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Abstract:  We have utilized a statistical method to model the shear behavior of 

rough contacts.  In contrast to the traditional statistical methods, which only describe 

the asperity height and curvature distributions, we have introduced a contact 

orientation distribution in our analysis.  We have also incorporated asperity contact 

sliding and developed an incremental scheme for computing the stress-displacement 

relationship.  Using this enhanced model, we can demarcate the boundary between 

elastically deforming and sliding asperity contact orientations under given loading.  

Consequently, we can describe the shear-normal coupling as well as the effects of 

inherent anisotropy and the induced anisotropy of the sheared interfaces.   

 

 

Keywords: contact mechanics; sliding; elastic; roughness 

 



 

1. Introduction 

Stress-displacement behavior of contact between solid bodies has been one of the 

most widely researched problems with contributions spanning more than a 

century[1-4].  It has been widely recognized that surface roughness has a significant 

role in determining the contact behavior under loading that is in the direction normal 

and tangential to the nominal contact surface.  A clear consequence of surface 

roughness is that the actual contact area at the interface is smaller than the area of 

contacting surfaces because the contact occurs via asperities.  Moreover, when the 

surfaces come into contact, the asperity heights and their relative locations are 

uncertain, consequently, the resulting asperity contacts are oblique to the nominal 

contact directions and of random orientations.  A large number of models have been 

proposed to simulate the interface behavior of contacting solids.  The recent 

approaches of rough contact modeling can be considered in three categories based 

upon how the surface roughness is incorporated in the calculations: (1) direct 

simulation using the finite element method, (2) fractal representation, and (3) 

statistical methods.   

 

Direct simulation of rough contact is useful for providing perceptual intuition and 

showing details of the local behavior at the interfaces [4-9].  Furthermore, it is able 

to consider the elasto-plastic behavior of material as well as larger deformation.  

However, direct simulation can entail prohibitive computational expense for modeling 

surfaces with numerous asperities of irregular geometry.  Consequently, this 

approach is seldom used to model the whole contact surface, although it could be 

useful in micro-macro approaches for determining the relationships between local and 

global properties.  Along the lines of fractal representation, a number of authors have 

shown that the rough interface demonstrates the self-affine feature which indicates the 

geometry of the interface are scale dependent [7, 10-13].  The fractal model was 

proposed to account for such feature.  However, the fractal model typically does not 

incorporate the local asperity behavior which is important when considering the shear 



behavior.  Furthermore, many materials like thin-film disks, magnetic tapes and 

geotechnical materials have been shown to have little scale dependency and can be 

adequately described by the statistical approach [14].  In contrast to the fractal 

approach, the statistical approach is an asperity based model, in which the interface 

behavior is described as a group effect of numerous local asperity contacts [15-31].  

Scale dependent parameters have also been considered within the ambit of statistical 

approaches to address the fractal or resolution dependent nature of rough surfaces [32, 

33].  The pioneering work on the statistical approach was done by Greenwood and 

Williams[15], who assumed that the surface is formed by a large number of spherical 

shaped asperities with equivalent radius but different heights that follow Gaussian 

distribution.  Nayak [18, 34] introduced the techniques of random process theory 

into the analysis of Gaussian roughness.  In order to account for anisotropic interface, 

McCool and Gassel [22] introduced the elliptic paraboloid asperities instead of 

spherical shape asperities.  However, the basic solution for elliptic paraboloid 

asperities is much more complicated than that for spherical asperities, which has been 

found to adequately describe the asperity contact behavior.  The advantage of the 

statistical method is that it not only considers the local behavior of contacting surface, 

but also describes the interface geometry in a simple way.  Therefore, this method 

continues to be attractive for describing rough surface contact behavior. 

 

In this paper, we introduce an orientation function to consider the anisotropic surface 

while retaining the spherical shape of the asperities in the context of the statistical 

approach.  The orientation function models the random asperity contact obliquity 

which results in the coupling of the shear and normal directions which is commonly 

ignored in other models.  Furthermore, we incorporate Hertz-Mindlin fundamental 

solutions and sliding at the asperity contact in our model.  This work extends the 

previous micromechanical approach developed by the authors [28, 35, 36].  A 

numerical procedure is implemented to evaluate the derived expressions for the 

overall contact behavior.  We then obtain the contact behavior under normal-shear 

combined loading.  In particular, we investigate (1) how the stress-displacement 



relationship evolves as the interface is subjected to shear loading whose direction is 

varied, and (2) the coupling between the normal and shear behavior under shear 

loading.   

 

In the subsequent discussion, we first briefly present our approach for modeling 

contact behavior, including the statistical modeling of contact surface and the essence 

of the micromechanical approach.  We then utilize the micromechanical model to 

investigate the sliding behavior of asperity contacts and the overall 

stress-displacement behavior of the interface.  We find that under certain applied 

loading, existing asperity contacts can unload in the normal direction and separate.  

Similarly, contacts that are sliding can unload in the shear direction and such that they 

are no longer sliding.  We also find that the overall behavior of the interface exhibits 

significant coupling between the normal-shear and shear-shear directions depending 

upon the loading sequence. 

 

 

2. Modeling Method 

2.1. Statistical Description of Contact Interface 

The contact surface geometry determines the orientations and the number of asperity 

contacts under a given loading condition.  The composite topography of contacting 

surfaces, described via statistics of asperity contact heights, orientations, and 

curvatures may be utilized for this purpose [9, 18, 21, 28].  In this paper, the 

statistics of asperity contact heights is described via gamma distributions, asperity 

contact orientations via spherical harmonic expansions, and asperity curvatures are 

assumed to be constant for simplicity.  It is usual to define the asperity contact height 

with reference to the highest peak of the composite topography such that, asperity 

contact height, r, represents the overlap of the interacting surfaces.  The density 

function for asperity contact heights, H(r), is given by a gamma distribution [21, 26, 

27] expressed as: 
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where  and  are parameters related to the mean and variance of the asperity contact 

heights as follows 
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Parameter  is unit less while parameter  takes the unit of asperity contact height.  

Surfaces that have smaller average asperity contact height and narrow distributions of 

asperity contact heights are considered to be smoother.  Fig. 1 gives examples of 

asperity contact height distributions for two interfaces that can be described as smooth 

and rough in comparison with each other.  For an interface with N asperity contacts 

per unit area, NH(r)dr denotes that number of asperity contacts in the interval 

represented by r and r + dr. Thus, the total number of asperity contacts, under a given 

closure, is given by 

 N N H r drr

r

 
0                (3) 

In order to describe the orientation distribution, we introduce a local Cartesian 

coordinate system as shown in Fig. 2.  The local coordinate system consists of three 

vectors n, s and t, among which n is the vector normal to the asperity contact surface, 

and s and t are on the plane tangential to the asperity contact surface.  The 

relationship between the local coordinate system and the global Cartesian system is 

given by: 
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The asperity contact orientation is defined by considering the inclination of the 

asperity contact normal with respect to that of the interface normal direction.  As 

shown in Fig. 2, the orientation of an oblique asperity contact is defined by the 

azimuthal angle, , and the meridional angle, , measured with respect to a Cartesian 



coordinate system in which direction 1 is normal to the interface.  A 3-dimensional 

density function utilizing shifted spherical harmonics expansion in spherical polar 

coordinates that describes the concentrations of asperity contact orientations was 

introduced by Misra [28, 35].  For an interface with isotropic distribution of asperity 

contact orientations, the density function, (,) is given by 
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where angles  and  are defined in Fig 2, and parameters a, b and c determine the 

shape of the density function (,).  Further, to ensure that the density function is 

positive semi-definite, i.e. (,)  0, the values of parameters b and c are bounded as 

follows:
1 1

1 2 and -
3 6 3 6

b b
b c       .  Thus, the product Nr(,)sindd 

denotes the number of asperity contacts N in the interval represented by sindd, 

that is 

 , sinrN N d d                    (6) 

The density function in Eq.(6) has the ability to model surfaces with varying 

roughness. As discussed in Misra [35] for smooth surfaces the asperity contact 

directions have a greater tendency to be aligned in the direction normal to the 

interface in contrast to that for rough surfaces.  It is noteworthy that, as parameter, a, 

increases, the contact distribution concentrates towards the direction normal to the 

interface.  In particular, the density function, (,), behaves like a delta function in 

the limit a  and yields an expectation E[] =0, which represents a concentrated 

contact orientation, normal to a perfectly smooth interface.  The parameter, a, 

describes the extent of the asperity contacts in the meridional direction as well as the 

mean asperity contact orientation.  The extent of asperity contact inclination in 

meridional direction is /2 for a=1 and /4 for a=2.  The shapes of contact 

distributions vary with the values of parameter b, within the meridional extent of 

asperity contacts.  The lower bound of parameter b=-1, represents an interface on 



which the asperity contacts tend to orient closer to the horizon.  On the other hand, 

the upper bound of parameter b=2, represents an interface on which preferred 

orientation is closer to the interface normal.  The asperity contacts are equally 

distributed in the meridional direction for parameter b=0.  Parameter, c, describes the 

shape of the contact distributions in the azimuthal direction and, therefore models the 

inherent anisotropy in the interface tangential direction.  Fig. 3 shows the 

3-dimensional distribution density under different combination of parameters a, b and 

c. 

 

2.2. Micromechanical Stress-Displacement Relationship 

In the kinematically driven approach, we assume that the asperity contact 

displacement, j, at a given asperity contact height is the same and directly related to 

the overall displacement of the interface, j.  The subscripts in this paper follow the 

established tensor convention unless specified otherwise.  Thus, the asperity contact 

displacement in the local coordinate system can be written in terms of the overall 

interface displacements as follows:   
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Note that we assume the asperities to have spherical shape with the same radius but 

different heights.  Therefore, for a normal interface displacement 1, the 

displacement of the asperity contact at height r is 1-r as depicted in Fig. 4.  In local 

coordinate system, considering the Hertz-Mindlin contact theory of perfectly smooth 

elastic interfaces as well as other theories of smooth elastic-plastic interfaces[3], it is 

reasonable to assume that normal asperity contact stiffness Kn depends on the normal 

asperity contact displacement n according to the following power law: 

 nn KK                   (8) 

Where K,  and  are constants. The asperity contact stiffness, Kn given by 

Eq.(8),becomes identical with the Hertz stiffness for contact of perfectly smooth 

elastic spheres when[3] 
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where G is the shear modulus, v is Poisson's ratio and R is asperity radius of curvature.  

It is noteworthy that the exponent  can vary from 0 for perfectly plastic to ½ for 

perfectly elastic behavior at contact of perfectly smooth spherical asperities[3].  

Since this paper focuses on monotonic loading of interfaces, we consider the case of 

constant normal asperity contact force and monotonically increasing asperity contact 

shear force.  Mindlin and Deresiewicz [37] have derived the following asperity 

contact force-displacement relationship for this loading condition, considering partial 

slip at contact edge with increasing contact shear displacement: 
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Where fst is the asperity contact shear force and st is the asperity contact shear 

displacement given by,  
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Thus, in s- and t-direction, we have the following force displacement relationship: 
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where Kst is the stiffness in the tangential direction, and the superscript e denotes 

asperity contacts that are not sliding.  We note Eqs. (12) and (13) are valid when 

|n|>st.  When this condition is violated, sliding occurs at the contact per the 

Amonton–Coulomb’s friction law.  In this case Eqs. (12) and (13) can be rewritten 

as: 

ps
s n n st s

st

f K K


  


                 (14) 

pt
t n n st t

st

f K K


  


                 (15) 



where the superscript p denotes asperity contacts that are sliding.  In Eqs. (12) 

through (15) the ratios s/st and t/st give the projection of the asperity contact shear 

force, fst, in the s- and the t-directions and the stiffness, Kst, has been introduced for 

convenience.  Thus, for a single asperity contact the force-displacement can be 

written in the following matrix form in the local coordinate system, where the 

superscript has been dropped: 
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Or in the global coordinate system, the asperity contact forces, fi, and displacements, 

j, are related as follows: 
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Where the asperity contact stiffnesses, Kij, given by： 

 ij n i j st i j i jK K n n K s s t t                (18) 

where Kn, and Kst denote asperity contact stiffness along the normal and tangential 

direction of the asperity contact.   

 

At a rough interface, numerous asperity contacts of varying height overlap and 

orientations occur under a given loading condition.  These asperity contacts can be 

classified into three groups: (1) those in contact but without sliding, (2) those in 

contact but with sliding, and (3) those not in contact.  The overall interface stress can 

be obtained as the sum of the asperity contact forces contributed by groups (1) and (2).  

Utilizing the orientation distribution and height distribution introduced in section 2, 

we obtain the following expression for the overall interface stress, Fi, given in terms 

of force per unit area since N is the areal asperity contact density 
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In Eq. 19, the superscript e denotes the domain and forces of asperity contacts that are 

not sliding, and the superscript p denotes the domain and forces of asperity contacts 



experiencing sliding. 

 

 

3. Results 

3.1. Sliding behavior of asperity contacts at different orientations 

Here we discuss the sliding behavior of asperity contacts subjected to a combined 

normal and shear displacement.  We consider asperity contacts with different 

orientations at the same asperity contact height, r.  We note that the asperity contact 

orientation are defined by  and  and forms a hemi-spherical surface.  As we 

discussed before, asperity contacts with the same height r experience the same global 

displacements Δ1-r, Δ2 and Δ3.  However, the local displacements n, s and t which 

determine the sliding behavior of asperity contacts are different since these are 

functions of contact orientations.  For simplicity but without loss of generality, let us 

consider the asperity contacts subjected to the exterior displacement that lies on the 

1-3 plane of the global coordinate system and makes an oblique loading angle, , 

with 1-axis as shown in Fig. 5.  In this case, the asperity contacts of height, r, will 

experience a displacement of (Δ1-r) =d, in the direction of 1-axis and a displacement 

of Δ2=0 and Δ3=d tan () in the directions of 2- and 3-axis, respectively, as depicted 

in Fig. 5.  The asperity contact displacement in the local coordinate system can then 

be written as follows based on Eq. (7):  

)sin()sin()tan()cos(  ddn   

)sin()sin()tan()sin(  dds                   (20) 

)cos()tan(  rt   

Using these expressions for asperity contact displacement, we can determine whether 

a contact is in sliding condition.  To this end, we discretize the asperity contact 

orientation domain into various asperity contact directions denoted by the pair (i, i).  

For each asperity contact direction, we evaluate the local displacement using Eq. (20).  

When the normal displacement, n(i, i) < 0, no contact exists; when the normal 

displacement, n(i, i) > 0, and the shear displacement, st(i, i) < n(i, i), 



contact exists, however is not sliding.  Finally when the normal displacement, n(i, 

i) > 0, and the shear displacement, st(i, i)  n(i, i), contact experiences 

sliding.  An extensive numerical search is performed using these criteria to define 

the asperity contact orientation groups as no-contact area, no-sliding area, or sliding 

area.  In Figs. 6 and 7, we illustrate how the three areas evolve for different  and 

 respectively.  The three areas are plotted on =0 plane looking down along the 

1-axis.  The resultant polar diagram represents a projection of the asperity contact 

directions onto the interface (=0 ) plane.  In these figures, the polar direction is , 

while the radial direction is sin, where  and  are defined in Figs. 2 and 3.  The 

points lying in the three domains then represent asperity contact directions (,) that 

are experiencing no-sliding, sliding or separation.  The area designated as no-sliding, 

given by the closed interior loop, represents the asperity contact orientations that 

satisfy the no-sliding criterion.  The area designated as sliding, given by the space 

between the no-sliding area and no-contact area, represents the asperity contact 

orientations that satisfy the sliding criterion.  The remaining directions represent 

asperity contacts that satisfy no-contact criterion.  Under normal loading, shown in 

Fig. 6(a), all asperity contacts at that height r are in contact, the no-sliding area is 

centered at =0
o
 direction and the sliding areas is given by 45

o
 for the product 

=1.  In Fig. 6, we observe that the no-sliding area shifts towards =90
o
 and is 

centered at >0
o
 as the interface is subjected to shear along the 3-axis. We find that as 

we increase the loading angle, , the no-sliding domain moves closer to the horizon 

accompanied by an expanding no-contact area.  We also find that the extent of 

sliding area depends upon the contact parameter given by the product, ., as shown 

in Fig. 7.  

 

3.2 Stress-Displacement Behavior under Combined Normal-Shear Loading 

To investigate the stress-displacement behavior of rough interface under combined 

normal-shear loading for both isotropic and anisotropic interface, we design the 

following loading procedure.  As illustrated in Fig. 8, we first apply a normal 

displacement, 1, subsequently, we apply a shear displacement in the 2-direction, 2, 



followed by shear displacement in the 3-direction, 3.  For this loading sequence, we 

numerically evaluate the discretized Eq. (19) as described in the previous section.  

The interface properties used for our example computations are tabulated in Table 1.   

 

Fig. 9 shows the resultant stress-displacement curves.  During loading step 1, stress, 

F1, increases as interface undergoes closure.  Under shear loading in step 2, the 

normal stress, F1, increases although the normal displacement, 1, is kept constant.  

The increase in normal stress shows the coupling between the normal and shear 

behavior induced by the shear loading and is indicative of the fact that the interface is 

constrained from dilating.  As we now apply the shear loading in step 3 while 

keeping the normal displacement, 1, and the shear displacement, 2, we see further 

coupling develop between the normal-shear and shear directions.  During this 

loading step, we find a significant difference between the shear stresses, F1 and F2, 

although the corresponding shear displacements may be the same, showing a clear 

manifestation of the loading induced anisotropy.  At the asperity contact-level, the 

no-contact, no-sliding and sliding areas evolve in response to the applied load-path.  

The result, of course, is a highly load path dependent overall behavior.  To further 

illustrate how the stress-displacement behavior changes as a function of the surface 

characteristics, we plot the stress-displacement curves for asperity contact friction 

coefficient, =0.3, in Fig. 9, for two different asperity contact orientation distributions 

in Fig. 10, for two different asperity contact height distributions in Fig. 11, and for 

anisotropic asperity contact distributions in Fig. 12.  As expected, the overall shear 

behavior is softer for the lower asperity contact friction coefficient; however, the 

normal behavior becomes more dilatant as seen from a crossover of the normal stress, 

F1, as the shear displacement is increased.   

 

In Fig. 10, the stress-displacement curves are compared for asperity contact 

orientation distribution parameter a=1.5 and 3.  We observe that the normal behavior 

of the two interfaces is similar while the shear behavior shows significant differences.  

Since the meridional extent of asperity contact orientation for a=1.5 is much greater 



than that for a=3.0, a significantly stiffer shear behavior is obtained.  We also not 

that the interface with a=3.0 shows shear softening in the 2-direction as the interface 

is sheared in the 3-direction.  In Fig. 11, the stress-displacement curves obtained for 

rough interface given by the asperity contact height distribution parameters =6.14, 

=3.52 m are compared to those obtained for a smooth interface whose asperity 

contact height distribution parameters are taken as =3.82, =1.15 m.  Clearly, 

surface roughness plays an important role in stress-displacement behavior.  As seen 

in Fig. 11, the smoother interface shows a stiffer behavior.  Further, in Fig. 12, we 

compare the behavior for isotropic and anisotropic interfaces.  The anisotropy 

parameters and the initial contact distributions are given in the right plot of Fig. 3 

(a=1, b=-1, c=1/3).  We note that that anisotropy has only a small affect on the 

normal behavior.  However, in contrast to the isotropic interface, the stresses for the 

anisotropic interface in the 2- and 3-directions are different even though the applied 

displacements in the two directions are the same. 

 

 

4. Concluding Remarks 

In this study, we have utilized a micromechanical method, in which the surface 

roughness is modeled using a statistical approach utilizing asperity contact height and 

orientation distributions.  We incorporate Hertz-Mindlin fundamental solutions and 

sliding at the asperity contact in our analysis.  The micromechanical method is found 

to be applicable for modeling both the inherent anisotropy of the surface as well as the 

anisotropy induced by shear loading.  In particular, we have investigated how the 

stress-displacement relationship evolves as the interface is subjected to shear loading 

whose direction is varied.  We have obtained the boundaries between elastic, sliding 

and non-contacting asperity contact orientations as a function of the loading condition 

and the asperity Poisson’s ratio and friction coefficient.  We show for the first time 

that an initially isotropic interface can exhibit highly anisotropic behavior when 

subjected to a shear preload.  Moreover, the normal and shear behavior are coupled 

in the presence of shear loading.  We also found that coupling effect between normal 



and shear direction is much stronger in rough interface than that in smooth interface.   
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a, b and c= orientation distribution parameters 

d= asperity contact displacement in normal direction 

e= non-sliding asperity contact 

fi = asperity contact forces 

Fi = overall interface stress 

G= shear modulus 

H= asperity contact height distribution 

Kij= asperity contact stiffnesses 

Kn, Kst = asperity contact stiffness along the normal and the tangential directions  

n, s and t = spherical coordinate direction vector 

N =asperity contact density given as number of asperity contact per unit area 
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R= radius of asperity 

, = height distribution parameters 
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= material constant 

= asperity contact friction 
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= density function of asperity contact orientations,  
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Table 1 Interface property. 

asperity density friction coefficient plasticity parameter orientation distribution 

N=1000 /mm
2
 =1  =1/2 a=3,b=0,c=0 

Radius shear modulus Poisson’s ratio height distribution 

R=200 m G=80(GPa) =0.3 =5.12, =2.35 m 
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Figure 1 Distribution of asperity contact heights 

 



 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Schematic depiction of the micromechanical modeling methodology for rough interfaces 
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Figure 3: Asperity contact orientation distribution, (,): left frame is for isotropic interface 

(a=1,b=1/3,c=0) and right frame is for anisotropic interface (a=1,b=-1,c=1/3).  Grayscales 

indicate the probability density of finding asperity contact in a given orientation defined by the 

coordinate system given in the inset.  The plots are in spherical coordinates where the radius is 

(,). 
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Figure 4  Asperity contact displacement, d, at height r for a normal interface 

displacement of 1. 

 



 

 

 

 

Figure 5  Oblique loading angle ω. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  ω effect on sliding and no sliding distribution (μλ=1) 
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Figure 7  μλ effect on sliding and no sliding distribution (ω=π/4)
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Figure 8 Loading procedure 
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Figure 9 Effect of friction coefficient on normal and shear behavior. 
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Figure 10 Effect of asperity orientation distribution parameter, a, on the normal and shear 

behavior. 
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Figure 11 Effect of roughness on normal and shear behavior. 
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Figure 12 Effect of anisotropy on normal and shear behavior. 

 

 


