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STOCHASTIC ANALYSIS FOR THE COMPLEX MONGE-AMPERE
EQUATION

(AN INTRODUCTION TO KRYLOV’S APPROACH)

FRANCOIS DELARUE

Laboratoire J.-A. Dieudonné, Université de Nice Sophia-Antipolis, Parc Valrose,
06108 Nice Cedex 02, France

We here gather in a single note several original probabilistic works devoted to the analysis
of the CY! regularity of the solution to the possibly degenerate complex Monge-Ampére
equation. The whole analysis relies on a probabilistic writing of the solution as the value
function of a stochastic optimal control problem. Such a representation has been introduced
by Gaveau [3] in the late 70’s and used in an exhaustive way by Krylov in a series of papers
published in the late 80’s up to the final paper [7] in which the Cl!-estimate is eventually
established. All the arguments we here use follow from these seminal works.

Nota Bene. This is an expanded version of the notes I prepared for a series of lectures I
delivered in LATP, Marseille, in december 2009.

1. INTRODUCTION

Background. This Chapter is devoted to the stochastic analysis of the possibly degener-
ate Monge-Ampére equation and specifically to the probabilistic proof of the Cl!-estimate
of the solutions under some suitable assumption.

For a complete review of the stakes of such a result, we refer the reader to Chapters 0 and
1 by V. Guedj and A. Zeriahi: we here focus on the probabilistic counterpart only and keep
silent about the geometric motivations that are hidden behind.

The idea of understanding the complex Monge-Ampére equation from a probabilistic point
of view goes back to the earlier paper by Gaveau [3]| in the late 70’s. Therein, the solution
is shown to write as the value function of a stochastic optimal control problem, i.e. as the
minimal value of some averaged cost computed along the trajectories of different diffusion
processes evolving inside the underlying domain.

In some sense, this representation formula is a compact (or closed) representation formula
that appears as a generalization of the Kolmogorov formula for the heat equation: the so-
lution of the heat equation may be expressed as some averaged value computed along the
trajectories of the Brownian motion. Brownian motion might be understood as follows: at
any given time and at any given position, the diffusive particle at hand moves at random,
independently of the past and in an isotropic way. Actually, Kolmogorov formula extends
to linear (say to simplify purely) second-order partial differential equations with a variable
diffusion coefficient: the solution is then understood as some averaged value computed along
the solution of a differential equation of stochastic type driven by the coefficient of the PDE
at hand. This appears as a stochastic method of characteristics: at any given time and at

any given position, the diffusive particle associated with the stochastic differential equation
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moves at random, independently of the past, but in a non-isotropic way; the most likely
directions are given by the main eigenvectors of the diffusion matrix at the current point.
In the case of Monge-Ampére, the story might read as follows: at any given time and at
any given position, the particle at hand moves at random, independently of the past, and
the diffusion coefficient is chosen among all the possible diffusion coefficient of determinant
1 according to some local optimization criterion or, equivalently, to some local cost.

Purpose of the Note. In his paper, Gaveau managed to derive some Holder continuity
property of the solution to Monge-Ampére from the probabilistic formulation, but the ex-
haustive use of the formula for the analysis of the regularity of the derivatives goes back to
Krylov. The reference paper on the subject is [7]: the solution is shown to be C'' on the
whole domain (i.e. up to the boundary) under some suitable assumption that may include
the degenerate case. Basically, it applies to a much more general framework than the Monge-
Ampeére one: it applies to a general class of Hamilton-Jacobi-Bellman equations, i.e. to a
general class of equations summarizing the dynamics of the value function of some stochastic
optimization problem.

Actually, the paper |7] is not self-contained. It must be seen as the conclusion of a series
of papers initiated in the 80’s: see, among others, [5], [6], [8] and, finally, |[7]. This note is
an attempt to gather in a single manuscript most of the ingredients of the whole proof, at
least in the specific case of Monge-Ampére: from the basic rules of stochastic calculus to the
detailed computations of the final estimate of the first- and second-order derivatives.

However, the proof we here provide is a bit different from the original one and may
appear as less straightforward. In some sense, the objective is here both mathematical
and. .. pedagogical: the idea is both to provide an almost complete and self-contained proof
of the C1! estimate and to explain to the reader the way we are following to reach it.

A Short Review of the Strategy. The arguments used by Krylov have been developed
since the 70’s. Some of them may be found in the seminal work by Malliavin [11] and
[12], even if used differently. In short, Malliavin initiated a program to prove by means
of stochastic arguments only the Sum of Squares Theorem by Hormander: Sum of Squares
Theorem provides some sufficient condition on the Lie algebra generated by the vector fields
of a possibly degenerate diffusion matrix to let the corresponding operator be hypoelliptic.
The program consists in an exhaustive analysis of the stochastic flow generated by the
associated differential equation of stochastic type. (For the purely Laplace operator, the flow
is trivial since the current diffusion process reduces to a Brownian motion plus a starting
point.) A part of the problem is then to investigate the regularity of the flow.

In the current framework, the main idea of Krylov consists in reducing the analysis of the
CH! regularity of the solution to Monge-Ampeére to a long-run analysis of the derivatives of
the flow of the diffusion processes behind. Roughly speaking, the point is to control the first-
and second-order derivatives of the flow both in time and in the optimization parameter. At
first sight, it turns out to be really challenging. By the way, it is in some sense: stated
under this form, the objective may not be reachable. Here is the key-point of the proof:
the required long-run estimate of the derivatives of order one and two of the flow may
be relaxed according to the underlying second-order differential structure. As an example,
the analysis may benefit from some uniform ellipticity (or non-degeneracy) property: when
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applied to a non-degenerate linear second-order partial differential equation instead of the
Monge-Ampeére equation, the original required long-run estimate of the derivatives of the
flow can be relaxed to a much more less restrictive version (and in fact can almost be
cancelled) thanks to the non-degeneracy assumption itself. (The argument is explained in
the note.) In the case of Monge-Ampére, the equation may degenerate, but the analysis
may benefit from the description of the boundary: if the domain is strictly pseudo-convex,
the original required long-run estimate of the derivatives of the flow can be relaxed as well
(but cannot be cancelled); that is, strict pseudo-convexity plays the role of a weak non-
degeneracy assumption. Finally, the analysis may also benefit from the Hamilton-Jacobi-
Bellman formulation, i.e. from the writing of the Monge-Ampére equation as an equation
deriving from a stochastic optimization problem: the structure is indeed kept invariant under
some transformations of the optimization parameters. As explained below, this may also help
to reduce the long-run constraint on the derivatives of the flow.

As mentioned, the way the required long-run constraint on the derivatives of the flow is
relaxed is detailed in the note. At least, we may here specify the keyword only: perturbation.
Indeed, the strategy is common to the Malliavin point of view and consists of a well-chosen
perturbation of the original probabilistic representation. This is a general meta-principle in
stochastic analysis: from a probabilistic point of view, regularity properties are understood
through the reaction of the stochastic system under consideration to an external perturba-
tion.

Maiwn Result. In the end, the result we here prove is the following:

Theorem 1.1. Let (A) stand for the assumption:

e D is a bounded domain of C?, d > 1, described by some C* function 1) in the neigh-
borhood of D, i.e.

D:={zeC’: y(z) > 0}.
o The function 1 is assumed to be plurisuperharmonic in the neighborhood of D, i.e.
Va € Hj : Trace(a) =1, Vz € D, Trace(aD?  ¥(2)) <0,

where H stands for the set of non-negative Hermitian matrices of size d X d.
o The function v is non-singular in the neighborhood of the boundary of D, i.e.

36 >0, V2 € 9D, |D.ab(z)| > 6.

e f and g are two functions of class C? and C* on D with values in Ry and R respec-
tively.

Then, under Assumption (A), there evists a function u from D to R, of class Cb' on
the whole D (i.e. with Lipschitz first-order derivatives on the closure of the domain D),
plurisubharmonic, i.e.

Va € Hj : Trace(a) =1, a.. z € D, Trace(aD? ;u(z)) >0,
and

(1.1) detl/d(Dizu(z)) = % a.e. z€ D, wu(z)=g(z), z €D,
3



i.e. u satisfies the Monge-Ampére equation on D with f¢ (up to some normalizing constant)
as source term and g as boundary condition. (Compare with Chapter 0, Section 1, by V.

Guedy.)

Pay attention that Theorem 1.1 does not recover Theorem 1.3.1 in Chapter 1 by V. Guedj
and A. Zeriahi (that holds for the ball only) since the boundary condition therein is C*! only.

Organization of the Note. The note is organized as follows. In Section 2, we explain the
basic optimization principle on which the whole proof relies. In Sections 3 and 4, we intro-
duce the Kolmogorov representation of the Dirichlet problem with constant coefficients by
means of the Brownian motion. We then give a short overview of the basic rules of stochas-
tic calculus. In Section 5, we introduce the probabilistic representation of Monge-Ampére,
as originally considered by Gaveau. The program for the analysis of the representation is
explained in Section 6. Section 7 is a short presentation of the differentiability properties of
the flow of a stochastic differential equation. In Section 8, we give a first sketch of the proof
of the C'-regularity. As explained therein, it fails for the second-order derivatives. The right
argument is given in Section 9.

Useful Notation. Below, the gradient of a function is understood as a row vector and for
any pair of vectors (z,y) (of the same dimension d) with real or complex coordinates, the

notation (x,y) stands for S>% ;.

2. HAMILTON-JACOBI-BELLMAN FORMULATION

We here introduce the Hamilton-Jacobi-Bellman formulation of the Monge-Ampére equa-
tion.

2.1. Optimization Problem. Generally speaking, Hamilton-Jacobi-Bellman equations de-
scribe the dynamics — in space only for a stationary problem and in time as well for an evo-
lution equation — of the value function of an optimal (possibly stochastic) control problem.

In the specific case of Monge-Ampére, the Hamilton-Jacobi-Bellman formulation follows
from a simple Lemma taken from the original article by Gaveau [3]:

Lemma 2.1. Given a non-negative Hermitian matriz H of size d x d, the determinant of
H is the solution of the minimization problem:

det!/?(H) = é inf{ Trace[aH] ; a € Hj, det(a) =1}.

Proof. Up to a diagonalization, we may assume H to be diagonal. Denoting by (A1, ..., \g)
its (non-negative real) eigenvalues, we obtain for some a € H

d
TracelaH| = Z @i\
i=1

Noting that the elements (a;;)i1<i<q are non-negative, the standard inequality between the
arithmetic and geometric means yields

1 d /d a /d

il VA RA 1/d A

dTrace[aH] > (I | aw)\z) = det (H)(J:I1 aw) .

i=1
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Finally, Hadamard inequality says that Trace[aH] > ddet/(H), that is
inf{Trace[aH];a € H,det(a) = 1} > ddet"*(H).

To prove the equality between both quantities, we choose a;; = )\i_ldetl/d(H) (and a; ;
equal to zero for ¢ and j different) when H is non-degenerate (so that the infimum then
reads as a minimum). In the degenerate case, it is sufficient to choose a;; = ¢ when \; > 0
and a;; = N when \; = 0, with € small and NV large to be chosen so that the determinant
be equal to 1 (again, a;; is set equal to 0 for ¢ and j different). O

Lemma 2.1 suggests us to write, at least formally, Monge-Ampére Eq. (1.1) under the
form:

(2.1) sup [—Trace[aD? u)(z)] + f(z) =0, ze€D.

aE'Hd+ , det(a)=1

(With the same boundary condition.) This formulation makes the family of diffusion oper-
ators (Trace[aDZz-])aeHI’ det(a)=1 APPear.

Roughly speaking, an equation driven by an infimum (or a supremum) taken over a family
of second-order operators is called a second-order Hamilton-Jacobi-Bellman equation.

2.2. First-Order Case. We first explain how minimization (or maximization) may affect
a family of first-order partial differential equations. In such a case, the resulting equation is
called a first-order Hamilton-Jacobi-Bellman equation. Consider to this end a very simple
one-dimensional evolution problem:

(2.2) Dw(t,z) — sup [aD,ul(t,z) =0, (t,z)€ (0,+00) xR,

a€R, |a|=1
with a given regular boundary condition u(0,-) = ug(-). This is a non-linear equation with
Dyu(t,z) — |Dyu|(t,z) =0, (t,z) € (0,400) X R,

as explicit form.
The purpose is here to understand how the method of characteristics may write for such
an equation. When the parameter or control a is frozen, the equation

(2.3) Dyu(t,x) — aDyu(t,z) =0, (t,x) € (0,4+00) X R,

is a simple transport equation with —a as constant velocity, whose solution is explicitly
known:

u(t,x) = uo(z +at), (t,z)€[0,400) x R.

Said differently, the initial shape wug is translated at velocity —a: as an example, the value
of u at time ¢ and a point —at is uy(0). Said differently, the mapping ¢t > 0 — wu(t, z — at) is
constant.

Here, the linear mapping t > 0 — x+at is called a backward characteristic of the transport
equation (2.3).

Go now back to the general case. We understand that the supremum in Eq. (2.2) favours
the velocity fields of same sign as the local spatial variation of the solution. Said differently,

the possible characteristics must now be sought among paths driven by positive or negative
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speed according to the values of the gradient of the solution of the PDE. We thus consider
paths of the form

t
(2.4) Ty = X + / asds, t>0,
0

where (at);>0 is a (measurable) function with values in {—1,1} and x( is an arbitrary initial
condition. The whole point is then to understand the behavior of the solution to the PDE
along all these trajectories. To do so, wa may differentiate, at least formally, u along some
(x4)i>0 as in (2.4). For a given time 7" > 0 and some ¢ € [0, 7], we write

d

pr [w(T —t,3,)] = —Dyu(T — t,3;) + a Dyu(T — t, )

= —|Dyul|(T —t,x¢) + ay Dyu(T — t, ;) <0,
by taking into account the equality |a;| = 1. Therefore,

T
u(T, xg) > ug (xo +/ asds>,
0
that is

T
(2.5) u(T, xg) > sup {uo (xo + / asds)] .
(at)o<i<T:lat|=1 0

Now, the formal choice (a; = sign[D,u(T —t,x;)])i>0 says that equality might hold. We
thus derive as a (possible) closed representation formula of u:

(2.6) u(T,xg) = sup [uo(x“T)],

(at)o<i<r:|a|=1
with
t
1’?=%’0+/ asds, t>0.
0

The argument is here formal only. However, it suggests some possible closed representation
for the solution of Eq. (2.2) as the value function of a deterministic control problem: the so-
called control parameter is of the form (a;);>0 with |a;| = 1, ¢ > 0, and the resulting controlled
path is of the form (z¥);<o. We stress out that the supremum in (2.2) is kept preserved in
the representation formula (2.6). This follows from a maximum principle argument: by the
maximum principle, the solution to (2.2) is above the solution to any linear transport PDE
with the same initial condition uy and with a (possibly time-dependent) velocity field of
norm 1. (See (2.5).)

We also emphasize that the theory of viscosity solutions provides a rigorous framework to
the formal argument we have here given. (See for example Chapter 2, Lemma 2.1, in the
monograph by Barles [1].)

2.3. Second-Order Equations. Go now back to the Hamilton-Jacobi-Bellman formulation
(2.1). In comparison with the previous subsection, we may distinguish two main differences.
On the hand, Eq. (2.1) has a source term. On the other hand, the underlying operator is of
second-order. (The reader may also notice that the equation is also stationary and that it is

set on a bounded domain of the space only. We will come back to these two points later.)
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Plugging a source term (say f in the right-hand side) in the Hamilton-Jacobi formulation
(2.2) would not really modify the analysis we just performed. In a such a case, the right
form of (2.6) would be

T
(2.7) u(T, xg) = sup {uo(:v%) +/ f(xf)dt].

(at)o<t<rilat|=1 0
(That is, the source term would be integrated along the controlled trajectories.)

Replacing the first-order operator by a second-order one is actually much more difficult to
understand. To do so, the first point consists in going back to the frozen problem without
any optimization, i.e. to the case when the diffusion coefficient in (2.1) is given by some
fixed @ € H,J, and then in seeking for the right characteristics in that framework.

Under this form, the problem is not well-posed. The whole point is the following: for a
second-order operator, there are no true characteristics; the only possible way to obtain a
closed formula for the solution consists in introducing an additional parameter, i.e. some
randomness, and then in considering random characteristics. This follows from some scale
factors: there is no way to balance, in a single differentiation, first-order terms in time and
in space and second-order terms in space. More precisely, to balance first-order terms in
time and second-order terms in space, the point is to introduce some characteristics with
unbounded variation and, in fact, characteristics that are not absolutely continuous w.r.t.
the Lebesgue measure. Randomness may be useless for the construction of such trajectories:
as we will see below, randomness permits to get rid of some parasitic terms of order one by
a simple integration w.r.t. to the underlying probability measure.

The typical case is the purely Laplace one. When a matches the identity matrix [,
the operator Trace[D? -] admits the complex Brownian motion of dimension d as random
characteristic. Actually, Trace[Diz-] may be expanded in real coordinates as

Trace[D? ] = E[Amm + Ay,

so that it is equivalent to consider the real Brownian motion of dimension 2d as random
characteristic: Brownian motion is the right stochastic process associated with the heat
equation.

3. BROWNIAN MOTION

We first explain what Brownian motion is in the simplest case when the dimension is 1.

3.1. Gaussian Density. The connection between Brownian motion and heat equation is
well-understood through the so-called marginal laws, that is the laws of the positions of
a Brownian motion at a given time. Recall indeed that the time—space heat equation in
dimension 1

1
(3.1) Dyu(t, z) — §Dfmu(t,x) =0, (t,z) € (0,400) xR,

with an initial condition of the form (0, -) = ug(-) admits as solution (say if ug is bounded
and continuous)
1

V27t Jr

(3.2) u(t, ) = up(z —y)exp(—=-)dy, (t,z) € (0,400) x R.



Said differently, the solution may be expressed as the convolution of the initial condition by
the Gaussian density of zero mean and of variance ¢, i.e. the function

yeR—

2
exXp\————
V21t RZ/ P( 2t

(The second result follows from a simple change of variable .)

Convolution by a Gaussian kernel may be expressed in a simple probabilistic way. Indeed,
if (2, F,P) denotes a complete’ probability space and (B;);>o a family of random variables
(i.e. of measurable functions from (2, F) to R endowed with its Borel sets) such that, for
any t > 0, B, has a Gaussian density of zero mean and variance ¢, i.e. (below, E stands for
the expectation)

Vi€ C(R), E[f(B)] = / F(Xo(w))dP(w)

ly|?
\/ﬁ/f exp —Q—t)dy,

and P{By = 0} = 1, then
(3.3) u(t,z) =Elug(z + By)], t>0.

3.2. Dynamics. The connection we just gave between heat equation and Gaussian variables
is actually too much “static” to be fully relevant. Nothing is said about the joint behavior
of the variables (B;):> ones with others.

To understand the dynamics, we use a discretization artifact. Assume indeed that we are
applying a finite difference numerical scheme to solve heat equation (3.1). Specifically, for
a small time step At and a small spatial step Az, assume that we are seeking for a family
of reals (U, k)nen kez approximating the “true” values (u(nAt, kAx))rez. A common scheme
consists in defining (u, x)nenkez through the iterative procedure

Up+1,k — Unk 1 Unp, k+1 + Up k-1 — Qun,k
(3.4) i N =3 s A , neN, kez,
with w, ; = uo(kAz) as initial condition. Obviously, in the above equation, the left-hand
side is understood as an approximation of the time-derivative of v and the right-hand side
of its second-order spatial derivative.

We can write (3.4) as

At At Up g1 + Un -1
Un+1,k = (1 - @)unk A2 9

IThe completeness is used in the sequel.



Choosing At = Az?, we obtain the simpler formula

Up k+1 + Unp, k-1

(3.5) Unt1k = 5 , neN, kel

Replace now the approximating values (u, x)rezn>0 in (3.5) by the true quantities and write

u((n+ 1AL kAz) ~ u(nAt, (k +1)Az) ;“(”At’ (k —1)Az)

= E[u(nAt, kAx + Ax 5)} ,

where ¢ is a random variable taking the values 1 and —1 with probability 1/2. Notice that
it is possible to repeat the argument by approximating u(nAt,-) with a new expectation
(computed w.r.t. a new random variable, independent of ¢). Therefore,

u((n+1)At kAz) ~ E[u((n — 1)At, kAz + Ax(e; + €2))],

where €7 and €5 are two independent random variables taking the values 1 and —1 with
probability 1/2. Iterating the procedure N times, we deduce that

(3.6) u(NAt kAz) =~ E[u(0,kAz 4+ Ax(ey +ex+ - +en))].

Clearly, the symbol = is not really meaningful because of the numerous approximations we
just performed. However, choosing to simplify & = 0 and NAt = 1, so that Az = N~/
since At = Az?, we understand that the random variable in the right-hand side in (3.6) has
the form

N_1/2[€1—|—82+'+8N].

Central Limit Theorem says that it converges, in the weak sense, towards the Gaussian law of
zero mean and variance 1. (Here, weak convergence means weak convergence of probability
measures.) In particular, passing to the limit in (3.6), we recover Eq. (3.3).

Actually, this non-rigorous argument says that the right structure for (B;):>o in (3.3) is of
independent increment type. Indeed, we understand that, on disjoint intervals, the under-
lying variables (e,),>; are asked to be independent. Moreover, the structure is stationary:
randomness between times 0 and ¢t — s is the same in law as the randomness plugged into
the system between times s and t. This says that the right choice for (B;);>¢ is

Definition 3.1. A family of random variables (By)i>o is a Brownian motion starting from
0 if
(2) for any n > 1, for any to = 0 < t; <ty < --+ < t,, the increments By,, By, — By,,
-+, By, — By, _, are independent,
(3) for any 0 < s < t, the increment By — Bs has a Gaussian law of zero mean and
variance t — s.
(4) with probability 1, the paths t > 0 — B(w) are continuous.

The last condition is the most technical one: roughly speaking, it says that the differential
structure associated with Brownian motion is local. Add also that, by definition, a Brownian

motion starting from z is nothing else but = plus a Brownian motion starting from 0.
9



3.3. Differential Rules. To understand if Brownian motion is the right characteristic for
heat equation, the point is to compute the infinitesimal variation of (u(7" —t, B;))o<t<r, for
a given T > 0, where u is given by (3.1). We here expand by Taylor’s formula

U(T — (t + h), Bt-l—h — Bt ‘l— Bt)

= u(T —t, B;) — Dyu(t, By)h + Dyu(t, B;)(Biih — By)
1 1
o D2 u(t, B)(Bren — Bo) + 5 D} ult, Boh?
- th,xu(t7 Bt)(Bt—‘,-h - Bt)h 4+ ...

_|_

Expansion is given at least of order two: we aim to recover heat equation. (Moreover, it
makes sense since u is regular away from the boundary.).

Actually, it is enough to stop the expansion at order two: by definition of a Brownian
motion, E[(By, — B;)?] = h; using a simple Gaussian argument, this result may be gen-
eralized as E[(B,1, — B;)*] = C,h? for any integer p, the constant C), being universal. In
particular, the only term of order 1 in h among the derivatives of order two is the term in
spatial derivatives. The others are of order h*? and h?. Therefore, we write

w(T — (t + h), Bisy — By + By)
— u(T — t, B,) — Dyu(t, B)h + Dyu(t, B)(Besn — By)
1
2

(3.7)
+ DimU(t, Bt)(Bt—‘,-h - Bt)z + ...
Here, we wish to replace (Byy;, — B;)? by h. Using a Gaussian argument again,

E[((Biyn — B.)? — h)’] = 202

Clearly, this does not show that the term (B, — B;)> — h is less than h. However, on the
long run, the sum of the terms of this type, i.e.

|
—

n

(3.8) : [(Bti+1 - Bti)2 - h}Z

~
Il
o

for a subdivision 0 < t; < ty < --- < t,, of stepsize h is a sum of independent random
variables of variance 2h2. In the independent case, the variance is additive: the variance of
the sum is equal to 2nh?. Noting that nh is macroscopic, we understand that the action of
this term is negligible from a macroscopic point of view.

The reader can check that the argument still holds when the quantity D2 u(t, By) is added
to sum as in (3.7).

Finally, we write

u(T — (t + h), Biyn — B + By)
= U(T — t, Bt) — Dtu(t, Bt)h, + Dxu(t, Bt)(Bt-l—h — Bt)

+ %Divxu(t, By)h + o(h)

=u(T —t, B) + Dyu(t, By)(Bitn, — Bi) + o(h),
10



the second line being obtained by using the PDE. From an infinitesimal point of view (i.e.
when getting rid of the negligible terms), we write

(3.9) d[u(T —t,B;)] = Dyu(t, B;)dB;, 0<t<T,

We emphasize that the result is not zero! Said differently, the variation of (u(T'—t, By))o<t<r

is not zero, as for equations of order one. Actually, understanding D,u(t, B;)dB; as Dyu(t, By)(Bip—
B;), we deduce from the independence of D,u(t, B;) and By, — B, that the expectation of

the increment is zero. Therefore, (u(T —t, B;))o<i<r is constant. ..in expectation.

3.4. Differential Rules. In the end, everything works as if we had written
1
2
and set dB? = dt. We will use this rule below.

d[w(T —t, B,)| = —Dyu(t, B,)dt + = D2 u(t, B,)dB} + Dyu(t, By)dB,

Theorem 3.2. [Itd’s formula] Let (B;)i>o a real Brownian motion and f a function of class
CY2([0,+00),R). Then, the infinitesimal variation of (f(t, B;))o<i<T writes

AL (. B)] = [Duf (4. B) + 5 D21 (4 B)]dt + Do f (¢, BB,

Said differently, 1to’s formula is a Taylor formula with convention dB? = dt.

4. STOCHASTIC INTEGRAL

We here explain the basic steps of the construction of the stochastic integral. Specifically,
the problem is to give a meaning, from a macroscopic point of view, to the term

(4].) DIU(t, Bt)dBt,

in the statement of Theorem 3.2.

4.1. Heuristics. Under a macroscopic form, the term in (4.1) reads as a stochastic integral

T
/ DmU(t, Bt)dBt
0

This integral is not defined in the Lebesgue sense: Brownian motion paths are not of bounded
variation. However, it may be understood in a specific way, as the limit (in a certain sense)
of some Riemann sums. Indeed, the integral is understood as the L? limit of the sum

n—1
Z Dmu(t27 Bm) (Bti+1 - Bti)u
i=0
where 0 =ty < t; < --- < t,, is a subdivision of [0,7] of (say uniform) stepsize, equal to
T/n.
Define now the process (i.e. a family of random variables depending on time)
n—1
af = Z Dau(ti, Bi,) (s 1) (1)
i=0

11



As a definition of the stochastic integral of such a simple process, we then set

T n—1
/ aydB, ==Y Dyu(t;, B,)(Bi,, — B.,).
0

=0

As we already said, this term is of zero expectation. The variance is equal to

([ )
- n:l E[|D,u(t:, By,)

+2 > E[Du(ti, B,)Du(t;, By,)(Bi,, — B.)(Bi,., — By,)].

0<i<j<n—1

2
|Bti+1 - Bti |2]

In the first sum, we may take advantage of the independence of By, , — By, and By, to split the
expectations. Similarly, in the second sum, the expectation of By, , — B;, may be isolated:
it is equal to 0. Therefore,

EK/OTagdBt)z] = thHDggu(ti,Bti)ﬁ :E/OT(aWdt.

Said differentily, we just built an isometry between L?(2, F,P) and L?([0,7T] x 2, B(R) ®
F,dt®P). It is well-seen that the sequence (af)o<;<7 converges (at least pointwise) towards
(Dyu(t, By))o<i<r. It may be assumed to be bounded if the initial condition uy in (3.1) is
Lipschitz. Therefore, it has a limit in L?([0, 7] x Q, B(R) ® F, dt ® P) and, thus, is Cauchy.

As a consequence, the sequence
T
0 0<t<T

is Cauchy in L?(Q, F,P) as well. It is convergent: by definition, the limit is the stochastic
integral

T
/ DmU(t, Bt)dBt
0

4.2. Construction. [The reader may skip this part.] Actually, the procedure may be gen-
eralized to integrate more general stochastic processes. To do so, we first specify some
elements of the theory of stochastic processes (keep in mind that (2, F,P) stands for a
complete probability space):

Definition 4.1. We call a filtration any non-decreasing family (Fi)i>o of sub o-fields of F.

In practice, a filtration stands for the available information by observation of the events
occured between the initial and present times. In what follows, filtrations are assumed to
be right-continuous, i.e. N.~oF;1. = F; and complete, i.e. containing sets of zero measure.
This is necessary to state some fundamental results for stochastic processes.

Definition 4.2. A process (X;)i>o is said to be adapted w.r.t. a filtration (Fy)e>o if, for any
t >0, X; is Fy-measurable. (That is, the value of Xy is known at time t.)
12



Definition 4.3. A Brownian motion (B;)i>o is said to be an (F;)i>o-Brownian motion if it
is adapted w.r.t. (Fy)>o and if, for any (t,h) € R, the increment By, — By is independent
of Fi. For instance, a Brownian motion (Byi)i>o is always a Brownian motion w.r.t. its
natural filtration

(4.2) Fi=0(Bs,s<t)VN, t>0.
Here, o(Bs,s < t) stands for the smallest filtration for which the variables (Bs)o<s<t are
measurable and N for the collection of sets of zero-measure.

We are now in position to generalize the definition of the stochastic integral:

Definition 4.4. A simple process w.r.t. to the filtration (F;);>0 is a process of the form

n—1
Ht = Z Hi]—(ti7ti+1](t)a
=0

where H is a square-integrable Fi,-measurable random variable and 0 < t; <ty < -+ < 1.
Then, the stochastic integral is
40 n—1
(4.3) 0 H,dB, =Y H'(B,,, — By,).
i=0

Using, as above, the independence of H® and of By, — By, we can show that
+oo 2 +oo
E[( thBt) } =E HZdt.
0 0

As announced above, the integral defines an isometry. By density, we can extend the defini-
tion of the integral to the class of so-called progressively-measurable processes:

Definition 4.5. A process (Hy)i>o is said to be progressively-measurable w.r.t. the filtration
(Fi)eso if, at any time T > 0, the joint mapping

(t,w) €0, 7] x Q+— Xy(w)
is measurable for the product o-field B([0,T]) @ Fr.

Given a progressively-measurable process such that
+o00
E / HZdt < 400,
0

there exists a sequence (HJ');>o of simple processes converging in L*([0, +00)x €, B([0, +00))®

F,dt @ P) towards (Hy);>o so that
“+o00

H.dB,
0
exists as a limit in L*(Q, F,P) of a Cauchy sequence. It satisfies It6’s isometry, i.e.

+oo 2 +oo
E{( Hsst) } =E Hfds.
0 0

The notion of progressive-measurability is necessary: as the isometry property shows, the
process is seen as joint function of time and randomness. As example, it may be proven that

any (left- or right-)continuous adapted process is progressively-measurable.
13



4.3. Variation of the Integration Bound. To make the connection between Definition
4.5 and

T
/ Dm’U/(t, Bt)dBt,
0

we understand the above stochastic integral as

+o0o
/ 1(0"]’] (t)Dm’U/(t, Bt)dBt
0

Below, we use the first writing only. Going back to (3.9), we finally write (replacing (B;)i>0
by (z + Bi)i>0), for all £ > 0,

t
(4.4) uw(lT —t,o+ By) =u(T,x) + / D,u(T — s,z + By)dBs.
0

This writing is a bit awkward because of the time reversal. To obtain a straightforward
probabilistic formulation, it turns out to be easier to set Eq. (3.1) in a backward sense itself,
i.e. with a terminal boundary condition. Actually, in the specific case of Monge-Ampére,
this has no real influence since the equation is stationary.

However, we understand from Eq. (4.4) how it may be useful to see the stochastic integral
as a process, indexed by the upper integration bound. Actually, it is not so easy to do:
the integral being defined as an element of L?(Q, F,P), it is defined up to an event of zero
measure only. To let the upper integration bound vary, it is necessary to choose a suitable
version at each time:

Proposition 4.6. Given a progressively-measurable stochastic process (Hy)i>o w.r.t. a fil-
tration (F)i>o such that

t
Vvt > 0, E/ Hfds<+oo,
0

it is possible to choose for any t > 0 a version of the stochastic integral

t +oo
/ HSdBS = / 1}07t}(8)H8dBS,
0 0

t
([ 1)
0 t>0

be of continuous paths. (That is, is continuous w by w.)

such that the process

Notice that the continuity property is well-understood in (4.4) since the left-hand side
therein is continuous.

4.4. Martingale Property. There is another remarkable property of the stochastic inte-
gral: it is of zero expectation. Said differently, taking the expectation in (4.4) when t = T,
we obtain

u(T,z) = E[ug(z + Br)].
This is nothing but the representation announced in (3.3): this representation is referred as

Feynman-Kac formula.
14



Actually, the centering property for the stochastic integral may be seen as a consequence
of a more general property: the stochastic integral is a martingale. The martingale property
is a projective property based upon the notion of conditinal expectation:

Definition 4.7. An adapted process (M;)i>o w.r.t. a filtration (F;)i>o is called a martingale
iof it is integrable at any time and

VO <s<t E[M|F]=M,.
In particular, a martingale has a constant expectation.

Go now back to Definition 4.4. Considering (4.3), we notice, with the same notations,
that

tj -1
| man, =3 B, - B,
0 i=0

for 0 < j < n. By conditioning w.r.t. F;,_,, we obtain

t i—2 .
E |:/ HTdBT‘Ej1:| = Z HZ(BI%H - Btz) + E[Hj_l(Btj - Btjfl)‘f'tjﬂ}v
0 i=0

since the j — 1 first terms are measurable w.r.t. the o-field .7-}1.71. Examinate now the
remaining part: we know that H7~" is measurable w.r.t. F, _, and that the increment (B, —
By, ) is independent of F;,_,. Therefore, the product of both is orthogonal to L*(2, 7, _,,P):
the conditional expectation is zero. Finally,

t; ti—1
E { / HrdBr\]ijl} - H,dB,.
0 0

The argument is actually true for any conditioning by F;,, 0 < ¢ < j — 1. Moreover, noting
that any pair (s,t), 0 < s < ¢, may be understood as a subset of the subdivision {to,...,t,},

we obtain that
t S
E[/ HrdBr|.7-"s} :/ H,.dB,,
0 0

for any s and ¢t. By a density argument, we deduce

Proposition 4.8. Given a progressively-measurable process (Hy)i>o w.r.t. a filtration (F;)i>o
and satisfying

t
vVt >0, E{/ Hfds] < 400,
0

t
( / Hsst)
0 t>0

15

the stochastic integral

is a martingale w.r.t. (Ft)i>o-



4.5. Stopping Times. The reader may wonder about the connection bewteen a process of
zero mean and a martingale. Actually, a martingale is a process whose expectation is zero
when stopped at any suitable random times, called stopping times.

Here is the definition (together with an example):

Definition 4.9. Given a filtration (F;)i>0, a random variable T with non-negative (but pos-
sibly infinite) values is called a stopping-time if

vt >0, {r<t}ekF.

As an example, a continuous and adapted process (Xi)i>o w.r.t. a filtration (F;)i>o and a
closed subset ' C R, the variable

T:=inf{t >0: X, € F},
is a stopping time (the infimum being set as +oo is the set is empty).
Stopping times are really useful because of the following Doob Theorem:

Theorem 4.10. Given a martingale (My);>o w.r.t. a filtration (F;)i>0 and a stopping time
T, (Mip: )10 is also a martingale (w.r.t. the same filtration). (Here t AT = min(¢,7).)
In particular, if T is bounded by some T, then E[M,;| = E[Mr,.] = E[M,].

In the above statement, ¢t A 7, for some deterministic time ¢, is a stopping time again.
Indeed, we let the reader check that the minimum of two stopping times is a stopping time
as well.

Below, we will also make use of the following version of Doob’s theorem:

Theorem 4.11. For a filtration (F;)>0 and a stopping time T (w.r.t. (Fi)io0), we call
o-field of events occured before time 7, the o-field

Fr={AeF:Vt>0, An{r <t} € F}.
Then, for a martingale (My)i>o w.r.t. (Fi)i>o0 and for another stopping time o > T,
vt > 07 1{TSt}E|:M0/\t|fT] = 1{T§t}MU/\t-

(Again, it is an easy exercice to check that {7 <t} isin F,. Indeed, F, must be understood
as the collection of events for which it may be decided if they have occured or not at time

T.)

5. PROBABILISTIC WRITING OF MONGE-AMPERE

We now go back to Section 2. In order to give a probabilistic representation of (2.1), we
first investigate the probabilistic writing of the solution to the Dirichlet problem

(5.1) Trace[aD? u](z) = f(z), z€D,

with the boundary condition u(z) = g(z), z € 9D, the non-negative Hermitian matrix a
being given.
16



5.1. Real Dirichlet Problem. It may be simpler to start with the real case:
Trace[aD?: jul(z) + f(z) =0, z€D; wu(x)=g(x), xe€dD,

the matrix a being real, symmetric and non-negative. Obviously, in this writing, the coeffi-
cients f and g together with the domain D are supposed to be of real structure.

In the case when a is equal to the identity matrix, the process associated with the differ-
ential operator Trace[D? -] is (up to a multiplicative constant) the d-dimensional Brownian
motion, as defined by

Definition 5.1. A process (B}, ..., BY)>o with values in R? is called a d-dimensional Brow-

nian motion if each process (Bj)>0, 1 < i < d, is a Brownian motion and if all of them are

independent, i.e., for any time-indices 0 < t; < --- < t,, n > 1, the vectors (Btll, . .,Btln),
., (BZ By ) are independent.

AR

Generally speaking, the stochastic integration theory works in dimension d as in dimension
1. Specifically, the point is to consider a common reference filtration: the natural choice
consists in replacing B, in (4.2) by (BL, ..., B?). It is also necessary to extend the differential
rules given in the statement of Theorem 3.2 to the multi-dimensional case.

Theorem 5.2. It6’s formula (or stochastic Taylor formula) in Theorem 3.2 extends to the
multi-dimensional setting. For a d-dimensional Brownian motion (B; = (B},..., B))o
and a function f € C([0,+00) x R R), the infinitesimal variation of (f(t, By))i>o expands
as

df(t, B)]

d
= [Dif(t,B,) + ZD f(t, By))dt+ > " D, f(t,B)dB], t>0.

i=1

Sketch of the Proof. We just provide the main idea. Generally speaking, the proof relies
on the d-dimensional Taylor formula. The only problem is to understand how behave the
infinitesimal products dB{dB}, 1 <i,j <d.

Obviously, dBidB! = dt for any 1 < i < d. When i # j, dB!dB] is set as 0. This
definition may be understood by discretizing the underlying dynamics with a microscopic
stepsize. Indeed, if 0 =tg < t; < --- < t, is a time-grid of stepsize h, we may compute

n—1 2
B (X, - s, -5 |
k=0

as in (3.8).

The idea is then the same as in (3.8). Variables are clearly independent and of zero expec-
tation so that the expectation of the square of the sum is equal to the sum of the variances.
Now, since E[(B;, ., — B}, )? (Bl ., — B} )? = h?, the sum is equal to nh?. It is thus micro-
scopic at the macroscopic level according to the same argument as in (3.8). Macroscopic
contributions of the crossed terms are therefore zero. U

We now provide an example of application. (In what follows, we will write B; for

(B}, ..., B%), so that B; stands for a vector.)
17



When a = (1/2)1; and f and g are regular enough (say f is Holder continuous and g has
Holder continuous second-order derivatives), it is well-known that the real Dirichlet problem

SAu() +f(r) =0, z€D; ulr)=g(), =e0D,

has a unique classical solution, with bounded derivatives. For = € D, we write the infinites-
imal dynamics of (u(z + Bt))t>0. We obtain

du(x 4+ By) = ZD u(z + B,)dB} + ZDIZ% (x + By)dt
i=1

(5.2) -
= Dyu(z+ B))dB] - f(x + By)dt.

i=1

On the macroscopic scale, we obtain (with By = 0)

w(z + By) = u(x /fx+B ds+Z/D u(z + B,)dB..

This writing is actually unsatisfactory: it holds when x + B; belongs to D only; otherwise,
it is meaningless. To make things rigorous, we introduce the stopping time:

:inf{tEO:x+Bt€DE}.

We are then able to write
u(x + By)

t d t
=u(zr) — / f(z + Bs)ds + Z/ Dyu(z + B)dB!, 0<t<7"

We emphasize that the martingale term is well-defined since the gradient is bounded. (At-
ually, for what follows, it would be sufficient that the gradient be continuous inside D and
thus bounded on every compact subset of D.) Taking the expectation at time ¢ A 7% and
applying Doob’s Theorem de Doob 4.10, we obtain

tATE
(5.3) E[u(z + Bire)] = u(z) — E/ f(x + By)ds.
0
We then intend to let ¢ tend to the infinity. This is possible if E[7%] < 4oc.

Theorem 5.3. For any x € D, define 7 as 7 := inf{t > 0 : x + B, € DY. Then, for any
z €D, E[T"] < +o0.

In particular, if f is Hélder continuous on D and g has Hélder continuous second-order
derivatives in the neighborhood of D, then the solution u to the Dirichlet problem

1
iAu(x) + f(x)=0, 2z€D; wux)=gx), xz€dD,
admits the following Feynman-Kac representation

ulz) = E[gw: <)+ [ e Bs>ds].

18



Proof. It is sufficient to prove E[7*] < +00. Feynman-Kac formula then follows by letting
t to +o0 in (5.3).

To prove E[7%] < +00, we use the non-degeneracy property of the identity matrix in one
arbitrarily chosen direction of the space. Compute indeed

d d
dlz + B> =d[> _|wi+ Bj|’] = _[2(z; + B))dB] + (dB})’]
i=1

=1
Z x; + B)dB] + ddt.

Take expectation at time t A 7%. Since D is bounded, we obtain

supE[t A Tﬂ < 4o00.
>0

By monotonous convergence Theorem, we complete the proof. 0

When the identity matrix is replaced by a non-zero symmetric matrix a, Brownian motion
is replaced by the process

t
(5.4) Xy = +/ odBs, t>0,
0

where o is a square-root of a, i.e. 00* = a. This writing must be understood as

d t
j=1"0

Following (5.2), we then obtain

(5.5) ZDIZU (X,)dX! 4 = Z D}, u(X,)dX}dX{, t>0.

i,j=1

Here, dX] = Z?:l Umng and the differential rules have the form

d
dXidX] = Z 0i k0 dBydB] =) "0 05 pdt = (007); st
k=1 =

If det(a) # 0, we then obtain an analogous representation to the one obtained for the Laplace
operator.

Theorem 5.4. Consider a positive symmetrix matriz a with o as square-root, i.e. a = oo™,
For any = € D, consider (XF);>o as in (5.4) and set 7 := inf{t > 0 : X, € Db}, Then,
E[m*] < 4+00.

Moreover, if f is Héolder continuous on D and g has Hélder continuous second-order deriva-
tives in the neighborhood of D, then the solution u to the Dirichlet problem

%Trace [aD? jul(z) + f(x) =0, ze€D; ux)=g(x), zecdD,
19



admits the Feynman-Kac representation

o) =Bfocm + [ s

Sketch of the Proof. The boundedness of the expectation of the hitting time is proved as
in Theorem 5.3. By Itd’s formula (5.5), we complete the proof. O

5.2. Complex Brownian Motion. Consider now the complex Dirichlet problem. With
the same notation as above (but understood in the complex sense), we are seeking for a
representation of the solution u to

Trace[aD. zul(z) + f(2) =0, z€D ; wu(z)=g(z), ze€dD.

Here, the matrix a is a non-negative Hermitian matrix.
The solution u may be represented as above. We are going to reproduce the same com-
putations, but with respect to the complex Brownian motion:

Definition 5.5. A complex Brownian motion of dimension d is a d-dimensional process
(By = (B}, ..., BY))i>0 with values in C? given by

B = NG ,

i1 ) . . .
where the processes (Wi, W}")1<j<a are independent real Brownian motions.

t>0,1<7<d,

We emphasize that the coefficient v/2 is here to normalize the expectation of the square
modulus of By, i.e. E[|B]?] =t, t > 0.
Differential rules are given by

Proposition 5.6. Let (B = (B}, ..., BY))>o be a complex Brownian motion of dimension
d. Then, Ito’s formula in Theorem 5.2 holds with f function of the complex variable of
dimension d and with the differential rules

dBidB] =0, dBidB] = 1q—jydt, 1<i,j<d.
Sketch of the Proof. For 1 <i <d,
(dW)? — (dWi”)? + 2/=T AWy dIW;

dBidB! = 5 =0

Similalry, dB{dB¢ = 0 and

(AW} + (dW)?)? 4 2¢/=1 dW,  dW;? _

dBidB — ; dr.
Finally, for 1 <1 < j <d,
dBidB] = dBidB] = 0.
This completes the proof. 0

Give now several examples.
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Example (a). If d =1 and (Z});>0 and (Z?);>0 admit
dZ} = o}dB; + b} dt
dZ} = ofdB; + bZdt, t >0,
as dynamics, we obtain
d(Z} 2}) = Z}dZ} + Z}dZ} + dZ}dZ}
= (Z}o? + Z2o}dB, + (Z}'b? + Z?b}))dt + o} 0?dB,dB,, t > 0.

(Pay attention that the absolutely continuous parts bl dt and b2dt play no role in the product
dZldZ?: all the terms they induce are least of order dt*/2.) Now, dB;dB; = 0 in the above
equation.

However,

d(Z}Z?)

= 77 + Z2dZ} + dZ,d 7}

= (Z}62dB, + Z,°0}dB,) + (Z}0? + Z2b))dt + 062dB,dB,, t > 0.
Here, dB; - dB; = dt.

In particular, if

Zy =Y o0idBl, t>0,
j=1

where ((B)i>0); are independent complex Brownian motion (i.e. (B, = (B},..., B));s0 is
a complex Brownian motion of dimension d), then

d|Zt|2 = thZt ‘l‘ thZt + dthZt
=2,y 6,dBl + 2, 0,dB] +Y " 0;5;dt, ¢ > 0.
j=1 j=1 j=1
For example, if o; = (0€); for a matrix o, then the last term is equal to |o€/?, i.e. to (£, af)

where a = 6*0. This is also equal to (a*¢, £).

Example (b). Assume that d = 1 and consider an holomorphic function f on C. Then,
1
In particular, if 7 := inf{t > 0: |B;| > R}, R > 0, then (f(Biarg))i>0 is a martingale. (Here,

the stopping time is necessary to guarantee that the martingale is integrable: such an ar-
gument is called “a localization argument”.) We will say that (f(B;)):>0 is a local martingale.

Example (c). Assume now that d > 1. Consider a function u with real values of class C*
on the domain D and compute du(X;), t > 0, where

t
Xt:z+/ ocdB,, t>0,
0
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with ¢ complex matrix of size d x d. We obtain, for any ¢ > 0,

du(Xy)

d d
= D.u(X)dX]+ Y D:u(X,)dX]

i=1 i=1

+= Z D? )(dX) (dXy) Z D? D(dX,) (dX,)
i,7=1 i,7=1

+= Z D? )(dX,) (dX,) Z D? D(dX,) (dX,).
3,j=1 i,j=1

It is well-seen that (dX;)(dX;)? = 0 and (dX;)(dX;)’ = 0, 1 < 4,5 < d. Moreover,
(dX,) (dX,) =0 | 0,45k ;dt = (06*), ;dt. Therefore,

d d
du(X;) =Y D.u(X,))dX] + > Dsu(X,)dX]

=1 i=1

1 1
+ §Trace [aD? Ju(X,)]dt + §Trace [aD? u(Xy)]dt, t>0.

Finally, since a and D? _u are Hermitian, we deduce

du(X,)

d d
= Z D, u(X;)dX] + Z D:u(X,)dX] + Trace[aD? u(X,)|dt, t>0.
i=1 i=1
Obviously, this is true for ¢t < 7% := inf{t > 0 : X; ¢ D} only. We then deduce the analog of
Theorem 5.3:

Theorem 5.7. Let a be a positive Hermitian complex matriz of size d x d and o be an
Hermitian square-root of a, i.e. a = 0d*. For a given z € D (D being here assumed to be of
the complex variable of dimension d), set

t
Xf:z—i—/ odBs, t>0,
0

together with 7 := inf{t > 0: X; & D}. Then, E[T*] < +o0.

Moreover, for given real-valued functions f and g of the complex variable of dimension d,
satisfying the same assumption as in Theorem 5.3, the solution u to the complex Dirichlet
problem

Trace[aD? u(z)] + f(z) =0, ze€D; wu(z)=g(z), ze€dD,

admits the Feynman-Kac representation

) ~E|oxz)+ [ ) s
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5.3. Formulation “a la Gaveau”. We are now in position to give a probabilistic represen-
tation of the solution of the Monge-Ampére equation. In light of (2.1) and (2.7), a natural
candidate to solve the Monge-Ampére equation is

(5.6) VzeD, u(z)= infE{g(szfz) - /T | f(vaz)dt},
0

the infimum being here taken over all progressively-measurable processes (0;);>0 with values
in the set of complex matrices of size d and of determinant of modulus 1, i.e. det(o,5;) =1
for all ¢ > 0, with

¢
(5.7) X7 =z +/ o,dB,, t>0; 77 :=inf{t>0:X"* e D°}.
0

We emphasize that this is an infimum and not a supremum despite the supremum in (2.1).
The reason may be understood as follows.

Proposition 5.8. Let o be a (non-zero) complex matriz of size d < d and u be a C(D)NC?(D)
function satisfying

(5.8) —Trace[aD? u(z)] + f(2) <0, z€D; wu(z)=g(z), ze€dD,

where a = oo* and [ and g are functions from D into R as in Theorem 5.7 (or as in
Assumption (A)).
For a given z € D, define (Xf)i>o and 7% as in Theorem 5.7. Then,

u(z) < E{gm) -/ ) f<X;>ds] .

Sketch of the Proof. The proof is similar to the proof of Theorem 5.7 and relies on a
simple application of It6’s formula. 0

Pay attention that u is here assumed to be smooth. In particular, the reader may object
that the solution to the Monge-Ampére equation is not assumed to be of class C?, so that
Proposition 5.8 does not apply to it. Actually, Proposition 5.8 must be understood as some
heuristics towards the probabilistic formulation of Monge-Ampeére.

In PDE theory, a function u satisfying (5.8) is called a subsolution to the Dirichlet problem
driven by a, f and g. From a probabilistic point of view, it says that the process (u(X7))i>0
is a sub-martingale when f > 0, i.e. the infinitesimal variation of (u(X7)):>o is greater than
the infinitesimal variation of a martingale.

Proposition 5.8 may be seen a variation of the maximum principle: there exists a compar-
ison principle between the solutions of the Dirichlet problems driven by the same matrix a.
Going back to the formulation (2.1) of Monge-Ampére, we then understand that the solution
to Monge-Ampeére is expected to be less than the solution to any Dirichlet problem driven
by the same f and g as in Monge-Ampére and by any non-negative Hermitian matrix of
determinant 1.

We derive the following representation principle, which may be seen as a probabilistic
variation of the Perron-Bremermann method discussed in Chapter 1 by V. Guedj and A.
Zeriahi (see Section 1 therein)?

2We here say “variation” of the Perron-Bremermann method since the optimization below is not performed

over a set of plurisubharmonic functions as in the Perron-Bremermann method. Plurisubharmonicity is here
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Definition 5.9. Let f and g be as in Assumption (A) and (Bi)i>o be a complex Brownian
motion of dimension d. We call Gaveau representation or Gaveau candidate for the Monge-
Ampeére equation the function u given by

VzeD, u(z)= infE{g(Xffz) - / f(X;T,Z)dS},
0

the infimum being taken over the set of progressively-measurable processes (o4)i>0 with values
in C™4 such that det(o:07) = 1, t > 0, the process (X;*)i>o0 being given by

t
Xf’zzz+/anBs, t>0,
0

and the stopping time 7% by 7% = inf{t > 0: X" & D}.

As the reader may guess, Definition 5.9 goes back to the earlier paper by Gaveau [3]. In
fact, it is different from the one used by Krylov in his works and thus different from the
one we use below. The reason why Krylov introduced a different representation in his own
analysis may be explained as follows: in Definition 5.9, the control ¢ is poorly controlled!
Said differently, the condition on the determinant of o0* is really weak since the norm of the
matrix oc* may be as large as possible.

Nevertheless, we emphasize that the connection between the candidate v in Definition 5.9
and the Monge-Ampére equation is rigorously established in the original paper by Gaveau.
We refer the reader to it for the complete argument.

5.4. Krylov Point of View. Krylov’s strategy is a bit different. The starting point consists
in writing the original Monge-Ampeére formulation

1
(5.9) det!/? [D? u(2)] = gf(z), z €D,
under the form
(5.10) sup{ —Trace(aD? ;u(z)) + det'4(a)f(2); a = a* > 0, Trace(a) = 1} =0,

z € D. Obviously, the first problem is to prove that any Cb! solution u to (5.10) satisfies
(5.9) as well.

Assume therefore that there exists a C'! function u from D to R solving (5.10) almost
everywhere in D. Since u is C''?, Dizu(z) exists for almost every z € D. By (5.10) and by
the sign condition f > 0, for almost every z € D, Trace(aDizu(z)) > 0 for any non-negative
Hermitian matrix a, so that v is plurisubharmonic. Choose now some z € D at which
D? _u(z) exists. If D2 ju(z) is equal to zero, we can find a positive Hermitian matrix a (with
a non-zero determinant) with 1 as trace such that Trace(aD? ;u(z)) = 0. In particular, (5.10)
says that f(z) < 0 so that f(z) = 0 since f is non-negative: (5.9) holds at point z. If the
determinant in non-zero at z, the complex Hessian Dizu(z) is non-degenerate. [n particular
it is positive. Therefore, for any sequence (a,),>; of non-degenerate matrices approximating
the supremum in (5.10), the determinant of a,, n > 1, is away from zero, uniformly in n.
(If the determinant has some vanishing subsequence, we can find a non-zero non-negative
Hermitian matrix a such that Trace(aD? . u(z)) = 0: by Lemma 2.1, D2 u(z) is of zero

hidden in the very large choice for the stochastic process (o;);>0: this is the reason why we say “probabilistic
variation”.
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determinant.) Therefore, by compactness, there exists a matrix a with 1 as determinant
such that

—Trace(aD? u(z)) + f(z) = 0.

By Lemma 2.1, we understand that det'/¢(D su(2)) < f(z)/d. Now, choosing the matrix a
in (5.10) as a = (D? ;u(z))~"/Trace[(DZ ;u(z)) "], we obtain

)
—d + det™ (D2 u(2)) f(2) <0,

Le. f(2)/d < detl/d(Dizu(z)), so that equality holds.
The value function associated with the optimal control problem (5.10) admits the following
(formal) probabilistic representation

o,z

VzeD, wu(z)=infE [g(Xffz) — / det'4(0,67) f(X77)dt |,
0

the infimum being here taken over the progressively-measurable processes (o);>o with values
in the set of complex matrices of size d such that Trace(o,5;) = 1 for any t > 0, with

t
X7 =2 +/ 0sdBs, t>0; 777 :=inf{t>0:X/"€ DG}.
0

In what follows, we will investigate —u instead of w itself. Changing ¢g into —¢g in the
orginal Monge-Ampére equation, we set

Definition 5.10. Let f and g be as in Assumption (A) and (Bi)i>o be a complex Brownian
motion of dimension d. We call Krylov formulation of the Monge-Ampére equation driven
by the source term f and the boundary condition —g (and not g) the function —v, where

(5.11) v(z) = sup v7(z2), z€D,

the supremum being here taken over the set of progressively-measurable processes (0¢)i>o with
values in C™*? such Trace(0,57) =1, t >0, and v° being given by

o,z

(5.12) v (2) =R [g(Xffz) + / detY(a,) f(X7)dt|, a, = 0,57,
0
the process (X% )0 by
t
X0 — +/ 0.dB,, t>0,
0

and the stopping time 7% by 77% = inf{t > 0: X;,* & D}.
If v is C' on D and —v satisfies (5.10) almost everywhere, i.e.

(5.13) sup{ Trace(aD? ;v(z)) + det'(a)f(2); a = a* > 0, Trace(a) = 1} =0,

a.e. z € D, then —v is plurisubharmonic and satisfies the Monge-Ampére equation (5.9). If
—v is continuous up to the boundary 0D, it admits —g as boundary condition.

The reader may worry about the boundary condition. First, why is it satisfied? Second,
may we expect the solution to be continuous up to the boundary 9D? The answer to the first
question is quite obvious: when z € 9D, the stopping time 777 is zero, so that X = z.
Concerning the second question, we will see below that the answer is clearly positive under
Assumption (A).
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5.5. Dynamic Programming Principle. The Definition 5.10 is not completely satisfac-
tory. The right question is now: may we claim that —v given by (5.11) is a solution to
Monge-Ampére without making any reference to the Hamilton-Jacobi-Bellman Equation
(5.10)7

We will see below that the answer is almost positive. We say almost because, to say so,
we need some regularity property on v, as in Definition 5.10.

Proposition 5.11. Under the notation of Definition 5.10, assume that the family (v7), is
equicontinuous on every compact subset of D and that v is CY' on D. Then, —v satisfies
(5.10) almost everywhere and thus satisfies the Monge-Ampére equation (5.9).

Proof. The proof relies on a variation of the so-called “Dynamic Programming Principle”
(or Bellman Principle). The main point is to split the cost (5.12) of reaching the boundary
of D when starting from a given point z into two parts: the cost of reaching the boundary
of a subdomain from z and the cost of reaching 0D when starting from the boundary of the
subdomain.

We thus fix a given point z € D at which v is twice differentiable in the sense of Taylor,
i.e. admits a Taylor expansion of ordrer two at z. (Have in mind that v is almost-everywhere
twice differentiable in the sense of Taylor since belongs to C*'(D).) Fix also a positive real
e such that the closed (complex) ball B(z,¢) of center z and radius ¢ is included in D. For
any (o¢):>0 as in Definition 5.10, define p” as the first exit time from the open ball B(z,¢)
by the process X*7, i.e. p7 :=inf{t > 0:|X;” — 2| > e}. Then, the Dynamic Programming
Principle writes

Lemma 5.12. Under the notation of Definition 5.10, assume that the family (v7), is
equicontinuous on every compact subset of D. Then, the Dynamic Programming Principle
holds in the following way

o

p
(5.14) v(z) =supE |:’U(X;&Z) + / detl/d(at)f(sz)dt} . ay = 040y,
o 0

the supremum being here taken w.r.t. the processes (o¢)i>o as in Definition 5.10.

Proof of the Lower Bound in Lemma 5.12. By (5.12),

702

(515) v7(z) = E{Elg(Xfé’i) + /pa detl/d(“t)f(Xf’z)dﬂfpa}

o

+/Op detl/d(at)f(Xf’Z)dt}.

A part of the trick for the Dynamic Programming Principle is the following: the conditional
expectation above is less than v(X,s). Indeed, for t > p7,
t
X7 =X +/ 0sdBs,
pe
so that the conditional expectation may be understood as an integration with respect to the
trajectories of (X{%);> - with X757 as starting point. (In particular, the interval [p7, 7%%] on

which (det?(a;) f(X7%))s=0 is integrated in the conditional expectation represents the time
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passed from p” up to the exit time from D.) Therefore,

pO'
(5.16) v7(z) < E[U(XZ&Z) —i—/ det'/4(a,) f(X77)dt |

0
Taking the supremum w.r.t. o, we complete the proof of the lower bound.

Proof of the Subsolution Property in Monge-Ampére. We now deduce the subsolu-
tion property from the lower bound in the Dynamic Programming Principle. Since v is twice
Taylor differentiable at z, we can write

v(X757) = v(2) + 2Re[D.v(2) (X" — 2)] + 1 [H [v(2)](X 5" — 2)]

(5.17) 2

+0-(1)e?,
the notation o.(1) standing for the Landau notation (i.e. o.(1) tends to 0 with €) and being
independent of the control o and the underlying randomness w. Above H°[v(z)|(v), for
v € C¢ stands for Hlv(2)](v) = szzl(Dgivzjv(z)yiyj + D2 v(2)vivy + D2, v(2) vy +
D2, . v(2)vip;). By Ito’s formula, it is plain to see that

E[H[o(2)](X7 — 2)] = 2E [ /0 ’ Trace(atDizv(z))dt} |

It is also clear that Re[D.v(2)(X" — z)] in (5.17) has zero expectation.
Add now fopa det"?(a,) f(X7*)dt to both sides in (5.17) and take the expectation. Then,

o
E[U(XZ&Z)—I—/O detl/d(at)f(Xf’z)dt}

o

=v(z) +E [/Op [Trace(atDizv(z)) + detl/d(at)f(Xf’z)}dt} + 0.(1)e%

Therefore, applying (5.16) and using the continuity of f,
v7(z) < w(z)
+ sup [Trace(aD? ;v(z)) + detl/d(a)f(z)] E[p?]

a=a*>0,Trace(a)=1
+ 0.(1)(E[p7] + 7).

By Tto’s formula, * = E[| X7, — z|*] = E[p?]. Taking the supremum over o, dividing by ¢
and letting € tend to 0, we deduce that

sup [Trace(aD? v(2)) + det4(a)f(2)| > 0.

a=a*>0,Trace(a)=1

Proof of the Upper Bound in Lemma 5.12. To prove the supersolution property, we
first prove the upper bound in Lemma 5.12. By assumption, we know that the functions
(v7), are equicontinuous. Therefore, for a given § > 0, we can find N points yi,...,yy on
the surface of the ball B(z,¢) such that, for any (0;);>0 as above and any y € 0B(z,¢),

there exists an index i(y) (say the smallest one) such that [v7(y) — v7 (i) < 6. (Taking
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the supremum, the same holds for v, i.e. [v(y) — v(yiy))| < d.) Moreover, by definition of
the supremum, for any index ¢ € {1,..., N}, we can find a J-optimal control o* such that
v (i) + 0 > v(ys) =07 (3i)-

Consider now a control (o;);>0 of the same type as above. It must be understood as a
progressively-measurable functional of the Brownian paths (B;):>¢ and of the (possibly ran-
dom) initial condition Xy, i.e. something as (0¢)¢>0 = (0¢((Bs)o<s<t; Xo0))t>0- In particular,
we emphasize that the value of p” depends on the values of (0y)o<¢< s only. Moreover, we
can modify the values of (0);>,- without changing p” itself. For instance, we can choose oy,
for t > p?, as 0y = 0;_ e ((Brypr — By )o<r<i—pe, X0 ) for a new process (07)>o, i.e. we can
choose oy, for t > p?, as the new process o', but shifted in time, the time shift being given
by p?.

For such a choice of (0¢)¢>0, we are able to compute the conditional expectation in (5.15)
explicitly. Indeed, for (o)>0 as described above,

Bloccz+ [ e ans (0 )aniz
0

7052

o

(5.18) :E{g(szfz)—l— / det/(a,) f(XfZ)dtma]
P

o

p
+/ detY?(ay) f(X7%)dt.
0

Write now X% = X757 + fptc, o,dBs. Written in a non-rigorous way, this has the form:

t
XP = Xp" + / oo (Brapr — By )ozrzs, X357 )d(Bs — Byr).
po'

When computing the conditional expectation in the last line of (5.18), everything works as
an integration with respect to the trajectories of (B; — B,s);>p-: this is a Brownian motion,
independent of the past before p?. Everything thus restarts afresh from X7:°. Therefore,
because of the specific form of o after p7 (this is the crucial point), the conditional expectation
reduces to compute v at point X757, so that

E {g(Xffz) + / det"/(a,) f(Xf’Z)dt|}"po}
0

o

P
=07 (X77) + / det'/?(a,) f(X77)dL.
0

Taking the expectation, we deduce a kind of martingale property:

o

(5.19) 07 (2) :E[v” (X%7) + /0 " det/?(a,) f(Xf’Z)dt}.

X0) where Xy stands for the (possibly

(X%,.2)
_pO'

Here is the choice of ¢’. Rigoroulsy, we choose o} as o,

random) initial condition of the process X. Clearly, this means that oy = O'z
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For this choice of (0¢)¢>0, we have from (5.19)

v(z

> v7(2)

(5.20) E {UU’ (X%7) + / " det'(a,) f(Xt‘”Z)dt}
0

o

Elv(X;’f) + /O ’ det?(a,) f(Xt‘”Z)dt} —E[u(X57) — 7 (X3)]].

v

Now, by the choice of the points (y;)1<;<n, we know that [v7 (X55%) — v (y; Yicxss) )| <9 and
[v(X55%) — v(yixey)| < 6. Moreover, by definition, v (y;xo.2)) = v° (yj) Wlth J=i(X5)

P

so that [v” (y;(xo )) — v(Yix27))| < 0. Therefore

(5.21) E[|o(X57) — v (X%)|] < 36.

Plugging (5.21) into (5.20) and letting ¢ tend to 0, we obtain the upper bound in Lemma
5.12 and thus the equality, i.e. the complete Bellman Principle.

Proof of the Supersolution Property. To deduce the supersolution property in Monge-
Ampére, we perform a suitable choice for (o;)o<i<,s up to time p?. We choose it to be
constant between 0 and p?, the constant value being denoted by o for more simplicity.
Expanding v(X7:%) in (5.20) as in (5.17) and letting ¢ and then € tend to 0, we obtain

Trace(aD? ;v(z)) + det'/4(a)f(z) <0, with a = 05"
This completes the proof of Proposition 5.11. 0

5.6. Plurisubharmonicity by Bellman Principle. We finally emphasize that the Bell-
man Principle is nothing but a probabilistic version of the plurisubharmonicity property:

Proposition 5.13. Assume that, for any z € D, any ¢ > 0 such that B(z,¢) C D and any
C™>d_palued control (o;)s>0 such that Trace(o;5;7) = 1, t > 0, the process (X]*)i0 given by
Definition 5.10 satisfies the Bellman Principle stated in Lemma 5.12 where p° stands therein
for the stopping time p° = inf{t > 0: |X]* — z| > ¢}. Assume also that v is continuous on
D. Then, v is plurisuperharmonic on D.

In particular, v is plurisuperharmonic if the family (v7), in Definition 5.10 is equicontin-
uous on every compact subset of D.

Proof. Given z € D and ¢ > 0 such that B(z,e) C D, it is enough to prove that, for any
veCl v =1,

2m
(5.22) o(z) > — / o(z + ec*1)do.
2 0

In (5.14), we choose o as the (deterministic) projection matrix on v, i.e. o = vv*, v being
understood as a column vector. Since f is non-negative, we deduce

(5.23) v(z) = E[v(X77)],
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with
(5.24) X5 =2+ vV By

We now emphasize that (7*B;);>¢ is a complex Brownian motion of dimension 1. Indeed,
independence of the increments is well-seen and continuity of the trajectories is obviously
true as well. It remains to see that (Re(7*B;))i>o and (Im(*B;))¢>o are independent non-
standard® Brownian motions with increments of variance A/2 over intervals of length A.

Clearly, Re(7*(B; — By)), for 0 < s < t, is equal to [*(B; — B,) + v*(B; — B,)]/2. By
standard computations, the expectation of the square is equal to (¢ — s)/2, as announced.
Similar computations hold for Im(v*(B; — Bs)).

To prove independence, it is sufficient to prove that Re(v*(B; — Bs)) and Im(v*(B; — By))
are orthogonal in L?*(Q,P) for any 0 < s < t*. This is easily checked.

Finally, (5.24) yields

e =|X5 — 2| = [V By | = |V B,

so that p” stands for the first time when (7*By);>¢ hits the circle of radius €. By isotropy,
the distribution of the hitting point, i.e. 7*B,s, is uniform on the circle. We deduce (5.22)
from (5.23). O

6. PROGRAM FOR THE PROBABILISTIC ANALYSIS

Krylov’s program now consists in establishing

Theorem 6.1. Let Assumption (A) be in force. Then, the value function v in Definition
5.10 belongs to CY'(D). Moreover, the assumption of Proposition 5.11 is satisfied so that
—v solves almost everywhere the Monge-Ampere equation with f as source term and —g as
boundary condition.

As the reader may notice, there are two parts in the statement of Theorem 6.1. The first
part must be understood as the main result: it provides the C1!(D) property for the solution
to Monge-Ampére under Assumption (A). The second part makes the connection between
Krylov’s formulation and the original Monge-Ampére equation: the only additional point
to prove is the equicontinuity property for the family (v7), on every compact subset of D.
Actually, we prove more right below: we prove that equicontinuity holds on the whole D so
that v is continuous up to the boundary and satisfies g as boundary condition.

6.1. Equicontinuity of (v7),. We here prove the very first step of our program:

Proposition 6.2. Under Assumption (A ) and the notation of Definition 5.10, the functions
(v7), are equicontinuous on D.

3Non-standard means that the variance of the increments is not normalized.
4This argument is false for general processes. It is here true because processes under consideration are
of Gaussian type with independent increments. We refer the reader to any lecture on Gaussian vectors and
processes.
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Proof. We here follow the proof by Gaveau [3]. Below, the control (o:);>¢ is fixed as in
Definition 5.10. For given z, 2’ € D,

|07 (2) — 07 ()]

< E[|g(X%%) — g(X%7)

T"’Z/\T”*zl
J+B [ L) - e fas

/

o,z o,z

T

+E/ }f(X;”Z)}derE/
702 £T0E 70,2 AT0E!

(Keep in mind that det(a;) < Trace(a;) = 1.) By Assumption (A), we can find a constant
C, depending on (A) only (and whose value may vary from line to line), such that

FXT)ds

07 (2) =07 ()] < CE[|XZ% — X7, ds

TOZNTT:2
| +CE / | X0* — X207
0

6.1 /
( ) + CE“TO',Z o TU,zH

=T+ T, +1T;.
Above, a V b stands for max(a, b) and a A b for min(a, b).

To deal with T3 in (6.1), we emphasize that X7 — X% = 2z — 2/, 0 < s < 79% A 797 | 50
that

T, < Clz — 2| E[777].

!
- TOZ\/ 1057
/ o.dB,
7—0’,2/\7-0',2’

/
- T2\ 0%
/ 0.dB,
7-0',2/\7-0,2’

To treat 7T}, we notice that

0,z o,z
EHXTL;,Z - XTL;,Z’

| <|z—7|+E

.
-

. 1/2
=|z—Z|+E / Trace(asaj)ds]

TU,Z/\TU,Z’

<lz—Z|+E

=z — 2|+ E[|77* - T"’Z/Hl/z.
To complete the proof, it is thus sufficient to prove

Lemma 6.3. There exists a constant C, depending on (A ) only, such that for any z,2' € D,
E[r%*] < C and E[|77* — 77%|] < Cl|z — #/|.

Proof (Lemma 6.3). Given two different points z and 2’ in D, we know that X, —Xf’zl —
2z — 2 for any t < 77% AT,
Moreover, on the event {7%% > 79},

0,2 o2 0,z o,z / 0,z
(6.2) X =X, =X+ X =2+ X7,

10,2 70,2

so that dist(X7",,0D) < |z — 2| when 77% > Lol
As a consequence, dist(X7” 0D) < |z — 2| on the whole probability space.

TU’Z,/\TU'Z ?
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Apply now Ito’s formula to (¢¥(X;"?));>0. We obtain

O(X75%) = (X7 )+ /T

O, ZN\NTOZ

o,z

Trace(asD2 4p(XJ%))ds

s [ (DAX)dB + Dol X7 )0.dB).
TO',Z/\TU,Z/
We emphasize that the LHS is zero. Taking the expectation, we deduce from the plurisu-
perharmonicity property that

IE[@/) (sz ,)} > (CE [7“’72 — 7% A 7"’72/],

TOZN\NT0,2
for some constant C' > 0 depending on (A) only.
By (6.2), we deduce (C possibly varying from line to line) that

E[(TU’Z — T"’ZI)JF} = E[TU’Z — 777N TU’Z/] <Clz -7
By symmetry,
E[|77* — 7'"7Z,H < Clz— 7.
This completes the proof. 0

6.2. Semi-Convexity Argument. The main idea to prove the regularity is to reduce the
analysis to a convexity problem:

Proposition 6.4. Assume that the function v is Lipschitz continuous and semi-conver in
the whole D, i.e. there exists a_constant N such that the function z € D — v(z) + N|z|* is
convez in any ball included in D. Then v belongs to CH1(D).

Proof. Proposition 6.4 follows from Lemma 1.3.2 in Chapter 1 by V. Guedj and A. Zeriahi.
Indeed, by Proposition 5.13 and Proposition 6.2, —v is plurisubharmonic. Moreover, the
semi-convexity property provides the required estimate in Lemma 1.3.2. U

Remark 6.5. Below, we will also apply Proposition 6.4 on compact subsets of D (instead of
the whole D). Obuviously, the result then remains true.

6.3. Getting Rid of the Supremum. A very natural idea, to investigate v, is to get rid
of, as most as possible, of the supremum. In some sense, this is not so difficult since both
Lipschitz continuity and (semi-)convexity are stable by supremum:

Proposition 6.6. Let (w”)s be a family of (bounded) functions of the real variable, indexed
by some parameter (3, for which we can find two functions r and 9, of the real variable as
well, satisfying for any (3,

[w(s) = w’(0)] <mi(s), s€R,

and
5+ wP(s) 4 1ro(s)
is conver. Then, the function s — supg w®(s) satisfies the same properties.

The proof is straightforward. The key point is to think of w®(s) as v?(y(s)) for some path
s € R — ~v(s) with values in the domain D, v” being given by Definition 5.10. The functions
s € R+ ri(s) and s € R+ ry(s) may be understood as s € R — Ns et s € R+— Ns? for
some constant N. In such a case, the first inequality in Propostion 6.6 is understood as a

Lipschitz property and the second one as a semi-convexity property.
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6.4. Differentiation under the Symbol E. As we just said, the strategy consists in
applying Proposition 6.6 to each function v in Definition 5.10 along a path v with values in
D: this is the way we are able to transfer regularity from the family (v7), to its supremum,
i.e. to the function v.

Therefore, the whole problem is now to estimate v? uniformly in o: specifically, we are to
estimate the Lipschitz constant and to bound from below the second-order derivatives.

The most natural idea to do so is to differentiate under the symbol E with respect to the
initial condition z in the definition of v7, see (5.11), ¢ being fixed. Remember indeed that
the coefficients f and ¢ are differentiable. Remember also that, for each o, the value X;*
of the controlled process at time t is easily differentiable with respect to z, whatever the
randomness may be.

Unfortunately, the picture is not so simple. The big deal is the following: the stopping
times 777 are not differentiable w.r.t. z.

6.5. Modification of the Representation. To be able to differentiate under the symbol
[E, it is necessary to get rid of the boundary. This means the following: we are to get rid of
the boundary condition and to force the representation process to stay in D forever.

To get rid of the boundary condition, it is sufficient to consider v7 — g. Indeed, stochastic
differentation rules given in Section 5 show that v — g may be written as

o,z

(v" — g)(z) = E/OT [detl/d(at)f(Xf’z) + Trace(atDizg(Xf’z))]dt,

with a; = 0,57, t > 0. Obviously, the function g being assumed to be C* with bounded
derivatives, this operation doesn’t modify the regularity property of the second member.
However, it may modify its sign.

To recover the right sign, we may use the plurisuperharmonicity condition. Indeed, since

sup sup Trace(aD? .4 (z)) <0,
a z€D
(with a as above), we can add Ny to v7 — g, for Ny as large as necessary.

We emphasize that this transform cannot be understood as a modification of the original
second member f of the Monge-Ampére equation. Indeed, the coefficients we here remove
depend on ¢ in a more general way than detl/d(at)f does so that the expectation we have
to investigate has the form

o,z

(6.3) 07(z) = E/OT F(det(ay), ay, X;77)dt,

which is much more general than the original one in Definition 5.10. We also notice that
the general coefficient F' is C? with respect to the second and third parameters. (Above,
ay = O'ta';:, t Z O)

It now remains to get rid of the boundary itself! The idea is to slow down the process
(X¢)i>0 (forget for the moment the superscripts z and o to simplify the notations) in the
neighborhood of the boundary by means of the function . Consider indeed a stochastic
process (Z;);>0 with the following dynamics:

(6.4) dZ, = Y} (Z)od By + a;Dip(Zy)dt, t >0,
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and with Z, = z as initial condition. Since the dynamics depend on (Z;):>o itself, the
process (Z;)i>o is said to satisfy a Stochastic Differential Equation (SDE for short): we
give in the next section a short overview of conditions ensuring existence and uniqueness of
solutions. Roughly speaking, we will see that the basic conditions are the same as in the
theory of Ordinary Differential Equations: Eq. (6.4) is solvable in infinite horizon under
global Lipschitz conditions; if the coefficients are locally Lipschitz only on a bounded open
subset U, then existence and uniqueness hold up to the first exit time of . The point is
then to discuss whether (Z;);>¢ may reach the boundary of the domain D or not.

Proposition 6.7. Given an initial condition z € D and a control (oy)i>0 with values in the
set of complex matrices of size d x d such that Trace(oya;) =1, t > 0, the SDE

(6.5) dz7* = Y3 (Z77)0d By + ayDip(Z77)dt,  t >0,

with the initial condition Zg* = z admits a unique solution. It stays inside D forever.
Said differently, the stopping time 77 = inf{t > 0 : Z* & D} (with 73* = +o00 if the
underlying set is empty) is almost-surely infinite.

Proof. The proof relies on a so-called localization argument. For the sake of simplicity, we
remove below the superscript (o, z) in Z%* and in 727°.

Assume for the moment that (6.5) is indeed solvable. On the interval [0, 7. ), we then
compute

Ay~ (Z;) = —¢_3/2(Zt)Dz¢(Zt)UtdBt - @Z)_g/z(zt)Dzw(Zt)&tdBt
— ¢ 1(Z,)Trace [atDzjw(Zt)}dt, 0<t< 7y,
with a; = 0,0/, t > 0. Here, the dt term must be understood as
- 2¢_2(Zt)Dz¢(Zt)@tD;¢(Zt) + Q/J(Zt)Trace [ath,z (w_l) (Zt)}
= — N (Z) Trace|[a, D, ¢ (Zy)].

Therefore,

d [w—l(zt) exp ( /0 Trace[a, D2 (2] ds)}

(66) = exp (/t Trace [CLsDizw(Zs)} dS)
0
x [0 2) D (Z)odBy — ™A (Z) D Z)dBy], 0 <t < 7.

We obtain a (local) martingale.
Indeed, setting 7,, := inf{t > 0 : /(Z;) < 1/n}, the stochastic integral may be defined
rigorously between 0 and 7,°. Therefore, for any t > 0,

(6.7) E [@z)—l(zm) exp ( /0 " Trace [ang,zw(Zs)}ds)] _ (2).

Noting that ¥~ (Zia,, ) = n if 7, < t, we deduce that, for some constant C' > 0 independent
of n and ¢,

(6.8) nexp(—Ct)P{r, <t} <¢7'(z).

5This is the reason why the proof consists of a “localizing” argument.
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Thus,
Vn>1,t>0, nexp(—Ct)P{r. <t} <v7'(z),
since T, > T,,. Dividing by n and letting it tend to 400, we obtain
VE>0, P{r.<t}=0.

In particular, 7., = 400 almost-surely.
It now remains to prove that both existence and uniqueness hold. Actually, we can solve
the truncated version of (6.5)

(6.9) dZ{" = (pu' ) (Z1")0rd By + on(Z)a Dip(Z)dt, T >0,

where ¢, is some smooth cut-off function with values in [0, 1] matching 1 on the set {¢) > 1/n}
and 0 on the set {¢» < 1/(2n)}, n > 1. It is clear that (6.9) is uniquely solvable. (See
Subsection 7.1.) Up to the stopping time p, := inf{t > 0 : ¢(Z]') < 1/n}, it satisfies (6.5)
as well. In particular, (6.8) holds with p,, instead of 7,,, so that p, — 400 almost-surely (as
n — +00). Moreover, by uniqueness of the solution of a Cauchy-Lipschitz SDE, for m > n,
(Z")i>0 and (Z]")i>0 are equal up to time min(p,, prm) = pn.

We then set Z; = lim,_; Z]'. Fort < p,, n >0, Z, = Z] so that (Z;)o<i<,, satisfies
(6.5) up to time p,. Letting n tend to +oo, we deduce that (Z;);>0 satisfies (6.5) over the
whole R, .

Uniqueness follows from the same argument. Any other solution (Z]);>¢ (with the same
initial condition) matches (Z;);>o up to the first time it exits from {¢) > 1/n}. Letting n
tend to +00, we deduce that there exists a unique solution. 0

Obviously, changing (X;"%);>¢ into (Z;%);>¢ breaks down the representation of v7 given in
Definition 5.10 (and in (6.3)). The point is thus to provide a representation of v (or of —v,
i.e. of the candidate to solve Monge-Ampére) in terms of the family ((Z,%);>0),-

To do so, we first investigate the representation of 7 when (oy):>¢ is deterministic and
constant, i.e. o, = ¢ deterministic, with det(o) # 0.

In the deterministic and constant case, we know that v7 given in (6.3) satisfies the PDE

—Trace[aD? ;07(z)] = F(det(a),a,2), z€D,

with zero as boundary condition. (Have in mind that F is here given by adding the
Trace[aD? (g — Notb)(2)] to the original source term det'?(a) f(2).)

By Theorem 5.7, we know that 97 is C? inside D and continuous up to the boundary. In
particular, we can apply 1t6’s formula to (=1 (Z7*)07 (Z]*))i>0:

Lemma 6.8. Under the notation of Proposition 6.7, for any (possibly random) control (o¢)¢>o
(with values in the set of complex matrices of size d x d such that Trace(owa;) = 1,t > 0)
and for any function G in C?(D) with real values,

d {G(Z;”) exp ( /O t Trace [a,D, 1 (Z77)] ds)]

t
= exp (/ Trace [asDz,,gz/J(Z;”Z)]ds) [DZG(Zf’Z)O'tdBt + DEG(Zf’Z)ﬁtdBt]
0

t
+ exp (/ Trace [asDz,gzlj(Z;”Z)]ds) Trace|a, D, :(vG)(Z]%)]dt, ¢ >0,
0
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with a; — O'ta';:, t Z 0.
In particular, if o is constant and non-degenerate, we obtain by choosing G = ¢ ~10°

U (=)0 (2)

(6.10) +o0 t
= E/ exp (/ Trace [aDzjlp(Z;”Z)}ds) F(det(a),a, Z]*)dt, =€ D.

0 0
Proof. For simplicity, we get rid of the superscript (o, z) in (Z]*);>0. The first part of the
proof is similar to the proof of (6.6). For the second part, it is necessary to localize the
dynamics of (Z;);>0 up to the stopping time 7" = inf{t > 0: ¢(Z;) < 1/n} as in (6.7). For
¥(z) > 1/n, we obtain

VY2 (2) = E [exp ( /0 o Trace[aD. ¢(Zy)] ds) O N Zine, )07 (Zipr,)

+ E/OM% exp (/08 Trace [aDzjw(Z,«)]dr) F(det(a),a, Zs)ds.

We emphasize that the plurisuperharmonicity condition here plays a crucial role: it says that
the second integral is exponentially convergent. In particular, the second term in the RHS
clearly converges towards the announced quantity as n and t tend to the infinity. The first
term in the RHS may be a bit more difficult to handle. By (6.7), we can bound

611) E [exp ( / " Trace[aD.(2.) ds)w*(ZmW(Zm); T < t]
0

by ¥~ (2) sup{0(2'), ¥(z') < 1/n}: this quantity tends to 0 as n tends to the infinity by
continuity of ¥7 up to the boundary. On the complementary, i.e. on {7, > t}, we use the
plurisuperharmonicity condition to bound (6.11) by Cexp(—Ct)n, for a constant C inde-
pendent of n and . Letting ¢ tend first to the infinity, and then n, we complete the proof. [J

We shall now explain what happens when the control (0;);>¢ in (6.3) and (6.5) is random
and evolves with time. Formally, when ¢ is non-constant, Eq. (6.10) breaks down: the term
¥1/% in Eq. (6.5) is understood as a change of time speed® and the process (Z;*);>o appears
as a slower version of the original (X;*);>0, so that the process (0;);>0 inside (6.10) cannot
be the same as the original one in Eq. (6.3).

The main idea is the following: Eq. (6.10) cannot be a general formula for v7, but, taking
the supremum w.r.t. o, we recover a representation formula for sup, v?. The idea is not
so surprising. Indeed, going back to the proof of the Dynamic Programming Principle, see
Lemma 5.12, we understand that the global supremum in (5.11) may be localized, i.e. the
values of (01);>0 may be locally frozen. Since the representation of v in (6.10) holds for
a constant control, we may expect the supremum w.r.t. to (general) o to satisfy a similar
representation formula.

This result turns out to be true: representation (6.10) holds for the value function of the
optimization problem. We thus claim

For the reader who knows a bit of stochastic analysis, the drift term in Eq. (6.5) follows from a Girsanov
transform.
36



Proposition 6.9. Given a control (o¢)>0 with values in the set of d x d complex matrices
such that Trace(oy07) =1, t > 0, consider the function v7 as in Definition 5.10 and modify
it into V7 = v7 — g+ No» as in (6.3) for some large enough Ny, so that

(07 — g+ No)(z)

o,z

= E/ [det"/¥(a,) f(X[*) + Trace(a, D2 .q(X[?))
0
— NoTrace(a;D? 4 (X[%))]dt,

o,z

- / F(det(ay), a, X07)dt, = € D,
0

with F non-negative.
For a given initial condition z € D, consider also the SDE

(6.12) dz7* = YV} Z7%)01d By + a, Dy (Z77)dt, t >0,

with the initial condition Zy° = z € D.
Then, the value function sup,[v” — g + Now| at point =z may be expressed as

0(2) = g(2) + No(=) = sup [(v7 — g+ No) (2)] = ¥(2) sup (Ve(2)],

where
V7 (z)

—+o00 t
=supE ex Trace|as D, (Z%%)|ds | F(det(a;), ar, Z;77)dt
p p [ , s ) )t )
0 0

o

z € D. Below, we set V(z) :=sup, V(z).

7. DERIVATIVE QUANTITY

By Proposition 6.9, we can now forget the boundary constraints. In comparison with the
formulation of the complex Monge-Ampére equation given in Section 5, the new representa-
tion formula is set in infinite time: we may think of differentiating with respect to the initial
condition without taking care of the exit phenomenon.

Unfortunately, there is a price to pay for the new writing. The dynamics of the controlled
paths involved in the new representation formula are much less simple to handle with than
the original ones. Even without any specific knowledge in stochastic differential equations, it
is well-guessed that the derivative of Z in (6.5), if exists, is the solution of a new stochastic
differential equation, obtained by differentiation: the whole problem is now to investigate
the differentiated equation on the long-run.

7.1. A Word on SDEs. We said very few about stochastic differential equations. We here
specify some elementary facts. (To simplify, things are here stated for real valued processes,
but all of them are extendable to the complex case in a standard way.)

A stochastic differential equation may be set in real or complex coordinates. It has the
general form

(7].) dXt = b(t, Xt)dt + U(t, Xt)dBt, t 2 0.
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Here, the coefficient b is called the drift of the equation. It may depend on time, on the
solution at current time and on the randomness as well. The same is true for the diffusion
coefficient o. Obviously, B here stands for a Brownian motion (with real or complex values
according to the framework). We also indicate that the dimension of X may be different
from the dimension of B. This is not the case in Proposition 6.9 since the matrix o is of size
d x d. When necessary, we will specify by d the dimension of X and by dg the dimension of
B, so that o is a matrix of size d x dp.

Here are the standard solvability conditions. The standard framework for the regularity
in space is the Lipschitz one, as we said above: coefficients are assumed to be Lipschitz in
space, uniformly in randomness and in time in compact subsets, i.e. VI > 0, 3K > 0,
Yw e Q, vt € [0,T], YV, 2,

(7.2) lo(t, ) — ot, )| + |b(t, ) — b(¢, 2")| < Krlw — 2.

To be sure that the underlying integrals are well-defined, some measurability property is
necessary: for any x, the processes (b(t,z)):>o and (o(t, x));>0 are progressively-measurable.
Finally, to control the growth of the coefficients, we ask

(7.3) VT >0, E/OT[\b(s,O)P + |o(s,0)[*]ds < +oc.

Under these three conditions, existence and uniqueness of a solution to (7.1) with a given
initial condition in L? hold, on the whole [0, +00). The solution has continuous paths that
are adapted to the filtration generated by B. Morever, the supremum of the solution is in
L?, locally in time:

(7.4) VI'>0, E[sup |X7[’] < +o0.
0<t<T

In the case when the initial condition is in L?, for some p > 2, and (7.3) holds in L as
well, for the same p, then (7.4) also holds in L”.

Actually, global Lipschitz conditions may be relaxed. Under local Lipschitz conditions
in space, the solution exists on a random interval and may blow up at some random time.
As easily-guessed, the blow-up time is a stopping time. It corresponds to the limit of the
stopping times (“first time when the modulus of the solution is larger than m”),,.

Below, we will compare the solutions to stochastic differential equations driven by different
coefficients. The following result will be referred to as a stability property:

Proposition 7.1. Consider two sets of coefficients (b,o) and (V',0') satisfying (7.2) and
(7.3) and denote by (X;)i>0 and (X])i>o0 the associated solutions for some initial conditions
Xo and X}, in L*. Then, for any T > 0, there exists a constant Cr > 0, only depending on
T and Kr, such that, for any event A € Fy,

BlLa sup X~ i) < Cr{B[LX - ;7]

0<t<T
T

+E{1A/ (|b—b’|2(t,Xt)—|—|a—a’\2(t,Xt))dt]}.
0

A similar version holds in LP, for p > 2, if the initial conditions are in LP and (7.3) holds
in LP both for (b,o) and (b',0’).
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(The indicator 14 here permits to localize the stability property w.r.t. the values of the
initial conditions.)

In what follows, the generic equation we consider is of real structure, the complex case
being a particular case of the real one by doubling the dimension. The equation is also
assumed to be set on the whole space. (Eq. (6.5) is indeed set on the whole space provided
1 be extended to the whole C%, but the solution stays inside D forever.)

7.2. Differentiation of the Flow Generated by a SDE. Clearly, we have in mind to
differentiate under the symbol E in the representation formula of Proposition 6.9. To do so,
we here give some preliminary results about the differentiability of the flow generated by a
stochastic differential equation.

Specifically, the following result guarantees the differentiability of the paths (X );>¢ with
respect to the starting point x, the coordinates of x being possibly real or complex.

Theorem 7.2. Assume that, for every t > 0 and (almost) every w € ), the coefficients
b(t,) : # € R* — b(t,x) and o(t,") : # € R? — o(t,z) are of class C3, with bounded
deriwatives, uniformly in w and in t in compact sets. Then, P-almost surely, for all t > 0,
the mapping x € R — X7 is twice differentiable with respect to x.

In particular, for any family of initial conditions (X{)ser such that, P-a.s., s € R — X§
is C3, with bounded derivatives, uniformly in w, the mappings (s — X} = XtXS)tZO are,
P almost-surely, differentiable with respect to s for all t > 0. Moreover, (Ds[X]])i>0 and

(D3 J[X?])e=0 satisfy linear stochastic differential equations (with random coefficients):

t t dp ‘
(7.5) & =76+ [ D XG> Do X)W,

0 0 =1
and

t
0 =7"(s) + / [Dab(r, X )i + D2 bl X2 @ )
(7'6) t dB ‘
-/ > (Do X+ D2, X © €)W

that is Dg[X}] = & and D? [X7] =ni, t >0, s € R.

Proof. We refer the reader to the monograph by Protter [14, Chap. V, Sec. 7, Thm. 39|
for the proof.
O

Below, the differentiability property in Theorem 7.2 is referred to as pathwise twice differen-
tiability, that is the paths of the process are twice differentiable, randomness by randomness.
In some sense, pathwise differentiability is too much demanding for our purpose. Indeed,
as we recalled above, the point below is to differentiate under the symbol E only, so that
weaker notions of differentiability turn out to be sufficient:

Definition 7.3. Under the notations of Theorem 7.2, the process (X} )i>o is said to be twice

differentiable in probability w.r.t. s if Eqs. (7.5) and (7.6) are uniquely solvable and, for any
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T >0 and any s € R,
Vv >0, lim P{sup [0.X]—¢&|>v}=0,

e—0,e#£0 0<t<T

El}]{g#op{oilng}5e£f — | = v} =0,

(7.7)

with the generic notation 6.FF = e Y(Ff™ — FF) for some functional F depending on t, s
and possibly w.

The process (X[ )i>o is said to be twice differentiable in the mean w.r.t. s if Eqs. (7.5) and
(7.6) are uniquely solvable and, for any T > 0 and any s € R,

: s s|P]
Wb A El gl =0

lim E[ sup ’5555 - nf’p} =0.

e—0,e#£0 0<t<T

(7.8)

It turns out that differentiability in the mean holds under weaker assumptions than path-
wise differentiability:

Theorem 7.4. Assume that, for every t > 0 and (almost) every w € ), the coefficients
b(t,") : x € RY — b(t,x) and o(t,") : * € R — o(t,x) are of class C?, with bounded
deriwvatives, uniformly in t. Consider a family of initial conditions (X{)ser that is twice
differentiable in probability, i.e. such that, for any s € R,
(7.9) &= _lm, 0.5 and 75 = _lim, 0.;
exist in probability, i.e. as in (7.7). Then, the process (X})i>o is twice differentiable in
probability w.r.t. s.

If the random variables (X§)ser have finite p-moments of any order p > 1 and are differen-
tiable in the mean, i.e. (7.9) holds as in (7.8), then the process (X} )i>o is twice differentiable
in the mean w.r.t. s.

The proof is a consequence of the stability property for SDEs. (See Proposition 7.1.)

We now say a word about the connection between the different kinds of differentiability.
As easily guessed by the reader, pathwise differentiability is stronger than differentiability
in probability. (This is a straightforward consequence of Lebesgue dominated convergence
Theorem. This is also well-understood by comparing the assumptions of Theorems 7.2
and 7.4.) By Markov inequality, it is also clear that differentiability in the mean implies
differentiability in probability.

The converse is true provided some uniform integrability conditions. Consider for example
a family of initial conditions (X{)ser, with finite p-moments of any order p > 1, such that
the mapping s € R — X is C* almost-surely, with derivatives in any L?, p > 1, uniformly in
s in compact sets, and assume that, for some stopping 7, (X} )o<i<, is twice differentiable in
probability, uniformly in ¢ € [0, 7]. (That is 7" in (7.8) is replaced by 7.) If supy<,, €] and
SUDg<;<, |M;| are in any LP, p > 1, uniformly in s in compact sets, then twice differentiability
in the mean holds uniformly on [0, 7]. As announced, the proof relies on a classical argument
in probability theory: convergence in probability implies convergence in any LP, p > 1,
provided uniform integrability in any LP, p > 1. Specifically, the point is to prove that,
for any s € R and p > 1, supg<;<, |0:X;| and supy<,, [0-¢/| are in LP, uniformly in € in a
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neighborhood of 0 (e being different from zero). This may be seen as a consequence of the
bounds:

s+e
E[sup |5€Xf\p] < 1/ E[ sup Kﬂp}dr,
0<t<r € Js 0<t<r

(7.10) 1 pete
E[sup 0.G;"] < / E[ sup [n;["]dr,

0<t<r 0<t<r

for € > 0. (Within the framework of Theorem 7.4 and with a similar inequality for ¢ < 0.)
The above inequalities are a straightforward consequence of the first-order Taylor formula
when the family ((X});>0)ser is twice differentiable in the pathwise sense, that is when the
coefficients b and o in Theorem 7.2 are smooth. When they are C? only, we can approximate
them by a sequence of mollified coefficients: by the stability property for SDEs, the deriva-
tives of the solutions to the mollified equations converge towards the derivatives of the true
equation; passing to the limit in (7.10), we obtain the expected bounds.

Unless specified, we will work below under the C? framework of Theorem 7.4.

7.3. Derivative Quantity. In the whole subsection, we choose X§ = 7(s), v here standing
for a C? deterministic curve from R to R, with bounded derivatives. As a consequence of
Theorem 7.4, we claim:

Corollary 7.5. Keep the assumption and notation of Theorem 7.4. Given T > 0 and a
bounded progressively-measurable random function f : [0,T] x R? — R of class C* with
respect to the spatial parameter and with bounded derivatives, uniformly in time t and in
randomness, the real-valued function of the real variable

s € [-1,1] — wr(s) = E/O fr, X)dr

admits as first and second-order derivatives:
T
wp(s) =E [ D.f(r Xpgsar
0

T
wi(s) = E /O (Do f(r, X0 + D2, f(r, X2)E @ €)dr.

Corollary 7.5 permits to bound w/. and w?. Indeed, since the equations satisfied by (&):>0
and (77);>0 are linear (with random coefficients), standard stability techniques, based on
Gronwall’s Lemma, would show that:

(7.11) Vp>0, VT >0, sup E[|§P+]|n|"] <C(p,T),
0<t<T

C(p,T) depending on p, T and the bounds for the derivatives of the coefficients.
Unfortunately, Corollary 7.5 doesn’t apply to Proposition 6.9 since 7' is infinite in Proposi-
tion 6.9. Therefore, we must discuss the long-run behavior of (|;|)i>0 and (|n;]):>o carefully
and, specifically, investigate the long-run integrability against the exponential weight gen-
erated by the plurisuperharmonic function 1, exactly as in the representation formula of
Proposition 6.9.
In this framework, we emphasize the following facts. First, in light of Corollary 7.5, it is

sufficient to analyze the long-run behavior of the second-order moments of (|£|):>o and the
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first-order moments of (|n}]):>0. Moreover, the linear structure of (77):>o being close to the
one of (£)¢>o (the nonlinear terms in the dynamics of (|n;])¢>o being controlled by (|&5]?)i>0),
it is more or less sufficient to investigate the long-run beahvior of (|&|?);>0-

Therefore, we now compute the form of d|&|%. Using Ito’s formula, we obtain

dp
dIg)? =2 (§) Db (t, X7)(& ) dt
i,j=1
d n

d 2
+) Z( Dy, 04(t, X;)(gf)k) dt + dmy,
k=1

i=1 j=1

(7.12)

dm; standing for a martingale term, which has no role when computing the expectation. In
comparison with Krylov’s orginal proof, we emphasize that Krylov makes use of the following
shorten notation:

d d

Debi =Y Do (6, X0)(&), Deoy” := Y Duyoi(t, X{)(€)"
j=1 k=1

so that the dynamics of |£|* have the form:

(7.13) dIg|? = [2(&], Deby) + |Deoy|?] dt + dmy.
A typical condition to obtain a long-run control for (|&|?);> is
(7.14) 2(&8, Deby) + | Deoy|* <0, > 0.

Indeed, (7.14) implies that (E[|£f]?]);>0 is bounded.

Actually, the reader must understand that the choice we here make is very restrictive:
instead of investigating the dynamics of (]&|?);>0, we could also investigate the dynamics of
(&5, A(XP)EE) )0 for some smooth function A from R? into the set of positive symmetric
matrices of dimension d. Indeed, if the spectrum of A is in a compact subset of (0, +00), it
is equivalent to obtain a long-run control for ((¢7, A(X7)&7))i>0 and a long-run control for
(1€ %) e>o0-

By choosing A possibly different from the identity, we are able to plug some freedom into
(7.13) and thus to relax the condition (7.14).

In what follows, we will call:

Definition 7.6. Under the notation and assumption of Theorem 7.4 and for a smooth func-
tion A from R? into the set of positive symmetric matrices of size d, we call derivative
quantity the quadratic process ((A(X})E;, &) )i>o0, denoted by (I'f)i>0, and we call dynamics
of the derivative quantity its absolutely continuous part, denoted by (O] )¢>o.

Specifically, we call dynamics of derivative quantity (at point v(s)) the process (also de-
noted by (0T'+(X7,&7))t=0) given by

oy = 2(&, A(X7) Dob(t, X7)E7)
+ (Do(t, X7)&, A(XT) Doo (t, X7)E7)
+ 2Trace [(Dxa* (t, X))E) (DL A(X])E o (t, th)} dt

+ (&, (LA (XP)E), =0,
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where
d

Z bi(t, ) Dy, + (1/2) Z(aa*)i,j(t, )D2, ..
(D, a<tx>a, A D X060
(7.15) :Z<Dwo—.,j<t,Xf>£f,A(Xf)Dwa,xt,Xf)@
Trace[j(_l;xa*(t,Xf)&f)(DxA(Xf)S)a(t,Xf)}

d dp
= 3> (Daoii (6, X))E) (DA (E)i)o (, X)),

ik=1 j=1
Following (7.13), it satisfies
(7.16) dTs = d(gs, A(XD)ED) = OTdt + dmy, ¢ > 0,

(In the complex case, A is an Hermitian functional and TS has the form (&5, A(X?)EP).)
We claim

Proposition 7.7. Together with the notations given above, we are also given a real 6 > 0
and an [d,+00)-valued (progressively-measurable) random function ¢ both depending on the
randomness w € Q and on (t,x) € [0, +00) x R? such that, for every t > 0 and for (almost)
every w € Q, c(t,") 1 x € R c(t,z) € [§,+00) is of class C*, with bounded derivatives,
uniformly in t and in w.

Given an open subset U C R? such that v(s) € U for some s € [—1,1], assume that
oI = 0l'y( X7, &) < (c(t, X7) — 0)I'] up to the exit time from U, i.e. fort < 1y := inf{t >
0: X7 ZU}, then, for any t > 0,

@ Elen(- [ et x) - )i ) Cina| < /(). AG N )

Assume for example that U = RY. Then, with the notation and assumption of Corollary
7.5, there exists a constant C depending on § and the L™ norms (onU) of A™Y, Dyc, f and
D, f only such that, for any T > 0, the function

T t
(7.18) s € [-1,1] — wr(s) = E[/ exp (—/ c(r, Xﬁ)dr)f(t, Xf)dt},

0 0
satisfy |wh(s)| < C|y'(s)|. In particular, the Lipschitz constant of wr is independent of T.
Proof. The proof is almost straightforward. By (7.16),

dfesp (= [ (etrx2) = )a )]

dfewp (= [ (et = 5)ar ) 1 a8
~exp (_ /0 (el X7 5)dr> (AT — (clt, X2) — §)T2)dt + dmy].
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Taking the expectation, we get rid of the martingale term. Having, in mind the sign condition
on Iy — (c(t, X7) — 6)I';, we directly deduce (7.17).
To prove the Lipschitz estimate, we first emphasize that, for any s € [—1, 1],

T ¢
E/O exp(—/0 c(r,Xf)dT) (Do f(t, X})E

(7.19) ~rexp) [ Daclr, X2)€dr]

SC’E{/OTeXp<— /Otc(r,Xf)dr) [\5f\+/0t |§ﬁ|dr}dt],

for some constant C' depending on || f||co, || Dsf|loo and || Dy cl|o only.
The result then follows from Lemma 7.8 below. OJ

|wip(s)] =

Lemma 7.8. Consider a non-negative process (¢;)i>o together with an Ré-valued process
(&)i>0 such that ¢, > 6, t >0, and

t
E{exp(— / crdr)w] < Cexp(—3t), >0,
0

for some C' >0 and 6 > 0, then

E[/O+Ooexp<— /Otcrdr) <|gt|+/0t |§r|dr)dt] <c

for some C" depending on C and § only.
Proof. From Cauchy-Schwarz inequality and from the bound ¢ > §, we obtain the L!

version:
. . 1/2
E{exp(— / crdr)mf@ SE[eXp<—2 / crdr)mﬂ
0 0
7.20 5 ! i
(7.20) Sexp(—it)E[exp<—/o CrdT)‘fﬂz}

< V2 exp(—dt), t=>0.

In particular, since ¢ is always larger than §, Inequality (7.20) yields

E{/O+mexp(—/otcrdr) (\ft\+/0t\§r\dr)dt}
[l [
+ exp(—ot) /O ' exp(o7) exp(— /0 ' cudu)\fr\dr)dt}

+oo
< 01/2/ exp(—6t) (1 +t)dt.
0

(7.21)

This completes the proof. 0
We now perform a similar analysis, but for the second-order derivative ((n;, A(X})n;))i>0

(see Theorems 7.2 and 7.4) and then for w/(s).
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Proposition 7.9. Assume that the assumption of Proposition 7.7 are in force and that
o s bounded. For any s € [—1,1], denote by (Af)i>o (or by (U'(X7,m7))i>0) the process
((ng, A(X?)n7)) >0 and by (OAf);>o the process
OAL = 2(n;, A(X7) Dab(t, X7 )7 )dt

+ (Deo(t, X7)n7, A(X7) Dao(t, X7)n7)dt

+ 2Trace[(D,o™ (t, X )i ) (DL A(X] 0o (t, X;)]dt

+ 7 (LAY XT)ng), =0,
(Be careful that (OA]);>o is not the absolutely continuous part of (A7)i>o. It is obtained by
replacing (& )i>0 by (0])e>0 in the definition of (OI')i>o.)

Given an open subset U C R such that v(s) € U for some s € [—1,1], assume that, for all
t<ty:=inf{t >0:I7 U}, 0N, < (c(t, X])—0)As. (Pay attention that this is exactly the
same inequality as the one in Proposition 7.7, but with (& )0 replaced by (1] )i>o. Clearly,
if the one in Proposition 7.7 is true, the current one is expected to be true as well.) Then,

there exists a constant C, depending on & and the L™ norms (on U) of A, A™', D, A, c,
D2 ,b, 0, Do and D3 o only, such that, for any t >0,

E [exp (— | e - 6/2>dr) (05,7 + A )
< (), Ay ()Y () + (7" (5), A(a(s)7"())) 2

+ O (5), A(y(s)Y (5))-
For example if U = R?, the function wr in (7.18) satisfies

C
W(W@)F +[(s)]), sel-1,1].
for a possible modified value of the constant C, depending on the L norms (onU) of D,c,
D3 ¢, f, Dof and D3 . f as well. (In particular, it is independent of T and s.)

(7.22)

wy(s)] <

Proof. For simplicity, we make use of Krylov’s notations, i.e. we set: D,bf := D,b(t, X7)n;,
D b = D3 ,b(t, X7)ERE;, Dy(07). 5 1= Dyo (¢, X7)n; and finally D (7). ; := D3 ,0.5(t, X)§®
&;. With these notations, 1 in Theorem 7.2 has the form:

dp dp
dn; = Dybjdt + DE bidt + > Dy(07).;dW{ + Y D (07). ;AW

J=1 J=1

t > 0. Considering the quadratic form driven by A, we obtain (with the notation A; =
A(XY))

d{ng, Ain;)

= 2(n;, A;D,b7)dt + 2(n;, A; D cbj)dt
+ 2Trace[(Dna*(t, X))+ Déga*(t, X)N)(DLA(X] )0 )ol(t, Xf)} dt
+((Dyo; + Do), A; (Dyo; + DEcoy))dt + (nf, LA )dt + dmy,

t >0, (m¢)i>o standing for a generic martingale term that is (more or less) useless in what
follows. (See (7.15) for the definition of ((D,of + DZ.07), A; (Dyoi + DZ c07)).) Following
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the proof of (7.16),
d(&, A€)7] = 2(&7, 436N dt + |24; Dea € + (&, Do A(X])E)| dt + dmy.

(Here again, the generic notation (my);>o stands for a martingale. Morever, the term
245 Deo&3+(€7, Do A(X)E) P stands for 3557, |2(A: De(07). 3, )+ 3 my (€5 Dy ACXE)E o (1, X7) 2.
Therefore,

(<£tsv Asff>2 <77t=At77t>)
= 2(n;, Ay Db} )dt + 2(n;, A D (bj)dt + (n, LiAjn;)di
+ 2Trace[(Dyo™ (t, X7) + Di co*(t, X;)) (Do A(X] )y )o (t, X7) ] dt
+ ((D oy + D5 5at) Aj (D o; + Dg gat))dt +2(&], A; ) ordt
+ 245 Deo€; + (€5, DL AX))E) [P dt + dmy.
Apply now the function 2 € R + (a + x)'/2, for some small a > 0. It is a concave function,

so that the second-order term deriving from It6’s formula is non-increasing. In particular,
we write (in a little bit crude way)

S AS 1/2
d(a + <£t7At£t>2 <771;7At77t>> /
1 S S -1/2 S S S S S S
< 5(“ + <£t7At£t>2 <77taAt77t>) / [2<nt7AtD77bt> + 2<nt7AtD§,§bt>
(7.23) + 2Trace|(Dyo™(t, X7) + Do (t, X2)) (Do A(X )0 o (t, X7)] dt
+ (nf, LeAing) + <(Dnaf + ngaf), A7 (Dnaf + D?,gaf»
S S S S¢S S S S 2
+2(&7, AjF)oridt + }QAthatft + <€t>DUA(Xt)€t>‘ } + dmy.
We now claim that
2(n;, AfDnbf> (i, LeAin;) + <(Dngig + Dg,ggf)> A7 (Dnaf + Dg,gaf»
+ 2Trace[(D,0*(t, X;) + D&ga*(t, XD AX? )} )o(t, X7)]
= 0N} + 2(Dy07, A D c07) + (Dg co7, A D co7)
+ 2Trace | D (o™ (t, X7 ) (DL A(X] )} o (t, X7)]
= OA; + O((a + 11" + I P)21€17),
the notation O(...) standing for the Landau notation. Here, we emphasize that the under-
lying constant in O(---) depends on the L™ norms (on U) of A, DA, ¢, Dyo and D2 o
only and, in particular, is independent of ¢t and w. Actually, all the remaining terms in
(7.23) except the martingale term can be bounded by O((a + [£7* + [n5]?)Y/?|€5]?) as well,
the underlying constant in O(---) possibly depending on the L norms (on U) of A7}, ¢

and D2 b also. Therefore, we can find some constant C' > 0, depending on the L* norms
(onU) of A, A7', D, A, ¢, DZ b, 0, Dyo and D2 o only, such that

AN+ (g, Asm))

(CL + (&, Afff>2 + (1}, Aﬂh))
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Finally, following the proof of Proposition 7.7,

’ [exp(— [ et - 6>dr) (a+ (G A+ g, Aim))

= %exp<— /0t<0<7“v X;) —5>dr){(a+ (&, A56)7 + (o, Ajg)) ™

X [OA7 = 2(c(t, X7) — 0) (a + (&, A€ + (nf, Ainy))]
+ C|&|Pdt + dmy .

By assumption, 0A; < (¢(t, X7) — 6)(n7, Aing) < 2(c(t, X7) — 0)(n;, Ain;) since c is greater
than 0, so that

t
S S S¢S S S,.8 1/2
dlewp (= [ el X2) = 0y ) (a4 (6 42607 + G A0
0
t
< exp(—/ (e(r, X)) — 5)dr> {C|&Pdt + dmy .
0
Integrating from 0 to ¢ A 74, taking the expectation and letting a tend to 0,
tATY
o~ [ (erX2) = )1 ) (G A
S S S 1/2
+ <nt/\Tu7 At/\Tunt/\Tu>> / :|

< ((7(5), A(Y() ()2 + (7"(5), A(v())7"(s))) 2

+CE /0 o {exp(— /0 (e(u, X — 5)du) |g:|2} dr.

Obviously, the above inequality applies with §/2 instead of §. Then, from Proposition 7.7,
the last term in the RHS has the form

E /0 o [exp(— /0 (e(u, X2) —5/2)du)\§ﬁ\2] dr
<[ exp(-(5/2n)E e~ [ " e, x3) - 0 )i, | ]

+00
<CO/() AN [ exp(=(6/2)r)dr
0
for a possibly new value of C', possibly depending on ¢ as well. This completes the proof of

(7.22).
We now investigate w/.. Following the proof of (7.19), we claim

o) < x| [ e (= [ etrxar) il + [ bl
+lgh + /\s\drﬂm/ g+ ([ 1) 1]

(7.24)



We now apply (7.21) and (7.22). For some possibly new value of the constant C, also
depending on the L norms (on U) of ¢, Dyc, D2 ¢, f, D, f and D2 . f,

72 [ ) (- | et xeyir ) ol + | t lar]| < COF + 1)

This shows how to deal with the terms in 7® in (7.24). The terms in £° can be handled as
follows. Note from Young’s inequality and Cauchy-Schwarz inequality that

t t t 2
512 de 5 sd sd
i+ [ lgrar+ig) [ le +(/ &l )
sc(|ff|2+<1+t>/ |ff|2), £>0.
0

Following (7.21), we complete the proof. O

(7.26)

7.4. Conclusion. Before we carry on the analysis of the Monge-Ampére equation, we men-
tion the following points:

(1) We let the reader adapt the statements of Propositions 7.7 and 7.9 to the complex
case, then considering A as an Hermitian functional.

(2) As well guessed from Proposition 6.9, the (random) function ¢ in the statements of
Propositions 7.7 and 7.9 must be understood as Trace(a;D? .1 (z)) in the specific
framework of Monge-Ampére.

(3) We also emphasize how the rule obtained by Krylov has a very simple form. The
whole problem is now to compare two quadratic (or Hermitian in the complex case)
forms: £ € R? — Ol (z,€) and € € R (c(t,z) — 0)|€]%, with t > 0 and z € R? (or
7 in a domain of R? or C¢: for instance D in the Monge-Ampére case). If comparison
holds, then both the first and second-order derivatives of wy in the statement of
Proposition 7.7 can be controlled uniformly in 7". In the Hamilton-Jacobi-Bellman
framework, the comparison rule between OI';(z, &) and (c(t, x) — §)|€]? must hold for
any value of the underlying parameter (denoted by o in the specific case of Monge-
Ampére, see Proposition 6.9). Obviously, establishing such a comparison rule might
be really challenging in practice: it is indeed in the Monge-Ampére case!

(4) Below, we sometimes call the process (0I'%);>o in Definition 7.6 derivative quantity
itself whereas the derivative quantity stands for the the process ((&7, A(X})ES))i>o0-
We feel that it is not confusive for the reader.

8. ALMOST PROOF OF THE C' REGULARITY

In this section, we explain how to derive the C* property of the solution to Monge-Ampére
equation from the program developed in the previous Subsection 7.4. Unfortunately, we
are not able to provide a completely rigorous proof at this stage of the notes: some “holes”
are indeed left open in the proof. Specifically, some quantities under consideration are not
rigorously shown to be differentiable. The plan is thus the following: we here explain how
things work without paying too much attention to the differentiability arguments and we
postpone to the final Section 9 the complete argument. We will deal with the second-order
estimates in Section 9 as well.

For all these reasons, the following statement is called a “Meta-Theorem™
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Meta-Theorem 8.1. Assume that Assumption (A) is in force and keep the notation of
Proposition 6.9. Then, up to the proof of some differentiability properties, it may be shown
that, for any compact subset IC C D, there ezists a constant C, depending on (A) and IC only,
such that, for every smooth curve v : [—1,1] — D, the function s — V(7y(s)) is Lipschitz
with C||v'||s as Lipschitz constant.

Obviously, the whole idea is to apply Points (2) and (3) in Conclusion 7.4 to the solution
of the rescaled SDE (6.5), i.e.

(8.1) dZ; = PV*(Z3)0yd By + ay Dip(Z5)dt, t > 0.

with Z§ = 7(s), where v : s € [-1,1] — ~(s) € D is a curve as in the statement of Theorem
8.1. (Note that the compact set K is not specified at this stage of the proof.) Here, (0¢):>0
denotes a generic control process (i.e. a progressively-measurable process with values in C%*4
such that Trace(oa;) = 1.)

The reader may then easily understand what “Meta” means: because of the exponent 1/2,
the function 1'/? is singular at the boundary so that Theorems 7.2 and 7.4 do not apply to
Eq. (8.1). In particular, it may be a bit tricky to establish the differentiability of (Z}):>o
w.r.t. s. As announced above, we forget this difficulty in the whole section and assume that
Eq. (8.1) is differentiable in the mean w.r.t. s. Setting (§ = dZ7/ds, t > 0, we write (at
least formally)

d¢; = ¢~2(Z)Re[D.(Z7)¢ | ovd By

(8.2) _
+ [ath,zw(Zf)Cf + atDzz?/f(Zf)Cf] dt.

Applying It0’s formula, we could compute the dynamics of (|¢f]?);>o as in (7.16) and thus
express the form of the associated derivative quantity. We won’t do it here: the strategy
fails when applied in a straightforward way. Said differently, there are very little chances to
be able to bound the derivative quantity as in the statements of Propositions 7.7 and 7.9.

8.1. Procedure to Estimate the Derivative Quantity in the General Case. The
major idea of Krylov consists in perturbing as most as possible the probabilistic ingredients of
the Monge-Ampére equation to improve the long-run control of the derivative quantity. Here,
the word “perturbing” doesn’t mean that we are seeking for another new representation: the
general structure given by Proposition 6.9 is the right one. The whole problem is to perturb
it in a convenient way to obtain the desired long-run estimate.

There are three general ways to perturb the system:

(1) since the problem is stationary, time speed may be changed,

(2) using stochastic processes theory, the underlying probability measure may be per-
turbed itself,

(3) finally, additional “ghost” control parameters may be plugged into the control repre-
sentation and used as perturbation parameters.

We here try to explain the main ideas of this perturbation procedure. In the next subsec-
tions, we will show how to apply them to the Monge-Ampére equation explicitly. Unfortu-

nately, to do so, the method given in Proposition 6.6 must be revisited first.
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Having in mind the general notation used in Proposition 6.6, the revisited strategy may
be explained as follows. Consider indeed a generic family:

“+oo
(8.3) wﬁ(s) = E/ F(ﬁr,Xﬁ’ﬁ)dr,
0
where
dX;7 = o(B, X7 P)dB, + b(By, X70)dt, >0 X7 =(s),

just as in Propositions 6.6 and 6.9. Assume also that, for a given s, we are able to find a
family (w°(s + ¢))., indexed by a small parameter ¢, such that, for any 3,

(8.4) WP (s+e) <W(s+e):= s%p w’(s+e) and 0P(s) = w(s).

If the Lipschitz assumption of Proposition 6.6 is satisfied for the family w°(s + ¢), i.e.
(8.5) ]u?ﬁ(s +e)— wﬁ(s)] <ri(e),
(say) for s,s +¢ € (—1,1) and some function r, then
W(s+e)—w(s) > —ri(e),
by the inequality in (8.4), so that
(8.6) Wi(s+e)—W(s) > —ri(e),

by using the equality in (8.4) and by taking the infimum with respect to 3. Obviously, if the
argument holds for any s in (—1,1), s and s + € may be exchanged to bound the increment
from above.

Similarly, if the convexity assumption of Proposition 6.6 is satisfied for the family w”(s+¢),
ie.

(8.7) e 0P (s 4¢€) +ro(s +¢)
is convex (say) for s,s +¢,s —e € (—1,1) and some function rq, then, for all 3,
liran_)iglf eP(W(s+e)+ras+e)+W(s—e)+rs—e)
—2W () — 2ro(s))
> liminf e (@7 (s + &) + ras +€) + 07 (s — &) + ra(s — €)
—2W (s) — 2ry(s)).
Choosing (3 of the form 3° so that
w” (s) = W(s) = €,
we obtain
lizgn_)iélf eP(W(s+e)+ras+e)+W(s—e)+rs—e)
—2W(s) — 2ro(s))
> liminf e~ (@7 (s + €) + ra(s + ) + 0 (s — &) +1a(s — ¢)

— 207 (s) — 2r9(s)).
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Now, by convexity, the right-hand side is non-negative. (Pay attention, we say so without
passing to the limit.) If such a strategy holds for all s in (—1,1), we deduce that W + ry is
convex.

8.2. Enlarging the Set of Controls. We now explain how the family (10”)ss¢ can be
constructed in the framework of Monge-Ampére.

The starting point is the following: in the specific case of Hamilton-Jacobi-Bellman equa-
tions, the set of controls may exhibit some invariance properties; if so, it is conceivable to
perturb the system along some transformation that let the system invariant. For instance,
for the Monge-Ampére equation, the generic matricial control (o;);>0 can be replaced by
(exp(pe)ot)i>o for some process (p;)i>0 with values in the set of anti-Hermitian matrices:
obviously, the trace of exp(p;)a; exp(p;) = exp(p;)a, exp(—py) is still equal to 1.

The auxiliary control parameter (p:);>o appears as a “ghost” parameter along which the
system may be perturbed. To explain how things work, we go back to Eq. (8.1):

(8.9) dZs = Y3 (Z8)owdBy 4 a;Dip(ZF)dt, t >0,
which is the generic controlled equation used to represent the Monge-Ampére equation as
the value function of some optimization problem with an infinite horizon.

As said in introduction of Section 8, we may consider a curve (v(s))se[—1,1 With values
in D. For a fixed value of s, we define (Z§);>¢ as above: it is the solution of Eq. (8.9)
(or equivalently of Eq. (8.1)) with Z§ = ~(s) as initial solution, so that Z; = Z; for any
t > 0. Now, for € in the neighborhood of 0 (but different from 0), we define (Z;*%),>¢ as the
solution of

Az
(8.10) = W27 exp(P(Z;, 27 — 7)) oud By
+exp(P(Z;, 2 = Z7))ayexp (P (Z5, Z;+° — Z7)) Diap(Z:+)dt,

t > 0, with Z5™ = ~(s 4 ¢) as initial condition. Here P(z,2') is some function of the
parameters z in D and 2’ in C? with values in the set of anti-Hermitian matrices. It is
assumed to be regular in 2/, with bounded derivatives, uniformly in z so that existence and
uniqueness hold for (8.10). (See the proof of Proposition 6.7.) It is also assumed to satisfy
P(z,0) = 0 s0 that (Z57%);50 matches (Z8);>0 in (8.9) when ¢ = 0.

The typical choice we perform below for P(z,2') is (at least for z close to the boundary
so that D,1(z) is non-zero)

P(z,2') = p(ID:4(2)|? [ D2 4 (2)2' Datp(2) + D3 (2)2' Do) (2)
— DIp(2)(DZ (2)7)" — D (2)(DZ 4 (2)2)"]),

where p is some smooth function from C%*¢ into itself, with compact support, matching the
identity on the neighborhood of 0 and preserving the anti-Hermitian structure’. (Have in

(8.11)

"Think of

d
pi (zigh<ij<a € CP e pr (D 12i41%) (zig)1<ij<ds
ij=1
where p; stands for a smooth function from R to R with a compact support matching 1 in the neighborhood
of zero.
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mind that D,1(z) above is seen as a row vector and 2z’ as a column vector.) We let the
reader check that P(z,z’) is anti-Hermitian.

For € as above, we set pi*s = P(Z5, Z:¥5 — 73) = P(Z¢, Z:+5 — Z7), so that (8.10) has the
form
dZsre = Y2 (2570 exp(pi ) oy d By 4 exp(pite)ay exp(—p o) Di (257 dt,

t > 0. Now, we can follow Proposition 6.9 and consider

V(s +e)
400 t )
(8.12) :E/O [exp(/o Trace[exp(pS*©)a, exp(— er":)Dz 1/1(Zf+€)]dr)
x F(det(a,), exp(p;™®)a, exp(—p;™e), Zf“)}dt.

(Pay attention that the determinant of a; is the same as the determinant of the perturbed
matrix exp(p;)a; exp(— pf+€).) Clearly, we have V7(s) = V7(v(s)) (see the notation of
Proposition 6.9). Moreover, V(s + &) < sup, (V°(y(s + €))). (The control (exp(pi™=)oy)i=0
is a particular control of the same type as (0¢)¢>0.)

Differentiating (8.12) with respect to ¢, we expect® a generic expression of the form

d o
e [V7(s+e)] e=0

= IE/0+OO {exp (/Ot Trace[a,,DZZ@/)(Zf,)]dr)

(8.13) -
{4 A4 ARG 4 AG

t
/(A3S7TS+A38 s_'_A4Sg +A4Sg )dr}dt}
0

Here, AL* A%% i = 1,2, stand for the derivatives of the coefficients appearing in (8.12) and
. d
gt d€

Since pits = P(Z8, Z3% — Zf), the term 7% writes as D, P(Z2,0)Cs + D P(Z2, O)Ef so that
(8.13) reduces to

d
2]y amd = L],

&|Q‘

VJ )] le=0

(8.14) / {exp (/ Trace[a, D> (Z;)]dr )
t _ _
{ sés p AbEs 4 / (AZ°C+ Aivsg:)dert,
0
for two new coefficients AY* and A%

8We here say “expect” only since the differentiation argument under the integral symbol is not justified
at this stage of the proof.
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Before we carry on the analysis, we emphasize that the rigorous proof of (8.14) is far from
being easy: it relies on a differentiation argument under the integral symbol that may be
very difficult to justify because of the long-run integration. To overcome this problem, a
possible strategy is to multiply ' by some smooth cut-off function ¢(-/S), S standing for a
large positive real and ¢ for a function matching 1 on some [0, 1] and vanishing on [2, +00).
In that case, the differentiation is expected to make sense: for example, it makes sense in the
framework of Definition 7.3 because of the supremum over ¢ in [0, 7] in the differentiability
property. Obviously, the infinite horizon framework can be recovered by letting S tend to
+00 at the end of the analysis, provided the bound we have for the RHS in (8.14) is uniform
in the cut-off procedure®.

The basic argument to bound the RHS in (8.14) is the following. By the very assumption
on the coefficients and for the typical choice of P we have in mind, the terms ALs and A%* are
bounded in the neighborhood of the boundary only, i.e. for Zf = Z; close to 0D. (Indeed,
have in mind that D, is non-zero in the neighborhood of 9D.) Just for the moment, assume
that they are bounded on the whole time interval [0, 4+00). Then, to bound the right-hand
side above, it is sufficient to prove an equivalent of (7.17), i.e.

(8.15) E{exm— / crdr)\éfﬂ < exp(=80)|E3P = exp(=30) (5)]?

for all ¢ > 0, with —c, = Trace[a, D? .¢(Z7)].
In some sense, we are reduced to the original problem of long-run estimate for the derivative
of the diffusion process, but for a new derivative (*, namely for the solution of the SDE

d¢; = [D.['?)(Z}) + '*(Z;) D P(Z;,0)] oud B,
+ [D:[0M2)(23) + 0327 Do P(2;,0)) G ond By
(8.16) + {(DP(Z;,0)5 + Do P(Z;,0)& ) as
— (D P(Z3,0)(; + D= P(Z;,0)6) Y D23 dt
+ [ D3 (Z0)E + D Z)()dt, ¢ >0,

with the initial condition é"g = 7/(s). The whole point is then to check that the typical choice
(8.11) for P(z,2’) permits to derive the long-run estimate (8.15). Unfortunately, we will see
below that it permits to obtain (8.15) for Z; close to 0D only. (Actually, this is well-guessed:
remember that, for the typical choice we have in mind for P(z, z’), we cannot bound A and
A%% away from the boundary. Indeed, P(z,7') may explode for z away from the boundary.)

The strategy we follow below consists in localizing the perturbation argument. If the
starting point y(s) of Z* is close enough to the boundary, the perturbation argument applies
up to the stopping time t := inf{t > 0 : ¥(Z7) > €}, € standing for some small positive
parameter'’; if the starting point ~(s) of Z* is far away from the boundary, we can apply the
perturbation argument when (¢(Z7));>0 becomes small enough, i.e. when (Z});>( enters into
the neighborhood of 0D. Specifically, if s is some (finite) stopping time at which ¥(Z%) <,
we can apply the perturbation argument up to the stopping time t := inf{t > s : ¢(Z;) > €}:

9We will detail this argument in Section 9 rigorously.
0pay attention that e and e stand for two different parameters.
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Proposition 8.2. Let S > 0 be a positive real, ¢ be a smooth function from Ry to [0,1]
matching 1 on [0,1] and 0 outside [0,2], € > 0 be a small enough real such that | D, (z)| > 0
for ¥(z) < € and s be some (finite) stopping time such that ¥(Z%) < e. For t := inf{t >
s 0 W(ZF) > €}, consider some process (Z:%)o<i<q for which ([d/dé](Zs+€)|5 0)o<t<t and
([d?/de?)(Z;72)1c=0)o<i<t exist and for which the perturbed SDE (8.10) holds from s to t and
define

03" (s +2)
(8.17) =" / t[exp( /O t Trace[exp(pi™)a, exp(—p: ™) D? ¢(Zﬁ+€)]dr)

F(det(ay), exp(p;*®)a; exp(—p;*e), Z5+8)¢(%)]dt,

as the cut-off localized version of (8.12), with p;** = P(Z?, Z5te — Z7), s <t <t, P being
given by (8.11).

If the differentiation operator w.r.t. € and the expectation and integral symbols in the RHS
of (8.17) can be exchanged, then there exists a constant C' > 0, depending on Assumption
(A) and on € only (in particular, it is independent of S and (0¢)i>0), such that

d "r0,8
EA e

< CE [/texp (/Ot Trace[arDiz(Zf)]dr) [|§f| + /Ot |§f\dr]dt},

where & = [d/de] (Z7*) .

Say a word about the concrete meaning of Proposition 8.2: from time 0 to time s, the
process (Z:7%)o<i<s is chosen abritrarily provided it be twice differentiable (in the mean)
w.r.t. €. Below, we explicitly say how it is chosen: roughly speaking, it is built from another
(local) perturbation argument. We also emphasize, that the value function Vg’ﬁ’t has no
straightforward connection with the original V: again, we will see below how to gather all
the local value functions into a single one, directly connected to Monge-Ampére.

Obviously, we can iterate the argument to bound the second-order derivatives:

Proposition 8.3. Keep the assumption and notation of Proposition 8.2 and assume that
the second-order differentiation operator w.r.t. € and the expectation and integral symbols
in the RHS of (8.17) can be exchanged, then there exists a constant C > 0, depending on
Assumption (A) and on € only, such that

d>

7 [V” ‘(s + e)] }

t t
<CE [/ exp (/ Trace[arDiz(Zf)]dr)
5 0
. t t t 2
1 [aars [gpars ([ iéar) |
0 0 0

where i = [d?/de?](Z; %) .=0.
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8.3. Time Change. Here is another example of perturbation. The starting point is the
following. In the Hamilton-Jacobi-Bellman formulation (5.13) of Monge-Ampére, the nor-
malizing condition for the trace of the matrix a is purely arbitrary. Indeed, the equation
remains unchanged when multiplied by any positive constant, so that the trace may be asked
to match any other positive real value.

Intuitively, this means that, in Eq. (8.2), the normalizing condition for the trace of (a;);>0
might be useless, or said differently, that we might consider a rescaled version of (a;)i>o
instead of (a;):>o itself.

Now, have in mind that we are here seeking for a perturbed writing of Eq. (8.2) when
initialized at v(s + €) for ¢ in the neighborhood of zero. We are thus thinking of rescaling
(at)i>0 by some positive scale function (|7£|?);>0 depending on the perturbation variable e.
Here, (77)i>0 stands for an arbitrary progressively-measurable real-valued process that is
differentiable with respect to the parameter €. Specifically, we consider the perturbed SDE

(8.18) dZse = V(2510 d By + |78 Py Dip(Z579)dt,  t > 0.

with Z3*¢ as initial condition. (Solvability is proven as in Proposition 6.7.)

Exactly as in the previous subsection, the perturbation we here choose vanishes at ¢ = 0,
i.e. 7¢ is chosen as T'(ZF, Z:¢ — Z¢) for a smooth function T : (z,2) € D x C* — R such
that T'(z,0) = 1. In other words, 7% and Z* stand for the same process. In particular, when
differentiating T(Z¢, Z5+¢ — Z¢) with respect to 0, we obtain 2Re[D. T(Z¢,0)(;] where ¢
stands for the derivative of Z ™ with respect to ¢ at € = 0, i.e.

;s d Zs+e
Ct = d_g[Zt+ ]‘620.
The typical choice we have in mind for T'(z, 2’) is
(8.19) T(z,7) =1+ p(v " (2)Re[D.¥(2)7']),

where p is some smooth function with values in [—1/2,1/2], such that p(0) = 0 and p'(0) = 1,
so that

Re[D.T(2,0)¢] = ¢~ (2)Re[D.4p(2)¢], ¢eCm,
and

(8.20) D (127,207~ )]y = 207 (O Re[DZ)G).
The resulting dynamics for (ff)tzo is computed below.

The problem is to understand first how this perturbed process is connected with the
representation of the solution of Monge-Ampére. Here is the whole point: the process
(Z:%%),=0 appears as a time-change solution of a SDE of the same type as (8.2). Said in a
non-rigorous way, we may think of (Z:*) as (Z5:%)i>0 where T = |7£%, ¢t > 0, and

Tt
(8.21) dZiTe = w”%z;“)%a(?)tld& + Qg1 DIY(Z;)dt, £ > 0.
()

(Here, (T¢)~! stands for the converse of €¢. We will explain right below why we keep the

same notation for this Z** as in the originial Eq. (8.1).) We won’t provide a rigorous proof
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for this time-change formula!!, but the idea is very intuitive: roughly speaking, the action of
the time-change on the dB; term must be understood as a multiplication by [;7]/2 since
dB, is understood itself as [dt]'/?; obviously, the action of the time-change on the dt terms
is the same as in an ODE.

Actually, Eq. (8.21) is false. The reader might guess that, one way or another, the
time-change affects the dynamics of the Brownian motion (B;);>o. The right version is

7-6 e\—1 A~
(8.22) dZ: = w“?(z;ﬁ)%a(mtlwf + gy DID(Z3E)dt, >0,
(T); !

where
. (@) !
B; :/ |7 |dB,, t>0.
0

Here, (B;)io is a Brownian motion again'? w.r.t. to the time-rescaled filtration (Fizs)-1)eo-

Now, the time-rescaled term ((T(Egs)t,l/h(fm;l|)J(TE);1),520 may be seen as a new control

process with (a(gs)gl)tzo as Hermitian square, so that we are reduced to the original formu-
lation of Monge-Ampére, but w.r.t. to a different Brownian set-up (the set-up is the pair
given by the Brownian motion and the underlying filtration). It may be well-understood
that the representation of the Monge-Ampére equation is kept preserved by modification of
the underlying Brownian set-up'®, so that

V( o ' 2 s+e
Y(s+e) >E /0 exp i Trace[agey-1 D; 40 (Z77°)dr

HUWe refer the reader to the original paper by Krylov [8] for the complete argument.
L2Clearly, (B5):>0 is a martingale with values in C%. Actually, for any coordinates 1 < j, k < d,

(8.23) d[(B7)(B})*] =0, dl(Bf)’(Bf)¥] = 6;xdt,

where ;1 stands for the Kronecker symbol. There is a famous theorem in stochastic calculus, due to Paul
Lévy, that says that any continuous martingale starting from 0 and satisfying (8.23) is a complex Brownian
motion of dimension d. Actually, this may be explained as follows: Eq. (8.23), together with the martingale
property, provide the local infinitesimal dynamics of BE; this makes the connection between W and the
Laplace operator in R?¢ through It6’s formula. In some sense, there is one and only one stochastic process
associated with the Laplace operator in R??: the 2d-dimensional real Brownian motion or, equivalently, the
d-dimensional complex Brownian motion. (For further details, we refer the reader to [14, Thm II. 40].)

13 Actually, the proof is not so easy: the problem is to understand how the modification of the Brownian
paths and of the underlying filtration affects the representation. We refer the reader to the monograph by
Krylov [4], Remark III.3.10 for a complete discussion.
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(Use Proposition 6.9.) Changing time-speed in the integrals above, we deduce that V(y(s +
g)) > V(s +¢) where

~

Vo(s+e)
+oo t A
=E [/ exp (/ Tf,Tl"aCG[arDiz@/)(ZTS»JFE)]dT)
0 0
x F(det(a;), a, Zf+€)ifdt}

400 t A
=F {/ exp (/ |Tf|2TraC€[@ng,z¢(Zf+a)]dT)
0 0

x F(det(as), ay, Zts“)h’fﬁdt] :

(8.24)

Of course, when £ = 0, V7(s) = V7(s) so that sup, [V (s)] = V(7(s)).

The reader may notice that everything works as if (a;);>0 had been multiplied by the
scaling factor (|77]?)>0 as discussed at the very beginning of the paragraph: remember
indeed that F'is homogeneous with respect to a.

[t now remains to understand what happens when differentiating (8.24) w.r.t. . We let the
reader check that the resulting formula for [d/de](07(s +¢€)) is similar to (8.14). Specifically,
the terms A and A%* therein are bounded in the current framework if D./'T(z,0) is bounded.
With the typical choice (8.19) we have in mind, it is bounded away from the boundary, i.e.
for 1(z) away from 0. Actually, the main technical problem is the same as in (8.13): the point
is to justify the differentiation. To do, we use the same trick as in the previous subsection

by considering some cut-off version of F'. We thus deduce the analogs of Propositions 8.2
and 8.3:

Proposition 8.4. Let S be a positive real, ¢ be a smooth function matching one on [0, 1]
and vanishing outside [0,2], € be a positive real and s be some (finite) stopping time such
that (Z5) > e. Fort:=inf{t > s : (Z7) < €}, consider some process (Z:7°)g<i<¢ for which
([d/de)(Z;9) je=0)o<i<t and ([d2/de?](Z:+F)cm0)o<i<t exist and for which the perturbed SDE

(8.18) holds from s to t and define

Vg’ﬁ’t(s +e)

¢ t
= E/ {exp (/ |¢f|2Trace[arD§,z¢(Zi+E)]dr)
s 0

x F(det(ay), a, Zf“)gb(%) TﬂZ] dt,

as the localized version of (8.24), with 5 = T(Z;, Z5e — Z8), s <t < t, T being given by
(8.19), and T5 = |7£|* (with T5 =1).
If the differentiation operators of order 1 and 2 w.r.t. € and the expectation and integral

symbols in the definition of Vg’ﬁ’t can be exchanged, there exists a constant C' > 0, depending
57



on Assumption (A) and on € only, such that

%[Vg,s,t(s + 6)} } < CE [/texp (/t Trace[aTDg,z(Zf)]dr)
5 0
<1+ [ 1lar)at]
;—; [ Asg’ﬁ’t(s + 6)] } < CE [/texp (/t Trace[a,,Dg’z(Zf)]dr)
5 0

t t t 2
x [|ﬁ:|+|<f|2+ itk + [ 1Goar + ( / Kﬁldr) ]dt],
0 0 0

where (¢ = [d/de)(Z) =0 and 7 = [d®/de?)(Z; ) e=0-

The reader may wonder about the specific choice for the cut-off. First, the time-change
is plugged as an argument of the cut-off function: when performing the change of variable,
we recover (¢(t/S))i>0 as cut-off. Second, we emphasize that the cut-off permits to get rid
of times ¢ at which ¢ > 2S5. By assumption, we know that |7°|? is always greater than 1/4
so that ¥% is always greater than ¢/4, ¢ > 0. In particular, the cut-off vanishes at times ¢ at
which ¢/4 > 2S. In other words, the definition of Vg’ﬁ’t is understood as a finite horizon value

A

function: this permits to justify the differentation argument w.r.t. ¢ provided (Z;%%)o<i<:
satisfies the assumption of Corollary 7.5. (Have in mind that Corollary 7.5 holds in finite
horizon.) Unfortunately, because of the singularity of the coefficient '/ in (8.1) in the
neighborhood of 0D, it is not so easy to prove that (Zf+€)0§t§t satisfies the assumption of
Corollary 7.5. At this stage of the proof, this point is left open: this is the “meta’-part of
Meta-Theorem 8.1.

8.4. Perturbation of the Measure: Girsanov Theorem. The last perturbation method
we here discuss consists in modifying the measure of the underlying probability space. This a
typical probabilistic way to estimate the solution of a partial differential equation of second-
order: we may refer the reader to the lectures by Krylov in Pisa [9] for a detailed overview;
we also mention the personal work [2| and the references therein.

We here explain first how the probability measure may be changed to establish some
smoothness property for the solution of a second-order partial differential equation. Gener-
ally speaking, the modification of the reference measure is a common argument in stochastic
analysis, which turns out to be really efficient to quantify the sensitivity of a system with
respect to the input noise. More or less, this is the starting point of the Malliavin Cal-
culus, used to prove by probabilistic tools the so-called “Sum of squares” Theorem due to
Hoérmander. (See the monograph |13].)

In the specific case of heat equation, the problem may be understood as follows. Indeed,
as already explained in (3.1) and (3.2), the solution of the one-dimensional heat equation

1
Dyu(t, z) — §ch,xu(t, r) =0, (t,x)e€ (0,4+00) xR,
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with an initial condition of the form u(0,-) = ug(-) (say, with u, continuous and bounded)
is given by

2
Ty

Clearly, at fixed t > 0, and for any € 6 R, the Gaussian measures

u(t, ) =

1 |z — y|? 1 |z +¢ —y|?
exp(— dy and exp(————)d
V2t ( 2t )y V2t p( 2t )y
are equivalent, so that u(t,z + ¢) can be written as
u(t, x—iré)

[z +e—y[*— |z —yf |z —y|?
— d
. / wo(y) exp(— - )exp(—2 2 0 )dy

le —y)* — [y|? ly|?
= U ZL’+ ex ——— ) X —_— d .
_M/R o(z + ) exp( L) exp(— 2 )dy

Thinking of the Gaussian density as the density of the (marginal) law of the position of some
Brownian B at time ¢, we may write as well:

_ 2 2
u(t,x + ¢) :E[Uo($+3t)exp(—|€ Bt‘zt | By| )}

B 2
= E[uo(z + By) exp(&t?t — %)]

Now, the term M¢® = exp(eB;/t — ¢%/(2t)) appears as a density on the probability space
(Q, F,P) on which the Brownian motion is defined. Said differently, the representation of
u(t, z +¢) consists in integrating uo(z + By), as for u(t, ), but under the measure M¢-P. In
particular, the smoothness of u(t,-) with respect to the spatial parameter is directly given
by the smoothness of the density M with respect to the parameter c.

This example is very simple because the change of measure is of finite dimension. Never-
theless, there exists an infinite dimensional counterpart, known as Girsanov Theorem*®.

To understand how things work, go back to the statement of Theorem 7.2 and consider a
curve 7y of the form (s) = xg + (T — s)v, where T is some positive real, and xy and v some
vectors in RY. (Recall that, for more simplicity, the framework of Theorem 7.2 is real and

not complex.) The whole idea now consists in considering (X;/(t))ogtSTi it both depends on
time ¢ through the time index of X and through the initial condition ~(¢). (Keep in mind

that Xﬁ’(t = ~(t).) It can be proven (see e.g. the monograph by Kunita [10]) that
dX]" = b(t, X} ydt + o (t, X,V B, + &Vt

where &/ is the value of & = D,[X]"] at s = t. (That is, &' = D, X]"~/(t). See the
statement of Theorem 7.2.)

The big deal is the following. If o is invertible and o~ is bounded, uniformly in time and
space, we write

dX;" = b(t, X} dt + o (t, X)) (dB; + o7 (t, X; D)7V dt).
Hywe won’t give the explicit form of Girsanov Theorem here. It would require an additional effort which

seems useless. We refer to the monograph by Protter [14].
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What Girsanov Theorem says is: we can find a new measure QQ, equivalent to P on the o-
algebra generated by (B;)o<i<r, such that the process in parentheses be a Brownian motion,

i.e.
t
(Be+ [ o oxangar)
0

0<t<T
is a Brownian motion under Q. As a consequence, under the new probability measure Q,

the process (X;Y(t))ogtST behaves as the initial process (X;/(O))()StST under P. In particular,
if u stands for the solution of the Cauchy problem

Dyu(t, z) + (b(t, z), Dyu(t,z)) + %Trace la(t, z) D2 ju(t,z)] =0,

with the boundary condition u(T,z) = ur(z). (Note that the problem is set in a backward
way for notational simplicity only), the initial condition u(0,v(0)) can be written on the

same model as (5.3) as Ep[ur(X]?)] and therefore as Eglur(X7™)]. (Here, the indices P
and @ denote the probability used to perform the integration.) In particular,

w(0, 0 + Tv) = Eo[u(T, X;)].
Now, the trick is: v(T") = xo so that
u(0, o + Tv) = Eg [u(T, X7°)].

Finally, it remains to give the form of Q. It is given by Girsanov Theorem as

aQ
T 1 T

_ eXp(_/ (o= (r, XTNED_ B,y — 5/ 071t X70) ;v(t)|2dt)‘
0 0

Finally,
u(0, xg + Tv) = Ep[u(T, X7°)p7].

In other words, the regularity of u with respect to the spatial parameter follows from the
regularity of p%., independently of the regularity of the boundary condition: this is the typi-
cal probabilistic argument to understand the regularizing effect of non-degenerate diffusion
operators. Of course, the price to pay is the same as in analysis: the underlying diffusion
matrix has to be non-degenerate.

Obviously, this is not the case in the Monge-Ampére problem. However, we will use
Girsanov Theorem as a perturbation tool.

The idea is the following: go back to Eq. (8.1) and consider at s + ¢ the perturbed
dynamics

dZsve = V(24 0, [dBy + G(Z5, 23 — Z7)dt]

(8.25) )
+a;Dp(Z7)dt, ¢ >0,
Here, the function G satisfies G(z,0) = 0 so that (Z§)0 and (Z)e=o are equal as required

in the perturbation method. When G (seen as a function of two arguments) is a smooth

5The reader who knows Girsanov Theorem already may notice that the exponential martingale property
should be checked to apply the theorem. Obviously, it should be: actually, the whole argument relies on a
localization procedure that is a little bit involved. For simplicity, we do not discuss it here.
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function with a compact support, the unique solvability of (8.25) may be proven as in
Proposition 6.7: the sketch is given in footnote below . (The reader can skip it.) To make
the connection with the original dynamics, we are then seeking for a new measure P° under
which the process

t
(BtE = B, +/ G(Z2, 7254 — Zf,)dr)
0 >0
is a Brownian motion. (So that, under P¢, the process (Z;7%);>0 has the right dynamics.)
What Girsanov Theorem!” says is the following: if G is bounded, there exists a measure
P* given by

(8.26) S=E {eXp< - /Ot 2Re[(G(Z;, 23%° — Z7),dB,)]

t
— / \G]*(z2, Z5+¢ — Zf)dr) 1A], AcF, t>0,
0
under which (Bf)tzo is a complex Brownian motion of dimension d. (In particular, P* admits
a density with respect to P (and is even equivalent to P) when restricted to the o-subalgebra
Fi, t>0.)

We now go back to (8.25): we understand that (Z;*%),> has the same dynamics as
(Z:+%),=0 in (8.1) but with (B,);o replaced by (Bf),>o. Since (Bf);> is a Brownian motion
under P°, we expect (Zf“)tzo to have the same dynamics (i.e. the same distribution)
under P as (Z;%¢);>0 under P. Under local Cauchy-Lipschitz like type assumption on the

coefficients of (8.1), this is true: this is the so-called Yamada and Watanabe Theorem, see
e.g. Stroock and Varadhan [17].

6The argument is almost the same as in Proposition 6.7 but the right martingale to consider in (6.6) is
t
my = w_l(Zts+5) X exp (/ Trace[aTDg)gw(Zf“)]dr
0

t t
- [ omeliGzz. 2 - z).am)) - [ loP(zz 2 - Zf)dr>,
0 0
t > 0. Indeed, by Ito’s formula, we can prove that it is a local martingale.
Then, denoting by 7,, = inf{t > 0: ¢~ (Z;T%) < 1/n},

n1/2]P>{7_n < t} < E[¢_1/2(2158+6)]
1/2

< ]E{q/)l(ZAf“) eXp<— /Ot 2Re[(G(Z:, 257 — Z7), dBr>])]

) E{exp </ oRe[(G(Z:, 7 - 70) dBT>])] :
< CeXp(Ct)E[z%] = Cexp(Ct)y ' (2).

The last line follows from the bound
1/2

E {exp (/Ot MRe[(G(22, 23+ — 72), dBrﬂﬂ < exp(C)|Gloot).

See Rogers and Williams [15].
TPay attention that Girsanov Theorem is here given for the complex Brownian motion.
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Consider now the perturbed value function

V”(s +¢€)

-] *wEleXp(_ / ORe[(G(7, 2% - 72),dB)]

0

(8.27) : A
- [16rz 2 - zyar)
0
t

X exp (/ Trace[a,,DiZ@/)(Zfﬁ)]dr)F(det(at), ar, Zf“)} dt.

0
(Note that the integral and the expectation have been exchanged in comparison with the
original formulation in Proposition 6.9. This new writing permits to apply Girsanov Theorem
easily. Nevertheless, by boundedness of F' and superharmonicity of v, Fubini’s Theorem
applies and the integrals may be exchanged.) We may write it as

) oo t .
V(s +e) = / Ep- {exp (/ Trace [arDiz@Z)(Zfﬁ)}dT)
0 0
X F(det(at), Ay, Zf+6):| dtv

where Ep- denotes the expectation under P°. We then replace Zste by Z5t¢ by saying that
the dynamics of the first one under P* are the same as the dynamics of the second one under
P. We deduce that the supremum sup, 9°(s + €) is equal to V (y(s + ¢))*.

It now remains to specify the choice for G. Actually, we can choose it such that

(5.28) e 20— 7))y = 26

where 2(z) is a complex matrix of size d x d and (§ = [d/ds](Zf+€)|E:0. (Choose for example
G(z,2") = E(2)p(2'), the function p being bounded and satisfying p(0) = 0, D..p(0) = I,
and D p(0) = 0.) Below, the matrix Z(z) we use is bounded in z on every compact subset
of D only. (In particular, =Z(z) may explode as z tends to 9D.)

To complete the argument, it remains to explain what happens when differentiating (8.27)
w.r.t. . (Again, we assume that we can do so: this is a part of the “meta” in Meta-
Theorem 8.1.) The story is a bit different from what we explained above for the two other
perturbations. Indeed, when differentiating (8.27), we obtain a new term to bound which is

+oo t . t
E/O /0(:(Zr)gr,dBT> exp(/o Trace[arDz,gq/J(Zr)}dr)

Here is what we can say:

dt.

Lemma 8.5. Consider a process (s;)i>o with values in C%, solution to a SDE of the form

ds; = (@9 + 62@)6115 + (s + 051/5§_t>dBt7

BHere, the story is the same as for time-change. To have a completely rigorous argument, we should check
first that the representation of Monge-Ampére remains the same when the underlying Brownian motion is
modified. Again, we refer to Remark II1.3.10 in the monograph [4] for a complete discussion.

197 typical example is p(2') = (po(2}))1<i<a With po(z) = 2l exp(—|2}|?), 2/ € C.
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the coefficients (B¢)i0, (B))i>0 and ()0, ())i>0 being C¢ @ C¢ and C™¢ @ Cl-valued
respectively (i.e. (i, and (i are in C¢ and oy and ol are in C™¢) and being possibly
random as well. Set

t
my = / <Er§radBr>> t 2 0,
0

for another bounded C™-valued process (Z;)i>0. Assume finally that (Z;);>0 vanishes when
the process (V(Z7))i>o is less than some ey > 0. Then, for a non-positive process (¢t)e>o,

E [|mt| exp (/Ot cmlr)] < CE [/Ot 6| (1 +77%) exp (/0 cudu) dr] :

the constant C' only depending on the bound of = and on the bounds of o, o, 3 and ' at
times t for which ¥(Z;) > €p/2.

Proof. We follow the proof of (7.23). We consider a smooth cut-off function ¢ with values
in [0, 1] matching 1 on [€gy, +00) and vanishing on (—o0, €y9/2]. Applying Ito’s formula, we
write
s s s 2
dlp((Z))] = ¢/ (W(Z))didt + " (b (Z7)) | df? | dt
+ ' (W(Z)NAP dBy) + ¢ ($(Z5))(d®, dBy),

t > 0, where (dil))tzo and (diz))tzo stand for the coefficients of the It6 expansion of (¢(Z]))i>o,
Le.

d[v(2;)] = dVdt + (d?,dBy) + (47, dB,), > 0.
Note also that

d[|s)?] = (2Re[(S. Best + Bisi)] + |aust + | dt
+ 2Re [ (st + 01G)* G, dBy)], ¢ > 0.

Therefore,

d(Jmel + to(v(Z))]a )

= [IZwt]® + e((Z))) |l
+ 2t0(0(Z0)Re[(G, Brise + Bia)] + to((Z)ause + 0|’
+ P/ (W(Z))dY + tlalPe” (v (27))]d |
+ 200 (W(Z8))Re (st + 4G) G, ANV | dt + dny, >0,

where (n;);>o stands for a new martingale term whose value may vary from line to line.

Then, for any small a > 0, by concavity of the function z € Ry + (a + 2)'/? and by the
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bound [Zs]? < o0 2 [ZLfuzp)2e00 202 (W(Z9)) |2,

da+ |mf> + tp(0(Z]) o)
< =(a+ [mi® + to(@(Z))|al?) {12l + o (Z0)) s
(8.29) + 2t0((Z7))Re[(&, Bist + BiG) | + to(w(Z7))| st + Oé:eft}z
+ a2 (0(2))d" + tal " ((29))|dP|
+ 2t (W(Z2))Re (s + a)5) Gy dy)] Yt + dn,
< C(1+t7?)|gldt + dn,,

N —

the constant C' here depending on the bound of (Z;);>¢, the bounds of the processes (o 1{¢(Zf)>600/2})t207
(a£1{¢(zf)>600/2})t20, (Bt1{¢(zf)>600/2})t20 and (B£1{¢(Zf)>eoo/2})t20 and the supremuim norm Of
¢/ o'? and ¢ /2. (Note that (d”)=o and (d'*)=o are bounded by known constants.)
In particular, C' is independent of a.
Now, we can choose ¢ such that ¢'/p'/2 and ¢”/¢'/? be bounded. For example, think of
o(x) = exp|—€2, /(2% — (€00/2)?)] for z € (€40/2, €00/V/2), p(z) = 0 for x < €y/2, p(z) = 1
for x > €go and ¢(x) € [exp(—4), 1] for z € (ego/V/2, €00). As a consequence, we can assume
that the constant C' in (8.29) only depends on the bounds of (Z;);>0, (Q¢Liy(zs)>eco0/2})t=0

and (B¢1iy(zg)>e00/2} )tz0-
Finally, using the non-positivity of (¢;):>0, we deduce

1/2

t
a| (a+ Imel? + to(0(Z)al) ' exp ( / d)]
0
t
< C’(l + t—1/2)|§t| exp (/ crdr) dt +dn;, t>0.
0

Taking the expectation and letting a tend to 0, we complete the proof. U
Obviously, we wish to apply Lemma 8.5 with

G = Ee=2(Z)), ¢ = Trace[a,D? 4(Z;)],

provided we have a bound for the term =(Z7) in (8.28) and for €y to be fixed later on.
(Basically, we cannot choose €y = 0 since the coefficients driving the SDE satisfied by
(()i=0 are expected to be singular in the neighborhood of the boundary. See (8.1).)

As explained above, for the choice of = we use below, the term Z(Z}) is bounded for Z;
away from the boundary of the domain only. Following Propositions 8.2 and 8.4, we are to
localize the perturbation argument. Specifically,

Definition 8.6. For some real S > 0, some smooth cut-off function ¢ : Ry — [0, 1] matching

1 on [0,1] and 0 outside [2,4+00), some given positive real € > 0 and some (finite) stopping

time s at which ¥(Z2) > €, we call localized perturbation argument of Girsanov type from

time s to time t ;= inf{t > s : Y(Z;) < €} (t being possibly infinite) the perturbation of the

Brownian motion (B;)i>o on the interval [s,t] only. In such a case, the change of measure
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in (8.26) takes the form
tAt B R
P(A) =E {exp( — / 2Re[(G(Z:, 257 — Z7),dB,)]
T X
—/ ‘G|2(Zf,Zﬁ+€—Zf)dT)1A], AeF, t>0,
and the perturbed value function (with cut-off ) in (8.27) writes
Vs"7s’t(s +¢)

_E / t[exp (— / CORe[(G(Z2, 2 — 22, dB,)

(8.30) t .
- [erz 2 -z
t
X exp (/ Trace[a,nDiE@/)(Zﬁﬁ)]dr)F(det(at), ay, Zf“)gb(%)} dt,
0

for some (progressively-measurable) extension of (Z:7%)o<i<s to the time indices less than
s for which ([d/de)(Z;7)c=0)o<i<t and ([d*/de®|(Z;7)e=0)o<i<t exist. In such a case, by

Lemma 8.5,
At
E [ exp (/ Trace[a,,DiZ@/)(Zf)]dr)]
0

< CE [/Otm(l + 7’_1/2)|5f,| exp (/07“ Trace[auDg,zq/J(Zj)]du) dr] ,

tAL .
/ (2(2:)é2,dB,)

for some constant C' > 0, only depending on (A) and on the bounds of (Z(Z}))s<i<t and
of the coefficients appearing in the Ité writing of ((7)o<i<t at times 0 < t < t for which
W(Z7) > €/2. (Pay attention that we here start from time 0 to benefit from a as initial
condition in (8.29).)

We then deduce the analog of Proposition 8.2

Proposition 8.7. Keep the assumptions of Definition 8.6 and assume that the function =
is bounded on the set {¢p > €} If the differentiation operator w.r.t. € and the expectation
and integral symbols in the definition of Vg’ﬁ’t can be exchanged, then there exists a constant
C > 0, only depending on Assumption (A) and on the bounds of (2((}))s<t<t and of the
coefficients appearing in the Ité writing of (¢ )o<t<t at times 0 <t < t for which (Z7) > €/2,
such that

d ..
}£ (V7 (s +e)] }

< CE [/texp (/Ot Trace[a,,Dg’z(Zf)]dr) {|éf| + /Ot(l + r_1/2)|g:f|dr} dt} ,

where (i = [d/de)(Z; %) .
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Actually, the same strategy applies when differentiating twice in (8.30). It is then necessary
to bound

(8.31) E / t[

and

(8.32) E/: /:(E(Zﬁ)ﬁ;f,dBﬁ exp (/Ot Trace [arDz,#/J(Zf)]dr)

with 7 = [d/de)( Z;*) oo, and

E / t
X exp </t Trace [arDz,gq/J(Zf)}dr)
0

For (8.32) and (8.33), the proof is the same as the one of Lemma 8.5. With the same
notations as the ones used therein, the point is to consider (for a > 0)

d[(a+ |mf? + to((Z) G + 131 7], s<t<t,

t 2 t
/ (2(25)C,dB,) eXp( / Trace[arpz,zw(25)}dr)]dt,
5 0

dt,

~

/ (DE(Z)E + DE(2)E)E, dB,)

(8.33)
dt.

with .
mt:/ (22975 dB,), s<t<t
S

or
t —
mi= [(DEZ)E + DEEE)G B, s<i<t
0

For (8.31), it is sufficient to expand

[/:(E(Zf)ff,dBJ 2exp </0t Trace[arDzvng(Zj)}dr)}

by Itd’s formula to get an analog of Lemma 8.5.
We then deduce

s<t<t

Proposition 8.8. Keep the assumption Proposition 8.7. If the differentiation operator of
order 2 w.r.t. € and the expectation and integral symbols in the definition of Vg”"* can be
exchanged, then there exists a constant C' > 0, only depending on Assumption (A) and on
the bounds of (2((}))s<t<t and of the coefficients appearing in the Ito writing of (7 )o<i<t and
(7 )o<t<t at times 0 <t <t for which ¢(Z7) > €/2, such that

\d—; [Vosl(s +¢)]| < CE [ / texp < /0 t Trace[arDz,g(Zf)]dr)

t
x [|ﬁf|+|<:|2+ [asr i
0
t R t 2
[ viGran ( / Kﬁ\dr) M,
0 0
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8.5. Explicit Computations at the Boundary. We are now in position to expand the
computations. We start with the so-called “enlargement of the set of controls” method.
Following the localization procedure described in the statement of Proposition 8.2, the time
indices t we consider below are always assumed to belong to the interval [s, t], the choice of
the parameter € in Proposition 8.2 being clearly specified at the end of the discussion. Recall
that for t € [s,t], ¥(Z7) is less than e. Recall also from (8.10) that the perturbation reads
Azt =227 exp(P(Z0, 2 — Z7)) ovd By
+exp(P(Z;, 25 — 7)) ayexp (P*(Z5, Z54 — Z7)) Dip (25t
where ¢ € [s, 1], and (see (8.11))

d s rrs+e s

d_g[P(ZtaZtJr o Zt)}
(8.35) = | D40 2 [D2 G Doty + D2 0§Dy

— Dihy(D? 4hiG)* — Db (D? )],

= thtv te [57 t]u
¢ being given by (; = [d/de][Z; 7], t € [s,4].

We emphasize that (8.35) makes sense for e small enough: since ¥(Z;) < € for t € [s, ],
| D, (Z7)| # 0 for € small enough and ¢ € [s, t].

We also make use of the following abbreviated notation: we get rid of the symbol hat
“” and of the superscript s for more simplicity in ((7)s<t<¢ (compare with the statement of
Proposition 8.2); we also write v for ¢(Zf) and L, for Trace[a,D? .1)(Z})], s <t < t.

We then write the derivative (¢;)s<i<¢ as the solution of*"

dG = {uy P*Re[DainG] + 41 * Qi Youd By
+ [atDz,szt(t + atDE,Zwtét} dt + [QtCtatD;d}t - atthtD;d}t] dt.

Above, the vector (Z?,kzl(at)i,ngj,zk@Z)(Zts)(Ct)k)lgigd is represented by the product a; D .1,

From (8.35), we have (pay attention that D.ta, D3ty and [(D2 4h,()* + (D2 ()| D3y
below stand for scalar quantities as products of row and colum vectors)

a; Dz 1 (; + atDz,zwtgt + QiGray Dy — a QG Dy

= | Dby 2 D hya Doy (Dg,zwt@ + D;zd}tgt)
(8.36) — | Dy 2Dy [(D§7g¢t§t)* + (Dg,z@/)t(t)*}atDéwt

+ [ Doy |2 [(D2 00 G)* + (D2 41Ge)* | Ditbyay Dty

i= | D,y 2 Doapra Dby (D;zwtgt + D§72¢t§t) + Hyar D)y,
(H})s<t<¢ here standing for the auxiliary process
Hy = |D.y| "2 { =Dy [(D2 4hiCe)* + (D2 0G)"]

+ [(Dﬁ,zwt@)* + (Dgz@/)t@)*] D;fwt},

(8.34)

(8.37)

with values in C%*¢,

20Again, the differentiation is purely formal since no differentiability property has been established yet.
This is the so-called “meta” part of Meta-Theorem 8.1.
67



We deduce that

d¢; = {4, *Re[ D] + ¢ * Qi }oud By
+ |D2wt|_2DzwtatD;1/}t (Dg,,ﬂ/}tQ + D;ﬂ/}t@)dt + Hia, Diyydt.

Taking the square norm, we obtain

d|¢ [
= 2|Dz¢t|_2Dz¢tatD;¢tRe [@u (Dg,z@/)té} + Dg,z'@bt@)}dt
+ 2Re |:<C_t7 HtatD;Q/Jt” dt

(8.38) + Trace[(¢[1/2Re (DG 1 + 1/%1/2@5@)
% ar (U PRe[DonG) L — 0! (Qi) ") dt
+ 0 PRe[ D] (G 0vdBy) + 1y P Re[ Dot G] (G 6ed By)
+ %1/2 [@ta QiCio1dBy) + (Cta@5tdgt>}> sstst

In what follows, we modify the choice of ¢ according to the following observation: for
any constant ¢ > 0, cy is again a plurisuperharmonic function describing the domain. To
make things clear, we denote by 1° some reference plurisuperharmonic function such that,
for any Hermitian matrix a of trace 1 and for any z € D, Trace[aD? .4)°(z)] < —1. Then, we
understand 1 as N1° for some free parameter N > 1 that will be fixed later on.

As a first application, we can simplify the form of d|¢;|?, or at least we can bound it. As
already said, for € > 0 small, Y < Ny < ¢, t € [5,1], so that |D.¥?| > k for some given
constant kK > 0, s <t < t. For example, we notice that |Q:(;] in (8.35) and |H;| in (8.37) by
can be bounded by C|{|, i.e.

(8.39) QeGels |He < ClG|, s<t<t,

for some constant C' depending on &, || D¢°||o and || D*¥"||«, but independent of N. There-
fore, denoting by (r;)s<i<¢ a generic bounded process, bounded by some constant C' at any
time in [s,t], and setting &£ := D,1a;D:?, we write

d|G
=1, 'Re? [Dﬂ/}tgt] dt + Re [Dﬂ/%gt} |Celredt + |G| *redt
(8.40) + NIGP((E)Y? + & )rudt
+ 4y Re[ Do) (G 0udBy) + 0y *Re[ D] (G, 01dBy)
+ ¢2/2 (Gt QiGoedBy) + (G, QiGovdBy) ], s <t <t
the constant C'in the bound of (7;)s<:<¢ depending on (A) only (and not on N). In particular,
C may depend on k. (Above, the writing ((€°)/2 + £°)r, is an abuse of notation. It stands
for (£2)Y/2r,+EPr, for possibly different values of 7. We will use this simplification quite often
below.) One way or another, we understand that the terms (¥, 'Re?[D.1:(])i=0 and (E2)i>0

are to be controlled to control the derivative quantity according to the program announced

in Section 7.
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The strategy we here develop (and inspired by the one of Krylov) consists in considering
a modified version of the deriwative quantity. Below, we consider

(8.41) Ty = exp(—K1)|]* + ¢, 'Re” [Dzwtgt]a §<t<t

for some constant_K > (0 to be chosen later on.
To compute (dl'y)s<i<(, we use the following writing for (di)s<i<:

(8.42)  dvy = ¢* [Daboyd B, + Daty5dBy] + 2D.4ba, Dibydt + W, Lipydt, s <1t < t.

(Apply Ito’s formula to (¢(ZF))s<i<( and have in mind that P(Z*, Z® — Z*) = 0 when Z* in
(8.34) is Z* itself.) We first write
dexp(—K1iy)
= —2K exp(—Kv,)1y *Re[D.1)(Z;)odB]
+ [K?y — 2K] exp(— K¢y ) (D.ty, a; Dziby)dt
— K exp(—K )y Lapdt
= —2K exp(— K,y *Re [ D0 (Z;)od B
+ N2[K%, — 2K] exp(—K1,)E%dt — NK exp(— K1, )b, LyVdt.

(8.43)

Using (8.40),

d[eXP(—Kwt)\Ctﬂ
= exp(—K) [@/)t_lRez (D, (] + Re[ Db G| Celre
+ eGP+ NIGIP((EX)Y? + £0)r)] dt
|G exp(— Kuby) [N?[KP4y — 2K]E] — NK, Lyy ] dt
+ NK exp(—Kuy) [Re[Dz¢tCt]|Ct| + ¢t|§t|2}7“t +dmy, s<t<H,
where (m;);>o stands for a generic martingale term. We are now in position to compute dI';

at any time t € [s,t]. Have in mind that, for such #’s, ¢ is less than € and (7;)s<i<¢ is a
generic process satisfying |r;| < C, for some C' depending on (A) only. Think in particular

of the useful bound: |Re[D, (]| < /2, *|Re[D b, t € [s,1]. Then, applying Young’s
inequality to the term N(£)/2, the above equation has the form
d[exp(—K¢t)|§t|2}
< exp(—Kv) [ 'R’ [Datin(] + C(1+ €/ + ¢)& ]
(8.44) + C(N + N?) |G| E] dt
+ ¢ exp(— Ky [N*[K%e — 2KE) + CNKe|dt
+ NK exp(— K1) [Cel/2|§t|2 + Ce\£t|2] + dm,,

where |&|? = |G|? + ¢, 'Re®[D.1:(;]. To complete the analysis (in the neighborhood of the
boundary), we must compute d[¢); "Re’[D.¢,¢]], s <t < t. To do so, we start with (8.42)
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at s + ¢ (so that a; is understood as exp(p§)a; exp(—p;)). Taking the square root, we write

dy'?(Z;7)

1 _
=3 (Db (Z7%%) exp(p;)od By + Dz (Z;7°) exp(p])o,d B, ]
3 - ST€ ST€ (4 & * ST¢€
+ Z@D 1/2(Zt+ )D(Z;%) exp(p;)ay exp(—p;) DI (Z;°)dt

1
+ §¢1/ 2(Zg*)Trace [exp(p})as exp(—p; ) D2 1 (Z; )] dt.

We now differentiate with respect to ¢ at ¢ = 0. We obtain (with the notation & =
Dta, Dty = N*E7)

1 _
S[vr P RelD.(Z)G]
= Re[((Dz,z@DtCt)* + (D, s G)* + DzthtCt) UtdBt]
— 20 P RAD. GGt
3 _ _
(8.45) + 700 P ((DestnG)” + (DasthG)” + Deth@iG)arn Doty
+ 21/1;1/2 [D.thray (Ds00C + Dz st G — QoG D3y | di
+ %wtl/le"aCG[(QtCtat — a4, QiGy) D?,gwt + Clth,zz@/)tCt + ath,z,z@DtEt} dt

1 _
+ gRe[DotiGiluy 2 Lt
Plugging the definition of (Q:(;)s<i<¢ (see (8.35)), we deduce

(D) + (Dz,zwtgt)* + D Qi
(8'46) = |Dzwt|_2 (D2¢tD§,zwtCt + Dzth§,2¢t§t)Dz¢t
= Tt|Ct|Dzwt-

It is important to notice that the process (r;)s<i<¢ in (8.46) is scalar as the product of row
and column vectors. (It is also bounded independently of N.) We deduce

d[¢;1/2Re[Dzwt<tH
3 _
= 2Re |:7ﬂt|<-t|Dz77Z)t0'tdBtj| — iwt 3/2Re[DZ@/)tQ]5tdt
0, P& Gldt 4 NP |Gldt + Re[ Doyl Lipydt.

Taking the square, we finally claim (use the following trick to pass from the equality to
the inequality : ¥, 'r|¢|Re[D.(]E < oy *Re’[DoapyGlE + 17|¢[E, Nl G Re[Dapi(y] <
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Nyr |Gl + Ny 'Re?[D.4y (] and Lyyy < —N)

d[¢y 'Re?[D ()]

= dmy + 1| G*Edt — 31 *Re® (D) EdE + ;14| Re[ Dy G Erdt
+ N1 |Re[ D,y ) dt + 2¢;1Re2 (D, (| Labydt

< dmy + C(1+ &)|G[Pdt + CNYy| G dt — Nepy 'Re’[ Doy dt,

for a possibly new value of C'.
Making the sum with (8.44) and assuming ¢ < 1 and N > 1, we deduce

dl; < exp(—K¢)(1 — N)y 'Re’[ D1, Jdt
+&)*(C"+ C'Ne? + C'NKe?)dt
+ ¢ exp(— Ky ) N*[K?e — 2K + C" exp(Ky) | E)dt + dmy,

the constant C” depending on C' only. (In particular, C” is independent of K, N, €, s and t.)
Choose now K = ¢ /%, We obtain

dly < exp(—Kt;)(1 — N)y, ' Re*[ Dy ]dt + 2(C" + 20" Ne'/*) (&, | dt
+ ¢ ? exp(— K¢y ) N?[e'/? — 24 4 O exp(e¥/) ]| EPdt + dmy.
Choose € small enough such that
(8.48) /2 — 27 4 Cexp () < 0.
Then,

(8.47)

dly < exp(—Ky)(1 — N)Y;'Re*[DoahyGldt + 2(C" + 20" Ne*) |&,dt + dmy,
for s < ¢ < t. Finally for N = ¢ /4 and exp(e*/*) < 2, we obtain:
(849) dft S 6Cl‘ft|2dt + dmt S 60/ exp(63/4)ft + dmt S 120/ft + dmt,

fors <t <t
Exactly as in the statement of Proposition 7.7 (see in particular (7.17)), the right quantity

to consider is , .
exp (/ L@/},ﬂh’) [, =exp </ NLder) I[,, s<t<t
0 0

Again, for s <t < t,

t
d {exp (/ NLder) ft]
0
t
< exp ( / NLz/zEdr) [NLz/;fl_“t + 120@} dt + dmy
0

t
< exp (/ NLdJEdr) {—Nl“t + 126”1}] dt + dm,.
0

Having in mind that N = e "/, we deduce that, for e~/4 > 12C" (obviously, this is compat-
ible with (8.48)),

t
(8.50) d{exp ( / NLz/J?dr) Ft] <dm;, s<t<t
0
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Actually, it is plain to see that, for ¢ small enough, the same holds with N L replaced by
(N —1)LyY, i.e.

(8.51) dkm(/%N—ULﬁ%)n}gmm,sgtgt
0

We deduce

Proposition 8.9. There exists a positive real €, such that for 0 < € < €, for N = K = e /4,

for p = Ny°, where ¢° is the reference plurisuperharmonic function describing D such that
Trace[angzwo(Z)] < —1, z € D, for a stopping time s at which V(Z?) < €, the derivative
quantity obtained by perturbing the control parameter as in (8.10) and (8.35)

I} = exp(—K0(2))) |G+ (Z))R [Da(Z))G], t>s,

satisfies up to time t = inf{t > s : Y(Z) > €} (provided that (Z:7%)o<i<, is well differentiable
w.r.t. €)

At
E {exp (/ (1— 5)Trace[arD§7zw(Zf)]d7’) 1‘“&){|f5}
0

< exp (/ (1-— 5)Trace[aTD§7zw(Zf)]dr) . t>s,
0

with 6 = 1/N = €'/4

8.6. Away from the Boundary. We now investigate the derivative quantity away from
the boundary. The idea consists in perturbing the system in two different ways as the
same time, or said differently, in applying two perturbations. In the subsections above, this
possiblity has not been discussed, but we feel it quite simple to understand: it is even plain
to see that provided that the corresponding versions of Propositions 8.2, 8.4 or 8.7 be true
for each perturbation under consideration, the common action of both perturbations on the
perturbed value function is of the same type, i.e. the statements of Propositions 8.2, 8.4 or
8.7 (according to the framework) remain true under the common action.

Away from the boundary, the idea is to perturb both the underlying time speed, as ex-
plained in Subsection 8.3, and the probability measure, as explained in Subsection 8.4.

Following the localization procedure described in the statement of Propositions 8.4 and 8.7,
the time indices ¢ we consider in this subsection are always assumed to belong to the interval
[s,t], where s is some stopping time at which ¥(Z7) > ¢*! and t = inf{t > 5 : (Z;) < €}.
(As above, the choice of the parameter € is clearly specified at the end of the discussion.) In
particular for ¢ € [s, {], ¥(Z}) is greater than e.

We also make use of the same abbreviated notation as above: we get rid of the symbol
hat “*” and of the superscript s for more simplicity in ((f)s<i<i; we also write 1y for (Z7)
and Ly, for Trace[a;D? 4)(Zf)], s <t < t. Finally, we emphasize that ¢ is here arbitrary:
the connection with the form ¢ = Nv° used in Proposition 8.9 is explained later on.

The time-change we here use is given by a variation of (8.20), namely

©52) (1022 7] L =~ EDRDZ)G), s<tst

21pay attention that the values of ¢ may be different from the ones given by Proposition 8.9.
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Moreover, the measure perturbation we choose in (8.28) is

d -
(8.53) e (G(Z8, 257 = 7))y = —NoiG, s <t<t,
for some constant A to be chosen. (In other words, Z(Z}) = —Ag; in (8.28).)

We emphasize that both perturbations (8.52) and (8.53) are linear functionals of ¢, with
a bounded linear coefficient. (Again, ¥ ~'(Z¢) is bounded by €' away for ¢ € [s, t].)
The dynamics of (Z;7)s<;<( then read (compare with (8.18) and (8.25))

dZ;ve = VA ZET(Z5, 237 — Z9)oy[dBy + G(Z7, Z; — Z7)at]
+T2(Z8, 257 — Z2)ay Dip(Z5+e)dt, s <t <t
Differentiating (at least formally), we obtain
Gy = —AayGydt + a, D% 1y Gudt + a, D% by Godt — 29y " Re[ D,y Glay Dyt

(Pay attention that the dB; terms cancel.)
Then,

| = —20(Cp, )t + 2Re[(G, a; D% _:Gp) + (@ atD;,zwtgtﬂdt
- 4wt_1Re[DzwtCt]Re[Dzwtatgt]dt'

Have in mind that ¢, > € for ¢t € [s,t]. Then, by Young’s inequality, we can find some
constant C'(e,v) depending on € and ¢ only??, such that

(8.54) d|G* < [Cle, ) = 2M] (G anGy)dt + |G Pdt, s <t <t
Consider now some real R such that R* > 2sup,.p[|z|*]. Then, by Lemma 6.8,

d|[(R? = |7, t_l X tL cdr || = —ex tL ydr | dt + dmy,
[[( | Z:7)Y }ep(/o Y )} ep(/0 0 )t—l—m

where (m;):>0 stands for a generic martingale term whose value may vary from line to line.
In particular, for a small real 6 > 0,

a7 = 1y oo [ 0= ) L)

— [<0(R? = | Z,?)b; Ly, — 1] exp (/Ot(l — 5)Lwrdr> dt +dm;, t>0.

Finally, from (8.54) and (8.55),

o[t -1z e [ - o)
<

(€~ S22 — (215" = )G exp( [ (1 6) L )t

(8.55)

(8.56)
+ (C’(e, w) - 2A) [(Rz - |Zt‘2)¢t_1] <§t7 at§t> €xXp </Ot(1 - 5)L1/frd7“) dt
+ dm,

22We here specify the dependence on 1 since ¢ may vary in the statement of Proposition 8.9.
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for s <t < t. Choose € small enough such that eR? < 1/2 and then 0 small enough such
that

(8.57) 67" > 2R sup{ —Trace(aD> (2)), z € D, a € Hq: Trace(a) = 1},
so that

dR*¢ ' sup{—Trace(aD? ;¥(2)), z € D, a € Hq : Trace(a) =1} <

(NN

Then, for any s <t <t
(€2 = 0Lpy)(R* — | Ze|* )¢, ' =1 < (€ — 6Ly RPe ' — 1 <0,

so that the first term in the RHS in (8.56) is non-positive. Choose finally A = C(e,¢)/2 to
cancel the second term in the RHS in (8.56). Then,

t
d [(R2 _ |Zt|2)¢t_l|Ct|2} exp (/ (1— 5)Lwrdr)} <dmy, s<t<t
0
Finally,

Proposition 8.10. Let ¢ be a plurisuperharmonic function describing the domain D as in
(A). Then, there exists a positive real €3 > 0 such that for any 0 < € < €3, we can find a
constant C(e, 1), depending on € and 1 only, such that, for any stopping time s at which
WV(ZE) > €, for A = C(e,v)/2 in (8.53) and R* > 2sup,cpl|z|?], the derivative quantity
obtained by perturbing the time speed as in (8.52) and the measure as in (8.53)

I = (R =1 Z P (Z)GP, >,

satisfies up to time t = inf{t > s : (Z¢) < €} (provided that (Z:°)o<i<t is well differentiable
w.r.t. €)

tAL
E [exp ( / (1 — §)Trace [arDigz/z(Zf)]dr) F%ﬁ]
0

< exp (/ (1-— 5)Trace[a,,D§75@/)(Zﬁ)]dr> r'®,  t>s,
0
with § as in (8.57).

8.7. Interpolation between the Interior and the Boundary. It now remains to gather
the estimates at and away the boundary. To do, we introduce an interpolated version of the
derivative quantity.

The idea is the same as in the previous subsection: we couple at the same time several
perturbations. Specifically, we here make use of the three possible types of perturbations
discussed in Subsections 8.1, 8.2 and 8.4: the control perturbation is given by (8.11) and
(8.35), i.e.

L (p(z;. 2 - 27)
(8.58) = [ DAy 72 [ D2 (i Doty + D2 (Dot
- D;fwt(D,f,zi/zt@)* - D;wt(Dg,zd}tgt)*]a
= QG
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the time-change perturbation is given by a variation of (8.20), namely

(8.59) (002, 2% = 20)),_y = = D0 (Z)Re[ Do Z)¢,

for some real A € (0,1) to be chosen later on, and the measure perturbation is given as a
variation of (8.28):

d s rrste s
(8 60) d_g[G(Zt7Zt+ _Zt>:|

le=0
= (—2\ + A2 + 2007 2(Z8)Re[ DAb(27) ¢ 67 D (Z7).

(We here say a variation of (8.28) since the perturbation now involves ({;)s<i<¢ as well.

Obviously, this doesn’t change the global strategy.) The dynamics of (Z:),<i<¢ then read
(compare with (8.10), (8.18) and (8.25))

A2y = V(2T (28, 254 = 77 ) exp(P(Z5, 254 = 77)
x oy [dBy + G(Z7, 23 — Z7)dt]
+ T2, 237 — ZF)exp(P(Z5, 27 — Z7))
x agexp(—P(Z;, 27+ = Z7)) Di (237 dt,

fors <t <t

Following the localization procedure described in the statement of Propositions 8.2, 8.4
and 8.7, the time indices ¢ we consider in this subsection are always assumed to belong to
the interval [s, t], where s is some stopping time at which € < (Z}) < ¢, for an additional
positive real € ?* and t = inf{t > s : ¢(Z?) €]€, ¢[}. In particular for t € [s,t], ¥(Z;) belongs
to [€, €].

We also make use of the same abbreviated notation as above: we get rid of the symbol
hat “”” and of the superscript s for more simplicity in ((;)s<i<¢; we also write v for ¥(Z7)
and L for Trace[a,D? 4(Z7)], s <t < t.

Then, we can differentiate the dynamics of (Zfﬁ)tzo according to the rules prescribed
above. Following (8.36), we obtain

dg
= [\ PRe[ D¢ + QiG] ovd By + P Eyay Diabydt
+ (N_lgt + gt1/2) |Ct|/rtdt + 2()\ — 1)@/}[1Re [Dzwtgt] atD;@/)tdt, t 2 O,

where (r;)s<i<¢ stands for a generic process, bounded by some constant C' depending on
(A) only. (Here and only here (r;)s<i<¢ has values in C?. Below, it has values in C.)
Above, & := D.a;Di1p; and N denotes a real greater than 1 such that ¢ = N¢® where
Y% is some reference choice of the plurisuperharmonic function describing D, such that
Trace[aD? ;1°(z)] < —1 for any z € D and any positive Hermitian matrix a of trace 1.

Now, N~!&, is bounded by Cé’tl/z, s <t < t, up to a modificiation of C. (Pay attention
that C is independent of N.) Therefore, using the boundedness of [Q;(:|/|:| (see (8.35)),

23The values of both € and € will be specified later on.
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d|G[?
= My PRe [ Do) (G 0udBy) + (G 31 B))
(8.61) + 9, (G QuGowdBy) + (G, QiG1d By
+4(A =19, 'Re [Dzwtgt] Re [DzwtatCt} dt + 2@/}2/2EtRe [Dzwtatg}]dt
+ [N IR DG + AN|GIPrs + nlCPre + 771G P dt.

Now, from (8.42),

d@bt_)‘ = —)\@/);)\_1/2 [Dzwto-tdBt + Dzﬁbt&tdgt}

(8.62) (143 . A
- >‘(1 - A)wt Dz¢tatDzwtdt - )\Q/ft Lapydt.

By (8.43), for K > 1 to be chosen later on,

d[exp(—Kwt)}
=-K eXP(_Kwt)wtl/z [Dz¢t0tdBt + DzwtﬁtdBt}
+ [K2¢t - QK] exp(—Ky) D rar Dippdt — K exp(—Ka), ) Lapydt,

so that

d[exp(— K1)y

== [)\1/%_1/2 + Kqﬁg/ﬂ eXp(_K¢t)¢;A [DzwtatdBt + Dﬂ/}t&tdBt]
+ [K% + 20K — 2K — (1 = Ny, '] exp(— K1y )¢, Dopay D3yt
— [+ Kty] exp(— Kb )y, * Lpydt.

Then, by (8.61) and the above equality,

d[exp(—K )0, G|
— (4\ — 202 — 4 — 20K, exp(—K,) by "I Re[ DG Re [ Dathyar ] di
+ 25, exp(— K1) Re [ D.ypra ] di
(8.63) + exp(—K vy ), M [N 'R (D (] + AN |G *r
+ NE |G ry + &721¢Pr ] dt
+ [K%y + 20K — 2K — A(1 = M), '] exp(— Kby )i, A& G dt
— [N+ K] exp(— K )ty * Lapy | G *dt + dmy,

where (m;)s<i<s stands for a generic martingale term.
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By the specific choice we made for (Z;)s<;<¢, see (8.60), and by Young’s inequality,

d[exp(— K)o, G
< 2y, YR [Ddt
(8.64) + C(AKN? + AN + K~' + NKy) exp(— Kb )0, G dt
+ [K2¢t — (11— 2>\)K] exp(— K1y ), &[G dt
— [N+ K] exp(= K ), Ly | G2 dt + dmy.

Replacing —A by (1 — \)/2 in (8.62), we obtain in a similar way

72
1= o
(8.65) =5 W [Dz¢t0tdBt + DZ’thUtdBt]
1-— 1-—
+ (I-=NB- )\)w (N2 D) g Doyt + 22 A N2 g

4

Below, we make use of (8.65) but at point s + ¢ instead of . We obtain

d [w(l—)\)/2(ZAf+a)}
1—A

= RGNS, 2 - 7))

X [Dp(Z:%) exp(P(Z5, 2575 — Z7)) oy (dBy + G(Z5, 23+ — Z7)dt)
+ Dop(Z;F) exp(P(Z;, 2% — 7)) 6. (dBy + G(Z;, ;T — Z7)dt)

3—A — 7 s+e s rrste s 75+
(866) + ( )( )¢ (1+A)/2(Zt+ )T2(Zt,Zt+ o Zt )Dz¢(Zt+ )

X exp (P(Z;, Z55 = Z8))ayexp(—P(Z;, 275 — Z7)) Db (Z: ) dt
11—\
2
x Trace [exp(P(Z;, zZ5te — Z;))

x agexp(—P(Z;, Z: — Z7)) D2 Ap(Z:79) ] dt.
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We now differentiate according to the rules prescribed above (see in particular (8.58),
(8.59) and (8.60)). Using (8.46), we obtain

(1= Nd[; "V Re[ D]

i t_)\/2 (=0 "Re[D.4iG] + 11lGl] [Datbrod By + Dzty7d By

2
+ ( A)wt utDz¢tatD;¢tdt
+ A)f’ M (11— d— 24 20 P Re[D G Do, Dt
* ( >\)4(3 )\> U v t|Ct|Dz¢tatD*1/1tdt

1 — A

SO = x =24 20 ], VP Re[ DL ¢ Lyt

+ (1= NV [Re(D.LbiG) + Re(Trace[Q,Ca; D2 b)) dt

In a shorter way,

d[; VP Re[D.ab ]

1 _ _
= 5% Az [_@Z)t_lRe[Dz?/ftCt] + Tt|CtH [Dz@DtUtdBt + D2¢t5tdBt]
3-A _ .
+ 5 = 3)u Y Re[ Do G Doty Dt
3—A N _N/2— "
T VR GID b D + 0y E D Dt

1

5 (A= Dy VP Re[Do Gl Lyt

+ " [Re(D:LupnG) + Re(TraceQuGan D7 4] |t

Finally, taking the square, we obtain

d [@Z)t_(H/\)ReQ [DzwtCtH

- {%wt‘@“’f{& (D) + ¥ Gl + v Y Re[ DGl Gl

CEY

(= 3)0r IR D¢ + 20 I Re[ DG }
X Dzwta'tD;le)tdt

+ (A = vy VR (D, ) Lyt
+ 21/}t_AR'e[Dz1/}tCt] [Re (DZLQ/}tgt) + Re (TI'&CG [thtatDizwt])] dt + dmt.
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In abbreviated notations, we deduce

d[b; TR D))

1+ B=-NA-3) CIONI

- : v
+ 2%_(1/2+)\) Re[ D, G|=Edt
+ wt_(H/\)Re[Dzi/tht]gtKt‘rtdt
+ (A = D¢y YR (Dh G Lt + NG Prdt + dim.

Re?[ D, G dt

Recall now from (8.60) that Z; = (—2X + \* + 2) ;3/2Re[ D (). Then, applying Young's
inequality to the second term in the above RHS,

d[v; IR [D.w¢]]
(8.67) < (—%)\ + g)@)wt—@—k)\)&Rez (D¢ dt
+ CNTIE 4+ NG+ (A — 1), T IRE[DL b G Labdt + dmy.

Choose now ¢ < 1 and A < ¢ small enough such that —\/2+3)?/2 < 0and N = K = ¢ /4,
Then, (8.64) writes for iy <€

[eXP( Ky, AKt\ }
(8.68) < N2, YR [D, G dt + Ce/* exp(— Kby )b, G| 2dt
+ [361/2 - 6_1/4] exp(— Ky )b, A& G| dt + dm,.

In the same way, (8.67) has the form
d[oy TIREDAG]] < COTE + V) exp(— Ky G Pt
+ (A = Doy TYR[D Ly G Labydt + dmy.
Consider now the modified derivative quantity
Ty = exp(— K¢ NG ]? + 226y, TR DG,
From (8.68) and (8.69), we obtain

(8.69)

dly < e/ exp(— K)o, |G [*dt
+ (061/4 - 6_1/4) GXP(—K%W;AEth‘zdt
+ [2A\ = 1)V Lapy + N VR [DL Gt + dim.

For Ce'/* — e71/* < 0, we deduce

dly < Cet* exp(— Kb )y |G dt

+ [N@LeY + 1) — 20V Ly [, YRR [DL G ldtE + dim.
79



Since Ly? < —1, we finally deduce
Ty < O™ exp(— Ky )G dt
+ NIy — 220V Lo,y IR D,ab, G dt + dimy
< CeMt exp(—K ) |Gl dt
+2[(A/2 — 1) Ly Ay IR (Db, ¢ )dt + dimy.
Following (8.50) and (8.51), we deduce that

t
(8.70) d[exp (/ (1— )\/Q)L@/)rdr) Ft} <dmy;, s<t<t,
0
for € small enough and A <e.
We deduce

Proposition 8.11. Let ¢ be a plurisuperharmonic function describing the domain D as
in (A). Then, there ezists a positive real €o > 0 such that for any 0 < € < € < € and
0<A<e¢ for N =K =4 op = N¢Y° (with ¢° as in the statement of Proposition
8.9) and any stopping time s at which V(Z:) € [€, €|, the derivative quantity obtained by
perturbing the control parameter as in (8.58), the time speed as in (8.59) and the measure
as in (8.60):

T = exp(—Kv) o (Z3)|GIP + 2064, "VRADA(Z)G], t > s,

satisfies up to time t = inf{t > s : Y(Z7) &)€, e[} (provided that (Z:¥%)eci<y is well differen-
tiable w.r.t. €)

AL
E [exp (/ (1— 5)Trace[arD§,2w(Zf)]dr) F,E?J]—;}
0

< exp (/ (1-— 5)Trace[a,,D§7Z@/)(Zf,)]dr) r'® t>s,
0

with 6 = \/2.

8.8. Global Derivative Quantity. The reader might understand the problem we are facing
right now: above, we have defined three different derivative quantities according to the
position of the underlying representation process in the domain D. Surely, we must gather
into a single one the three different parts to control the dynamics on the whole space.

Actually, the strategy is not so complicated. In what follows, we are given 0 < € <
min(e;, €2, €3) in the statements of Propositions 8.9, 8.10 and 8.11 and we choose ¢ = ¢~1/43°
in each statement and \ = €2 in the statement of Proposition 8.11. Then, the three different
deriwative quantities have the forms

1Y = exp(— 4G + o7 "R [ D]
(871) F£2) _ GXP(—€_1/41/%)¢;€2 |gt|2 + 269/41/};(1+62)R62 [DzwtCt} ’
I = (R? — | Z,))y; Y G

At this stage of the proof, the definitions of T, T'® and I'® are purely formal since the

perturbed process (Zf+5)t20 has not been defined in a global way yet. Obviously, (Z;)>o,
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(¥t)e>0, A(Ct)tZO and (D,1:)¢>0 will be understood as (Z7):>o, solution of (8.9), (¥(Z7))>o0,
([d/de] [Zere])tzo and (D.9(Z})):>0-

For the moment, we claim

Proposition 8.12. Let (Z;)i>0 be a process with values in D and ((;)i>o be another process
with values in C. Setting vy, = ¥(Z;) and D,y = Dap(Z,), t > 0, consider (f‘il))tzo,
(TN 20 and ()20 as in (8.71).

Then, there exists a real 0 < €y < min(ey, €9, €3), depending on Assumption (A) only, such
that for € < €y, we can find three reals €, < €/4 and ps, pi3 > 0, depending on € and (A) only,
such that

U =€ = el > Ty

Y =¢/2= T > ol (+(1 - 2¢/1)y; ' Re? (D))
Y= e/d = sl > ol

do= el 2 T (+[(50)" ~ 116).

Above, additional terms in parentheses are positive for €y small enough. They are useless
in the whole Section 8. They will be useful in Section 9.

Proposition 8.12 may be understood through Figure 8.8 below. Each drawn curve stands
for a possible graph of one of the three deriwvative quantities in Proposition 8.12. The
boundary points of each curve (except the ones in 0 and €) are bounded from below by
the current point of another curve.

Figure 8.8. Representation of the derivative quantities.
Proof. When 1), = ¢/2, it is clear that

(5) T <1

Y

provided 2¢%/* < 1 (which is obviously true for € small enough).
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If 2(e/2)" €47 =1 (i.e. ¥ = €4, with €, much more smaller than €/2), then

2
We thus choose 113 = (¢/2)<.
When ¢, = €,
(8.72) "R 2exp(—e/HIY < TP
When ), = Ve,

I < (069Gl + 269 Dy 2w G
< (06)' = G + 260D B G,
since ¢ = e /40,

Since R? > 2sup,.p||2|?], we have R? —sup.p[|2[%] > R?/2 so that T > (R2/2)y; |G|
We deduce

ng) < 2R2 [(196)1—62 + 267/4—6219—62 HDszHiO} f\§3)

Finally,

[ < 2R72[(0e)' = + 26749~ | Dy° || 2| T}
< 2exp(e¥?) [191_62 + 2634y =< ||Dzw0||c2>o] = R2 exp(—e3/4)f‘§3).
Choose ¥ = 1/4. Then,
f?) <2 exp(63/4) [4_”62 +2- 45263/4||Dz’l7/)0||io} = R2 exp(—e?’/‘l)l;gg).
Then, for € small enough,
[ < =R exp(—e?’/‘l)fgg).

We finally choose i3 = [¢!=¢ R=2 exp(—€3/4)|p2, so that pol'\? < sl when 1, = /4. By
(8.72), sl < T when oy = e. O

Proposition 8.13. Let € € (0,¢q) and €4 be as in Proposition 8.12, define the following sets:

U ={2€D:¢(2) < e}
Uy={z€D:es <t(z) <€/2}
Uy={z€D:e/4<9(z) < ¢}
Us={z€D:9(z) > e}
Let v be a smooth path from [—1,1] into Us, s be some fized point in (—1,1) and (Z7)>o be

the solution of (8.1) with v(s) as initial condition.
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Define as well (1,)n>1 as the sequence of exit times of the process (Y(ZF))iso from the sets
[€/4, +00), [€4, €] and [0,€/2], i.e.

7= 1nf{t > 0: ¢, = Y(Z}) < e/4},

T o= inf{t > 71 : Yy Elea, €[},

T3 1= inf{t > Ty & [0,6/2[} if 1, = €y,
m3i=inf{t > m ¢y <e/d} if Y, =,

(If 7, = 00, then 7,41 = +00 as well, n > 1.)

For initial conditions of the form y(s+¢), consider the perturbed version (Z:*)o<i<r, as in
Proposition 8.10 (/4 playing the role of €) up to time 7. If 71 < 400, extend the perturbed
process as (ZAf“)ngtSTz according to the perturbation of Proposition 8.11 (e/2 playing the
role of €, € being equal to €4 and \ to €%) up to time ». And so on...according to Figure
8.13 below.

Proposition 8.9

Pl
~

N
|
Proszztzon 8.10

o

™

B
[o(h——

v |y — —
(@)

Proposition 8.11

I
[/
Figure 8.13. Choice of the perturbations.

Assume that the whole process (ZAfJ“S)tZO is differentiable in the mean w.r.t. € and that the
derivative process (¢ = (d/da)[ZerEhE:o)tZO satisfies the SDE obtained by differentiation of
the coefficients of the perturbations as in Theorem 7.2. Then, from time 0 to time 1y, consider
as derivative quantity the process (ugff”)ogtSﬁ defined in Proposition 8.10. From time 1

(if finite) to time 7o, consider as derivative quantity the process (lugfgz))angTz defined in
Proposition 8.11. And so on. .. according to Figure 8.8. Denote by (I't)i>o the resulting global
derivative quantity. (So that the process is left-continuous.)

Then, we can find o € (0,1), depending on (A) and € only, such that

¢
E{Ft exp (/ aLw(Zf)dr)] <Ty, t>0.
0
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Moreover, there exists a constant C' > 0, depending on (A) and € only, such that

(8.73) E[|Q|2exp </t aL@Drdr)} < Cly, t>0.
0

Proof. By Proposition 8.10, we can find some exponent o« < 1 (depending on (A) and e
only) such that

t
(8.74) d[rf” exp (/ aL@Drdr)] <dm;, 0<t<m,
0

(my)e>0 standing for a generic martingale term (whose value may vary from line to line).
Consider the case when 73 < +00. By Proposition 8.11, we can modify « so that

t
(8.75) d{f‘?) exp (/ aLwrdr)] <dm;,, T <t<mn
0

We then gather both derivative quantities (M3f§3))0StSTl and (mfﬁz))ngt@ into a single

one, denoted by (I'y)o<i<r. Obviously, it may be discontinuous at time 7: by convention,
(3)
1

we assume it to be left-continuous so that I';, = ps['s’. Then, we can rewrite (8.74) and

(8.75) as
E{mff{) exp ( / aLz/err)l{woo}} < Ty’ =T
0
_ tAT2
(8.76) E[Mrg?ﬁ exp < / an/err) |le] 1(ry <0}
0

_ tATL
< pgfgi)n exp (/ aL@brdr) 1o <qoo}-
0

(The second inequality above is obviously true if ¢ < 71: in that case, everything is known
at time t A 75 and the conditional expectation is useless. Otherwise, i.e. if ¢ > 71, the second
inequality is a consequence of (8.75). Add also that {7 < +oo} € F,,: at time 71, 7 is
known to be finite or not.)

We now apply Proposition 8.12. If 7y < +oo and t > 71, we know that ., = ¥, =€/4

so that ,ugfg) < Mgfq(—?). Then, for t > 7 (and 7, < 4+00), (8.76) yields

3 tAT2 _ T1
E [uzriig exp ( / awrdr) m] < 15T exp ( / awrdr) |
0 0

tAT2 T1
E {FMTQ exp (/ aLwrdr) \]—"Tl] <T, exp (/ aLlprdr).
0 0
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Finally, for any ¢ > 0,

N tAT2
E [me exp (/ aLwrdT)]
0
_ tAT2
=E |:Ft/\7—2 exp (/ O{LQ/}TdT) 1{T1 <t}:|
0

B tAT2
+E|'irr, exp (/ ozL%dr) l{ﬁzt}}
0

r _ tAT2
Linr exp ( / oleprdr) 1{ﬁ<t}} \fﬁ}
L 0
r _ tAT2
+E|E [PM exp < / an/err) 1{n>t}} }fn} .
0

3 tAT2
E {Ft,\ﬁ exp (/ aL@DTdT)]
0
S E |:F7—1 exp (/ aLwrdr) 1{7'1 <t}:|
0
B tATL
+E [an exp </ aLzljrdr) 1{71215}}
0

tATL
=K [an exp (/ aLwrdr)} < Ty.
0

In other words, we are able to gather the two inequalities in (8.76) into a single one over
the whole interval [0, 73). By induction, we can process further: if 7 < +o00 and ¥, = €,
we make use of Proposition 8.9 up to 73 = inf{t > 7 : ¢y > €/2}; if 75 < +o00 and ., =€,
we make use of Proposition 8.10 up to 73 = inf{t > 7 : 1, < €/4}; we then extend T; to
[0, 73) by using Proposition 8.12 (at time 7y, ,ugf(é) is greater than the two other derivative
quantities); and so on... We then extend the derivative quantity to the whole [0, +00) in

such a way that
t
E{ft exp (/ aLwrdr)] < T.
0
(1)

Of course, the value of T, is given by one of the three original derivative quantities T}

~E[E

Therefore,

mff) and ,u3f§3) according to the position of Z; in D. (See Figure 8.8.) What is important
is that, in any case, [y > c|(;|?, for some positive ¢ depending on (A) and € only. Eq. (8.73)
follows. O

8.9. Conclusion. It now remains to gather all the localized value functions into a single
one:

Proposition 8.14. Keep the assumption and notation of Proposition 8.13. (In particular,

s stands below for some fized real in (—1,1).) Given S > 0 and € with s+¢ € (—1,1), define
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the globally perturbed analog of V' in Proposition 6.9
V(s +e)
+oo t B R
_E / [eXp(— / MRe[(G(Z2, 25+ — 72),dB,)]
0 0

t
2(r7s rrs+e s
- - [16pz 2 - zar)

t
< exp ( [ P Tracelespi e exp(—pi)Dizw(Zi“)]dT’)
0

£

x I (det(ar), exp(p;)a; exp(—p;), ZE+E)¢(%)] TP,

where the quantities (p; = P(Z¢, 25— 7))o, (18 = T(Z, Z¥5—Z3) 1m0 and (G(ZF, 25—
Z9))i>0 stand for the different possible perturbations used in Proposition 8.13. Precisely, p°
15 set equal to O outside the intervals on which the perturbation of Proposition 8.2 applies,
T¢ is set equal to 1 outside the intervals on which the perturbation of Proposition 8.4 applies
and (G(Z3, Z5Y — Z8))y=0 is set equal to 0 outside the intervals on which the perturbation
of Proposition 8.7 applies. Moreover, ‘3:§ = |3 t > 0.

Then, at point s, sup, VE(s) = Vg((s)) exactly, where Vs(v(s)) stands for the finite-
horizon version of V(v(s)) in Proposition 6.9, i.e.

Vs(z) =supV§(z), ze€D,
where

Ve(z)=E { /0 ” exp ( /0 t Trace[a, D, z1(Z77)] dr)

X F(det(ar), a, Zfz)ﬁb(i

S)dt].

Moreover, for any control (o4)es0, V(s +¢) < Vs(y(s +¢)).

Sketch of the Proof. The equality sup, V(s) = Vs(y(s)) is easily seen.

The proof of the inequality sup, V¢ (s + &) < Vg(y(s + €)) is a bit more challenging. We
won’t perform it in a complete way. We refer the reader to the original articles by Krylov
|6, 8]: the argument is explained therein in a very detailed way. However the idea is quite
clear and consists in coupling the arguments given in Subsections 8.2, 8.3 and 8.4: modifi-
cation of the control, of the time speed and of the measure. O

Here is the final step:

Proposition 8.15. Keep the assumption and notation of Propositions 8.13 and 8.14. As-
sume in addition that, for any S >0 and s € [—1,1],

(8.78) limsupsup sup | 0 [VS(s+)]|] = IQ[VS”(S +¢&)]

P ol
e—0 o |e'<e] Og! oe’ |e'=0
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Assume also that, for every compact interval I C (—1,1), for e small enough, the quantity
SUP, SUP||< o [| (O/0€) [V (s + &')][] is uniformly bounded w.r.t. s € I. (Pay attention that

the definition of the function VS‘? depends on s itself.)
Then, there exists a constant C' > 0, depending on (A) and the distance from 7([ 1,1])
to OD only, such that, for any S > 0, the function s € ( 1,1) — Vs(( +Cf0 | (r |d7° is

non-decreasing and the function s € (—1,1) — Vg(y( C'fo Iy (r \dr i$ NON-iNcreasing.

Proof. Without loss of generality, we can assume € to be small enough so that v([—1,1]) C
Us, with Us as in Proposition 8.13. Following the proofs of Propositions 8.2, 8.4 and 8.7, we
then claim that (C being as in the statement)

. s+l <cu [ el [ ek D2 )
X {|§t|+/0 (1+r-1/2)|g|dr]dt].

Recall that Trace[a, D2 4(Z5)] < =N = e /% By (8.73), we deduce

d .
}d—g[Vg(s +€):||E:O}

< CE UO+OO exp(—N(1 — a/2)t) [l@l exp (/Ot(a/2)L¢rdr)

+ /0 t(1 + 7)o | exp ( / T(a/2)L¢udu) dr] dt}
:C/O+ooexp(— (1—a/2)t { [Kt\exp( 04/2)L1/1,«dr)]
+/0t(1—|—7‘_1/2 {|Cr|exp( (a2 qudu)} }dt

+o0o
< Cf(l)/zf exp(—N(1 — a/2)t) (1 + t)dt < C’Fl/2
0

the last line following from Cauchy-Schwarz inequality.
Since Ty = 1;(()3), we deduce that

(8.80) }d% [Va(s+¢)] IE:O} < CRIY(s)|"V21/(s)].

Unfortunately, the above estimate is a bit weaker than (8.5) and is not sufficient to recover

(8.81) lim inf Vs(v(s +¢)) — Vs(v(s))

>_ —1/2 /
lim inf - > —CRIA(s)| 1/ (5)]

as in (8.6).
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To recover (8.6), we take benefit of (8.78). Indeed, by the mean value Theorem, we can
generalize (8.80) and write (for a possibly new value of the constant C)

Vs(v(s +¢)) = Vs(v(s)) = inf (VS (s +¢) = Vi (s)]

(8.82) d
> —Cle| sup sup[ W[Vg(s%—s)] H
le'|<lel o
By (8.78) and (8.80), we deduce (8.81). Modifying the constant C' in (8.81) (have in mind
that C' may depend on € but is independent of S and s), we deduce that

s+e
liminf e [Vs(y(s +¢)) + C'R/ |17/ (r)|dr
0

e—0,e>0

(8.83) .
Vi((s) — CR / Iv’(r)|dr] >0

Actually, (8.82) says a little bit more. Since sup|.,.|. sup,|| [d/de')(Vs(s+¢'))|] is bounded in
s in compact subsets of (—1,1) (at least for |¢| small enough), we deduce that the function
Vgo~y is Lipschitz continuous and thus continuous. (Pay attention that the Lipschitz constant
may depend on S at this stage of the proof.) Indeed, the LHS in (8.82) being bounded from
below uniformly in s, the points s and s 4+ € may be exchanged, so that the bound holds
from above as well.

We then deduce from (8.83) that the function s € (—1,1) — Vs(y(s)) + C [; |7/ (r)|dr is
non-decreasing.

Letting S tend to 400, we deduce that the function s € (=1,1) — V(y(s))+C [ |7/ (r)|dr
is non-decreasing. Similarly (i.e. by changing ¢ into —¢), we can prove that the function

€ (=1,1) = V(y(s)) = C [, |/(r)|dr is non-increasing.

To complete the proof of Meta-Theorem 8.1, it remains to choose . For some point z
such that ¢(z) > €, we can set v(s) = z + sv, s € [—1,1], for some v € C? such that
the complex closed ball of center z and of radius |v| be included in Us. (See the defini-
tion of Us in the statement of Proposition 8.13.) Then, V(y(1)) — V(~(0)) + Clv| > 0 and
V(v(1)) = V(7(0)) = Cly| <0, ie. [V(z+v)—V(z2)] <C|v], the constant C here depend-
ing on e. Going back to the connection between V' and the solution to Monge-Ampére in
Proposition 6.9, we understand that the solution to Monge-Ampeére is Lipschitz continuous
in every compact subset of D. U

Unfortunately, the argument fails for the second-order derivatives. The reason is quite sim-
ple. Indeed, we wish to apply Proposition 7.9. Replacing (;)io by (n: = [d*/de*[(Z;7°))i>0
in the definition of I\, T and I'® in (8.71), the problem is to prove that the result-

ing global second-order derivative quantity, denoted by (I'y(n;))s>0, satisfies (compare with
(8.73))

E[r e [ t aLuzir)| <cti iz
0

In some sense, this matches (7.22) in Proposition 7.9. B
The problem is not to prove OI'y(n:) < o/ Lip(Z)y(n:), t > 0. (The notation (01't(m:))i>o0
has the same meaning as in Proposition 7.9.) Basically, if the inequality is satisfied for ¢, it

is satisfied for 7, as well: it is sufficient to replace (; by 7; therein. The problem is somewhere
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else: in Proposition 7.9, the derivative quantity is assumed to be driven by a quadratic form
equivalent to the Hermitian (Euclidean in the real case) one. Obviously, this is not the case
when using (T';(1;))s>0 since (Fﬁ”)tzo in (8.71), which is the derivative quantity we used in
the neighborhood of the boundary, has some singular coefficient inside: (1; ");>o.

9. PROOF OF THE CM'-REGULARITY UP TO THE BOUNDARY

We now complete the proof of Theorem 6.1.

In comparison with Section 8, Krylov’s program consists in introducing an alternative
representation of the solution of the Monge-Ampére equation in the neighborhood of the
boundary and to associate a new derivative quantity with it, free of any singularities, so that
Proposition 7.9 may apply.

9.1. Representation Process on a Zero Surface. The trick consists in introducing a
parameterized version of Eq. (6.12) in the statement of Proposition 6.9. In what follows, we
thus consider the system (with values in C? x C?)

dZ, =Y YjoudB} + a D" (Z,)dt,
(9.1) =12 )
d}/;Z = Dgi/J(Zt)a'tdBZ + §Y;iTrace [ath’zi/J(Zt)] dt, t Z 0, 1= 1, 2,

where B! and B? denote two independent complex Brownian motion of dimension d. At
that point of the proof, we don’t know whether the process (Z;);>¢ stays inside D or not:
since ¢ is C* in the neighborhood of D, we can extend it to the whole C? into a C* bounded
function with bounded derivatives. For such an extension and for a given initial condition
(Zo,Yy), the above system has locally Lipschitz coefficients and is therefore uniquely solvable
on some interval [0, 7), 7 here standing for a stopping time.

In what follows, we set ®(z,y) = (z) — |y|* for z € C? (¢) being extended to the whole
space) and y € C?. We prove below that, for Zy € D, the solution (Z;,Y;)o<i<- lives in a
level set of the function ® so that it can be extended to the whole [0,4+00), i.e. 7 = 400.
(Indeed, the level set property says that (Y;)o<;<, is bounded by a universal constant.) To
do so, we compute for 0 < ¢ < 7:

dp(Z) = Y Vi Dp(Z)owdBi + Y Y D:p(2)5.dB;
(9.2) i=1,2 i=1,2

+ 2D (Zy)ay D™ (Zy)dt + |Yt|2Trace(atD§,21/1(Zt))dt.
Above, |Y;|* = |V}|* + |Y]?. Now, we write for ¢ € {1,2} and 0 < ¢ < 7:
d|Y|* =Y,/ D.(Z,)odB. + Y D:)(Z,)5,d B!
+ |V} [P Trace[a,D? ;0 (Z,) | dt + Dp(Z)ay D:ap* (Z)dt.
As a consequence, we obtain that

(9.4) d(U(Z) %) =0, 0<t<r

(9.3)

so that the process (¥(Z;) — |Yi|*)o<i<- lives on a level set of the function ®. Therefore,
(Yi)o<t<r is bounded by some universal constant, so that Eq. (9.1) appears as a Lipschitz

system.
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[t now remains to understand how the dynamics of (Z,Y") are connected with the original
ones of Z in (6.12). To this end, we set

1
(9.5) Z/ |Y| {|Y5|>0}+\71{|Y5| —op)dB;, £ 0.

1=1,2

Clearly, (W;)>0 is a martingale with values in C?. Actually, for any coordinates 1 < j, k <
d,

(9.6) AWiWFE =0, dW;W}| = 6;,dt,

where §; 5 stands for the Kronecker symbol. Following Footnote (12), (W,);>¢ is a complex
Brownian motion of dimension d. Moreover, (9.5) implies

(9.7) Y,|dW, = )" YidB;, t>0.

i=1,2

Choose now Zy € D and Yy € C? such that ¢(Zy) = [Yo|®. By (9.4), ¥(Z;) = |Y;|* for any
t > 0 so that (9.7) has the form

YA Z)dW, = > YidB], ¢ >0.

1=1,2

In particular, (Z;):>o satisfies
(9.8) dZ; = v*(Z)odW; + a;,Doy*(Zy)dt, ¢ >0,

i.e. (6.12). Clearly, Eq. (9.8) says that Proposition 6.7 applies to (Z;);>0, that is (Z;);>0 does

not leave D, and that we can use the parameterized version (9.1) of (6.12) in Proposition
9. (See Footnote (13) as well.) When doing so, the representation formula holds at some

point z € D: it is the initial condition of Z. However, we stress out that the right initial

condition of Eq. (9.1) is the complete initial condition of the pair (Z,Y"): given the starting

point of Z, the starting point of Y is chosen in such a way that (Zp, Yp) is a zero of ®.
Here is a possible choice:

Proposition 9.1. Let v = (y9,71) be a smooth path from [—1,1] into D x C? such that, for
any s € [—1,1], ®(y(s)) = 0, where ®(z,y) = ¥(z) — |y|>, 2 € D, y € C* Then, for any
€ [—1,1], the solution (Z7,Y )0 to

dz; = Y (V) 'oudB; + a, D= (Z)dt

i=1,2
. _. 1 .
d(Y?) = Dxy(Z7)od B, + 5(}Q3)1Trace [ath,zq/J(Zf)}dt, t>0,1=1,2,

with (Z3,Ys) = v(s) as initial condition, stays in the zero surface of ®. (Above, (B})i>o and
(B?)i>0 stand for two independent complex Brownian motions of dimension d.)

Moreover, the value function V' in Proposition 6.9 may be represented at point y(s) as the
supremum of V7(v(s)) obtained by plugging the above choice for (Z7)i>¢ into the definition
of Proposition 6.9.

A possible choice for y is yo(s) = z+sv, z € D and v € C4\ {0} (such that B(z,|v|) C D)
and v1 = (y1.1,71,2) solution of the ODE

(9.9) Y1(s) = 71_,%(5)Dz¢(70(5))7;6 Y2(s) =0, se[-11],



with |’)/171(0)‘2 = w(Z) and ’)/172(()) =0.

Proof. The first part of the statement has been already proven. Turn now to the ODE (9.9).
It is solvable on a short time interval around zero as soon as 7;(0) is non zero. Actually, a
simple computation shows that, in the neighborhood of 0,

dU%l(S)'zd; $00(2) = 2Re[D.¢(0(s))v] — 2Re[D.¢(0(s))v] =0,

so that |y1.1(s)]? = ¥(70(s)) for s in the neighborhood of 0. As 1 (7o(s)) doesn’t vanish for
s € [—1,1], 71 may be defined on the whole [—1,1] (at least). O

Below, the objective is to compute the derivatives of the pair (Z;,Y;*);>0 and to consider
a suitable derivative quantity for it. Specifically, we emphasize that the situation is differ-
ent from the original one in Proposition 6.9: here, the coefficients of the SDE of the pair
(Z3,Y?)i>0 are smooth up to the boundary. (Because of the exponent 1/2 in 1), they are not
in the original Proposition 6.9.)

9.2. Example: Estimate on a Ball. To explain how things work, we first focus on the
specific case when the domain is a ball, say the ball of center 0 and radius R. In such a case,
we may choose 1(z) = R? — |z|? so that Eq. (6.12) has the form

(9.10) dz, = [R* — | Z,|]

with Zy = 2z € B(0,R) = {#' € C?: |//|? < R?}.
We then apply Proposition 9.1 with ®(z,y) = ¥(z) — |y|* = R* — |2|*> — |Jy|%, z € B(0, R)
and y € C% The parameterized version (9.1) of (9.10) has the form:
dZt = Z Y;ZO'tdBZ — attht
(9.11) = X
AY{ = —(Zi,0dB)) = JYidt, i=1.2,

1/2O'tdBt — attht,

where (B})i>o and (B?);> are two independent Brownian motions with values in C,

We are now in position to complete the analysis on a ball. To do so, we compute the
derivatives of the pair (Z,Y): specifically, we initialize the pair at some 7(s), s in the
neighborhood of zero and for some curve 7 on a level set of ®. (Choose for example ~ as in
(9.9).) The resulting pair (Z,Y) is denoted by (Z°,Y*) as above. The derivative process is
denoted by (¢, 07). It is understood as £° with the notations of Theorem 7.2. Eq. (9.11)
being linear, Theorem 7.2 applies and we obtain:

d¢; = > (8))'odB} — Gyt

i=1,2
. . 1 , .
d(0)' = —(Gr udBy) = 5 (e7)'dt, i =1,2.

Have in mind that d(|Z;]* +|V;|?) = d(—R*+|Z,|* +|Yi]?) = d[—¥(Z) +|Yi[*] = 0. Similarly,
the pair (¢, 0f)i>0 satisfies

d(|¢ 1 +105]?) = 0.
In comparison with Definition 7.6, this means that the derivative quantity is zero, i.e.

drs =0, t>0,
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with I = |&F]? = |¢|* + |ef|>. In particular,

exp(— / csds)|s:|2 — exp(— )|

where ¢, = —Trace[a, D2 4 (Zy)] = 1.

We then recover the conclusion of Proposition 8.13 but the constant C' in (8.73) we now
obtain is independent of the distance from ~ to the boundary 0D. Moreover, the matrix A
in Proposition 7.9 is simply the identity matrix so that a similar bound is expected for the
square-root of the second-order derivative quantity. This makes the whole difference with
Section 8.

9.3. Perturbed Version. Obviously, the case of the ball is very specific. In the general
case, we go back to the perturbation strategy developed in Section 8 but for the pair (Z,Y)
solution of (9.1).

Specifically, we consider a C? curve v : s € [—1,1] — 7(s) such that ®(y(s)) = 0 for any
s € [—=1,1]. For a given (fixed) s € (—1,1) and for ¢ in the neighborhood of 0, we denote by
(Z712,Y,779) >0 the solution of?*

Az = (V) exp(p])owdB] + exp(p;)ay exp(—pj) Dy (Z; ) dt,

i=1,2
d(YHe) = Dap(Z5+) exp(5 )5, d B!

1 )
+ 5 (Y,7) Trace [exp(p ) a; exp(—p}) D2 2(Z;)  dt,

2
t>0, i=12,

(9.12)

with the initial condition (Z5", Y1) = (s + ¢)

Here, the process (pf):>o denotes a ghost parameter with values into the set of anti-
Hermitian matrices, exactly as in Eq (8.10). Specifically, pi*® = P(Z;, Z;™° — Z7) as in
(8.10) with P as in (8.11). As in Subsection 9.1, ¢ is here extended to the whole C¢ into a
C* function with bounded derivatives, so that the above system has Lipschitz coefficients on
the whole space and is therefore uniquely solvable for any given initial condition (Zp, Yp).

Following the proof of Proposition 9.1, we can compute d(¢(Z;7°) —|Y,*7¢|?) for any t > 0
and prove that it is zero, so that the process (¢(Z;7°) — |V 1¢|?)i>0 lives on the zero set of
the function @ : (z,y) € D x C? — ¢(z2) — |y|®. (In particular, (Z;*%);> does not leave D.)

Here is the analog of Propositions 8.2 and 8.3

Proposition 9.2. Let S > 0 be a positive real, ¢ be a smooth function from Ry to [0, 1]
matching 1 on [0,1] and 0 outside [0,2], € > 0 be a small enough real such that | D, (z)| > 0
for (z) < e and s be some (finite) stopping time such that ¥(Z%) < e. For t :=inf{t > s:
U(Z5) > €}, consider some process (Z; %, Y ) o<i<q for which ([d/de)(Z;%®)=0)o<t<t and
([d?/de®)(Z77F)je0)o<t<t exist and for which the perturbed SDE (9.12) holds from s to t and

24For more simplicity, we forget the symbol “” used in Subsection 8.2.
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define
VI¥ (s +e)

t t
—& [ fosp( [ Traceloxp(oi ) exp(-pi )02 o227
5 0

t

x F (det(at), exp(p;te)as exp(—pi™e), Zts+€) ‘b(g)} dt,

with pi*° = P(Z:, 277 — Z8), s <t < t, P being given by (8.11).

Assume that the differentiation operator w.r.t. € and the expectation and integration sym-
bols can be exchanged in the definition of ngs". Then, we can find a constant C > 0,
depending on Assumption (A) and on € only (in particular, it is independent of C'), such
that

d "o,
‘d—g[VS’ ’t(s +5)H

< CE [/texp (/Ot Trace[arDiz(Zf)]dr) [|Cf| + /Ot |Cf\dr]dt},

where G = [d/de] (Z:) o=,
Similarly,

d2 "ro,5,t
@[VS”(8+5)]‘

t t
< CE [/ exp (/ Trace[arD§7z(Zf)]dr)
5 0
t t t 2
» [|n:|+|<f|2+ [ i+ | |<ﬁ|2dr+( / |<ﬁ|dr) M,
0 0 0

where nf = [d2/d=2)(Z) cmo.

9.4. Derivative Quantity. We now prove the analog of Proposition 8.9:

Proposition 9.3. Keep the assumption and notation of Proposition 9.2. Then, there exists
a positive real €, such that for 0 < e < €, for N = K = ¢ Y4, for ¢ = Ny, where ¢° is
the reference plurisuperharmonic function describing D such that TracelaD? 4°(z)] < —1,
z € D, for a stopping time s at which ¥(Z?) < €, the derivative quantity obtained by
perturbing the control parameter as in (9.12)

Y = exp(—KO(Z) G + I, t >,

with ¢ = [d/de)(Z;7%)e=0 and p; = [d/de|(Y ) e0, satisfies up to time t = inf{t > s :
U(Z7) = e}

tAt
E {exp (/ (1— 5)Trace[arD§7zw(Zf)]d7’) 1‘“&){|fs}
0

5
< exp 1 — §)Tracela, D? .(Z%)|dr |TW, ¢ >,
2,z r 5
0

with 6 = 1/N = €'/4,
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Proof. The proof is similar to the one of Proposition 8.9. The derivatives of (Z; %, Y"*%),0
with respect to € at ¢ = 0 are denoted by

d ST¢€ d ST¢€
Ct:£[zt+]\a=0a Qt:£[Y;+]|E=0> tZO

As (Y1) is C2-valued, so is (g)i>0- Below, we denote by (of)i>o and (0?)i>o the two
coordinates of (g;)¢>0. We also use the following notations:

v =(Z7), (L), = Trace(atDiE@/)(Zf)),
d
tht = d_g [P(Zts, Zts+€ - Zts)] le=0° t Z 0

Moreover, I; stands for the identity matrix of size d. By Theorem 7.4, the pair (;, 0¢)s<t<t
satisfies the equation?®:

dGo = > [ola+ YiQiG|oud B + [a, D= tG + a,Ds Gy dt

i=1,2

+ [QiGan Dy — a,QiG Dinly] it
| ) . _. 1.
Ao} = [(D=:00G)" + (D:4G)” = Dt( @) o By + S0 Lt

+ %Ytl [D=(Lp)iCe + D(Lab)iGe] dt

1. .
+ §Yt’ [Trace(QtQtatDizwt) — Trace(atQtQDizwt)} dt,
s<t<t =12
Using the anti-Hermitian property of (;(;, we have:
Trace(QtCtatDE,zwt)

= —Trace((QeG:)"a; (D2 z40)")
= —Trace(D? .1ha,Qi(;) = —Trace(a, Qi D? ), s <t <t

Taking the complex conjugate in (8.46), we deduce

) _. 1 .
do; = 1¢|(| Dby d By +- §QiL¢tdt
+ Y/ Re|D. (L)) dt
+ YiRe[Trace(QuGa, D2 by |dt, s<t<t, i=1,2,

where (r;)s<i<¢ stands for a generic process scalar process bounded in terms of (A) only.
(The values of (r;)s<t<¢ may vary from line to line.)

2>The reader may understand that Theorem 7.4 provides both the form of the equation for the pair
(Ct, 01)s<t<s and the differentiability property of the process (Z; ¢, Y T)s<i<( w.r.t. e. Indeed, Eq. (9.1)
satisfies the assumption of Theorem 7.4: there is no singular term inside contrary to Eq. (8.1). (Since the
component Y is bounded, the coefficients may be considered as C? coefficients with bounded derivatives.)
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We are now in position to compute the norm of the derivative process ((;, 01))s<t<t-

d|<t|2 = 2Re<§t, atDE,zd)tCt + atD2,2¢t§t>dt
+ 2Re(§t7 QiGrar Dy — a QG Dby ) dt
(9.13) + 3 Trace[(o'Ts + (V") QuGr)ar (2'a — (Vi)' Qi) ] dt
i=1,2
-+ dmt, s <t<t

Similarly,

dloi]* = |oi]* Lapydt
(9.14) + QRe((Qt, Yts)) [Re(DZ(L@/))tQ) + Re (Trace(QtQatDZE@/)t))}dt
+ 1Dy Dby | G dt + dmy, ¢ > 0.

In what follows, we follow Section 8 and modify the choice of ¢ according to the observation
we made therein: for any constant ¢ > 0, ¢t is again a plurisuperharmonic function describing
the domain and we denote by 1° some choice of the plurisuperharmonic function such that,
for any Hermitian matrix a of trace 1 and for any z € D, Trace[aD? .4)°(z)] < —1. Then, we
understand 1) as Ny for some free parameter N that will be fixed later on.

As a first application, we can simplify the form of d|g;|?, or at least we can bound it, for
s <t < t. To this end, have in mind that |¢y| < € for s < ¢ < t so that |D,y?| > & for
some given constant £ > 0 (for s < ¢ < t and for € small enough). Therefore, from (9.14),
we claim

d|9t|2

= |Qt| L¢tdt+N|Qt||Ct||}/; |’T’tdt+N |<t| 5t7“tdt—|-dmt, Hﬁtﬁt,

where (7)s<t<¢ is a generic notation for a process, bounded by some constant C' depending
on (A) and « only. (The values of (r;)s<;<¢ may vary from line to line.) Above, (¥?)s<;<( is
understood as (V°(Z7))s<t<i and (E)s<i<q stands for (& := (DY, a;Dib?)))s<t<t-
By (8.36),
d|G” = |oi*dt + Y7 | 0i[Colredt + Y2 PG Prodt
+ NIGPErdt + NG () Prdt
+2) Re[(G, (0a+ (Y7)QiG)owdB))], s<t<t

i=1,2

(9.16)

We now consider the derivative quantity
(9.17) [y = exp(=K9) |G+ |al? s<t<t

for some constantﬁK > () to be chosen later on.
To compute (dI't)s<i<i, we first note that

iy =2 (V) Re[Dothyoyd By + 2( Doy, a, Diy)dt + Y [* Lajdt,
i=1,2
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so that
d[exp(—Ky)]
= 2K exp(~K¢) Y Re[(Y;) D.(Z)odB]]

i=1,2
+ [K2Y7)? — 2K] exp(— K ){D by, a; Dy ) dt
(9.18) — K exp(—K,)|Y; > Lap,dt
= —2K exp(—K1y,) Y _ Re[(Y})' D.y)(Z;)odB]]

i=1,2
+ N2 [K?|Y7)? — 2K] exp(— K, EPdt
— NK exp(— Ky |7 |°Lbpdt, s <t<t.
Therefore, from (9.18) and (9.16),
d[eXP(—KTPt)Kt\Q}
= exp (=K1 [|od* + [V loel|Celre + Y7 PIC*re
+ NIGIPENr + NIGI*(€))*r.] dt
+[GI* exp(= Koo ) [N*[K2|Y7|* — 2K]€) — NEK|Y;[* Lyj ] dt
+ NE exp(=K) [Vl Gllodlre + [YEPIGIPre] +dmy, s <t <t

We are now in position to compute dI'; for s < t < t. To this end, have in mind that
Ly? < —1 and that |Y?]*? = ¢y < ¢, 5 <t <t Then, applying Young’s inequality to the
term N(E°)'/2, the above equation has the form
d[exp(—K¢t)|§t|2}
<exp(—=Kin) o> + C(1+ €2 + )& + C(N + N?)|¢[*E ) di

(9.19) 5 ot o 0
+ |G)? exp(— Kby ) [N?[K?e — 2K]E) + CNKe]dt
+ NK exp(— K1) [CeP|6 7 + Cel&|’] +dmy, s <t <t
where [&|* = |G|? + |o]*. (Actually, (&;);>0 must be understood as the derivative process
(Cts 0t)t>0-) Similarly, from (9.15),
(9.20) dlo)> < —N|gi|*dt + CNeV?|&|2dt + ON?|G|PE0dt + dm, s <t <t

Therefore, assuming ¢ < 1 and N > 1,we deduce from (9.19) and (9.20)
dly < exp(—=K,)(1 — N)|o,|*dt

+1&|*(C + C'Ne'/? + C'NKe'?) dt

+ |¢e? exp(— Ky ) N?[K?e — 2K + C" exp(Ky) | E)dt

+dm;, s<t<t
the constant C” depending on C' only. (In particular, C” is independent of K, N, €, s and t.)

Choose now K = e /4. We obtain
dly < exp(—Ky)(1 — N)|o*dt + 2|&,|*(C" + C'Ne/*)at

+ |G exp(— Kt ) N?['/? — 2¢7V* 4 C” exp(e'/*)]| EPdt + dmy.
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Choose € small enough such that €'/2 — 2¢71/4 + C" exp(e'/*) < 0. Then,
dly < exp(—Ki)(1 — N)|o2dt + 2|&|*(C" + C'Ne/)dt + dmy, s <t <t
Finally for N = ¢ '/4, we obtain:
(9.21) dTy < 4C"|&|%dt + dmy < 4C" exp(eYNTy + dm, < 12C'T; + dm.
The end of the proof is similar to the one of Proposition 8.9. 0

9.5. Global Derivative Quantity.

Proposition 9.4. Let (B})o and (B?);>o be two independent complex Brownian motions
of dimension d, the pair being independent of (Bi)i>o. Moreover, let € and €4 be as in
Proposition 8.12, € being less than € in Proposition 9.3 as well, vy be a path from [—1,1]
into D and s be a point in (—1,1) such that ¥(y(s)) > €.

For a given progressively-measurable (w.r.t. the filtration generated by the triple of pro-
cesses (By, B, B)i>0) control (0y)i>0 with values in the set of complex matrices of size d x d
such that Trace(owa)) = 1, t > 1, define (Z7)>0 as follows. Set vy = 0. Up to time
v ={t>0:¢, =¢(Z}) < es}, define (Z7)o<i<r, as the solution of the SDE (8.1) with ~o(s)
as initial condition. At time vy, set Y = (¢'/%(Z%),0) € C? and then define (Z§,Y)e <t<e,
(with values into D x C%) up to time vo = {t > vy : Y = Y(ZF) > €/2} as the solution of
(9.1). At time vy, define (Z])w,<t<es up to time t3 = {t > vy : ¥y = Y(Z7) < €4} as the
solution of the SDE (8.1) and so on. .., that is

(9.22) Az = YV Z3)0ydBy + a Db (Z3)dt,  t € [tor, topsn), k>0,
with Z§ = v(s) as initial condition (above, vg =0), and
AZ; = Y (YV))'ordB + a D2 (Z}) dt
i=1,2
(9.23) d(Yy?)" = Da(Z)5:dB;

1 i )
+ §(Yj) Trace[a;D? (Z7)]dt, t € [topr1, topsa], k>0, i =1,2,

with Ys,, ., = (wl/z(ZfzkH),O) as initial condition.

Define also (7,,)n>1 as the sequence of exit times of the process (Y(Z}))i>o from the sets
[€/4,+00), [es,€] and [0,€/2]. When the process (V(Z7))>0 belongs to [€/4,+00) consider
the perturbation given by Proposition 8.10; when (V(Z7))i>o belongs to [eq, €] consider the
perturbation given by Proposition 8.11: the perturbation is then given by a process of the
form (Z]7%)p<t<epe1s with k> 0. When ((Z]))i>0 belongs to [0,¢/2] consider the per-

turbation given by Proposition 9.3: the perturbation is then given by a pair of the form
(Z72, Y% k>0, with Y3 = (Y2(Z54 ),0) as initial condition. Specifi-

€
vopr1<t<topyo’ Tokt1 Topt1
cally,

dZ3+e = T(Z}, 25+ = Z0 V(25 ) exp (P(Z;, 257 = 7))
x oy(dBy + G(Z;, Z7° — Z7)dt)
T2, 25 = Z7) exp(P(Z7, 277 = Z7))

x apexp(—P(Z;, 277 — Z7)) Dsp(Z;79)dt,  vop <t < top,
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with Z§ = (s + €) as initial condition, and

2

de—i—s _ Z(Y;s+e>idBZ'

i=1

+ exp (P(Zf, Z5ite — Zf))at exp(—P(Zf, zZ5te — Zf))D;w(Zera)dt

d(Y;) = Dap( 234 exp(P(Z3, 23 — 73))5,d B

1 i
+5 (Y,77°) Trace|exp(P(Z}, Z; T — Z7))

X ay eXp(—P(Zf, Z5ite — Zf))Dizw(Zts%)}dt,
top1 St < topgo, 0 =1,2,

with Y= = (wl/z(Zf;il),O) as initial condition.

Above, (P(Z3, 2% ~ Z2))iso, (T(Z3, 2% — Z))iso, and (G(Z3, 2% — Z))iso, stand
for the different possible perturbations used in Propositions 8.10, 8.11 and 9.3. Precisely,
(P(Z5, Z;° — Z7))i0 is set equal to 0 outside the intervals on which the perturbation of
Proposition 8.2 applies, (T(Z;, Z;¢ — ZF)) >0 is set equal to 1 outside the intervals on which
the perturbation of Proposition 8.4 applies and (G(ZF, Zi1 — ZF)) >0 is set equal to 0 outside

the intervals on which the perturbation of Propostion 8.7 applies. As a summary, Picture
9.4 below is the analog of Picture 8.13

Proposition 9.3

Propokition 8.10
< N
=

/

|
I
e
0 541 % 3
| Proposition 8.11
<l .
< =

Figure 9.4. Choice of the perturbations with the new representation.

Then, the family of processes (Z;"°)>0, € in the neighborhood of 0, is twice differen-
tiable in probability w.r.t. € at € = 0, with time continuous deriwvatives. Similarly, for each
k>0, the family of processes (Y 7%) e, <t<tonsas € 0 the neighborhood of 0, is twice differ-
entiable in probability w.r.t. € at € = 0, with continuous derivatives. Moreover, the dynamics
of the derivatives are obtained by differentiating (w.r.t. €) the dynamics of (Z;7%)>0 and
(Y ) tgpir <t<tansn k>0 formally at e =0, as done in the meta-part of Section 8.

Define then the derivative quantity (T';)i>o as M2f§2), ugff” in Proposition 8.12 and f‘il)

in Proposition 9.3. (In particular, (T'y)eo is left-continuous.) Then, we can find o € (0, 1),
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depending on (A) and € only, such that

t
E{Ft exp (/ aLwrdr)] <T,, t>0.
0

Proof. Differentiability properties will be established below. (See Proposition 9.6 below.)
In comparison with Subsection 8.8, the only difference is here to show that

lim [, <T lim [, <T E>0.

Tk
t—rop41+ t—rop+

k417

When t — to,+, I, is given by mff), so that, by Proposition 8.12 (recall that 1., = €/2),
lim Ft = /Lgf(z)

t—top+ 2k

_ _e2 (14e2
(924) = M2 eXp(_E 1/4wt2k>1/}t2k |gt2k |2 + 2/’6269/41/}t2](€1+ )RQZ I:Dzwtzk Ctgk:|
S eXp(_€_1/4wt2k)|<t2k |2 + wt_ziR’ez [DZ??Z)QI@CY%] .
Now, have in mind that [Y*|> = ¢(Z51¢) so that, by differentiation,

(9.25) Re[D.4e, Co ] = Re[Yy, (0n,)'] + Re[Ye, (0c,,)7]-
Therefore,
Since |Yt2k| = 32/137

1/1;2,11:{62 [Dzdjtzk gt2k] } S |Qt2k |2'
From (9.24), we deduce
t—l>itr2rkl+ Ft S exp(_6_1/4wt2k>|Ct2k |2 + wt—zlﬂgf% |2 = FtQk'

It now remains to prove the bound at time vo; 1. When ¢ — vor 1+, T, is given by fﬁ”,

ie.
Ty = exp(—€ 4 |G + o]

Therefore,

(927) tﬁltiziril—i- Ft - eXp(_€_1/47vbf2k+1)Ktzk+1 |2 + ‘Qt2k+1 ‘2'

Have in mind that, at time ¢ = vory1, Y375 = (w1/2(Zf;;il), 0), so that, by differentiation,
(9'28) Qt2k+1 = (1/}17_2;1121 Re [D2¢t2k+1Ct2k+1] ’ 0)

We deduce that

9.2 lim Ty = exp(—e o) |Conn? + ¥l Re[Daths G ] [

( . ) 1 t eXp(—¢€ wt2k+1 k41 wt2k+1 € Z,l/]t2k+1 k41 :

t—top41+

Applying Proposition 8.12 (recall that ¢, , = €;), we obtain
lim [, < mf(z) =T

T k41"
t—topi1+ 2k+1 +

This completes the proof. 0

We deduce
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Corollary 9.5. Keep the notation of Proposition 9.4 and define the second-order derivatives
of (Zf+€)t2kStSt2k+17 k=0, by setting n; = [d2/d62] [Zzts+€]\a:0; Jorvop <t <topy1, k=0, and
define the second-order derivatives of (Z;7, Y %), <t<torrns k = 0, by setting (0, mf) =
[d?/de?)[(Z;75,Y09))jemo, for vop <t < topqq, k> 1.

Define the analogs of fﬁ”, M2F§2) and ,ugfg?’), t>0, ie

A = exp(=e (D) I + |ml?,

— - 62

A,@ = exp(—€_1/4¢t)1/1t_62‘7h‘2 + 26744, U IRe? [Dzwmt}’
AP = (R — 1 Z Y mel,

for some € as in the statement of Proposition 8.12. Define the global second-order deriva-
tive quantity (A;)io as the analog of (Ty)i>0. (In particular, mention that (A;)eo is left-
continuous.)

Then, we can find o € (0,1) and C > 0, depending on (A) and € only, such that

t
E{(Ai/z + ft) exp (/ an/JTdr)] < 55/2 +CTy, t>0.
0

Proof. Following the proof of Proposition 7.9, we can prove that on each [, 7,,41), n > 0,
with 79 = 0 and (7,),>1 as in Proposition 9.4, and for any a > 0,

(9.30) d [exp ( / t an/JTdr) (a+ A, +T2)Y 2} < CTyexp ( / t aLlprdr) dt.
0 0

The proof of (9.30) relies on two points. First, what is called (0T;(X?, (nf,77)))i>0 in the
statement of Proposition 7.9 (or equivalently (0A;)>o with the current notation) satisfies
the same bound as (OT;);>o. Precisely, (OT;);>0 corresponds to the dt term obtained by
differentiating the form (T;);>o and then by replacing (7, 0f)i>o therein by (9, 75)i>o. In
the current case, we know that O, < oLy, I, for any ¢ € (Tn, Tne1) and for any possible values
of the pair (7, 07)r,<t<r.,,- Replacing (¢, 07)r.<t<r,1 by (07, 7}) 7 <t<r,.,, We deduce that
0N, < alap; A for any t € (7, T1). Second, the proof of (9.30) relies on the equivalence of
the quadratic form driving (T');>0 and (A;);>0 and the current Hermitian form: of (complex)
dimension d for t € (v, tory1], £ > 0, and of (complex) dimension d+2 for t € (tog11, togro)-
This equivalence makes the difference between Sections 8 and 9.

As a consequence of (9.30), we only need to check the boundary conditions to recover the
statement, i.e. we only need to prove that lim;_,, A, < ATn.

If 7,, is different from some t;, the result follows from Proposition 8.12.

If 7, is equal to some to, we follow (9.24). (Keep in mind that A, is given by Af) as
t — tor+ and by Aﬁ” as t — top—.) The point is to bound th_ziReQ[Dzwmnm] in terms of
|Te,, |- We have the analog of (9.25), but with quadratic first-order terms in addition, i.e.
(9.31) Re[Yy, (Te,)'] + Re[Yy, (Te,)’] = Re[Datbey i, ] + O(ICen* + low,]?).

2k 2k

(Here, the constants in the Landau notation O(...) only depend on (A).) As in (9.26), we
deduce that

¢;iRe2 [Dzwtzkntzk} S |7Tt2k‘2 + O(’Re [qu/}tantZk} }(Ktsz + |Qt2k |2>)

+ O(Ktzk‘4 + ‘Qt2k|4)'
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(Here, the Landau term O(...) may depend on € as well. Indeed, ¢, = €/2.) As a
consequence, for any small a > 0, we can write

%iRe [ z%knm]
< (Mo |* + at R [Dothey ey ] + (14 a™ O (G| + 00, |").-
By Proposition 8.12, we then deduce that (recall that A, is given by Aiz) as t — tor+)
LB
= pra exp(—€ e, Yo e, [* + 206”0 R [Dethey ey |
< exp(—€ g, ) e [* + g R [ Dot ey, |
— (1= 2" ' Re® [ Dby, ey |
< exp(—€ e, ey, P + [Ty [P + (@ = 14 267) 0 'R (Db Ty,
+ (14 a )0 (G| + 0w, ")
Choosing a small enough (in terms of €), we deduce that

(9.33) lim A; < At% + C(|Ct2k|4 + |Qt2k| )

t—rop+
We apply the same strategy when t — topy1+. (Keep in mind that A, is given by Aﬁ” as

t — topr1+ and by 5(2) as t — to,1—.) Following (9.27), we claim

t—iglil—i- At - eXp( 1/41/}t2k+1>|7]t2k+1 |2 _'_ ‘ﬂ-tzk+1 ‘2‘

Now, as in (9.28),
|7r1‘2k+1| = tgii?[ ‘Re[ Zwt2k+1771‘2k+1:| } + O(|<’¢2k+1 |2)

(Here as well, O(- - -) may depend on € and ¢,. Indeed, ¢, , = €;.)
In particular, for any small a > 0,

Moy | < (14 @), R [Dothey, , ey, ] + (14 07O Gy
Following (9.29) and using Proposition 8.12, we deduce (as t — to, 1+, A is given by AS))
i, 5
< exp(—€ ey Wik | + U R (Dt e
+ate, R [Dothey, ey ] + (14 a0 ([Cey ")
<z exp(—€ o, Jg g, |+ 2026 0 T ORE [Dothe |
vl R [Daty ] = [(50)7 = b

€4
+ (]‘ + a_ )O(|<t2k+1 |4)
Choosing a small enough in terms of € and ¢4, we deduce the analog of (9.33), i.e

(934) hm At < Atgk+1 + C‘§t2k+1|4

t—rop41+
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From (9.29) and (9.34), we deduce that, at least, for any n > 0,

lim A, <A, +CT2

t—Tp+

the constant C' here depending on (A), € and ¢4, that is

(9.35) lim (A, +T7) <A, +I2 +CI2.

t—Tn+

(Eq. (9.35) must be seen as a version of (7.22).)

Inequality (9.35) is not very helpful. To get rid of the term CT , we shall add a correction
to the term (At + F )t>0

Choose indeed a non-negative smooth function 8 with compact support included in (0, +00)
such that 6(es) = 1 and 0(¢/2) = 3 and consider the processes

= AP+ (1+60(,)C) (T,

3
t

&= AP 1 (1420)(TP)?,

O = AP 4 (1+20)(T)?, t>o0,

}eﬂ reﬂ

N
t
)
t

and define the global process (®;);>0 by gathering the three processes above according to
the position of (¢;);> as done to define (I';);>p and (A¢)¢>o.
It is well seen that (9.30) still holds for @, i.e.

(9.36) d[exp </t aL@brdr) (1 + ét)lﬂ] < CT,exp (/t aLwrdr) dt
0 0

It thus remains to check the boundary conditions. When ¢ tends to to,+, ®; is given by <I>§2)
and ¢y — €/2. Therefore, by (9.35)

lim & = lim &Y <A, +(1+30)02 =o) =,

t—top+ t—Top+ 2k 2k+1

Similarly, when ¢ tends to to,, 1+, ®; is given by <I>§1) and 1y — €4. Therefore, by (9.35)

. = 1) _ A 2 _ &2 _&
tiﬁl+ b= t—>ltg£1+ &< A + (14 2C)Ft2k+1 - q)£211+1 = Peyppa-
This completes the proof. 0

9.6. Proof of the Differentiability Properties.

Proposition 9.6. Choose 0 < € < ¢4 < € < min(eg, €)), with €y as in Proposition 8.12 and
€y as in Proposition 9.3, and consider a cut-off function @1 from C% into [0,1] matching
1 on the subset {z € D : ¢¥(z) > €} and vanishing on the subset {z € D : ¥(z) < é/2}.
Consider another cut-off function @y from C to C, matching 1 on {y € C : |y| < ro},
7o = sup,cp ¥/2(2), and vanishing outside {y € C : |y| < 2ry}.
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For any k > 0, define on [toy, tory1], Z° as the solution of
dZste
= T(Z}, 2% = Z) (o0 PN 250 exp (P25, 27 = 7))
(9.37) x oy(dBy + G(Z7, ZF° — Z7)dt)
HITP(Z, 257 = Zp) exp(P(Z;, 257 = Z7))
X ay eXp(—P(Zf, Zf“ — Zf)) (w1D§¢)(Zf+a)dt, tor <t < topyr,

with Z357 = ~(s+€) as initial condition. Above, (P(Z¢, Z:7 7)) 0, (T(Z8, 25— Z7)) >0,
and (G(Z¢, Z3%° — Z2))1>0, stand for the different possible perturbations used in Proposition
9.4. Precisely, (P(Z7, 27 — Z7))=o is set equal to 0 outside the intervals on which the
perturbation of Proposition 9.3 applies, (T(Z¢, Z5° — ZF))i>0 is set equal to 1 outside the
intervals on which the perturbation of Proposition 8.4 applies and (G(Z¢, Z:T° — Z#)) >0 is
set equal to 0 outside the intervals on which the perturbation of Propostion 8.7 applies.

On, [tops1, toryal, define Z5F as the first coordinate of the pair (Z:7°,YF) solution of

2
dZtS-H’i _ Z ©s [(Y;Hs)i} dBZ
i=1

+exp (P20 2 = 20))avexp(~P(Z}, 27 = 2) D 2 )
9.38) d(Y9) = Dap(Z3%9) exp(P (28, Z5%F — Z7))51d B

1 . i .
+ 32 [(YtHE) }Trace [exp(P(Zf, z5t = 7Zy))

x apexp(—P(Z;, Z;* — Z7)) D2 p(Z+9) ] dt,

topr1 <t < topyo, 1=1,2,

with Y = ((01pM?)(Z79),0) as initial condition. (Above, 1 is understood as any smooth
extension with compact support of the original 1 to the whole space C*. The perturbation
(P(Z3, 27 — Z8))i=0 is the same as in (9.37).)

Then, the process (Zfﬁ)tzo 15 twice differentiable in the mean w.r.t. €, with time continu-
ous first and second order derivatives, and, the process (3 40 Yy Loy eonra] (1) )iz0 G5 also
twice differentiable w.r.t. €, with time continuous first and second order derivatives on every
[tor+1, orga), B > 0.

Moreover, for any S > 0 and any integer p > 1,

(9.39) sup supE[ sup (|Cvf+€,|p + |ﬁf+€/|p)} < 400,
o<le’|<le|l o 0<t<S
and
(9.40) sup sup E [sup sup (|éf+€/|p+ |7Vrf+5l|p)} < +o00,
o<|e’|<e| o k>0 vop41 <t<tgpy42,t<S
and
(9.41) limsup B[ sup (|7 = ¢[" + |57 — i")] =0,

o 0<t<S
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where §f+6 = [d/de] [Zf+€]; ot = [d/de] [Y/;tSJrE]l[
ﬁf—i_s = [d2/d52] [K&s—i_e]l[tzkﬂvtzwz](t)’ t=>0, k> 0.

(1), and 7 = [d*/de’][ 277,

C2k41502k4-2

Proof. We first establish differentiability in probability. By Theorem 7.4, twice differentia-
bility in probability holds on [0,t], i.e. (7%)o<i<r, and (1777)o<i<y, exist for any € in the
neighborhood of 0, and, for any S > 0,

lim  su 8 255 — & + 6.6 — i *e| L = 0,

30540 Ogtgé?m{} t G|+ [0 7}
in P-probability, i.e. in the sense of (7.7).
In particular, in P-probability,

6’—1}]1:21,7&0{ }56/ Zg—i/:il B g—/til‘ _'_ ‘5€,C§j\_§1 B ﬁg‘j—\; ‘} = 07
so that we can apply Theorem 7.4 again, but on the time interval [tl , tg]ﬁv[O, S], or equivalently
on [ty, t2AS] and on the event {v; < S}. Indeed, the dynamics of (Z°7%, Y*7%) on [t1, v2]N[0, 5]
are given by (9.38): Eq. (9.38) satisfies Theorem 7.4. We deduce that (%, 5%%) ¢ <t<wi<s

~s+€e ~s+e .
and (777, 777y <t<r<s exist and

lim sup {}(551254-6’ (58/}/;84-6) . ( ts—i—z—:’ ﬁf+€)’
e'—0,e'#0 ¢, <t<ro,t<S

 [(0G5FE, 00 p5TE) — (e, 7540) |} = 0,

in P-probability. Then, the procedure can be applied again but on [ta, t3] N[0, S], and so on
by induction. This proves that twice differentiability in probability holds for the pair process
(Z3VE S ko0 Yok L 1 omnsnl (EATR) Jo<i<s, n > 0. Since v, — +00 a.s., twice differentiability
in probability follows on the whole [0, S], for any S > 0. (We emphasize that t, — 400 a.s.
since the process (¢¥(Z}))i>o is a.s. continuous: it cannot switch from e, to €/2 an infinite
number of times on a compact set.) Twice differentiability in the mean will follow from
(9.39), (9.40) and (7.10).

To prove (9.39), we emphasize that, for any & > 0, we can find a constant C, independent
of €, 7, k and o, such that, on each [to, tors1)?°,

(9.42) d[eXP(_Ct)‘éts%‘zp} <dmy, tor <t < topq,

(M4 )y <t<ray,, standing for a generic martingale term. (The proof is the same as the proof
of Corollary 7.5.)
Similarly, up to a modification of the constant C, on each [tori1, tori2), £ >0,

(943) d[eXp(—Ct)(}éf-i_afp + }éf—’—afp})} S dmt, Tok+1 S t < Tok+2-

To gather (9.42) and (9.43), it is sufficient to check what happens at boundary times t,,
n > 0. The relationship Y2 = ((019?)(Z5¢ ), 0) yields

T2k+1 T2k+1
|05, = [Re[D: (erv'?) (2575 )G ]| < 165

for some constant C” (independent of €, v, k and o).

26Here, we feel simpler to use right-continuous versions of the processes at hand. Actually, this has an
interest for (g;7°);>0 only since ((f1¢);>o is continuous.
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Below, we consider a non-negative smooth function 6 with values in [0, 1], matching 1 in
¢4 and 0 in €/2. Then, for any k£ > 0,

. s+e|? fste |2 sste |2
(9 44) t—igﬁl_[(l + c’ 9 ’ i ’ P] — tz—:ﬂ’ " + }Qtz—:ﬂ} p’
i {6 @5“\2”} > (G = (L 02, )G
Indeed, 1/1(Zfzk+1) = ¢4 and (78 orss) = €/2, k > 0. (Obviously, (Z:7%) >0 is continuous in

time.) Now, it remains to see that
dlexp(—Ct)(1+ C'O((Z))) |G ) < dmi, v <t <vapgr, k>0,

for a possibly new value of C'. (This follows from It6’s formula.)
Set finally

WP { exp(—Ct)(l + C” ] 8+5] p, tor <t < topyt,
t = ,

k> 0.
exp(—Ct)(| 8+E!2p+ V”a! ) -

, Topg1 <t < topqo,

Then, for any n > 0, t — E[M,,,] is non-increasing. (Use the martingale property and
(9.44)). This proves the part related to the first-order derivatives in (9.39) and (9.40), but
with the supremum outside the expectation. To get the supremum inside the expectation,
we can use so-called Doob’s inequality. It says that, for any square integrable progressively-
measurable process (H;)o<i<s with values in C%

t 2 S
/(HS,dBS) } ch/ |H,|*dt,
0 0

for some universal ¢ > 0. We then choose (m;)o<i<s for (f;(Hs, dBs))o<t<s. We notice that
the corresponding process (H,)o<;<s is always bounded by C’|{%%|?" for t € [tor, tar41]N][0, S,
k>0, and by C'(|C+5P + |5°1¢|%P) for t € [tors1, Targa) N[0, S], k > 0, for some constant C”
independent of ¢, v, k and o. Using the bounds for (E[M;"])o</<s, (9.39) and (9.40) follow.
A similar argument holds for the second-order derivatives (handling the boundary condition
by considering (|(:+5|%)>0 as in the proof of Corollary 9.5).

We finally turn to (9.41). It relies on the stability property of SDEs. (See Proposition
7.1.) Basically, Proposition 7.1 applies on any interval [t,, t,1]. By induction, we obtain
(9.45) Vn>1, UmE[sup (|G =)+ |5 —i[7); S < v] = 0.

=0 To<i<s

E[ sup

0<t<S

To get the same estimate but on the whole space, we first notice that

(9.46) nl_lgloo supP{S <wt,} =1

Eq. (9.46) follows from a tightness argument. Since the coefficients of (Z7);>¢ are bounded,
uniformly in o, the paths of (Z7)o<i<s are continuous, uniformly in o, with large probability:
specifically, given a small positive real v, we can find a compact subset KX C C([0, 5], C%),
such that, for any o, (Z;)o<i<s belongs to K with probability greater than 1 — v. To prove
(9.46), it then remains to see that to,/n is greater than the smallest amount of time (Z}):>¢
needs to switch from e, to €/2: clearly, on [0,.S], this smallest amount of time is controlled

from below in terms of the modulus of continuity of (Z7)o<;<s only. In particular, when
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(Z7)o<t<s belongs to K, S must be less than ty, for n larger than some ng, ny depending on
IC ans S only.
In particular,

lim supP{S >r¢,} =0.

n—+o0o 4

By (9.39), (9.40) and Cauchy-Schwarz inequality,

(9.47) lim supE[ sup (|g;*' P + |7 P); S > v,] =0,

su

n—too o ogtgs

uniformly in €’ in a neighborhood of 0.
By (9.45) and (9.47), we complete the proof of (9.41).

We are now in position to justfity the meta-statements:

Corollary 9.7. Keep the assumption and notation of Propositions 9.4 and 9.6. Then, for
any S > 0 and for € as in Proposition 9.6, there exist a descreasing sequence of positive reals
(€n)n>1, a countable family of increasing events (0,)n>1 (i-e. Qp C Qpi1, n > 1), such that
P(Q,) — 1 asn — +o0, and continuous processes ((¢;)o<i<s, (07 ) eppr <t<ron 2,5 k20) o] <o
and (7,7 )o<t<s, (T, ) eap 1 <t<rnsont<s )k>0) e|<eo Such that, for anyn > 1, ((Z;%)o<i<s)e<en

is twice differentiable in probability on the event Q,,, with ((¢;*)o<i<s)e|<en and ((0;%)o<t<s)je|<en
as first and second order derivatives, that is, with the notations of Theorem 7.4,

Ve € (—ep,gn), Y >0, lim P{ sup [6.2°7 =G > 0,0, =0,
( ) 0820 {Ogtgs} e 4y i §

: ste _ st —
Jim B sup [5G4 ] > v, 0. =0,

and, for every k > 0 and n > 1, the family (Y;") ey <icep v 0<5)c<e, i twice differentiable
imn probability on Qm with ((pf+6)t2k§t§t2k+1,t§5)|€\<€n and ((7T5+8)t2k§t§t2k+l7tgs)‘€|<€n as ﬁT‘St
and second order derivatives.

Moreover, on each Q,, the dynamics of the processes (T )o<t<s)e|<en and (177)o<t<) | <en
are obtained by differentiating w.r.t. € the dynamics of ((Z;7%)o<i<s)je|<e, formally, as done
in the meta-part of Section 8. The same holds for the processes ((p;+) ey, 1 <t<tops2,t<S)k>0) || <en
and (7 ) ey 1 <t<on2:<8)k20) el <o

Finally, a.s.,

d - a2 ..
s __ s+ s __ s+
Ct - %[Zt 8}|E:0a Ny = @[Zt 8}a t> 0)
(9.48) ;
d

d s+

Pl = E[ . La:O’ = @[Yfﬁ}, topr1 <t < topio, Kk >0.

Before we make the proof, we emphasize the following: the reader may worry about the
properties of differentiability of the processes (Z;7%);>0 and ((Y;""%) e, <t<tps, >0 at € = 0.
Indeed, we here discussed the notion of differentiability in probability only whereas we used
the notion of differentiability in the mean in the meta-statements of Section 8. The reason
is the following: all the differentiations we perform below under the symbol E hold on the
families (Z;%);>0 and (Y1) gp<t<en. k>0 only, so that differentiability in the mean of
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(Z77) >0 and ((}QS“)%QS%H)@O is useless. By Proposition 9.6, the families (Zf“)tzo

and ((Y;""%)e,,<t<ron,1 Jk>0 are known to be differentiable in the mean.

Proof. For an arbitrary é as in the statement of Proposition 9.6 we know that (Z;):>

and (Z});>o coincide. (Cut-off functions match 1 because of the stopping times.) Similarly,

((Y;s)t2k+1§t§1’2k+2)k20 and ((Y;s)tzkﬂﬁtﬁtzkw)kzo coincide.

By Theorem 7.2, we know that the mappings ((t,€) € Ry x [—&g, 0] — Z;™° are once-
continuously differentiable for every € as in Proposition 9.6. (Here gy stands for a small
enough positive real such that [s —e,s+¢] C [—1,1]). In particular, they are continuous, so
that sup.|.. supo<;<g |Z57 — 77| tends to 0 a.s. as e tends to 0. Therefore, we can find ¢,
small enough such that the event

N, :={ inf inf inf W(Z5te) < e},

le'|<en k>0 vop <t<top41,t<S

has probability less than 1/n.

Set 2, = (NV;,)¢ so that P(Q,) > 1 —1/n. On Q,, (Z57)o<i<s coincide with (Z:%)o<i<s
and (Y ") ey, <t<im,0<s)k>0 coincide with the process ((Y;7%)e,,., <i<eo ai<s k>0 for any
£ € (—&n,€n). (Indeed, on each [toy, tory1] N[0, S], k > 0, the process (V(Z;7F)) ey <t<tm i1 t<s
is above ¢ so that o1(Z;%) in (9.37) and in the initial condition of (9.38) matches 1. As a
consequence, on each [topi1, topio] N[0, 5], k> 0, [V ]2 = (Z:59).) Twice differentiability
in probability of (Z;1%)p<i<s on €, easily follows.

We now check that, on each €,, n > 1, the dynamics of the derivatives of (Zf”La)ogtSS
w.r.t. € € (—&,,&,) are obtained by differentiating the dynamics of (Z;"%)p<;<s formally.
This is well-seen since the dynamics of the derivatives of (Z;7)o<,<g are obtained by differ-
entiating the dynamics of (Z;%)o<;<s formally and since the cut-off functions ¢; and @5 in
the dynamics of (Z;7)g<;<s match 1 on €.

In particular, on each ,,, n > 1, the derivatives of (Z;"%)<;<s at € = 0 and the derivatives
of (Z;7%)o<i<s at € = 0 coincide. Taking the union over n > 1, this shows that equality
holds almost-surely.

A similar argument holds for ((Y;8+E)t2k+1StStQkJrz,tSS)k)ZO'

U

9.7. Differentiability under the symbol E. We now claim

Proposition 9.8. With the choice made for (Z7);>0 and (Z;%)1>o in Proposition 9.4, for a
smooth path v from [—1,1] into {z € D : ¢(2) > €4} and for a given s € [—1,1], define Vg,
V& and V' as in Proposition 8.14. Then, the conclusion of Proposition 8.14 s still true.

Sketch of the Proof. The proof follows the argument used to establish Proposition 9.1.

(See (9.4), (9.5), (9.6) and (9.7).)
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Consider (Z7);>0 and define the process

t
Wt = Z </0 1{1‘2n<7”<1‘2n+1}dB7‘)

n>0
' vy 1 i
D 1{rzn+1sf<r2n+z}(ml{mm} + ﬁl{wr\:O})dBr ;
i=1,2n>0 0 T
t>0.

Then, (W})i>0 is a complex Brownian motion of dimension d. Moreover,
dzZ: = Y2 Z3)dW, + a,Dip(ZF)dt, t > 0.

Therefore, for (Z}):>0, everything works as in Proposition 8.14 but with (B;);>¢ replaced by
(Wi)e=0-

A similar argument holds for (Z;7);>¢ w.r.t. some (W¢);>o (obtained in a similar way).
To do so, we emphasize that ((G(Z¢, ZF™ — Z2),dBy))i>o in (8.77) is equal to ((G(Z§, Z; e —
Z7), dWE) )i>o since G is set equal to 0 on [ta,41, tapia), n > 0.

U

We now deduce

Proposition 9.9. Keep the assumption and notation of Proposition 9.8 and consider in
particular a smooth path v from [—1,1] into {z € D : ¥(z) > e4}. Then, there ex-
ists a constant C' > 0, depending on (A) only, such that, for any S > 0, the function
s € (=1,1) = Vs(y(s)) + C [, |V (r)|dr is non-decreasing, the function s € (—1,1) —
Vs(y(s)) — C [ |7/ (r)|dr is non-increasing and the function s € (=1,1) — Vg(v(s)) +
C'fos[(s — )|/ (")|? + |y (r)])]dr is conver.

Proof. It is sufficient to find some constant C', depending on (A) only, such that for any
se (—1,1),

Vs(v(s +¢)) = Vs(v(s))

lim > —C(s),
(9.49) = &
i Vs(v(s+¢)) + Vs(vgs — &) — 2Vs(7(s)) > _O( (s + (),

and to prove that Vg o vy is continuous. To do so, we first claim:

Lemma 9.10. Choose ¢ = min(e, €})/2, with €y as in Proposition 8.12 and €| as in Propo-
sition 9.3.
Define

p; = P(Z7, Zf+€ - z;), 7, =T(Z;, Zf+€ — Z;),

=5 =G(Z5, 757~ 77), t>0.
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For a given smooth cut-off function p with values in [0, 1] matching the identity on [1/2,3/2]
and vanishing outside a compact subset, set as well

V§(3+5)

:E/OJroo{p(exp( /QRe =¢,dB,) /|:€|2dr))

t
X ex #>Tracelexp(§°)a, exp(—ps) D? b(Z57)|dr
p( [ I7] [exp(p7)ar exp(—pr) D2 ¢ (27
0

~c 75+€ i5 ~e
X F(det(at), eXP(ﬁf)at exp(—pt), Zt+ )‘b(gt)} ‘Tt ‘2dt7

(9.50)

with [d/dt])(F5) = (75)%, t > 0.

Then, sup,[VE(s)] = Vs(y(s)) and, for ¢ in the neighborhood of 0, sup, [V (s + ¢)] <
Vs(v(s +€)) + Ce3, for a constant C' depending on (A) and S only.

Moreover, we can find a constant C' such that

d
lim sup Sup‘ [ng (v(s+¢)] ‘

e=00er<le] o

(9.51) <E [ /0 e ( /0 t Trace[a,,Dizw(Zf)]dr)

t
X (|Ft|+/ (1+r_1/2)|1_“r|dr)dt],
0

and,
a? .
lim sup sup‘ de’? [VS‘Z (7(8 + €/>)} }

=0 0er|<le] o

(9.52) { exp( Trace [a,D? w(Zf)]dr)

X (|Ft|2+\At|+/ (1+7“_1/2)(\FT\2+\ATDdr)dt}.
0

Finally, for every compact interval I C (=1,1) and for € small enough, the quantity
SUP, SUP||< o [| (O/0€)[VE (v(s + €))]]] is uniformly bounded w.r.t. s € I. (Pay attention
that the definition of Vg’ depends on s itself.)

End of the Proof of Proposition 9.9. Before we prove Lemma 9.10, we complete the
proof of Proposition 9.9. Clearly, by Lemma 9.10

llE}I(l] VS(7(8 + &?T;— VS(V(SD > l{% % {mf(V"(s + E) VO'(S))]

d
> —lim sup sup V(s +eN]].
m sup sup| | I
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By Lemma 9.10, we deduce that

1o Vs +9) = Vs(a(5))
=4 E

+00 3
> —supE {/ exp (/ Trace[a, D> (Z7)] d?”)
o 0 0

t
X (\rt\+/ (1+r‘1/2)\Fr\dr)dt].
0

By Proposition 9.4, we deduce that there exists a constant C, depending on (A) only,
such that the first inequality in (9.49) holds. The same strategy holds to prove the second
inequality in (9.49).

It remains to prove that Vg o is continuous. Basically,

Vs(1(s +2)) = Vs(y(s)) 2 sup [VS(s+e)] — sup [VS(s)] = Clel?

ovg ,
—|e| sup sup]| 8; (s+&)|] = Clef’.

le’|<le| <

Therefore, for any compact interval I C (—1,1), for £ small enough, we can find some
constant C” such that

Vs(y(s +¢)) = Vs(y(s)) = —=C'el,
when s and s + € are in I. Exchanging the roles of s 4+ ¢ and s, this proves that Vg oy is
continuous. O

We now prove Lemma 9.10.

Proof of Lemma 9.10. The equality sup, [VZ(s)] = Vs (7(s)) is easily taken since VZ(s) =
V&(s), with Vg as in Proposition 9.8.

We now establish the inequality sup, [V (s +¢)] < Vs(y(s+e)) + Ce®. It is well-seen that
all the terms under the integral symbol in (9.50) are bounded by some constant C' depending
on (A) and S only.

Therefore, for some ¢ > 0 to be chosen later,

V§(5—|—5)

o[l [ [50)

<exp [ 5P Traceienp (7 exp(—ﬁi)Dﬁ,zw(Zﬁ+€)]dr)
(9.53) ’ V
x F(det(a,), exp(p;)as exp(—p;), Z; ) o (= )] |72 |7 dt;

sup |Z:+ — 77| < e’}
0<t<S
+O(P{ sup |Z;7°—Z| > €}).
0<t<S

(Here, the Landau term O(---) is uniform w.r.t. ¢.)
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As long as the process (|Z;1° — Z7|);>0 stays below €, the process (|0(Z:7°) — ¥(Z8)|)i0
stays below some C¢’, C' depending on 1 only. In particular, we can choose ¢ small enough
such that Ce¢’ < €/2. (See Proposition 9.6 for the definition of €.)

On each [ty torq1], & > 0, as in Proposition 9.4, the process (¥(Z}) ), <t<ty,, is above
€4 > 2¢. Therefore, on each [tor, tors1] N [0,5], k& > 0, the condition supye,«q |Zi T — 77| < ¢
implies (recall that a A b stands for min(a, b)) o

W(Z5TE) > €, b€ [tan, tarsa] N[0, 9],

so that ¢;(Z;7°) in (9.37) and in the initial condition of (9.38) matches 1. As a consequence,
on each [tor 1, tory2) N[0,5], & > 0, the condition supy<;g |Z5te — Z¢| < € implies

Y1 = (Z5%9),  t € [topsr, tarsa] N[0, 5],

Finally, under the condition supy,g | Zi ™ — 7| < ¢, processes (Z;7)o<i<s and (Z;7)o<i<s
have the same dynamics on the whole [0, S].

As a consequence, the first term in (9.53) is less than V(s +¢). (Use F > 0 to say so.)
It thus remains to bound the second term.

The idea consists in using Markov inequality. For any p > 1, it says that

(9.54) P{ Sup. |ZiTe — Z7| > €/2} < 2PePE[ sup |27 — Z;|P].

0<t< 0<t<S
Using the stability property for SDEs, see Proposition 7.1, we know that

E[ sup }vaﬁ — Zf}p]

0<t<S

s
(9.55) < Ce? + C'E/ (|25 = 22| + [V = v [")dr
0

S
< CeP(1 +/ sup E[}Zﬁ“/}p + éfﬁlm dr < CeP.

0 |e<e

Plugging the above bound in (9.54) and then in (9.53), we complete the proof of the bound
sup, [VZ (s +¢)] < Vs(y(s +¢)) + Ce?.

The proof of the inequalities (9.51) is now straightforward: it follows from (8.82), (9.39),
(9.41) and (9.48):

lim sup SUP}di[VU(V(Sng))”

e=0ler<le] o Q€

(9.56) <supE [/+OO exp (/t Trace[arDizq/J(Zﬁ)]dr)
0 0

o

x <|§§|+/0 IC3|dr + '/01]i{1e[(DZ/G(Zf,O)Cﬁ,dBr)}Ddt].



Following the proof of Proposition 8.8 (and specifically using a variant of Lemma 8.5*7), we
obtain

2 V55 + )] <B { /0 - ( /0 t Trace[ang,z¢(Zf)]dr)

t
X <|rt|+/ (1+7’_1/2)|Fr|dr>dt}.
0

The same argument holds for the second-order derivatives.

Finally, for every compact interval I C (—1,1) and for £ small enough, the quantity
sup,, sup‘€,|<‘€|[|(8/8€’)[V§’(7(5 +¢£'))]|] is shown to be uniformly bounded w.r.t. s € I by a
similar argument and by (9.39). O

(9.57)

9.8. Final Step. We now complete the proof of Theorem 6.1.

Passing to the limit in S — +oco in Proposition 9.9, we deduce that V' in Proposition
6.9 satisfies the same property as Vs, i.e. for any smooth curve 7 from [—1,1] into {z €
D : ¢(z) > e}, the function s E [—1,1] — V(y(s)) + C [y |¥/(r)|dr is non-decreasing,
the function s 6 [ 1] — V( C’fo |7/ (r)|dr is non-increasing and the function s €
[=L1] = V(y(s)) + Cfo (|7 (r)] =+ |7/ (r)?)]dr is convex.

Choosing 7 as a straight path of the form s € [-1,1] — z + vs, for ¢(z) > ¢ and
v € C? with |v| small enough, we deduce that V is Lipschitz and semi-convex away from
the boundary, i.e. on {z € D :9Y(2) > €4}. In particular, v — g + Nyt in Proposition 6.9 is
Lipschitz and semi-convex on {z € D : ¢(z) > €4} as well. By Proposition 6.4 and Remark
6.5, v is Ctt on {z € D : (z) > e4}. Since €4 may be chosen as small as desired, we deduce
that v is C! in D,

We emphasize that the Lipschitz and semi-convexity constants are bounded in terms of
(A) only on every compact subset. The problem is then to bound the Lipschitz and semi-
convexity constants up to the boundary.

To do so, we consider a path 7o from [—1,1] into {z € D : ¥(z) < €/2}, for the same €
as in Propositions 9.4 and 9.6. Then, we can define (Z})p<t<, as in (9.23) first, i.e. as the
first coordinate of the pair (Z7,Y,")o<i<v,, t1 now standing for inf{t > 0: ¢(Z;7) > ¢/2}. and
switch to (9.22) from t; to to, with vy = inf{t > v; : ¥(Z}) < €4}, and so on... Here, Z§ is
chosen as v(s) and Yy is chosen in such a way that |Yg|* = ¥(Z5) = ¥(y(s)). Obv1ously, we
can apply the same procedure for the perturbed process and first consider (Z:, Y} T o<t<n
as in (9.38).

The whole question then lies in the choice of the initial condition (Z;™¢, Y3*¢). Surely,
we choose Z51 as Yo(s +¢) and Y77 such that |Y3™|> = o(Z57°). Assume therefore that
Y3t = ~1(s + ¢) for some smooth path 7, defined on [—1, 1] such that ¥(yo(s)) = |y1(s)|?,

€ [—1,1]. Then, Proposition 9.9 remains true with v = (70,71), the proof being exactly
the same. In particular, the constant C' therein depends on (A) only (and is independent

27n Section 8, the process (¢ );>0 in the statement of Lemma 8.5 is understood as (¢ );>o. Here, ¢, t > 0,
is to be understood as ¢ or ({7, 0f) according to the cases: t € [tog, tapy1[ OF t € [topt1, tart2[, £ > 0. For
this reason, it may be simpler to plug (ft)tzo itself into (¢)¢>0-

However, since it is discontinuous, (I';);>0 does not satisfy the assumption of Lemma 8.5. Actually, it is
sufficient to apply It6’s formula to ((a + m: + f‘t)l/2)t20 on each (tap, tag41), @ standing for a small positive
real, and then to check the boundary conditions. In particular, it is useless to localize the proof as done in
the proof of Lemma 8.5 since there is no singulariry anymore in the dynamics of the derivative processes.
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of the distance of vy to the boundary). Since V is now known to be C*!' in D (see Remark
6.5), this may be read as

059 T < eyl sel-na
\7612[‘/;13(5)”\ <O(WEP+s)) ae se[-1,1)

To obtain the Lipschitz property up to the boundary, we fix some z with ¢(z) < €/2 and
we choose v as in Proposition 9.1, i.e. v = (y0,71) with 70(s) = z + sv, s € [—1,1], for
v € C? with a small enough norm, and ~; = (71,1,0), with

(Mm1)'(s) = (L)~ () D:tr(vo(s))v a0 = ¥(2), s €[-1,1].

Keep in mind that |y11(s)|* = ¥(70(s)) for s € [-1,1].
Now, compute for a differentiable function w(s):

}d[w(s)ﬁ%(s»]‘ _ W(%(S))‘fi_l:(s) + 2w(s)Re[ D, (70(s))v] |-

Choose now w = V oy and deduce from (9.58) that

d[V (70(s))¥(10(s))]
ds

< CY(o(s)) [Iv] + i (I D:v (vo(s))v[] + ClIV || v].

Modifying the constant C'if necessary, we deduce that [)V](70(s)) is Lipschitz continuous of
constant C'|v|. We emphasize that the constant C' is independent of the distance from z to
the boundary since [¢(70(s))711] = ©'/*(70(s)) is bounded. This procedure directly applies
to Proposition 6.9: we deduce that v — g + Ny is Lipschitz continous up to the boundary.
This is the first part in Theorem 8.1.

It now remains to investigate the second-order derivatives. To obtain an estimate that
holds up to the boundary, we consider another parameterized curve. Let (73,7{”71) and

(78, 7{’71) be two pairs with values in D x R such that

(9.59) o(s) = 1ma(s)vs A1a(s) = Re[Ddb(vg(s))v], i=a,b.

(Pay attention that 7} | is real-valued.) The initial boundary condition has the form: ~;(0) =
z (with ¥(z) < €/2) and 71 ,(0) = y5 € R, with y§ to be chosen later on. Clearly, for each
i = a, b, the system is (at least) solvable on a small interval around 0. Now,

LG - b
(9.60) = 2Re[D.v(v4())35(s)] — 2911 (5)Re[ Do (7d(s))v]
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Now, for w* = V o~ and for s in the interval of definition of (v§,~,),
d? :
il i)
{711 Re[D V(”Yo( ) }}
= 2Re[ 0 (00(8))V|Re[D.V (o(s)v] + i1 ()P [D*V (75(s))] (v),

where [D?V(7i(s))](v) stands for the action of the second-order derivatives of V' at point
7§(s) on the vector v*®. Choosing s = 0 and making the sum over i = a, b, we obtain:

> % [V(70(5))] o=y = 4Re[D:(2)v|Re[D.V (2)v]

i=a,b

+(ly5 P + lyo*) [D*V (2)] (v).

The whole trick now consists in choosing |y&|> = |y§|> = ¥(2)/2 so that
[D*(¥V) ()] (v)
= [D*¥(2)](v)V(2)
+4Re[ (2 )V}RG[D V( W ] U(z )[ V(2)](v)
|:D277Z)( Z + Z d82 \s:O'
i=a,b

To apply (9.58), we need to specify what the second coordinate of each ~i is. We set
Yi(s) = (vi1(s), (1(2)/2)"?) for s in the interval of definition of (v,7i,). By (9.60), it
satisfies ¥(75(s)) — |7i(s)|> = 0, so that (7, 7i), i = a, b, is a zero of the function ®(z,y) =
¥ (2)—|y|?. (In particular, 7§ cannot exit from D and the solution to (9.59) may be extended
to the whole [—1,1]. Indeed, 7} cannot vanish since 7} ,(s) = (¥(2)/2)"/2.) We now apply
(9.58) (with s in the neighborhood of 0 only). Then, we obtain that D*[)(2)V (2)](v) >
—Cv|?, for some constant C', independent from the distance from z to the boundary. Since
YV = v — g+ Ny, this proves that the semi-convexity constant of v is uniform up to the
boundary. By Proposition 6.4, we complete the proof of Theorem 8.1.

9.9. Conclusion. We here paid some price to gather into a single one the two different
representations ((Z; ), <t<rspis Jo>0 A ((Z7)eyer1<t<ran,s)k>0 according to the position of
the process (Z;);>o inside the domain D.

A natural way to simplify things consists in considering the parameterized representation
(9.1) in the whole space and in forgetting the original Eq. (8.1). Actually, this is exactly
what Krylov does in the papers mentioned in the references below.

The reason why we here decided to split the representation into two pieces is purely
pedagogical even if a bit heavy to detail. Indeed, Section 8 exactly shows what works
and fails when dealing with the first approach. In some sense, this may justify in a more
understandable way the reason why the parameterized version is the one used by Krylov. We
also emphasize that the computations performed in Section 8 for the single process (Z7):>o

BThat is, D2V (2)](v) = L5 1 (D2, .,V (2)vave + D2, LV (2)opve + D2,V (2)vibe + D2, L,V (2)04%).
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turn out to be really cumbersome for the pair process (Z7,Y;*);>o: this is another reason
why we kept both representations in the whole proof.
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