ

∗(Zt)dt,

dY i
t = Dz̄ψ(Zt)σ̄tdB̄

i
t +

1

2
Y i
t Trace

[
atD

2
z,z̄ψ(Zt)

]
dt, t ≥ 0, i = 1, 2,

(9.1)where B1 and B2 denote two independent 
omplex Brownian motion of dimension d. Atthat point of the proof, we don't know whether the pro
ess (Zt)t≥0 stays inside D or not:sin
e ψ is C4 in the neighborhood of D̄, we 
an extend it to the whole Cd into a C4 boundedfun
tion with bounded derivatives. For su
h an extension and for a given initial 
ondition
(Z0, Y0), the above system has lo
ally Lips
hitz 
oe�
ients and is therefore uniquely solvableon some interval [0, τ), τ here standing for a stopping time.In what follows, we set Φ(z, y) = ψ(z) − |y|2 for z ∈ Cd (ψ being extended to the wholespa
e) and y ∈ C2. We prove below that, for Z0 ∈ D, the solution (Zt, Yt)0≤t<τ lives in alevel set of the fun
tion Φ so that it 
an be extended to the whole [0,+∞), i.e. τ = +∞.(Indeed, the level set property says that (Yt)0≤t<τ is bounded by a universal 
onstant.) Todo so, we 
ompute for 0 ≤ t < τ :

dψ(Zt) =
∑

i=1,2

Y i
t Dzψ(Zt)σtdB

i
t +

∑

i=1,2

Ȳ i
t Dz̄ψ(Zt)σ̄tdB̄

i
t

+ 2Dzψ(Zt)atDz̄ψ
∗(Zt)dt+ |Yt|2Trace(atD

2
z,z̄ψ(Zt))dt.

(9.2)Above, |Yt|2 = |Y 1
t |2 + |Y 2

t |2. Now, we write for i ∈ {1, 2} and 0 ≤ t < τ :
d|Y i

t |2 = Y i
t Dzψ(Zt)σtdB

i
t + Ȳ i

tDz̄ψ(Zt)σ̄tdB̄
i
t

+ |Y i
t |2Trace

[
atD

2
z,z̄ψ(Zt)

]
dt+Dzψ(Zt)atDz̄ψ

∗(Zt)dt.
(9.3)As a 
onsequen
e, we obtain that(9.4) d

(
ψ(Zt) − |Yt|2

)
= 0, 0 ≤ t < τ,so that the pro
ess (ψ(Zt) − |Yt|2)0≤t<τ lives on a level set of the fun
tion Φ. Therefore,

(Yt)0≤t<τ is bounded by some universal 
onstant, so that Eq. (9.1) appears as a Lips
hitzsystem. 89



It now remains to understand how the dynami
s of (Z, Y ) are 
onne
ted with the originalones of Z in (6.12). To this end, we set(9.5) Wt =
∑

i=1,2

∫ t

0

( Y i
s

|Ys|
1{|Ys|>0} +

1√
2
1{|Ys|=0}

)
dBi

s, t ≥ 0.Clearly, (Wt)t≥0 is a martingale with values in Cd. A
tually, for any 
oordinates 1 ≤ j, k ≤
d,(9.6) d[W j

tW
k
t ] = 0, d[W j

t W̄
k
t ] = δj,kdt,where δj,k stands for the Krone
ker symbol. Following Footnote (12), (Wt)t≥0 is a 
omplexBrownian motion of dimension d. Moreover, (9.5) implies(9.7) |Yt|dWt =

∑

i=1,2

Y i
t dB

i
t, t ≥ 0.Choose now Z0 ∈ D and Y0 ∈ C2 su
h that ψ(Z0) = |Y0|2. By (9.4), ψ(Zt) = |Yt|2 for any

t ≥ 0 so that (9.7) has the form
ψ1/2(Zt)dWt =

∑

i=1,2

Y i
t dB

i
t, t ≥ 0.In parti
ular, (Zt)t≥0 satis�es(9.8) dZt = ψ1/2(Zt)σtdWt + atDz̄ψ
∗(Zt)dt, t ≥ 0,i.e. (6.12). Clearly, Eq. (9.8) says that Proposition 6.7 applies to (Zt)t≥0, that is (Zt)t≥0 doesnot leave D, and that we 
an use the parameterized version (9.1) of (6.12) in Proposition6.9. (See Footnote (13) as well.) When doing so, the representation formula holds at somepoint z ∈ D: it is the initial 
ondition of Z. However, we stress out that the right initial
ondition of Eq. (9.1) is the 
omplete initial 
ondition of the pair (Z, Y ): given the startingpoint of Z, the starting point of Y is 
hosen in su
h a way that (Z0, Y0) is a zero of Φ.Here is a possible 
hoi
e:Proposition 9.1. Let γ = (γ0, γ1) be a smooth path from [−1, 1] into D× C2 su
h that, forany s ∈ [−1, 1], Φ(γ(s)) = 0, where Φ(z, y) = ψ(z) − |y|2, z ∈ D, y ∈ C2. Then, for any

s ∈ [−1, 1], the solution (Zs
t , Y

s
t )t≥0 to

dZs
t =

∑

i=1,2

(Y s
t )iσtdB

i
t + atDz̄ψ

∗(Zs
t )dt,

d(Y s
t )i = Dz̄ψ(Zs

t )σ̄tdB̄
i
t +

1

2
(Y s

t )iTrace
[
atD

2
z,z̄ψ(Zs

t )
]
dt, t ≥ 0, i = 1, 2,with (Zs

0 , Y
s
0 ) = γ(s) as initial 
ondition, stays in the zero surfa
e of Φ. (Above, (B1

t )t≥0 and
(B2

t )t≥0 stand for two independent 
omplex Brownian motions of dimension d.)Moreover, the value fun
tion V in Proposition 6.9 may be represented at point γ(s) as thesupremum of V σ(γ(s)) obtained by plugging the above 
hoi
e for (Zs
t )t≥0 into the de�nitionof Proposition 6.9.A possible 
hoi
e for γ is γ0(s) = z+sν, z ∈ D and ν ∈ Cd \{0} (su
h that B(z, |ν|) ⊂ D)and γ1 = (γ1,1, γ1,2) solution of the ODE(9.9) γ̇1,1(s) = γ̄−1

1,1(s)Dzψ(γ0(s))ν, γ̇1,2(s) = 0, s ∈ [−1, 1],90



with |γ1,1(0)|2 = ψ(z) and γ1,2(0) = 0.Proof. The �rst part of the statement has been already proven. Turn now to the ODE (9.9).It is solvable on a short time interval around zero as soon as γ1(0) is non zero. A
tually, asimple 
omputation shows that, in the neighborhood of 0,
d
[
|γ1,1(s)|2 − ψ(γ0(s))

]

ds
= 2Re

[
Dzψ(γ0(s))ν

]
− 2Re

[
Dzψ(γ0(s))ν

]
= 0,so that |γ1,1(s)|2 = ψ(γ0(s)) for s in the neighborhood of 0. As ψ(γ0(s)) doesn't vanish for

s ∈ [−1, 1], γ1 may be de�ned on the whole [−1, 1] (at least). �Below, the obje
tive is to 
ompute the derivatives of the pair (Zs
t , Y

s
t )t≥0 and to 
onsidera suitable derivative quantity for it. Spe
i�
ally, we emphasize that the situation is di�er-ent from the original one in Proposition 6.9: here, the 
oe�
ients of the SDE of the pair

(Zs
t , Y

s
t )t≥0 are smooth up to the boundary. (Be
ause of the exponent 1/2 in ψ, they are notin the original Proposition 6.9.)9.2. Example: Estimate on a Ball. To explain how things work, we �rst fo
us on thespe
i�
 
ase when the domain is a ball, say the ball of 
enter 0 and radius R. In su
h a 
ase,we may 
hoose ψ(z) = R2 − |z|2 so that Eq. (6.12) has the form(9.10) dZt =

[
R2 − |Zt|2

]1/2
σtdBt − atZtdt,with Z0 = z ∈ B(0, R) = {z′ ∈ Cd : |z′|2 < R2}.We then apply Proposition 9.1 with Φ(z, y) = ψ(z) − |y|2 = R2 − |z|2 − |y|2, z ∈ B(0, R)and y ∈ C2. The parameterized version (9.1) of (9.10) has the form:

dZt =
∑

i=1,2

Y i
t σtdB

i
t − atZtdt

dY i
t = −〈Zt, σ̄tdB̄i

t〉 −
1

2
Y i
t dt, i = 1, 2,

(9.11)where (B1
t )t≥0 and (B2

t )t≥0 are two independent Brownian motions with values in Cd.We are now in position to 
omplete the analysis on a ball. To do so, we 
ompute thederivatives of the pair (Z, Y ): spe
i�
ally, we initialize the pair at some γ(s), s in theneighborhood of zero and for some 
urve γ on a level set of Φ. (Choose for example γ as in(9.9).) The resulting pair (Z, Y ) is denoted by (Zs, Y s) as above. The derivative pro
ess isdenoted by (ζst , ̺
s
t ). It is understood as ξs with the notations of Theorem 7.2. Eq. (9.11)being linear, Theorem 7.2 applies and we obtain:

dζst =
∑

i=1,2

(̺st )
iσtdB

i
t − atζtdt

d(̺st)
i = −〈ζt, σ̄tdB̄i

t〉 −
1

2
(̺st )

idt, i = 1, 2.Have in mind that d(|Zt|2 + |Yt|2) = d(−R2 + |Zt|2 + |Yt|2) = d[−ψ(Zt)+ |Yt|2] = 0. Similarly,the pair (ζst , ̺
s
t )t≥0 satis�es

d
(
|ζst |2 + |̺st |2

)
= 0.In 
omparison with De�nition 7.6, this means that the derivative quantity is zero, i.e.

dΓst = 0, t ≥ 0,91



with Γst = |ξst |2 = |ζst |2 + |̺st |2. In parti
ular,
exp

(
−

∫ t

0

csds

)
|ξst |2 = exp(−t)|ξs0|2,where ct = −Trace[atD

2
z,z̄ψ(Zt)] = 1.We then re
over the 
on
lusion of Proposition 8.13 but the 
onstant C in (8.73) we nowobtain is independent of the distan
e from γ to the boundary ∂D. Moreover, the matrix Ain Proposition 7.9 is simply the identity matrix so that a similar bound is expe
ted for thesquare-root of the se
ond-order derivative quantity. This makes the whole di�eren
e withSe
tion 8.9.3. Perturbed Version. Obviously, the 
ase of the ball is very spe
i�
. In the general
ase, we go ba
k to the perturbation strategy developed in Se
tion 8 but for the pair (Z, Y )solution of (9.1).Spe
i�
ally, we 
onsider a C2 
urve γ : s ∈ [−1, 1] 7→ γ(s) su
h that Φ(γ(s)) = 0 for any

s ∈ [−1, 1]. For a given (�xed) s ∈ (−1, 1) and for ε in the neighborhood of 0, we denote by
(Zs+ε

t , Y s+ε
t )t≥0 the solution of24

dZs+ε
t =

∑

i=1,2

(Y s+ε
t )i exp(pεt)σtdB

i
t + exp(pεt )at exp(−pεt )D∗

z̄ψ(Zs+ε
t )dt,

d(Y s+ε
t )i = Dz̄ψ(Zs+ε

t ) exp(p̄εt)σ̄tdB̄
i
t

+
1

2
(Y s+ε

t )iTrace
[
exp(pεt )at exp(−pεt )D2

z,z̄ψ(Zs+ε
t )

]
dt,

t ≥ 0, i = 1, 2,

(9.12)
with the initial 
ondition (Zs+ε

0 , Y s+ε
0 ) = γ(s+ ε)Here, the pro
ess (pεt )t≥0 denotes a ghost parameter with values into the set of anti-Hermitian matri
es, exa
tly as in Eq (8.10). Spe
i�
ally, ps+εt = P (Zs

t , Z
s+ε
t − Zs

t ) as in(8.10) with P as in (8.11). As in Subse
tion 9.1, ψ is here extended to the whole Cd into a
C4 fun
tion with bounded derivatives, so that the above system has Lips
hitz 
oe�
ients onthe whole spa
e and is therefore uniquely solvable for any given initial 
ondition (Z0, Y0).Following the proof of Proposition 9.1, we 
an 
ompute d(ψ(Zs+ε

t )−|Y s+ε
t |2) for any t ≥ 0and prove that it is zero, so that the pro
ess (ψ(Zs+ε

t ) − |Y s+ε
t |2)t≥0 lives on the zero set ofthe fun
tion Φ : (z, y) ∈ D × C2 7→ ψ(z) − |y|2. (In parti
ular, (Zs+ε

t )t≥0 does not leave D.)Here is the analog of Propositions 8.2 and 8.3Proposition 9.2. Let S > 0 be a positive real, φ be a smooth fun
tion from R+ to [0, 1]mat
hing 1 on [0, 1] and 0 outside [0, 2], ǫ > 0 be a small enough real su
h that |Dzψ(z)| > 0for ψ(z) ≤ ǫ and s be some (�nite) stopping time su
h that ψ(Zs
s
) < ǫ. For t := inf{t ≥ s :

ψ(Zs
t ) ≥ ǫ}, 
onsider some pro
ess (Zs+ε

t , Y s+ε
t )0≤t≤t for whi
h ([d/dε](Zs+ε

t )|ε=0)0≤t≤t and
([d2/dε2](Zs+ε

t )|ε=0)0≤t≤t exist and for whi
h the perturbed SDE (9.12) holds from s to t and24For more simpli
ity, we forget the symbol � �̂ used in Subse
tion 8.2.92



de�ne
V̂ σ,s,t
S (s+ ε)

= E

∫
t

s

[
exp

(∫ t

0

Trace[exp(ps+εr )ar exp(−ps+εr )D2
z,z̄ψ(Zs+ε

r )]dr

)

× F
(
det(at), exp(ps+εt )at exp(−ps+εt ), Zs+ε

t

)
φ
( t
S

)]
dt,with ps+εt = P (Zs

t , Z
s+ε
t − Zs

t ), s ≤ t ≤ t, P being given by (8.11).Assume that the di�erentiation operator w.r.t. ε and the expe
tation and integration sym-bols 
an be ex
hanged in the de�nition of V̂ σ,s,t
S . Then, we 
an �nd a 
onstant C > 0,depending on Assumption (A) and on ǫ only (in parti
ular, it is independent of C), su
hthat

∣∣ d
dε

[
V̂ σ,s,t
S (s+ ε)

]∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)[
|ζst | +

∫ t

0

|ζsr |dr
]
dt

]
,where ζst = [d/dε](Zs+ε

t )|ε=0.Similarly,
∣∣ d

2

dε2

[
V̂ σ,s,t
S (s+ ε)

]∣∣

≤ CE

[∫
t

s

exp

(∫ t

0

Trace[arD
2
z,z̄(Z

s
t )]dr

)

×
[
|ηst | + |ζst |2 +

∫ t

0

|ηsr|dr +

∫ t

0

|ζsr |2dr +

(∫ t

0

|ζsr |dr
)2]

dt

]
,where ηst = [d2/dε2](Ẑs+ε

t )|ε=0.9.4. Derivative Quantity. We now prove the analog of Proposition 8.9:Proposition 9.3. Keep the assumption and notation of Proposition 9.2. Then, there existsa positive real ǫ′1 su
h that for 0 < ǫ < ǫ′1, for N = K = ǫ−1/4, for ψ = Nψ0, where ψ0 isthe referen
e plurisuperharmoni
 fun
tion des
ribing D su
h that Trace[aD2
z,z̄ψ

0(z)] ≤ −1,
z ∈ D, for a stopping time s at whi
h ψ(Zs

s
) < ǫ, the derivative quantity obtained byperturbing the 
ontrol parameter as in (9.12)

Γ̄
(1)
t = exp

(
−Kψ(Zs

t )
)
|ζt|2 + |ρt|2, t ≥ s,with ζt = [d/dε](Zs+ε

t )|ε=0 and ρst = [d/dε](Y s+ε
t )|ε=0, satis�es up to time t = inf{t ≥ s :

ψ(Zs
t ) ≥ ǫ}

E

[
exp

(∫ t∧t

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r )]dr

)
Γ̄

(1)
t∧t|Fs

]

≤ exp

(∫
s

0

(1 − δ)Trace[arD
2
z,z̄ψ(Zs

r)]dr

)
Γ̄(1)

s
, t ≥ s,with δ = 1/N = ǫ1/4. 93



Proof. The proof is similar to the one of Proposition 8.9. The derivatives of (Zs+ε
t , Y s+ε

t )t≥0with respe
t to ε at ε = 0 are denoted by
ζt =

d

dε
[Zs+ε

t ]|ε=0, ̺t =
d

dε
[Y s+ε
t ]|ε=0, t ≥ 0.As (Y s+ε

t ) is C2-valued, so is (̺t)t≥0. Below, we denote by (̺1
t )t≥0 and (̺2

t )t≥0 the two
oordinates of (̺t)t≥0. We also use the following notations:
ψt = ψ(Zs

t ), (Lψ)t = Trace
(
atD

2
z,z̄ψ(Zs

t )
)
,

Qtζt =
d

dε

[
P (Zs

t , Z
s+ε
t − Zs

t )
]
|ε=0

, t ≥ 0.Moreover, Id stands for the identity matrix of size d. By Theorem 7.4, the pair (ζt, ̺t)s≤t≤tsatis�es the equation25:
dζt =

∑

i=1,2

[
̺itId + Y i

t Qtζt
]
σtdB

i
t +

[
atDz̄,zψtζt + atDz̄,z̄ψtζ̄t

]
dt

+
[
QtζtatD

∗
z̄ψt − atQtζtD

∗
z̄ψt

]
dt

d̺it =
[(
Dz̄,zψtζt

)∗
+

(
Dz̄,z̄ψtζ̄t

)∗ −Dz̄ψt(Qtζt)
∗
]
σ̄tdB̄

i
t +

1

2
̺itLψtdt

+
1

2
Y i
t

[
Dz(Lψ)tζt +Dz̄(Lψ)tζ̄t

]
dt

+
1

2
Y i
t

[
Trace(QtζtatD

2
z,z̄ψt) − Trace(atQtζtD

2
z,z̄ψt)

]
dt,

s ≤ t ≤ t, i = 1, 2.Using the anti-Hermitian property of Qtζt, we have:
Trace(QtζtatD

2
z,z̄ψt)

= −Trace((Qtζt)
∗a∗t (D

2
z,z̄ψt)

∗)

= −Trace(D2
z,z̄ψtatQtζt) = −Trace(atQtζtD

2
z,z̄ψt), s ≤ t ≤ t.Taking the 
omplex 
onjugate in (8.46), we dedu
e

d̺it = rt|ζt|Dz̄ψtσ̄tdB̄
i
t +

1

2
̺itLψtdt

+ Y i
t Re

[
Dz(Lψ)tζt

]
dt

+ Y i
t Re

[
Trace(QtζtatD

2
z,z̄ψt)

]
dt, s ≤ t ≤ t, i = 1, 2,where (rt)s≤t≤t stands for a generi
 pro
ess s
alar pro
ess bounded in terms of (A) only.(The values of (rt)s≤t≤t may vary from line to line.)25The reader may understand that Theorem 7.4 provides both the form of the equation for the pair

(ζt, ̺t)s≤t≤s and the di�erentiability property of the pro
ess (Zs+ε
t , Y s+ε

t )s≤t≤t w.r.t. ε. Indeed, Eq. (9.1)satis�es the assumption of Theorem 7.4: there is no singular term inside 
ontrary to Eq. (8.1). (Sin
e the
omponent Y is bounded, the 
oe�
ients may be 
onsidered as C2 
oe�
ients with bounded derivatives.)94



We are now in position to 
ompute the norm of the derivative pro
ess ((ζt, ̺t))s≤t≤t.
d|ζt|2 = 2Re〈ζ̄t, atDz̄,zψtζt + atDz̄,z̄ψtζ̄t〉dt

+ 2Re〈ζ̄t, QtζtatD
∗
z̄ψt − atQtζtD

∗
z̄ψt〉dt

+
∑

i=1,2

Trace
[(
̺iId + (Yt

s)iQtζt
)
at

(
¯̺iId − (Ȳt

s
)iQtζt

)]
dt

+ dmt, s ≤ t ≤ t.

(9.13)Similarly,
d|̺t|2 = |̺t|2Lψtdt

+ 2Re
(
〈̺t, Ȳ s

t 〉
)[

Re(Dz(Lψ)tζt) + Re
(
Trace(QtζtatD

2
z,z̄ψt)

)]
dt

+ rtDzψtatD
∗
z̄ψt|ζt|2dt+ dmt, t ≥ 0.

(9.14)In what follows, we follow Se
tion 8 and modify the 
hoi
e of ψ a

ording to the observationwe made therein: for any 
onstant c > 0, cψ is again a plurisuperharmoni
 fun
tion des
ribingthe domain and we denote by ψ0 some 
hoi
e of the plurisuperharmoni
 fun
tion su
h that,for any Hermitian matrix a of tra
e 1 and for any z ∈ D, Trace[aD2
z,z̄ψ

0(z)] ≤ −1. Then, weunderstand ψ as Nψ0 for some free parameter N that will be �xed later on.As a �rst appli
ation, we 
an simplify the form of d|̺t|2, or at least we 
an bound it, for
s ≤ t ≤ t. To this end, have in mind that |ψt| ≤ ǫ for s ≤ t ≤ t so that |Dzψ

0
t | ≥ κ forsome given 
onstant κ > 0 (for s ≤ t ≤ t and for ǫ small enough). Therefore, from (9.14),we 
laim

d|̺t|2

= N |̺t|2Lψ0
t dt+N |̺t||ζt||Y s

t |rtdt+N2|ζt|2E0
t rtdt+ dmt, s ≤ t ≤ t,

(9.15)where (rt)s≤t≤t is a generi
 notation for a pro
ess, bounded by some 
onstant C dependingon (A) and κ only. (The values of (rt)s≤t≤t may vary from line to line.) Above, (ψ0
t )s≤t≤t isunderstood as (ψ0(Zs

t ))s≤t≤t and (E0
t )s≤t≤t stands for (E0

t := 〈D∗
zψ

0
t , atD

∗
z̄ψ

0
t 〉))s≤t≤t.By (8.36),

d|ζt|2 = |̺t|2dt+ |Y s
t ||̺t||ζt|rtdt+ |Y s

t |2|ζt|2rtdt
+N |ζt|2E0

t rtdt+N |ζt|2(E0
t )

1/2rtdt

+ 2
∑

i=1,2

Re
[
〈ζ̄t,

(
̺itId + (Y s

t )iQtζt)σtdB
i
t〉

]
, s ≤ t ≤ t.

(9.16)We now 
onsider the derivative quantity(9.17) Γ̄t = exp(−Kψt)|ζt|2 + |̺t|2, s ≤ t ≤ t.for some 
onstant K > 0 to be 
hosen later on.To 
ompute (dΓ̄t)s≤t≤t, we �rst note that
dψt = 2

∑

i=1,2

(Y s
t )iRe

[
DzψtσtdB

i
t

]
+ 2〈Dzψt, atD

∗
z̄ψt〉dt+ |Y s

t |2Lψtdt,95



so that
d
[
exp(−Kψt)

]

= −2K exp(−Kψt)
∑

i=1,2

Re
[
(Y s

t )iDzψ(Zs
t )σdB

i
t

]

+ [K2|Y s
t |2 − 2K] exp(−Kψt)〈Dzψt, atDz̄ψt〉dt

−K exp(−Kψt)|Y s
t |2Lψtdt

= −2K exp(−Kψt)
∑

i=1,2

Re
[
(Y s

t )iDzψ(Zs
t )σdB

i
t

]

+N2[K2|Y s
t |2 − 2K] exp(−Kψt)E0

t dt

−NK exp(−Kψt)|Y s
t |2Lψ0

t dt, s ≤ t ≤ t.

(9.18)
Therefore, from (9.18) and (9.16),

d
[
exp(−Kψt)|ζt|2

]

= exp(−Kψt)
[
|̺t|2 + |Y s

t ||̺t||ζt|rt + |Y s
t |2|ζt|2rt

+N |ζt|2E0
t rt +N |ζt|2(E0

t )
1/2rt

]
dt

+ |ζt|2 exp(−Kψt)
[
N2[K2|Y s

t |2 − 2K]E0
t −NK|Y s

t |2Lψ0
t

]
dt

+NK exp(−Kψt)
[
|Y s
t ||ζt||̺t|rt + |Y s

t |2|ζt|2rt
]
+ dmt, s ≤ t ≤ t.We are now in position to 
ompute dΓ̄t for s ≤ t ≤ t. To this end, have in mind that

Lψ0
t ≤ −1 and that |Y s

t |2 = ψt ≤ ǫ, s ≤ t ≤ t. Then, applying Young's inequality to theterm N(E0
t )

1/2, the above equation has the form
d
[
exp(−Kψt)|ζt|2

]

≤ exp(−Kψt)
[
|̺t|2 + C(1 + ǫ1/2 + ǫ)|ξt|2 + C(N +N2)|ζt|2E0

t

]
dt

+ |ζt|2 exp(−Kψt)
[
N2[K2ǫ− 2K]E0

t + CNKǫ
]
dt

+NK exp(−Kψt)
[
Cǫ1/2|ξt|2 + Cǫ|ξt|2

]
+ dmt, s ≤ t ≤ t,

(9.19)where |ξt|2 = |ζt|2 + |̺t|2. (A
tually, (ξt)t≥0 must be understood as the derivative pro
ess
(ζt, ̺t)t≥0.) Similarly, from (9.15),(9.20) d|̺t|2 ≤ −N |̺t|2dt+ CNǫ1/2|ξt|2dt+ CN2|ζt|2E0

t dt+ dmt s ≤ t ≤ t.Therefore, assuming ǫ < 1 and N ≥ 1,we dedu
e from (9.19) and (9.20)
dΓ̄t ≤ exp(−Kψt)(1 −N)|̺t|2dt

+ |ξt|2
(
C ′ + C ′Nǫ1/2 + C ′NKǫ1/2

)
dt

+ |ζt|2 exp(−Kψt)N2
[
K2ǫ− 2K + C ′ exp(Kψt)

]
E0
t dt

+ dmt, s ≤ t ≤ t,the 
onstant C ′ depending on C only. (In parti
ular, C ′ is independent of K, N , ǫ, s and t.)Choose now K = ǫ−1/4. We obtain
dΓ̄t ≤ exp(−Kψt)(1 −N)|̺t|2dt+ 2|ξt|2

(
C ′ + C ′Nǫ1/4

)
dt

+ |ζt|2 exp(−Kψt)N2
[
ǫ1/2 − 2ǫ−1/4 + C ′ exp(ǫ1/4)

]
E0
t dt+ dmt.96



Choose ǫ small enough su
h that ǫ1/2 − 2ǫ−1/4 + C ′ exp(ǫ1/4) < 0. Then,
dΓ̄t ≤ exp(−Kψt)(1 −N)|̺t|2dt+ 2|ξt|2

(
C ′ + C ′Nǫ1/4

)
dt+ dmt, s ≤ t ≤ t.Finally for N = ǫ−1/4, we obtain:(9.21) dΓ̄t ≤ 4C ′|ξt|2dt+ dmt ≤ 4C ′ exp(ǫ1/4)Γ̄t + dmt ≤ 12C ′Γ̄t + dmt.The end of the proof is similar to the one of Proposition 8.9. �9.5. Global Derivative Quantity.Proposition 9.4. Let (B1

t )t≥0 and (B2
t )t≥0 be two independent 
omplex Brownian motionsof dimension d, the pair being independent of (Bt)t≥0. Moreover, let ǫ and ǫ4 be as inProposition 8.12, ǫ being less than ǫ′1 in Proposition 9.3 as well, γ0 be a path from [−1, 1]into D and s be a point in (−1, 1) su
h that ψ(γ0(s)) > ǫ.For a given progressively-measurable (w.r.t. the �ltration generated by the triple of pro-
esses (Bt, B

1
t , B

2
t )t≥0) 
ontrol (σt)t≥0 with values in the set of 
omplex matri
es of size d×dsu
h that Trace(σtσ̄

∗
t ) = 1, t ≥ 1, de�ne (Zs

t )t≥0 as follows. Set r0 = 0. Up to time
r1 = {t ≥ 0 : ψt = ψ(Zs

t ) ≤ ǫ4}, de�ne (Zs
t )0≤t≤r1 as the solution of the SDE (8.1) with γ0(s)as initial 
ondition. At time r1, set Y s

r1
= (ψ1/2(Zs

r1
), 0) ∈ C2 and then de�ne (Zs

t , Y
s
t )r1≤t≤r2(with values into D × C2) up to time r2 = {t ≥ r1 : ψt = ψ(Zs

t ) ≥ ǫ/2} as the solution of(9.1). At time r2, de�ne (Zs
t )r2≤t≤r3 up to time r3 = {t ≥ r1 : ψt = ψ(Zs

t ) ≤ ǫ4} as thesolution of the SDE (8.1) and so on. . . , that is(9.22) dZs
t = ψ1/2(Zs

t )σtdBt + atD
∗
z̄ψ(Zs

t )dt, t ∈ [r2k, r2k+1], k ≥ 0,with Zs
0 = γ(s) as initial 
ondition (above, r0 = 0), and

dZs
t =

∑

i=1,2

(Y s
t )iσtdB

i
t + atD

∗
z̄ψ(Zs

t )dt

d
(
Y s
t

)i
= Dz̄ψ(Zs

t )σ̄tdB̄
i
t

+
1

2

(
Y s
t

)i
Trace

[
atD

2
z,z̄ψ(Zs

t )
]
dt, t ∈ [r2k+1, r2k+2], k ≥ 0, i = 1, 2,

(9.23)with Yr2k+1
= (ψ1/2(Zs

r2k+1
), 0) as initial 
ondition.De�ne also (τn)n≥1 as the sequen
e of exit times of the pro
ess (ψ(Zs

t ))t≥0 from the sets
[ǫ/4,+∞), [ǫ4, ǫ] and [0, ǫ/2]. When the pro
ess (ψ(Zs

t ))t≥0 belongs to [ǫ/4,+∞) 
onsiderthe perturbation given by Proposition 8.10; when (ψ(Zs
t ))t≥0 belongs to [ǫ4, ǫ] 
onsider theperturbation given by Proposition 8.11: the perturbation is then given by a pro
ess of theform (Zs+ε

t )r2k≤t≤r2k+1
, with k ≥ 0. When (ψ(Zs

t ))t≥0 belongs to [0, ǫ/2] 
onsider the per-turbation given by Proposition 9.3: the perturbation is then given by a pair of the form
(Zs+ε

t , Y s+ε
t )r2k+1≤t≤r2k+2

, k ≥ 0, with Y s+ε
r2k+1

= (ψ1/2(Zs+ε
r2k+1

), 0) as initial 
ondition. Spe
i�-
ally,
dZs+ε

t = T (Zs
t , Z

s+ε
t − Zs

t )ψ
1/2(Zs+ε

t ) exp
(
P (Zs

t , Z
s+ε
t − Zs

t )
)

× σt
(
dBt +G(Zs

t , Z
s+ε
t − Zs

t )dt
)

+ |T |2(Zs
t , Z

s+ε
t − Zs

t ) exp
(
P (Zs

t , Z
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Z
s+ε
t − Zs

t )
)
D∗
z̄ψ(Zs+ε

t )dt, r2k ≤ t ≤ r2k+1,97



with Zs+ε
0 = γ(s+ ε) as initial 
ondition, and

dZs+ε
t =

2∑

i=1

(Y s+ε
t )idBi

t

+ exp
(
P (Zs

t , Z
s+ε
t − Zs

t )
)
at exp

(
−P (Zs

t , Z
s+ε
t − Zs

t )
)
D∗
z̄ψ(Zs+ε

t )dt

d
(
Y s+ε
t

)i
= Dz̄ψ(Zs+ε

t ) exp
(
P̄ (Zs

t , Z
s+ε
t − Zs

t )
)
σ̄tdB̄

i
t

+
1

2

(
Y s+ε
t

)i
Trace

[
exp

(
P (Zs

t , Z
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Z
s+ε
t − Zs

t )
)
D2
z,z̄ψ(Zs+ε

t )
]
dt,

r2k+1 ≤ t ≤ r2k+2, i = 1, 2,with Y s+ε
r2k+1

= (ψ1/2(Zs+ε
r2k+1

), 0) as initial 
ondition.Above, (P (Zs
t , Z

s+ε
t − Zs

t ))t≥0, (T (Zs
t , Z

s+ε
t − Zs

t ))t≥0, and (G(Zs
t , Z

s+ε
t − Zs

t ))t≥0, standfor the di�erent possible perturbations used in Propositions 8.10, 8.11 and 9.3. Pre
isely,
(P (Zs

t , Z
s+ε
t − Zs

t ))t≥0 is set equal to 0 outside the intervals on whi
h the perturbation ofProposition 8.2 applies, (T (Zs
t , Z

s+ε
t −Zs

t ))t≥0 is set equal to 1 outside the intervals on whi
hthe perturbation of Proposition 8.4 applies and (G(Zs
t , Z

s+ε
t −Zs

t ))t≥0 is set equal to 0 outsidethe intervals on whi
h the perturbation of Propostion 8.7 applies. As a summary, Pi
ture9.4 below is the analog of Pi
ture 8.13

0
ψtε

4
ε4

ε
2

ε

•
Proposition 9.3

Proposition 8.11
Proposition 8.10

•

•

•
•

Figure 9.4. Choi
e of the perturbations with the new representation.Then, the family of pro
esses (Zs+ε
t )t≥0, ε in the neighborhood of 0, is twi
e di�eren-tiable in probability w.r.t. ε at ε = 0, with time 
ontinuous derivatives. Similarly, for ea
h

k ≥ 0, the family of pro
esses (Y s+ε
t )r2k+1≤t≤r2k+2

, ε in the neighborhood of 0, is twi
e di�er-entiable in probability w.r.t. ε at ε = 0, with 
ontinuous derivatives. Moreover, the dynami
sof the derivatives are obtained by di�erentiating (w.r.t. ε) the dynami
s of (Zs+ε
t )t≥0 and

((Y s+ε
t )r2k+1≤t≤r2k+2

)k≥0 formally at ε = 0, as done in the meta-part of Se
tion 8.De�ne then the derivative quantity (Γ̄t)t≥0 as µ2Γ̄
(2)
t , µ3Γ̄

(3)
t in Proposition 8.12 and Γ̄

(1)
tin Proposition 9.3. (In parti
ular, (Γ̄t)t≥0 is left-
ontinuous.) Then, we 
an �nd α ∈ (0, 1),98



depending on (A) and ǫ only, su
h that
E

[
Γ̄t exp

(∫ t

0

αLψrdr

)]
≤ Γ̄0, t ≥ 0.Proof. Di�erentiability properties will be established below. (See Proposition 9.6 below.)In 
omparison with Subse
tion 8.8, the only di�eren
e is here to show that

lim
t→r2k+1+

Γ̄t ≤ Γ̄r2k+1
, lim
t→r2k+

Γ̄t ≤ Γ̄r2k
k ≥ 0.When t→ r2k+, Γ̄t is given by µ2Γ̄

(2)
t , so that, by Proposition 8.12 (re
all that ψr2k

= ǫ/2),
lim

t→r2k+
Γ̄t = µ2Γ̄

(2)
r2k

= µ2 exp(−ǫ−1/4ψr2k
)ψ−ǫ2

r2k
|ζr2k

|2 + 2µ2ǫ
9/4ψ−(1+ǫ2)

r2k
Re2

[
Dzψr2k

ζr2k

]

≤ exp(−ǫ−1/4ψr2k
)|ζr2k

|2 + ψ−1
r2k

Re2
[
Dzψr2k

ζr2k

]
.

(9.24)Now, have in mind that |Y s+ε
r2k

|2 = ψ(Zs+ε
r2k

) so that, by di�erentiation,(9.25) Re
[
Dzψr2k

ζr2k

]
= Re

[
Y 1

r2k
(¯̺r2k

)1
]
+ Re

[
Y 2

r2k
(¯̺r2k

)2
]
.Therefore,(9.26) ∣∣Re

[
Dzψr2k

ζr2k

]∣∣ ≤ |Y 1
r2k
| |̺1

r2k
| + |Y 2

r2k
| |̺2

r2k
| ≤ |Yr2k

||ρr2k
|.Sin
e |Yr2k

| = ψ
1/2
r2k

,
ψ−1

r2k
Re2

[
Dzψr2k

ζr2k

]∣∣ ≤ |̺r2k
|2.From (9.24), we dedu
e

lim
t→r2k+

Γ̄t ≤ exp(−ǫ−1/4ψr2k
)|ζr2k

|2 + ψ−1
r2k

|̺r2k
|2 = Γ̄r2k

.It now remains to prove the bound at time r2k+1. When t → r2k+1+, Γ̄t is given by Γ̄
(1)
t ,i.e.

Γ̄t = exp(−ǫ−1/4ψt)|ζt|2 + |̺t|2.Therefore,(9.27) lim
t→r2k+1+

Γ̄t = exp(−ǫ−1/4ψr2k+1
)|ζr2k+1

|2 + |̺r2k+1
|2.Have in mind that, at time t = r2k+1, Y s+ε

r2k+1
= (ψ1/2(Zs+ε

r2k+1
), 0), so that, by di�erentiation,(9.28) ̺r2k+1

=
(
ψ−1/2

r2k+1
Re

[
Dzψr2k+1

ζr2k+1

]
, 0

)
.We dedu
e that(9.29) lim

t→r2k+1+
Γ̄t = exp(−ǫ−1/4ψr2k+1

)|ζr2k+1
|2 + ψ−1

r2k+1

∣∣Re
[
Dzψr2k+1

ζr2k+1

]∣∣2.Applying Proposition 8.12 (re
all that ψr2k+1
= ǫ4), we obtain

lim
t→r2k+1+

Γ̄t ≤ µ2Γ̄
(2)
r2k+1

= Γ̄r2k+1
.This 
ompletes the proof. �We dedu
e 99



Corollary 9.5. Keep the notation of Proposition 9.4 and de�ne the se
ond-order derivativesof (Zs+ε
t )r2k≤t≤r2k+1

, k ≥ 0, by setting ηst = [d2/dε2][Zs+ε
t ]|ε=0, for r2k ≤ t ≤ r2k+1, k ≥ 0, andde�ne the se
ond-order derivatives of (Zs+ε

t , Y s+ε
t )r2k+1≤t≤r2k+2

, k ≥ 0, by setting (ηst , π
s
t ) =

[d2/dε2][(Zs+ε
t , Y s+ε

t )]|ε=0, for r2k ≤ t ≤ r2k+1, k ≥ 1.De�ne the analogs of Γ̄
(1)
t , µ2Γ̄

(2)
t and µ3Γ̄

(3)
t , t ≥ 0, i.e.

∆̄
(1)
t = exp

(
−ǫ−1/4ψ(Zs

t )
)
|ηt|2 + |πt|2,

∆̄
(2)
t = exp(−ǫ−1/4ψt)ψ

−ǫ2

t |ηt|2 + 2ǫ9/4ψ
−(1+ǫ2)
t Re2

[
Dzψtηt

]
,

∆̄
(3)
t = (R2 − |Zt|2)ψ−1

t |ηt|2,for some ǫ as in the statement of Proposition 8.12. De�ne the global se
ond-order deriva-tive quantity (∆̄t)t≥0 as the analog of (Γ̄t)t≥0. (In parti
ular, mention that (∆̄t)t≥0 is left-
ontinuous.)Then, we 
an �nd α ∈ (0, 1) and C > 0, depending on (A) and ǫ only, su
h that
E

[(
∆̄

1/2
t + Γ̄t

)
exp

(∫ t

0

αLψrdr

)]
≤ ∆̄

1/2
0 + CΓ̄0, t ≥ 0.Proof. Following the proof of Proposition 7.9, we 
an prove that on ea
h [τn, τn+1), n ≥ 0,with τ0 = 0 and (τn)n≥1 as in Proposition 9.4, and for any a > 0,(9.30) d

[
exp

(∫ t

0

αLψrdr

)(
a+ ∆̄t + Γ̄2

t

)1/2
]
≤ CΓ̄t exp

(∫ t

0

αLψrdr

)
dt.The proof of (9.30) relies on two points. First, what is 
alled (∂Γ̄t(X

s
t , (η

s
t , π

s
t )))t≥0 in thestatement of Proposition 7.9 (or equivalently (∂∆̄t)t≥0 with the 
urrent notation) satis�esthe same bound as (∂Γ̄t)t≥0. Pre
isely, (∂Γ̄t)t≥0 
orresponds to the dt term obtained bydi�erentiating the form (Γ̄t)t≥0 and then by repla
ing (ζst , ̺

s
t )t≥0 therein by (ηst , π

s
t )t≥0. Inthe 
urrent 
ase, we know that ∂Γ̄t ≤ αLψtΓ̄t for any t ∈ (τn, τn+1) and for any possible valuesof the pair (ζst , ̺

s
t )τn≤t≤τn+1

. Repla
ing (ζst , ̺
s
t )τn≤t≤τn+1

by (ηst , π
s
t )τn≤t≤τn+1

, we dedu
e that
∂∆̄t ≤ αLψt∆̄t for any t ∈ (τn, τn+1). Se
ond, the proof of (9.30) relies on the equivalen
e ofthe quadrati
 form driving (Γ̄t)t≥0 and (∆̄t)t≥0 and the 
urrent Hermitian form: of (
omplex)dimension d for t ∈ (r2k, r2k+1], k ≥ 0, and of (
omplex) dimension d+2 for t ∈ (r2k+1, r2k+2].This equivalen
e makes the di�eren
e between Se
tions 8 and 9.As a 
onsequen
e of (9.30), we only need to 
he
k the boundary 
onditions to re
over thestatement, i.e. we only need to prove that limt→τn+ ∆̄t ≤ ∆̄τn .If τn is di�erent from some rk, the result follows from Proposition 8.12.If τn is equal to some r2k, we follow (9.24). (Keep in mind that ∆̄t is given by ∆̄

(2)
t as

t → r2k+ and by ∆̄
(1)
t as t → r2k−.) The point is to bound ψ−1

r2k
Re2[Dzψr2k

ηr2k
] in terms of

|πr2k
|2. We have the analog of (9.25), but with quadrati
 �rst-order terms in addition, i.e.(9.31) Re

[
Y 1

r2k
(π̄r2k

)1
]
+ Re

[
Y 2

r2k
(π̄r2k

)2
]

= Re
[
Dzψr2k

ηr2k

]
+O

(
|ζr2k

|2 + |̺r2k
|2

)
.(Here, the 
onstants in the Landau notation O(. . . ) only depend on (A).) As in (9.26), wededu
e that

ψ−1
r2k

Re2
[
Dzψr2k

ηr2k

]
≤ |πr2k

|2 +O
(∣∣Re

[
Dzψr2k

ηr2k

]∣∣(|ζr2k
|2 + |̺r2k

|2
))

+O
(
|ζr2k

|4 + |̺r2k
|4

)
.
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(Here, the Landau term O(. . . ) may depend on ǫ as well. Indeed, ψr2k
= ǫ/2.) As a
onsequen
e, for any small a > 0, we 
an write

ψ−1
r2k

Re2
[
Dzψr2k

ηr2k

]

≤ |πr2k
|2 + aψ−1

r2k
Re2

[
Dzψr2k

ηr2k

]
+ (1 + a−1)O

(
|ζr2k

|4 + |̺r2k
|4

)
.By Proposition 8.12, we then dedu
e that (re
all that ∆̄t is given by ∆̄

(2)
t as t→ r2k+)

lim
t→r2k+

∆̄t

= µ2 exp(−ǫ−1/4ψr2k
)ψ−ǫ2

r2k
|ηr2k

|2 + 2µ2ǫ
9/4ψ−(1+ǫ2)

r2k
Re2

[
Dzψr2k

ηr2k

]

≤ exp(−ǫ−1/4ψr2k
)|ηr2k

|2 + ψ−1
r2k

Re2
[
Dzψr2k

ηr2k

]

−
(
1 − 2ǫ9/4

)
ψ−1

r2k
Re2

[
Dzψr2k

ηr2k

]

≤ exp(−ǫ−1/4ψr2k
)|ηr2k

|2 + |πr2k
|2 +

(
a− 1 + 2ǫ9/4

)
ψ−1

r2k
Re2

[
Dzψr2k

ηr2k

]

+ (1 + a−1)O
(
|ζr2k

|4 + |̺r2k
|4

)
.Choosing a small enough (in terms of ǫ), we dedu
e that(9.33) lim

t→r2k+
∆̄t ≤ ∆̄r2k

+ C
(
|ζr2k

|4 + |̺r2k
|4

)
.We apply the same strategy when t→ r2k+1+. (Keep in mind that ∆̄t is given by ∆̄

(1)
t as

t→ r2k+1+ and by ∆̄
(2)
t as t→ r2k+1−.) Following (9.27), we 
laim

lim
t→r2k+1+

∆̄t = exp(−ǫ−1/4ψr2k+1
)|ηr2k+1

|2 + |πr2k+1
|2.Now, as in (9.28),

|πr2k+1
| = ψ−1/2

r2k+1

∣∣Re
[
Dzψr2k+1

ηr2k+1

]∣∣ +O(|ζr2k+1
|2).(Here as well, O(· · · ) may depend on ǫ and ǫ4. Indeed, ψr2k+1

= ǫ4.)In parti
ular, for any small a > 0,
|πr2k+1

|2 ≤ (1 + a)ψ−1
r2k+1

Re2
[
Dzψr2k+1

ηr2k+1

]
+ (1 + a−1)O(|ζr2k+1

|4).Following (9.29) and using Proposition 8.12, we dedu
e (as t→ r2k+1+, ∆̄t is given by ∆̄
(1)
t )

lim
t→r2k+1+

∆̄t

≤ exp(−ǫ−1/4ψr2k+1
)|ηr2k+1

|2 + ψ−1
r2k+1

Re2
[
Dzψr2k+1

ηr2k+1

]

+ aψ−1
r2k+1

Re2
[
Dzψr2k+1

ηr2k+1

]
+ (1 + a−1)O

(
|ζr2k+1

|4
)
.

≤ µ2 exp(−ǫ−1/4ψr2k
)ψ−ǫ2

r2k
|ηr2k

|2 + 2µ2ǫ
9/4ψ−(1+ǫ2)

r2k
Re2

[
Dzψr2k

ηr2k

]

+ aψ−1
r2k+1

Re2
[
Dzψr2k+1

ηr2k+1

]
−

[( ǫ

2ǫ4

)ǫ2 − 1
]
|ηr2k+1

|2

+ (1 + a−1)O
(
|ζr2k+1

|4
)
.Choosing a small enough in terms of ǫ and ǫ4, we dedu
e the analog of (9.33), i.e.(9.34) lim

t→r2k+1+
∆̄t ≤ ∆̄r2k+1

+ C|ζr2k+1
|4.101



From (9.29) and (9.34), we dedu
e that, at least, for any n ≥ 0,
lim
t→τn+

∆̄t ≤ ∆̄τn + CΓ̄2
τn ,the 
onstant C here depending on (A), ǫ and ǫ4, that is(9.35) lim

t→τn+

(
∆̄t + Γ̄2

t

)
≤ ∆̄τn + Γ̄2

τn + CΓ̄2
τn .(Eq. (9.35) must be seen as a version of (7.22).)Inequality (9.35) is not very helpful. To get rid of the term CΓ̄2

τn , we shall add a 
orre
tionto the term (∆̄t + Γ̄2
t )t≥0.Choose indeed a non-negative smooth fun
tion θ with 
ompa
t support in
luded in (0,+∞)su
h that θ(ǫ4) = 1 and θ(ǫ/2) = 3 and 
onsider the pro
esses

Φ̄
(1)
t = ∆̄

(1)
t + (1 + θ(ψt)C)

(
Γ̄

(1)
t

)2
,

Φ̄
(2)
t = ∆̄

(2)
t + (1 + 2C)

(
Γ̄

(2)
t

)2
,

Φ̄
(3)
t = ∆̄

(3)
t + (1 + 2C)

(
Γ̄

(3)
t

)2
, t ≥ 0,and de�ne the global pro
ess (Φ̄t)t≥0 by gathering the three pro
esses above a

ording tothe position of (ψt)t≥0 as done to de�ne (Γ̄t)t≥0 and (∆̄t)t≥0.It is well seen that (9.30) still holds for Φ, i.e.(9.36) d

[
exp

(∫ t

0

αLψrdr

)(
1 + Φ̄t

)1/2
]
≤ CΓ̄t exp

(∫ t

0

αLψrdr

)
dt.It thus remains to 
he
k the boundary 
onditions. When t tends to r2k+, Φ̄t is given by Φ̄

(2)
tand ψt → ǫ/2. Therefore, by (9.35)

lim
t→r2k+

Φ̄t = lim
t→r2k+

Φ̄
(2)
t ≤ ∆̄r2k

+ (1 + 3C)Γ̄2
r2k

= Φ̄(1)
r2k+1

= Φ̄r2k
.Similarly, when t tends to r2k+1+, Φ̄t is given by Φ̄

(1)
t and ψt → ǫ4. Therefore, by (9.35)

lim
t→r2k+1+

Φ̄t = lim
t→r2k+1+

Φ̄
(1)
t ≤ ∆̄r2k+1

+ (1 + 2C)Γ̄2
r2k+1

= Φ̄(2)
r2k+1

= Φ̄r2k+1
.This 
ompletes the proof. �9.6. Proof of the Di�erentiability Properties.Proposition 9.6. Choose 0 < ǫ̌ < ǫ4 < ǫ < min(ǫ0, ǫ

′
1), with ǫ0 as in Proposition 8.12 and

ǫ′1 as in Proposition 9.3, and 
onsider a 
ut-o� fun
tion ϕ1 from Cd into [0, 1] mat
hing
1 on the subset {z ∈ D : ψ(z) ≥ ǫ̌} and vanishing on the subset {z ∈ D : ψ(z) ≤ ǫ̌/2}.Consider another 
ut-o� fun
tion ϕ2 from C to C, mat
hing 1 on {y ∈ C : |y| ≤ r0},
r0 = supz∈D ψ

1/2(z), and vanishing outside {y ∈ C : |y| ≤ 2r0}.102



For any k ≥ 0, de�ne on [r2k, r2k+1], Žε as the solution of
dŽs+ε

t

= T (Zs
t , Ž

s+ε
t − Zs

t )(ϕ1ψ
1/2)(Žs+ε

t ) exp
(
P (Zs

t , Ž
s+ε
t − Zs

t )
)

× σt
(
dBt +G(Zs

t , Ž
s+ε
t − Zs

t )dt
)

+ |T |2(Zs
t , Ž

s+ε
t − Zs

t ) exp
(
P (Zs

t , Ž
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Ž
s+ε
t − Zs

t )
)(
ϕ1D

∗
z̄ψ

)
(Žs+ε

t )dt, r2k ≤ t ≤ r2k+1,

(9.37)
with Žs+ε

0 = γ(s+ε) as initial 
ondition. Above, (P (Zs
t , Ž

s+ε
t −Zs

t ))t≥0, (T (Zs
t , Ž

s+ε
t −Zs

t ))t≥0,and (G(Zs
t , Ž

s+ε
t −Zs

t ))t≥0, stand for the di�erent possible perturbations used in Proposition9.4. Pre
isely, (P (Zs
t , Ž

s+ε
t − Zs

t ))t≥0 is set equal to 0 outside the intervals on whi
h theperturbation of Proposition 9.3 applies, (T (Zs
t , Ž

s+ε
t − Zs

t ))t≥0 is set equal to 1 outside theintervals on whi
h the perturbation of Proposition 8.4 applies and (G(Zs
t , Ž

s+ε
t − Zs

t ))t≥0 isset equal to 0 outside the intervals on whi
h the perturbation of Propostion 8.7 applies.On [r2k+1, r2k+2], de�ne Žs+ε as the �rst 
oordinate of the pair (Žs+ε
t , Y̌ ε

t ) solution of
dŽs+ε

t =

2∑

i=1

ϕ2

[
(Y̌ s+ε

t )i
]
dBi

t

+ exp
(
P (Zs

t , Ž
s+ε
t − Zs

t )
)
at exp

(
−P (Zs

t , Ž
s+ε
t − Zs

t )
)
D∗
z̄ψ(Žs+ε

t )dt

d
(
Y̌ s+ε
t

)i
= Dz̄ψ(Žs+ε

t ) exp
(
P̄ (Zs

t , Ž
s+ε
t − Zs

t )
)
σ̄tdB̄

i
t

+
1

2
ϕ2

[(
Y̌ s+ε
t

)i]
Trace

[
exp

(
P (Zs

t , Ž
s+ε
t − Zs

t )
)

× at exp
(
−P (Zs

t , Ž
s+ε
t − Zs

t )
)
D2
z,z̄ψ(Žs+ε

t )
]
dt,

r2k+1 ≤ t ≤ r2k+2, i = 1, 2,

(9.38)
with Y̌ s+ε

t = ((ϕ1ψ
1/2)(Žs+ε

t ), 0) as initial 
ondition. (Above, ψ is understood as any smoothextension with 
ompa
t support of the original ψ to the whole spa
e Cd. The perturbation
(P (Zs

t , Ž
s+ε
t − Zs

t ))t≥0 is the same as in (9.37).)Then, the pro
ess (Žs+ε
t )t≥0 is twi
e di�erentiable in the mean w.r.t. ε, with time 
ontinu-ous �rst and se
ond order derivatives, and, the pro
ess (

∑
k≥0 Y̌

s+ε
t 1[r2k+1,r2k+2](t))t≥0 is alsotwi
e di�erentiable w.r.t. ε, with time 
ontinuous �rst and se
ond order derivatives on every

[r2k+1, r2k+2], k ≥ 0.Moreover, for any S > 0 and any integer p ≥ 1,(9.39) sup
0<|ε′|<|ε|

sup
σ

E
[

sup
0≤t≤S

(
|ζ̌s+ε′t |p + |η̌s+ε′t |p

)]
< +∞,and(9.40) sup

0<|ε′|<|ε|

sup
σ

E
[
sup
k≥0

sup
r2k+1≤t≤r2k+2,t≤S

(
| ˇ̺s+ε′t |p + |π̌s+ε′t |p

)]
< +∞,and(9.41) lim

ε→0
sup
σ

E
[

sup
0≤t≤S

(∣∣ζ̌s+εt − ζ̌st
∣∣p +

∣∣η̌s+εt − η̌st |p
)]

= 0,103



where ζ̌s+εt = [d/dε][Žs+ε
t ], ˇ̺s+εt = [d/dε][Y̌ s+ε

t ]1[r2k+1,r2k+2](t), and η̌s+εt = [d2/dε2][Žs+ε
t ],

π̌s+εt = [d2/dε2][Y̌ s+ε
t ]1[r2k+1,r2k+2](t), t ≥ 0, k ≥ 0.Proof. We �rst establish di�erentiability in probability. By Theorem 7.4, twi
e di�erentia-bility in probability holds on [0, r1], i.e. (ζ̌s+εt )0≤t≤r1 and (η̌s+εt )0≤t≤r1 exist for any ε in theneighborhood of 0, and, for any S > 0,

lim
ε′→0,ε′ 6=0

sup
0≤t≤S∧r1

{∣∣δε′Žs+ε
t − ζ̌st

∣∣ +
∣∣δε′ ζ̌s+εt − η̌s+εt

∣∣} = 0,in P-probability, i.e. in the sense of (7.7).In parti
ular, in P-probability,
lim

ε′→0,ε′ 6=0

{∣∣δε′Žs+ε
S∧r1

− ζ̌s+εS∧r1

∣∣ +
∣∣δε′ ζ̌s+εS∧r1

− η̌s+εS∧r1

∣∣} = 0,so that we 
an apply Theorem 7.4 again, but on the time interval [r1, r2]∩[0, S], or equivalentlyon [r1, r2∧S] and on the event {r1 ≤ S}. Indeed, the dynami
s of (Žs+ε, Y̌ s+ε) on [r1, r2]∩[0, S]are given by (9.38): Eq. (9.38) satis�es Theorem 7.4. We dedu
e that (ζ̌s+εt , ρ̌s+εt )r1≤t≤r2,t≤Sand (η̌s+εt , π̌s+εt )r1≤t≤r2,t≤S exist and
lim

ε′→0,ε′ 6=0
sup

r1≤t≤r2,t≤S

{∣∣(δε′Žs+ε
t , δε′Y̌

s+ε
t ) − (ζ̌s+εt , ρ̌s+εt )

∣∣

+
∣∣(δε′ ζ̌s+εt , δε′ ρ̌

s+ε
t ) − (η̌s+εt , π̌s+εt )

∣∣} = 0,in P-probability. Then, the pro
edure 
an be applied again but on [r2, r3]∩ [0, S], and so onby indu
tion. This proves that twi
e di�erentiability in probability holds for the pair pro
ess
(Žs+ε

t∧rn
,
∑

k≥0 Y̌
s+ε
t∧rn

1[r2k+1,r2k+2](t∧rn))0≤t≤S , n ≥ 0. Sin
e rn → +∞ a.s., twi
e di�erentiabilityin probability follows on the whole [0, S], for any S > 0. (We emphasize that rn → +∞ a.s.sin
e the pro
ess (ψ(Zs
t ))t≥0 is a.s. 
ontinuous: it 
annot swit
h from ǫ4 to ǫ/2 an in�nitenumber of times on a 
ompa
t set.) Twi
e di�erentiability in the mean will follow from(9.39), (9.40) and (7.10).To prove (9.39), we emphasize that, for any k ≥ 0, we 
an �nd a 
onstant C, independentof ε, γ, k and σ, su
h that, on ea
h [r2k, r2k+1)

26,(9.42) d
[
exp(−Ct)

∣∣ζ̌s+εt

∣∣2p] ≤ dmt, r2k ≤ t < r2k+1,

(mt)r2k≤t<r2k+1
standing for a generi
 martingale term. (The proof is the same as the proofof Corollary 7.5.)Similarly, up to a modi�
ation of the 
onstant C, on ea
h [r2k+1, r2k+2), k ≥ 0,(9.43) d
[
exp(−Ct)

(∣∣ζ̌s+εt

∣∣2p +
∣∣ ˇ̺s+εt

∣∣2p])] ≤ dmt, r2k+1 ≤ t < r2k+2.To gather (9.42) and (9.43), it is su�
ient to 
he
k what happens at boundary times rn,
n ≥ 0. The relationship Y̌ s+ε

r2k+1
= ((ϕ1ψ

1/2)(Žs+ε
r2k+1

), 0) yields
∣∣ ˇ̺s+εr2k+1

∣∣ =
∣∣Re

[
Dz

(
ϕ1ψ

1/2
)
(Žs+ε

r2k+1
)ζ̌s+εr2k+1

]∣∣ ≤ C ′|ζ̌s+εr2k+1

∣∣,for some 
onstant C ′ (independent of ε, γ, k and σ).26Here, we feel simpler to use right-
ontinuous versions of the pro
esses at hand. A
tually, this has aninterest for (ˇ̺s+ε
t )t≥0 only sin
e (ζ̌s+ε

t )t≥0 is 
ontinuous.104



Below, we 
onsider a non-negative smooth fun
tion θ with values in [0, 1], mat
hing 1 in
ǫ4 and 0 in ǫ/2. Then, for any k ≥ 0,

lim
t→r2k+1−

[(
1 + C ′θ

(
ψ(Žs

t )
))∣∣ζ̌s+εt

∣∣2p] ≥
∣∣ζ̌s+εr2k+1

∣∣2p +
∣∣ ˇ̺s+εr2k+1

∣∣2p,

lim
t→r2k+2−

[∣∣ζ̌s+εt

∣∣2p +
∣∣ ˇ̺s+εt

∣∣2p] ≥
∣∣ζ̌s+εr2k+2

∣∣2p =
(
1 + C ′θ

(
ψ(Žs

r2k+2
)
))∣∣ζ̌s+εr2k+2

∣∣2p.
(9.44)Indeed, ψ(Žs

r2k+1
) = ǫ4 and ψ(Žs

r2k+2
) = ǫ/2, k ≥ 0. (Obviously, (Žs+ε

t )t≥0 is 
ontinuous intime.) Now, it remains to see that
d
[
exp(−Ct)

(
1 + C ′θ

(
ψ(Žs

t )
))∣∣ζ̌s+εt

∣∣2p] ≤ dmt, r2k ≤ t < r2k+1, k ≥ 0,for a possibly new value of C. (This follows from It�'s formula.)Set �nally
Mp

t :=

{
exp(−Ct)

(
1 + C ′θ

(
ψ(Žs

t )
))∣∣ζ̌s+εt

∣∣2p, r2k ≤ t < r2k+1,

exp(−Ct)
(∣∣ζ̌s+εt

∣∣2p +
∣∣ ˇ̺s+εt

∣∣2p), r2k+1 ≤ t < r2k+2,
, k ≥ 0.Then, for any n ≥ 0, t 7→ E[Mt∧rn

] is non-in
reasing. (Use the martingale property and(9.44)). This proves the part related to the �rst-order derivatives in (9.39) and (9.40), butwith the supremum outside the expe
tation. To get the supremum inside the expe
tation,we 
an use so-
alled Doob's inequality. It says that, for any square integrable progressively-measurable pro
ess (Ht)0≤t≤S with values in Cd,
E

[
sup

0≤t≤S

∣∣∣∣
∫ t

0

〈Hs, dBs〉
∣∣∣∣
2]

≤ cE

∫ S

0

|Ht|2dt,for some universal c > 0. We then 
hoose (mt)0≤t≤S for (
∫ t

0
〈Hs, dBs〉)0≤t≤S. We noti
e thatthe 
orresponding pro
ess (Ht)0≤t≤S is always bounded by C ′|ζ̌s+ε|2p for t ∈ [r2k, r2k+1]∩[0, S],

k ≥ 0, and by C ′(|ζ̌s+ε|2p + |ρ̌s+ε|2p) for t ∈ [r2k+1, r2k+2]∩ [0, S], k ≥ 0, for some 
onstant C ′independent of ε, γ, k and σ. Using the bounds for (E[M2p
t ])0≤t≤S, (9.39) and (9.40) follow.A similar argument holds for the se
ond-order derivatives (handling the boundary 
onditionby 
onsidering (|ζ̌s+εt |4p)t≥0 as in the proof of Corollary 9.5).We �nally turn to (9.41). It relies on the stability property of SDEs. (See Proposition7.1.) Basi
ally, Proposition 7.1 applies on any interval [rn, rn+1]. By indu
tion, we obtain(9.45) ∀n ≥ 1, lim

ε→0
E
[

sup
0≤t≤S

(∣∣ζ̌s+εt − ζ̌st
∣∣p +

∣∣η̌s+εt − η̌st |p
)
;S ≤ rn

]
= 0.To get the same estimate but on the whole spa
e, we �rst noti
e that(9.46) lim

n→+∞
sup
σ

P{S ≤ rn} = 1.Eq. (9.46) follows from a tightness argument. Sin
e the 
oe�
ients of (Zs
t )t≥0 are bounded,uniformly in σ, the paths of (Zs

t )0≤t≤S are 
ontinuous, uniformly in σ, with large probability:spe
i�
ally, given a small positive real ν, we 
an �nd a 
ompa
t subset K ⊂ C([0, S],Cd),su
h that, for any σ, (Zs
t )0≤t≤S belongs to K with probability greater than 1 − ν. To prove(9.46), it then remains to see that r2n/n is greater than the smallest amount of time (Zs

t )t≥0needs to swit
h from ǫ4 to ǫ/2: 
learly, on [0, S], this smallest amount of time is 
ontrolledfrom below in terms of the modulus of 
ontinuity of (Zs
t )0≤t≤S only. In parti
ular, when105



(Zs
t )0≤t≤S belongs to K, S must be less than r2n for n larger than some n0, n0 depending on

K ans S only.In parti
ular,
lim

n→+∞
sup
σ

P{S > rn} = 0.By (9.39), (9.40) and Cau
hy-S
hwarz inequality,(9.47) lim
n→+∞

sup
σ

E
[

sup
0≤t≤S

(
| ˇ̺s+ε′t |p + |π̌s+ε′t |p

)
;S > rn

]
= 0,uniformly in ε′ in a neighborhood of 0.By (9.45) and (9.47), we 
omplete the proof of (9.41).

�We are now in position to just�ty the meta-statements:Corollary 9.7. Keep the assumption and notation of Propositions 9.4 and 9.6. Then, forany S > 0 and for ǫ̌ as in Proposition 9.6, there exist a des
reasing sequen
e of positive reals
(εn)n≥1, a 
ountable family of in
reasing events (Ωn)n≥1 (i.e. Ωn ⊂ Ωn+1, n ≥ 1), su
h that
P(Ωn) → 1 as n→ +∞, and 
ontinuous pro
esses ((ζs+εt )0≤t≤S, ((ρ

s+ε
t )r2k+1≤t≤r2k+2,t≤S)k≥0)|ε|<ε0and ((ηs+εt )0≤t≤S, ((π

s+ε
t )r2k+1≤t≤r2k+2,t≤S)k≥0)|ε|<ε0 su
h that, for any n ≥ 1, ((Zs+ε

t )0≤t≤S)|ε|<εnis twi
e di�erentiable in probability on the event Ωn, with ((ζs+εt )0≤t≤S)|ε|<εn
and ((ηs+εt )0≤t≤S)|ε|<εnas �rst and se
ond order derivatives, that is, with the notations of Theorem 7.4,

∀ε ∈ (−εn, εn), ∀ν > 0, lim
ε′→0,ε′ 6=0

P
{

sup
0≤t≤S

∣∣δε′Zs+ε
t − ζs+εt

∣∣ > ν,Ωn

}
= 0,

lim
ε′→0,ε′ 6=0

P
{

sup
0≤t≤S

∣∣δε′ζs+εt − ηs+εt

∣∣ > ν,Ωn

}
= 0,and, for every k ≥ 0 and n ≥ 1, the family ((Y s+ε

t )r2k≤t≤r2k+1,t≤S)|ε|<εn
is twi
e di�erentiablein probability on Ωn, with ((ρs+εt )r2k≤t≤r2k+1,t≤S)|ε|<εn

and ((πs+εt )r2k≤t≤r2k+1,t≤S)|ε|<εn
as �rstand se
ond order derivatives.Moreover, on ea
h Ωn, the dynami
s of the pro
esses ((ζs+εt )0≤t≤S)|ε|<εn

and ((ηs+εt )0≤t≤S)|ε|<εnare obtained by di�erentiating w.r.t. ε the dynami
s of ((Zs+ε
t )0≤t≤S)|ε|<εn

formally, as donein the meta-part of Se
tion 8. The same holds for the pro
esses ((ρs+εt )r2k+1≤t≤r2k+2,t≤S)k≥0)|ε|<εnand ((πs+εt )r2k+1≤t≤r2k+2,t≤S)k≥0)|ε|<εn
.Finally, a.s.,

ζst =
d

dε

[
Žs+ε
t

]
|ε=0

, ηst =
d2

dε2

[
Žs+ε
t

]
, t ≥ 0,

ρst =
d

dε

[
Y̌ s+ε
t

]
|ε=0

, πst =
d2

dε2

[
Y̌ s+ε
t

]
, r2k+1 ≤ t ≤ r2k+2, k ≥ 0.

(9.48)Before we make the proof, we emphasize the following: the reader may worry about theproperties of di�erentiability of the pro
esses (Zs+ε
t )t≥0 and ((Y s+ε

t )r2k≤t≤r2k+1
)k≥0 at ε = 0.Indeed, we here dis
ussed the notion of di�erentiability in probability only whereas we usedthe notion of di�erentiability in the mean in the meta-statements of Se
tion 8. The reasonis the following: all the di�erentiations we perform below under the symbol E hold on thefamilies (Žs+ε

t )t≥0 and ((Y̌ s+ε
t )r2k≤t≤r2k+1

)k≥0 only, so that di�erentiability in the mean of106



(Zs+ε
t )t≥0 and ((Y s+ε

t )r2k≤t≤r2k+1
)k≥0 is useless. By Proposition 9.6, the families (Žs+ε

t )t≥0and ((Y̌ s+ε
t )r2k≤t≤r2k+1

)k≥0 are known to be di�erentiable in the mean.Proof. For an arbitrary ǫ̌ as in the statement of Proposition 9.6 we know that (Zs
t )t≥0and (Žs

t )t≥0 
oin
ide. (Cut-o� fun
tions mat
h 1 be
ause of the stopping times.) Similarly,
((Y s

t )r2k+1≤t≤r2k+2
)k≥0 and ((Y̌ s

t )r2k+1≤t≤r2k+2
)k≥0 
oin
ide.By Theorem 7.2, we know that the mappings ((t, ε) ∈ R+ × [−ε0, ε0] 7→ Žs+ε

t are on
e-
ontinuously di�erentiable for every ǫ̌ as in Proposition 9.6. (Here ε0 stands for a smallenough positive real su
h that [s− ε, s+ ε] ⊂ [−1, 1]). In parti
ular, they are 
ontinuous, sothat sup|ε′|<ε sup0≤t≤S |Žs+ε′

t − Žs
t | tends to 0 a.s. as ε tends to 0. Therefore, we 
an �nd εnsmall enough su
h that the event

Nn :=
{

inf
|ε′|<εn

inf
k≥0

inf
r2k≤t≤r2k+1,t≤S

ψ(Žs+ε′

t ) ≤ ǫ̌
}
,has probability less than 1/n.Set Ωn = (Nn)

∁ so that P(Ωn) ≥ 1 − 1/n. On Ωn, (Žs+ε
t )0≤t≤S 
oin
ide with (Zs+ε

t )0≤t≤Sand ((Y s+ε
t )r2k+1≤t≤r2k+2,t≤S)k≥0 
oin
ide with the pro
ess ((Y̌ s+ε

t )r2k+1≤t≤r2k+2,t≤S)k≥0 for any
ε ∈ (−εn, εn). (Indeed, on ea
h [r2k, r2k+1]∩ [0, S], k ≥ 0, the pro
ess (ψ(Zs+ε

t ))r2k≤t≤r2k+1,t≤Sis above ǫ̌ so that ϕ1(Ž
s+ε
t ) in (9.37) and in the initial 
ondition of (9.38) mat
hes 1. As a
onsequen
e, on ea
h [r2k+1, r2k+2]∩ [0, S], k ≥ 0, |Y̌ s+ε

t |2 = ψ(Žs+ε
t ).) Twi
e di�erentiabilityin probability of (Zs+ε

t )0≤t≤S on Ωn easily follows.We now 
he
k that, on ea
h Ωn, n ≥ 1, the dynami
s of the derivatives of (Žs+ε
t )0≤t≤Sw.r.t. ε ∈ (−εn, εn) are obtained by di�erentiating the dynami
s of (Zs+ε

t )0≤t≤S formally.This is well-seen sin
e the dynami
s of the derivatives of (Žs+ε
t )0≤t≤S are obtained by di�er-entiating the dynami
s of (Zs+ε

t )0≤t≤S formally and sin
e the 
ut-o� fun
tions ϕ1 and ϕ2 inthe dynami
s of (Žs+ε
t )0≤t≤S mat
h 1 on Ωn.In parti
ular, on ea
h Ωn, n ≥ 1, the derivatives of (Zs+ε

t )0≤t≤S at ε = 0 and the derivativesof (Žs+ε
t )0≤t≤S at ε = 0 
oin
ide. Taking the union over n ≥ 1, this shows that equalityholds almost-surely.A similar argument holds for ((Y s+ε

t )r2k+1≤t≤r2k+2,t≤S)k≥0.
�

9.7. Di�erentiability under the symbol E. We now 
laimProposition 9.8. With the 
hoi
e made for (Zs
t )t≥0 and (Zs+ε

t )t≥0 in Proposition 9.4, for asmooth path γ from [−1, 1] into {z ∈ D : ψ(z) > ǫ4} and for a given s ∈ [−1, 1], de�ne V̂ σ
S ,

V σ
S and V as in Proposition 8.14. Then, the 
on
lusion of Proposition 8.14 is still true.Sket
h of the Proof. The proof follows the argument used to establish Proposition 9.1.(See (9.4), (9.5), (9.6) and (9.7).) 107



Consider (Zs
t )t≥0 and de�ne the pro
ess

Wt =
∑

n≥0

(∫ t

0

1{r2n≤r<r2n+1}dBr

)

+
∑

i=1,2

∑

n≥0

(∫ t

0

1{r2n+1≤r<r2n+2}

( Y i
r

|Yr|
1{|Yr |>0} +

1√
2
1{|Yr|=0}

)
dBi

r

)
,

t ≥ 0.Then, (Wt)t≥0 is a 
omplex Brownian motion of dimension d. Moreover,
dZs

t = ψ1/2(Zs
t )dWt + atD

∗
z̄ψ(Zs

t )dt, t ≥ 0.Therefore, for (Zs
t )t≥0, everything works as in Proposition 8.14 but with (Bt)t≥0 repla
ed by

(Wt)t≥0.A similar argument holds for (Zs+ε
t )t≥0 w.r.t. some (W ε

t )t≥0 (obtained in a similar way).To do so, we emphasize that (〈Ḡ(Zs
t , Z

s+ε
t −Zs

t ), dBt〉)t≥0 in (8.77) is equal to (〈Ḡ(Zs
t , Z

s+ε
t −

Zs
t ), dW

ε
t 〉)t≥0 sin
e G is set equal to 0 on [r2n+1, r2n+2], n ≥ 0.

�We now dedu
eProposition 9.9. Keep the assumption and notation of Proposition 9.8 and 
onsider inparti
ular a smooth path γ from [−1, 1] into {z ∈ D : ψ(z) > ǫ4}. Then, there ex-ists a 
onstant C > 0, depending on (A) only, su
h that, for any S > 0, the fun
tion
s ∈ (−1, 1) 7→ VS(γ(s)) + C

∫ s

0
|γ′(r)|dr is non-de
reasing, the fun
tion s ∈ (−1, 1) 7→

VS(γ(s)) − C
∫ s

0
|γ′(r)|dr is non-in
reasing and the fun
tion s ∈ (−1, 1) 7→ VS(γ(s)) +

C
∫ s

0
[(s− r)(|γ′(r)|2 + |γ′′(r)|)]dr is 
onvex.Proof. It is su�
ient to �nd some 
onstant C, depending on (A) only, su
h that for any

s ∈ (−1, 1),
lim
ε→0

VS(γ(s+ ε)) − VS(γ(s))

|ε| ≥ −C|γ′(s)|,

lim
ε→0

VS(γ(s+ ε)) + VS(γ(s− ε)) − 2VS(γ(s))

ε2
≥ −C

(
|γ′(s)|2 + |γ′′(s)|

)
,

(9.49)and to prove that VS ◦ γ is 
ontinuous. To do so, we �rst 
laim:Lemma 9.10. Choose ǫ = min(ǫ0, ǫ
′
1)/2, with ǫ0 as in Proposition 8.12 and ǫ′1 as in Propo-sition 9.3.De�ne

p̌εt = P (Zs
r , Ž

s+ε
r − Zs

r ), τ̌
ε
t = T (Zs

r , Ž
s+ε
r − Zs

r),

Ξ̌εt = G(Zs
r , Ž

s+ε
r − Zs

r), t ≥ 0.108



For a given smooth 
ut-o� fun
tion ρ with values in [0, 1] mat
hing the identity on [1/2, 3/2]and vanishing outside a 
ompa
t subset, set as well
V̌ σ
S (s+ ε)

= E

∫ +∞

0

[
ρ

(
exp

(
−

∫ t

0

2Re
[
〈 ¯̌Ξεr, dBr〉

]
−

∫ t

0

|Ξ̌εr|2dr
))

× exp

(∫ t

0

|τ̌ εr |2Trace[exp(p̌εr)ar exp(−p̌εr)D2
z,z̄ψ(Žs+ε

r )]dr

)

× F
(
det(at), exp(p̌εt )at exp(−p̌εt ), Žs+ε

t

)
φ
(Ťε

t

S

)]
|τ̌ εt |2dt,

(9.50)
with [d/dt](Ťε

t) = (τ̌ εt )
2, t ≥ 0.Then, supσ[V̌

σ
S (s)] = VS(γ(s)) and, for ε in the neighborhood of 0, supσ[V̌

σ
S (s + ε)] ≤

VS(γ(s+ ε)) + Cε3, for a 
onstant C depending on (A) and S only.Moreover, we 
an �nd a 
onstant C su
h that
lim
ε→0

sup
|ε′|<|ε|

sup
σ

∣∣ d
dε′

[
V̌ σ
S

(
γ(s+ ε′)

)]∣∣

≤ E

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r)]dr

)

×
(
|Γ̄t| +

∫ t

0

(1 + r−1/2)|Γ̄r|dr
)
dt

]
,

(9.51)
and,

lim
ε→0

sup
|ε′|<|ε|

sup
σ

∣∣ d
2

dε′2
[
V̌ σ
S

(
γ(s+ ε′)

)]∣∣

≤ E

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)

×
(
|Γ̄t|2 + |∆̄t| +

∫ t

0

(1 + r−1/2)
(
|Γ̄r|2 + |∆̄r|

)
dr

)
dt

]
.

(9.52)
Finally, for every 
ompa
t interval I ⊂ (−1, 1) and for ε small enough, the quantity

supσ sup|ε′|<|ε|[|(∂/∂ε′)[V̌ σ
S (γ(s + ε′))]|] is uniformly bounded w.r.t. s ∈ I. (Pay attentionthat the de�nition of V̌ σ

S depends on s itself.)End of the Proof of Proposition 9.9. Before we prove Lemma 9.10, we 
omplete theproof of Proposition 9.9. Clearly, by Lemma 9.10
lim
ε→0

VS(γ(s+ ε)) − VS(γ(s))

|ε| ≥ lim
ε→0

1

|ε|
[
inf
σ

(
V̌ σ(s+ ε) − V̌ σ(s)

)]

≥ − lim
ε→0

sup
|ε′|<|ε|

sup
σ

∣∣ d
dε′

[
V̌ σ(s+ ε′)

]∣∣.109



By Lemma 9.10, we dedu
e that
lim
ε→0

VS(γ(s+ ε)) − VS(γ(s))

|ε|

≥ − sup
σ

E

[∫ +∞

0

exp

(∫ t

0

Trace
[
arD

2
z,z̄ψ(Zσ

r )
]
dr

)

×
(
|Γ̄t| +

∫ t

0

(1 + r−1/2)|Γ̄r|dr
)
dt

]
.By Proposition 9.4, we dedu
e that there exists a 
onstant C, depending on (A) only,su
h that the �rst inequality in (9.49) holds. The same strategy holds to prove the se
ondinequality in (9.49).It remains to prove that VS ◦ γ is 
ontinuous. Basi
ally,

VS(γ(s+ ε)) − VS(γ(s)) ≥ sup
σ

[
V̌ σ
S (s+ ε)

]
− sup

σ

[
V̌ σ
S (s)

]
− C|ε|3

≥ −|ε| sup
|ε′|<|ε|

sup
σ

[∣∣∂V̌
σ
S

∂ε′
(s+ ε′)

∣∣] − C|ε|3.Therefore, for any 
ompa
t interval I ⊂ (−1, 1), for ε small enough, we 
an �nd some
onstant C ′ su
h that
VS(γ(s+ ε)) − VS(γ(s)) ≥ −C ′|ε|,when s and s + ε are in I. Ex
hanging the roles of s + ε and s, this proves that VS ◦ γ is
ontinuous. �We now prove Lemma 9.10.Proof of Lemma 9.10. The equality supσ[V̌

σ
S (s)] = VS(γ(s)) is easily taken sin
e V̌ σ

S (s) =

V̂ σ
S (s), with V̂ σ

S as in Proposition 9.8.We now establish the inequality supσ[V̌
σ
S (s+ ε)] ≤ VS(γ(s+ ε))+Cε3. It is well-seen thatall the terms under the integral symbol in (9.50) are bounded by some 
onstant C dependingon (A) and S only.Therefore, for some ǫ′ > 0 to be 
hosen later,

V̌ σ
S (s+ ε)

= E

{∫ +∞

0

[
ρ

(
exp

(
−

∫ t

0

2Re
[
〈Ξ̌εr, dBr〉

]
−

∫ t

0

|Ξ̌εr|2dr
))

× exp

(∫ t

0

|τ̌ εr |2Trace[exp(p̌εr)ar exp(−p̌εr)D2
z,z̄ψ(Žs+ε

r )]dr

)

× F
(
det(at), exp(p̌εt )at exp(−p̌εt ), Žs+ε

t

)
φ
(Ťε

t

S

)]
|τ̌ εt |2dt;

sup
0≤t≤S

|Žs+ε
t − Zs

t | ≤ ǫ′
}

+O
(
P
{

sup
0≤t≤S

|Žs+ε
t − Zs

t | ≥ ǫ′
})
.

(9.53)
(Here, the Landau term O(· · · ) is uniform w.r.t. ε.)110



As long as the pro
ess (|Žs+ε
t − Zs

t |)t≥0 stays below ǫ′, the pro
ess (|ψ(Žs+ε
t )− ψ(Zs

t )|)t≥0stays below some Cǫ′, C depending on ψ only. In parti
ular, we 
an 
hoose ǫ′ small enoughsu
h that Cǫ′ < ǫ̌/2. (See Proposition 9.6 for the de�nition of ǫ̌.)On ea
h [r2k, r2k+1], k ≥ 0, as in Proposition 9.4, the pro
ess (ψ(Zs
t ))r2k≤t≤r2k+1

is above
ǫ4 > 2ǫ̌. Therefore, on ea
h [r2k, r2k+1]∩ [0, S], k ≥ 0, the 
ondition sup0≤t≤S |Žs+ε

t −Zs
t | ≤ ǫ′implies (re
all that a ∧ b stands for min(a, b))

ψ(Žs+ε
t ) > ǫ̌, t ∈ [r2k, r2k+1] ∩ [0, S],so that ϕ1(Ž

s+ε
t ) in (9.37) and in the initial 
ondition of (9.38) mat
hes 1. As a 
onsequen
e,on ea
h [r2k+1, r2k+2] ∩ [0, S], k ≥ 0, the 
ondition sup0≤t≤S |Žs+ε

t − Zs
t | ≤ ǫ′ implies

|Y̌ s+ε
t |2 = ψ(Žs+ε

t ), t ∈ [r2k+1, r2k+2] ∩ [0, S].Finally, under the 
ondition sup0≤t≤S |Žs+ε
t −Zs

t | ≤ ǫ′, pro
esses (Žs+ε
t )0≤t≤S and (Zs+ε

t )0≤t≤Shave the same dynami
s on the whole [0, S].As a 
onsequen
e, the �rst term in (9.53) is less than V̂ σ
S (s + ε). (Use F ≥ 0 to say so.)It thus remains to bound the se
ond term.The idea 
onsists in using Markov inequality. For any p ≥ 1, it says that(9.54) P

{
sup

0≤t≤S
|Žs+ε

t − Zs
t | ≥ ǫ̌/2

}
≤ 2pǫ̌−pE

[
sup

0≤t≤S
|Žs+ε

t − Zs
t |p

]
.Using the stability property for SDEs, see Proposition 7.1, we know that

E
[

sup
0≤t≤S

∣∣Žs+ε
t − Zs

t

∣∣p]

≤ Cεp + CE

∫ S

0

(∣∣Žs+ε
r − Zs

r

∣∣p +
∣∣Y̌ s+ε
r − Y s

r

∣∣p)dr

≤ Cεp
(
1 +

∫ S

0

sup
|ε′|≤ε

E
[∣∣ζ̌s+ε′r

∣∣p +
∣∣ ˇ̺s+ε′r

∣∣p]dr ≤ Cεp.

(9.55)
Plugging the above bound in (9.54) and then in (9.53), we 
omplete the proof of the bound
supσ[V̌

σ
S (s+ ε)] ≤ VS(γ(s+ ε)) + Cε3.The proof of the inequalities (9.51) is now straightforward: it follows from (8.82), (9.39),(9.41) and (9.48):

lim
ε→0

sup
|ε′|<|ε|

sup
σ

∣∣ d
dε

[
V̌ σ

(
γ(s + ε)

)]∣∣

≤ sup
σ

E

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r)]dr

)

×
(
|ζst | +

∫ t

0

|ζsr |dr +

∣∣∣∣
∫ t

0

Re
[
〈Dz′G(Zs

r , 0)ζsr , dBr〉
]∣∣∣∣

)
dt

]
.

(9.56) 111



Following the proof of Proposition 8.8 (and spe
i�
ally using a variant of Lemma 8.527), weobtain
d

dε

[
VS

(
γ(s+ ε)

)]
≤ E

[∫ +∞

0

exp

(∫ t

0

Trace[arD
2
z,z̄ψ(Zs

r )]dr

)

×
(
|Γ̄t| +

∫ t

0

(
1 + r−1/2

)
|Γ̄r|dr

)
dt

]
.

(9.57)The same argument holds for the se
ond-order derivatives.Finally, for every 
ompa
t interval I ⊂ (−1, 1) and for ε small enough, the quantity
supσ sup|ε′|<|ε|[|(∂/∂ε′)[V̌ σ

S (γ(s + ε′))]|] is shown to be uniformly bounded w.r.t. s ∈ I by asimilar argument and by (9.39). �9.8. Final Step. We now 
omplete the proof of Theorem 6.1.Passing to the limit in S → +∞ in Proposition 9.9, we dedu
e that V in Proposition6.9 satis�es the same property as VS, i.e. for any smooth 
urve γ from [−1, 1] into {z ∈
D : ψ(z) > ǫ4}, the fun
tion s ∈ [−1, 1] 7→ V (γ(s)) + C

∫ s

0
|γ′(r)|dr is non-de
reasing,the fun
tion s ∈ [−1, 1] 7→ V (γ(s)) − C

∫ s

0
|γ′(r)|dr is non-in
reasing and the fun
tion s ∈

[−1, 1] 7→ V (γ(s)) + C
∫ s

0
[(s− r)(|γ′′(r)| + |γ′(r)|2)]dr is 
onvex.Choosing γ as a straight path of the form s ∈ [−1, 1] 7→ z + νs, for ψ(z) > ǫ4 and

ν ∈ Cd, with |ν| small enough, we dedu
e that V is Lips
hitz and semi-
onvex away fromthe boundary, i.e. on {z ∈ D : ψ(z) > ǫ4}. In parti
ular, v − g +N0ψ in Proposition 6.9 isLips
hitz and semi-
onvex on {z ∈ D : ψ(z) > ǫ4} as well. By Proposition 6.4 and Remark6.5, v is C1,1 on {z ∈ D : ψ(z) > ǫ4}. Sin
e ǫ4 may be 
hosen as small as desired, we dedu
ethat v is C1,1 in D.We emphasize that the Lips
hitz and semi-
onvexity 
onstants are bounded in terms of(A) only on every 
ompa
t subset. The problem is then to bound the Lips
hitz and semi-
onvexity 
onstants up to the boundary.To do so, we 
onsider a path γ0 from [−1, 1] into {z ∈ D : ψ(z) < ǫ/2}, for the same ǫas in Propositions 9.4 and 9.6. Then, we 
an de�ne (Zs
t )0≤t≤r1 as in (9.23) �rst, i.e. as the�rst 
oordinate of the pair (Zs

t , Y
s
t )0≤t≤r1 , r1 now standing for inf{t ≥ 0 : ψ(Zs

t ) > ǫ/2}. andswit
h to (9.22) from r1 to r2, with r2 = inf{t ≥ r1 : ψ(Zs
t ) < ǫ4}, and so on... Here, Zs

0 is
hosen as γ0(s) and Y s
0 is 
hosen in su
h a way that |Y s

0 |2 = ψ(Zs
0) = ψ(γ(s)). Obviously, we
an apply the same pro
edure for the perturbed pro
ess and �rst 
onsider (Žs+ε

t , Y̌ s+ε
t )0≤t≤r1as in (9.38).The whole question then lies in the 
hoi
e of the initial 
ondition (Žs+ε

0 , Y̌ s+ε
0 ). Surely,we 
hoose Žs+ε

0 as γ0(s + ε) and Y̌ s+ε
0 su
h that |Y̌ s+ε

0 |2 = ψ(Žs+ε
0 ). Assume therefore that

Y̌ s+ε
0 = γ1(s + ε) for some smooth path γ1 de�ned on [−1, 1] su
h that ψ(γ0(s)) = |γ1(s)|2,
s ∈ [−1, 1]. Then, Proposition 9.9 remains true with γ = (γ0, γ1), the proof being exa
tlythe same. In parti
ular, the 
onstant C therein depends on (A) only (and is independent27In Se
tion 8, the pro
ess (ςt)t≥0 in the statement of Lemma 8.5 is understood as (ζs

t )t≥0. Here, ςt, t ≥ 0,is to be understood as ζs
t or (ζs

t , ̺
s
t ) a

ording to the 
ases: t ∈ [r2k, r2k+1[ or t ∈ [r2k+1, r2k+2[, k ≥ 0. Forthis reason, it may be simpler to plug (Γ̄t)t≥0 itself into (ςt)t≥0.However, sin
e it is dis
ontinuous, (Γ̄t)t≥0 does not satisfy the assumption of Lemma 8.5. A
tually, it issu�
ient to apply It�'s formula to ((a+mt + Γ̄t)

1/2)t≥0 on ea
h (r2k, r2k+1), a standing for a small positivereal, and then to 
he
k the boundary 
onditions. In parti
ular, it is useless to lo
alize the proof as done inthe proof of Lemma 8.5 sin
e there is no singulariry anymore in the dynami
s of the derivative pro
esses.112



of the distan
e of γ0 to the boundary). Sin
e V is now known to be C1,1 in D (see Remark6.5), this may be read as
∣∣d[V (γ0(s))]

ds

∣∣ ≤ C|γ′(s)| s ∈ [−1, 1]

∣∣d
2[V (γ0(s))]

ds2

∣∣ ≤ C
(
|γ′(s)|2 + |γ′′(s)|

)
a.e. s ∈ [−1, 1].

(9.58)To obtain the Lips
hitz property up to the boundary, we �x some z with ψ(z) < ǫ/2 andwe 
hoose γ as in Proposition 9.1, i.e. γ = (γ0, γ1) with γ0(s) = z + sν, s ∈ [−1, 1], for
ν ∈ Cd with a small enough norm, and γ1 = (γ1,1, 0), with

(γ1,1)
′(s) = (γ̄1,1)

−1(s)Dzψ(γ0(s))ν |γ1,1(0)|2 = ψ(z), s ∈ [−1, 1].Keep in mind that |γ1,1(s)|2 = ψ(γ0(s)) for s ∈ [−1, 1].Now, 
ompute for a di�erentiable fun
tion w(s):
∣∣d[w(s)ψ(γ0(s))]

ds

∣∣ =
∣∣ψ(γ0(s))

dw

ds
(s) + 2w(s)Re

[
Dzψ(γ0(s))ν

]∣∣.Choose now w = V ◦ γ0 and dedu
e from (9.58) that
∣∣∣∣
d[V (γ0(s))ψ(γ0(s))]

ds

∣∣∣∣

≤ Cψ(γ0(s))
[
|ν| + |γ̄−1

1,1(s)||Dzψ(γ0(s))ν|
]
+ C‖V ‖∞|ν|.Modifying the 
onstant C if ne
essary, we dedu
e that [ψV ](γ0(s)) is Lips
hitz 
ontinuous of
onstant C|ν|. We emphasize that the 
onstant C is independent of the distan
e from z tothe boundary sin
e |ψ(γ0(s))γ̄

−1
1,1 | = ψ1/2(γ0(s)) is bounded. This pro
edure dire
tly appliesto Proposition 6.9: we dedu
e that v − g +N0ψ is Lips
hitz 
ontinous up to the boundary.This is the �rst part in Theorem 8.1.It now remains to investigate the se
ond-order derivatives. To obtain an estimate thatholds up to the boundary, we 
onsider another parameterized 
urve. Let (γa0 , γ

a
1,1) and

(γb0, γ
b
1,1) be two pairs with values in D × R su
h that(9.59) γ̇i0(s) = γi1,1(s)ν, γ̇i1,1(s) = Re

[
Dzψ(γi0(s))ν

]
, i = a, b.(Pay attention that γi1,1 is real-valued.) The initial boundary 
ondition has the form: γi0(0) =

z (with ψ(z) < ǫ/2) and γi1,1(0) = yi0 ∈ R, with yi0 to be 
hosen later on. Clearly, for ea
h
i = a, b, the system is (at least) solvable on a small interval around 0. Now,

d

ds

[
ψ(γi0(s)) − |γi1,1(s)|2

]

= 2Re
[
Dzψ(γi0(s))γ̇

i
0(s)

]
− 2γi1,1(s)Re

[
Dzψ(γi0(s))ν

]

= 0.

(9.60) 113



Now, for wi = V ◦ γi0 and for s in the interval of de�nition of (γi0, γ
i
1,1),

d2

ds2

[
V (γi0(s))

]

= 2
d

ds

{
γi1,1(s)Re

[
DzV (γi0(s))ν

]}

= 2Re
[
Dzψ(γi0(s))ν

]
Re

[
DzV (γi0(s))ν

]
+ |γi1,1(s)|2

[
D2V (γi0(s))

]
(ν),where [D2V (γi0(s))](ν) stands for the a
tion of the se
ond-order derivatives of V at point

γi0(s) on the ve
tor ν28. Choosing s = 0 and making the sum over i = a, b, we obtain:
∑

i=a,b

d2

ds2

[
V (γi0(s))

]
|s=0

= 4Re
[
Dzψ(z)ν

]
Re

[
DzV (z)ν

]

+ (|ya0 |2 + |yb0|2)
[
D2V (z)

]
(ν).The whole tri
k now 
onsists in 
hoosing |ya0 |2 = |yb0|2 = ψ(z)/2 so that

[
D2

(
ψV

)
(z)

]
(ν)

=
[
D2ψ(z)

]
(ν)V (z)

+ 4Re
[
Dzψ(z)ν

]
Re

[
DzV (z)ν

]
+ ψ(z)

[
D2V (z)

]
(ν)

=
[
D2ψ(z)

]
(ν)V (z) +

∑

i=a,b

d2

ds2

[
V (γi0(s))

]
|s=0

.To apply (9.58), we need to spe
ify what the se
ond 
oordinate of ea
h γi1 is. We set
γi1(s) = (γi1,1(s), (ψ(z)/2)1/2) for s in the interval of de�nition of (γi0, γ

i
1,1). By (9.60), itsatis�es ψ(γi0(s)) − |γi1(s)|2 = 0, so that (γi0, γ

i
1), i = a, b, is a zero of the fun
tion Φ(z, y) =

ψ(z)−|y|2. (In parti
ular, γi0 
annot exit from D and the solution to (9.59) may be extendedto the whole [−1, 1]. Indeed, γi1 
annot vanish sin
e γi1,2(s) = (ψ(z)/2)1/2.) We now apply(9.58) (with s in the neighborhood of 0 only). Then, we obtain that D2[ψ(z)V (z)](ν) ≥
−C|ν|2, for some 
onstant C, independent from the distan
e from z to the boundary. Sin
e
ψV = v − g + N0ψ, this proves that the semi-
onvexity 
onstant of v is uniform up to theboundary. By Proposition 6.4, we 
omplete the proof of Theorem 8.1.9.9. Con
lusion. We here paid some pri
e to gather into a single one the two di�erentrepresentations ((Zs

t )r2k≤t<r2k+1
)k≥0 and ((Zs

t )r2k+1≤t<r2k+2
)k≥0 a

ording to the position ofthe pro
ess (Zs

t )t≥0 inside the domain D.A natural way to simplify things 
onsists in 
onsidering the parameterized representation(9.1) in the whole spa
e and in forgetting the original Eq. (8.1). A
tually, this is exa
tlywhat Krylov does in the papers mentioned in the referen
es below.The reason why we here de
ided to split the representation into two pie
es is purelypedagogi
al even if a bit heavy to detail. Indeed, Se
tion 8 exa
tly shows what worksand fails when dealing with the �rst approa
h. In some sense, this may justify in a moreunderstandable way the reason why the parameterized version is the one used by Krylov. Wealso emphasize that the 
omputations performed in Se
tion 8 for the single pro
ess (Zs
t )t≥028That is, D2[V (z)](ν) =

∑d
k,ℓ=1

(D2
zk,zℓ

V (z)νkνℓ +D2
z̄k,zℓ

V (z)ν̄kνℓ +D2
zk,z̄ℓ

V (z)νkν̄ℓ +D2
z̄k,z̄ℓ

V (z)ν̄kν̄ℓ).114



turn out to be really 
umbersome for the pair pro
ess (Zs
t , Y

s
t )t≥0: this is another reasonwhy we kept both representations in the whole proof.Referen
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