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ABSTRACT.  The authors have developed a micromechanical methodology for modeling 

contact behavior of rough solids.  This methodology has been applied to determine complex-

valued effective normal and shear stiffnesses of interfaces by considering surface roughness, and 

viscous asperity contact force laws.  In this work, the micromechanically derived complex 

effective stiffnesses are used in conjunction with the imperfectly bonded interface model to 

perform a parametric study by varying surface roughness, contact viscosities, and frequency of 

the incident wave.  We find that the surface roughness and asperity properties compete in 

determining the stiffness behavior, and consequently, the wave propagation behavior of rough 

interfaces. 
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INTRODUCTION  

            

 The concept of imperfectly bonded interface models has been widely used to 

investigate plane wave propagation through contacts between two rough solids [see for 

example 1-3].  In these models, the displacement discontinuity at the interface is 

accommodated through effective interface stiffnesses.  In the recent past, the authors have 

developed a micromechanical methodology for determining the effective interface stiffness 

[4-6].  This methodology leads to complex-valued effective stiffness that incorporates the 

effects of surface roughness and rate-dependent nature of asperity contacts [7].   

In this work, the micromechanically derived complex effective stiffnesses are used 

in conjunction with the imperfectly bonded interface model to perform a parametric study 

by varying surface roughness, contact viscosities, and frequency of the incident wave.  We 

find that the surface roughness and asperity properties compete in determining the overall 

behavior of the interface.  For example, the overall relaxation times of the interface depend 

upon the roughness as well as the contact normal and shear relaxation times.  Furthermore, 

these overall relaxation times are different in the normal and shear directions.  These 

findings have critical implication on the interpretation of wave propagation through rough 

interfaces in terms of energy dissipation and phase lag of transmitted and reflected waves.   

 In the subsequent discussion, we first briefly describe the derivation of the effective 

interface stiffness.  We then utilize the effective stiffness in the imperfectly bonded 



interface model to perform a parametric study of the behavior of wave transmission and 

reflection.  

 

COMPLEX-VALUED EFFECTIVE INTERFACE STIFFNESS 

            

In the micromechanical methodology, we explicitly consider the contact between 

asperities of the rough surfaces.  The stress-deformation relationship for an interface is 

then derived by utilizing: (1) the distribution functions of asperity heights and contact 

orientations, and (2) the overall kinematic constraints and equilibrium conditions [4-6].  In 

this paper, we give a brief derivation for linear rate-dependent interface behavior that can 

be used in the imperfect interface model to study wave propagation.  Needless to say, for 

such interfaces a rate-dependent asperity contact behavior need to be considered.   

 

Asperity Behavior and Interface Roughness 

 

For this work, we assume a simple Kelvin-Voigt rheological model to describe the 

asperity behavior [7].  In this case, the asperity contact forces, fi
c
, are related via the 

asperity contact stiffnesses, Kij
c
, and asperity contact viscosities, ij

c
, to asperity contact 

displacements and displacement rates as follows 
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Although the asperity contact stiffnesses and viscosities depend upon the contact loading 

condition, loading independent stiffnesses and viscosities can be used to illustrate the 

essence of the modeling methodology as well as the impact on wave propagation behavior.  

For further discussion, it is convenient to express the asperity stiffness tensor, Kij
c
, in terms 

of asperity stiffness that describes the behavior along the direction of normal and tangent to 

an asperity contact, such that 
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where Kn
c
 and Ks

c
 denote nonlinear asperity stiffness along the normal and tangential 

direction of the asperity.  The unit vector n is normal to the asperity contact surface and 

vectors s and t are arbitrarily chosen on the plane tangential to the asperity contact surface, 

such that nst forms a local Cartesian coordinate system as illustrated in Fig. 1.   

 

 

 

 

 

 

 

 

 

 

 
FIGURE 1.  Asperity contact and the coordinate system. 
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It is noted that the stiffness terms that cross-link normal and shear behavior are 

assumed to be negligible in accordance with the theories for contact of smooth non-

conforming bodies.  Similarly, the asperity viscosity tensor, ij, may be written as: 
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We define the following time constants for the asperity contacts: 
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Furthermore, we consider the distribution functions of asperity heights and contact 

orientations to find the number of asperity contacts N in the interval represented by solid 

angles  and +d, as follows: 

 

        dNN r            (5) 

 

where Nr is the total number of asperity contacts under a given interface closure, and () 

denotes a 3-dimensional density function that describes the concentrations of asperity 

contact orientations [4-5].  For an interface with N asperities per unit area, the total number 

of asperity contacts under a given interface closure, r, is given by: 
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where H(r) represents the density function for asperity heights.  The density function, 

(), of asperity contact orientations distribution in the domain: 0    /2a, 0    2, 

is given by: 
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where  represents the solid angle formed by  and  defined in Fig. 1, and parameters a 

and b determine the shape of the density function ().  The average asperity contact angle 

in the meridional direction may be obtained as the expectation E[] = () d, given 

by: 
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The density function in (7) has the ability to model surfaces with varying roughness.  As 

discussed in [5], the asperity contacts for smooth interfaces have a greater tendency to 

concentrate in the direction normal to the interface than that for rough interfaces.  It is 

noteworthy that, as parameter, a, increases, the contact distribution concentrates towards 

the direction normal to the interface.  In particular, the density function, (), behaves like 

a delta function in the limit a  and yields an expectation E[] =0, which represents a 

concentrated contact orientation, normal to the interface of a perfectly smooth joint.  In 



general, the parameter, a, describes the extent of the asperity contacts in the meridional 

direction as well as the mean asperity contact orientation.  Parameter, b, on the other hand, 

describes the shape of the contact distributions within the meridional extent of asperity 

contacts.  For example, the extent of asperity contact inclination in meridional direction is 

/2 for a=1 and /4 for a=2, while, the shapes of contact distributions vary with the values 

of parameter b.  Parameter b=-1, represents an interface on which the asperity contacts tend 

to orient closer to the horizon, i.e. =/2.  In contrast, parameter b=2, represents an 

interface on which the preferred orientation is closer to the interface normal, i.e. =0.  For 

b=0, the asperity contacts are equally distributed in the meridional direction.  Fig. 2 gives 

the variation of average asperity contact angle with the asperity contact orientation 

parameter a for parameter b=-1 and 1, respectively. 

 

Overall Interface Stiffness 

 

The overall behavior of the interface can be related to the asperity behavior by 

considering energy balance as follows: 

 

        



r

c

i

c

iii drdrHfNF            (9) 

 

where the interface overall traction Fi is given as force per unit area since N is measured 

per unit area of an interface and i is the interface displacement.  The overall stiffness of 

the interface can be derived through two approaches, referred here as (1) the kinematic 

approach, and (2) the static approach.  Since the static approach represents interaction 

between asperities, we follow this approach for our further discussion.  In the static 

approach we assume that the asperity contact force is related to the overall traction as 

follows: 
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which implies that asperities are spaced close together.  In this case, the overall interface 

displacement, i, is obtained from the summation of the displacements, i
c
, developed at 

asperities, which for a large number of asperity contacts is written as the following integral 

by using equations (9) and (10): 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.  Average asperity contact angle versus asperity contact orientation parameter, a. 
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The asperity displacement, i
c
, is obtained in terms of the asperity force, fi

c
, from the 

solution of the differential operator form of the asperity force-displacement relationship 

given in equation (1), as follows: 
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Thus, the overall interface displacement, i, may be written as: 
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where interface creep function, denoted by, Jij, is obtained as the following integral for the 

loading independent contact behavior: 
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The integral form of the stress-deformation relationship may be used to obtain stiffness 

functions or complex compliances and stiffnesses.  For wave propagation studies, the 

complex stiffnesses are of interest and, equation (13) can be recast into the following form: 
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where the complex stiffness tensor, Rij
*
, takes the following form: 
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It is noteworthy that, the modulus of the complex stiffness determines the amplitude while 

the ratio of imaginary and real parts determines the phase of the interface stress when 

subjected to a harmonic displacement, such as an input plane wave. 

 

RESULTS FOR REFLECTION AND TRANSMISSION AT INTERFACES 

            

 The imperfectly bonded interface model, also known as linear slip or displacement 

discontinuity approach [1-3], has been widely used to investigate wave propagation 

through interfaces between solids.  At an imperfect interface between two media, tractions 

at upper medium A and lower medium B are continuous and displacements are 

discontinuous, which lead to the following equations:   

 

 

 



 

 

 

 

 

 

 
 

FIGURE 3.  A schematic of wave reflection and transmission at an imperfect interface. 
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where n=0-3 and n=4-6 are the wave modes in the incident and transmitting media, 

respectively.  For convenience, we choose a coordinate system, such that the direction of 

the incident wave propagation is within the 1-3 plane shown in Fig. 3.  Equations (17) and 

(18) may be combined to obtain the amplitudes of the reflected and transmitted P and S 

waves given in terms of complex valued reflection, <RP, RSV, RSH>, and transmission, <TP, 

TSV, TSH>, coefficients, respectively.  Under normal incidence of a P-wave, the amplitudes 

and phase of the reflected and transmitted wave are given as 
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We use the expressions in equations (19) and (20) to illustrate the competing effect 

of interface roughness and asperity properties.  In Figs. 4 and 5 we have plotted the 

transmitted and reflected wave amplitudes and corresponding phases for specific values of 

asperity stiffness constants computed using the following asperity properties: NKn = 220 

GPa/m, Ks = 0.5Kn, ts = 0 s, and three values of tn = 0 s, 10
-3

 s and 10
-4

 s, respectively.  

Different interface roughnesses are modeled by considering the following values of 

asperity orientation parameters, a = 1, 2, 4 and 8, which correspond to the mean asperity 

contact orientation of 57
o
, 29

o
, 14

o
 and 7

o
, respectively.  Finally, the following values were 

used for the properties of the bulk materials: shear modulus G = 23 GPa, Poisson's ratio  

= 0.224, density  = 3 Mg/m
3
, and P-wave velocity cp = 4638 m/s.  Based upon this 

parametric study we can make the following conclusions: 

• The surface roughness and asperity properties compete in determining the wave 

propagation behavior of the interface.  For example, we can obtain similar (same or 

very close) reflection or transmission coefficients for a given surface roughness and 

different asperity viscosities. 

• The surface roughness has a small (negligible) effect when the time period of the wave 

is smaller than the asperity relaxation time (< ~10tn), that is waves with low 

frequencies or long wavelengths. 

• Relatively smooth interfaces tend to have a smaller reflection and higher transmission 

coefficients.  
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• At certain asperity contact viscosities and surface roughness (average asperity contact 

angle <30
o
), the wave transmission behavior resembles that of a perfect (or welded) 

interface as seen in Fig. 4 for tn=0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.  Effect of surface roughness and asperity viscosity on P-wave reflection and transmission 

coefficients under normal incidence and normal closure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 5.  Effect of surface roughness and asperity viscosity on reflected and transmitted P-wave 

phases under normal incidence and normal closure. 
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FIGURE 6.  Effect of surface roughness and asperity viscosity on energy dissipation during P-wave 

transmission through interfaces under normal incidence. 

 

Furthermore, we find that the wave energy dissipated in a viscoelastic interface is a 

function of the surface roughness and asperity viscosity.  To this end, we consider the 

normalized specific energy rate, EP, defined as the energy per unit area per unit time given 

by: 
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wherein we define EP
D
 as the specific energy dissipated per unit time.  In Fig. 6, we have 

plotted the normalized energy against incident wave frequency for a variety of asperity 

viscosities and interface roughness.  We find that for different interface roughness, the 

energy dissipation reaches maxima at different asperity viscosity. 

 

SUMMARY AND CONCLUSIONS 

            

The main findings of this work are summarized as follows:   

1. Effective stiffnesses of interfaces between two rough solids are known to be affected 

by surface roughness, asperity contact elasticity and viscosity.  A micromechanical 

methodology can be used for modeling complex-valued effective stiffness accounting 

for asperity interaction. 

2. The derived effective stiffnesses can be used to investigate plane wave propagation 

behavior through interfaces utilizing the imperfectly bonded interface model.   

3. We find that the amplitudes of the reflected and transmitted waves are significantly 

influenced by the roughness and asperity viscosity.  The model may thus be used to 

elucidate the results of wave transmission through rough interfaces. 
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