Clément Aubert

Sublogarithmic uniform Boolean proof nets (Rapport interne LIPN -Janvier 2011)

Introduction

Boolean proof nets were introduced by Terui in [START_REF] Terui | Proof Nets and Boolean Circuits[END_REF] to study the implicit complexity of proofs nets for Multiplicative Linear Logic [START_REF] Girard | Proof-nets: The parallel syntax for proof-theory[END_REF] comparatively to Boolean circuits. Those two models of parallel computation were successfully linked using a proofs-as-programs framework, which match up cutelimination in proof nets with evaluation in circuits. Surprisingly [START_REF] Terui | Proof Nets and Boolean Circuits[END_REF] does not take into account uniformity, which guarantee that the resources needed to build a family of Boolean circuits is inferior to the computational power it will deliver. [START_REF] Mogbil | Uniform circuits, & Boolean proof nets[END_REF] and [START_REF] Mogbil | Non-deterministic Boolean Proof Nets[END_REF] studied the Boolean proof nets in a uniform way and introduced some non-determinism in it. As their translation from Boolean circuit families to Boolean proof net families is in logspace (L), it remained unknown if the results were still valid when applied to sublogarithmic classes of complexity, that is to say AC 0 and NC 1 . By restricting the Boolean proof net we use, this paper offers a new proof of the correspondence between circuits and proof nets and extend it to constant-depth circuits.

Boolean circuits ([9], section 1) and proof nets ([START_REF] Danos | The structure of multiplicatives[END_REF], section 3) are canonical model of parallel computation, but the latter was mostly seen from the viewpoint of sequential implicit complexity. To evaluate a proof net is to eliminates its cuts, but to do so with suitable bounds we need to define a parallel elimination. Trying to apply the two usual rules of rewriting (→ m and → a) in parallel leads to critical pairs, so we are forced to define a new kind of cuts (tightening-cuts) and a new rewriting rule (→ t). The simulation of this reduction rule by Boolean circuits needs U stC onn 2 gates to be made elegantly.

The proof nets we study are for Multiplicative Linear Logic with unbounded arity (MLLu, section 2) and because of the linearity of this logic, we are forced to keep track of the partial results generated by the evaluation that are unused in the result. Boolean proof nets (section 4) -as introduced by Terui -have an expensive way of manipulating this garbage. In this paper we introduce proof circuits (section 5) as a refinement of the Boolean proof nets that are simpler to manipulate. By internalizing the composition of the proof nets simulating Boolean functions, we reduce the size of the proof net simulating the Boolean circuits. In section 6 we conclude our paper with our mains result (theorem 2): there exists a constant-depth reduction from Boolean circuit families to proof circuit families. So our new framework offered a variant of the proofs for complexity results and extended them to small classes of complexity, in an uniform way.

Boolean circuits

Boolean circuits (definition 2) are of great interest in the study of complexity, for instance because of the efficiency of their parallel evaluation. One of their feature is that they work only on inputs of fixed length, and that forces us to deal with families of Boolean circuits -and there arises the question of uniformity (definition 4).

Definition 1 (Boolean function).

A n-ary Boolean function f n is a map from {0, 1} n to {0, 1}. A Boolean function family is a sequence f = (f n) n∈N and a basis is a set of Boolean functions and Boolean function families. We set :

B 0 = {¬, ∨ 2 , ∧ 2 } and B 1 = {¬, (∨ n) n 2 , (∧ n) n 2 }
The Boolean function U stC onn 2 , given in input an undirected graph G of degree at most 2 and two nodes s and t , outputs 1 iff there is a path between s and t in G.

Definition 2 (Boolean circuits). Given a basis B, a Boolean circuit over B with n inputs C n is a directed acyclic finite and labeled graph. The nodes of fan-in 0 are called inputs nodes and are labeled with x 1 , . . . , x n , 0, 1. Non-input nodes are called gates and are labeled with a Boolean function from B whose arity coincides with the fan-in of the gate. There is a unique node of fan-out 0 which is the output node.

The depth of a Boolean circuit C n d (C n) is the length of the longest path between an input node and the output node. Its size |C n | is its number of nodes. We will only consider Boolean circuits of size n O (1) , that is to said polynomial in the size of the input.

C n with n inputs accepts a word w ≡ w 1 . . . w n ∈ {0, 1} n if C n evaluates to 1 when w 1 , . . . , w n are respectively assigned to x 1 , . . . , x n . A family of Boolean circuits is an infinite sequence C = (C n) n∈N of Boolean circuits, C accepts a language X ⊆ {0, 1} * if for all i ∈ N, for all w ∈ X ∩ {0, 1} i , C i accepts w.

We restrict our study to decisional circuit, but using circuits with more than one output -as in our reduction page 10 -does not change our results. Definition 3 (Direct Connection Language [START_REF] Vollmer | Introduction to Circuit Complexity: A Uniform Approach[END_REF]). Given (.) a suitable coding of integers and C = (C n) n∈N a family of Boolean circuits over a basis B, its Direct Connection Language -written L DC (C) -is the set of tuples < y, g , p, b >, such that for |y| = n, we have: g is a gate in C n , labeled with b ∈ B if p = ǫ, else b is its p t h predecessor. Definition 4 (Uniformity [START_REF] Barrington | On uniformity within NC1[END_REF]). A family C is said to be DLOGTIME-uniform if there exists a deterministic Turing Machine that given L DC (C), n and g outputs in time O(log(|C n |)) any information (position, label or predecessors) about the gate g in C n .

Despite the fact that a DLOGTIME Turing Machine has more computational power than a constant-depth circuit, "a consensus has developed among researchers in circuit complexity that this D-LOGTIME uniformity is the 'right' uniformity condition" for small complexity classes [START_REF] Hesse | Uniform constant-depth threshold circuits for division and iterated multiplication[END_REF]. Any further reference to uniformity is to be read as DLOGTIME uniformity.

Definition 5 (AC i , NC i). For all i ∈ N, given B a basis, a language X ⊆ {0, 1} * belongs to the class AC i (B) (resp. NC i (B)) if X is accepted by a uniform family of polynomial-size, log i -depth Boolean circuits over B 1 ∪ B (resp. B 0 ∪ B). We set AC i () = AC i and NC i () = NC i .

MLLu

Rather than using Multiplicative Linear Logic (MLL) -which would force us to compose binary connectives to obtains n-ary connectives -we work with MLLu which differs only on the arities of the connectives. We write -→ A (resp. ← -A) for an ordered sequence of formulae A 1 , . . . , A n , (resp. A n , . . . , A 1).

A ::= α | α ⊥ | ⊗ n (- → A) | n (← - A)
Duality is defined with respect to De Morgan's law :

(A ⊥) ⊥ ≡ A (⊗ n (- → A)) ⊥ ≡ n (← - A ⊥) (n (← - A)) ⊥ ≡ ⊗ n (-→ A ⊥)
As for the rest of this article, consider that A, B and D will refer to MLLu formulae. A[B /D] denotes A where every occurrence of B is replaced by an occurrence of D. We write

A[D] if B = α.

Definition 7 (Sequent calculus for MLLu).

A sequent of MLLu is of the form ⊢ Γ, where Γ is a multiset of formulae. The inference rules of MLLu are as follow :

ax. ⊢ A, A ⊥ ⊢ Γ 1 , A 1 . . . ⊢ Γ n , A n ⊗ n ⊢ Γ 1 , . . . , Γ n , ⊗ n (- → A) ⊢ Γ, A ⊢ ∆, A ⊥ cut ⊢ Γ, ∆ ⊢ Γ, ← - A n ⊢ Γ, n (← - A)
Derivations of MLLu are built with respect to those rules. MLLu has neither weakening nor contraction, but admits implicit exchange and cut-elimination. The formulae A and A ⊥ in the rule cut are called the cut formulae.

Proof nets

Proof nets are a parallel syntax for MLLu that abstract away everything irrelevant and only keep the structure of the proofs. We introduce measures (definition 10) on it in order to study their structure and complexity, and a parallel elimination of their cuts (definition 11).

Definition 8 (Links). We introduce in figure 1 three sorts of links -•, ⊗ n and n -which correspond to MLLu rules.

Both have two kinds of ports: principal ones, indexed by 0 and written below, and auxiliary ones, indexed by 1, . . . , n and written above. The auxiliary ports are ordered, but as we always represent the links as in figure 1, we may safely omit the numbering. Remark 1. There is no sort cut: a cut is represented with an edge between two principal ports.

ax. ⊢ p : A, p : A

⊥ ⊲ ax p • p p {⊢ Γ i , p i : A i ⊲ D(P i)} 1 i n ⊗ n ⊢ Γ 1 , . . . , Γ n , s : ⊗ n (- → A) ⊲ t ensor p 1 ,...,p n s
(D (P 1), . . . , D(P n)) ating to every formula an index and to every sequent a description D(P) of a proof net P which details the way ports are connected by edges. A proof net is obtained by connecting with edges ports of links, with respect to the rules given in figure 2, which associates to a description a proof net.

P 1 p 1 P n p n s ⊢ Γ, p : A ⊲ D(P) ⊢ ∆, q : A ⊥ ⊲ D(Q) cut ⊢ Γ, ∆ ⊲ cut p,q (D (P), D(Q)) P p Q q ⊢ Γ, p n : A n , . . . , p 1 : A 1 ⊲ D(P) n ⊢ Γ, s : n (← - A) ⊲ par p n ,...,
The type of a proof net P is Γ if there exists a judgment ⊢ Γ ⊲ D(P): a proof net always has several types, but up to α-equivalence (renaming of the literals) we may always assume it as a unique principal type, which is the smallest one (with respect to definition 10). If a proof net may be typed with Γ, then for every A and B it may be typed with Γ[A/B]. By extension we will use the notion of type of an edge.

The structures obtained by following those rules respect criterion of correction. For instance two ports of a same link may not be connected, a port may be connected only once and every auxiliary port is connected. We do not have to take into account pseudo nets. Remark 2. The same proof net -as it abstracts derivations -may be induced by several descriptions. Conversely, several graphs -as representations of proof nets -may correspond to the same proof net: we get round of this difficulty by associating to every proof net one of the drawing with the minimal number of crossings between edges. Two graphs representing proof nets that can be obtained from

For all • ∈ {(n) n 2 , (⊗ n) n 2 }, • may be • in → m → m • → a • • . . . • → t • Figure 3: t -, a-and m-reductions
the same description are taken to be equal.

Definition 10 (Depth and size of a proof net). The depth of a proof net is defined with respect to its type:

-The depth of a formula is defined by recurrence :

d (α) = d (α ⊥) = 1 d (⊗ n (- → A)) = d (n (← - A)) = max(d (A 1), . . . , d (A n)) + 1
-The depth d (π) of a derivation π is the maximum depth of cut formulae in it.

-The depth d (P) of a proof net P is mi n{d (π) | π induces a judgment of ⊢ Γ ⊲ D(P) for some Γ} -The size |P | of a proof net P is the number of its links.

To make the most of the computational power of proof nets, we need to achieve a speed-up in the number of steps needed to normalize a proof net. If we try roughly to reduce in parallel a cut between two ax-links, we are faced with a critical pair. [START_REF] Terui | Proof Nets and Boolean Circuits[END_REF] avoids this situation by using a tightening reduction which eliminates in one step all the cuts between axioms. We can then safely reduce all the a-cuts in parallel.

Definition 11 (Cuts and parallel cut-elimination). A cut is an edge between the principal ports of two links. If one of this link is an ax-link, two cases occurs:

if the other link is an ax-link, we take the maximal chain of ax-link connected by their principal ports and defines this set of cuts as a t -cut, otherwise the cut is an a-cut.

Otherwise it is a m-cut and we know that for n 2, one link is a ⊗ n -link and the other is a n -link. We define on figure 3 three rewriting rules on the proof nets. For r ∈ {t , a, m}, if Q may be obtained from P by erasing all r -cuts simultaneously, we write P r Q. If P t Q, P a Q or P m Q, we write P Q. To normalize a proof net P is to apply until we reach a cut-free proof net. * is defined as the transitive reflexive closure of .

Theorem 1 (Parallel cut-elimination [8]). Every proof net P normalizes in at most O(d (P)) applications of .

So the time needed to evaluate a proof net is no longer linear in its size: it is relative to its depthas for the Boolean circuits.

Boolean proof nets

In order to compare the complexities of proof nets and of Boolean circuits, we need to define how proof nets represent Boolean values (definition 12) and Boolean functions (definition 13). To study them in a uniform framework we define their Direct Connection Language (definition 14), very similar to the Direct Connection Language for Boolean circuits.

Definition 12 (Boolean type, 0 and 1 [START_REF] Terui | Proof Nets and Boolean Circuits[END_REF]). Let b 0 and b 1 be the two proof nets of type

B = 3 (α ⊥ , α ⊥ , α ⊗ α)
respectively used to represent false and true:

D(b 0) = par q,p,r s (t enseur p,q r (ax p , ax q)) b 0 ≡ • • D(b 1) = par p,q,r s (t enseur p,q r (ax p , ax q)) b 1 ≡ • • We write - → b for b i 1 , . . . , b i n for i ∈ {0, 1}.
As we can see, b 0 and b 1 differs on their planarity: descriptions and proof nets exhibits the exchanges that were kept implicit in derivations.

Definition 13 (Boolean proof nets [START_REF] Terui | Proof Nets and Boolean Circuits[END_REF]). A Boolean proof net with n inputs is a proof net P (-→ p) of type

⊢ p 1 : B ⊥ [A 1], . . . , p n : B ⊥ [A n], s : ⊗ 1+m (B[A], D 1 , . . . , D m) Given - → b of length n, P (- → b
) is obtained by connecting with cuts p j to b i j for all 1 ≤ j ≤ n. P (-→ b) * Q where Q is unique, cut-free and for some descriptions Q 1 , . . . ,Q n described by

t ensor (D (b i),Q 1 , . . . ,Q m) for i ∈ {0, 1}.
We write P (-→ b) → ev. b i . P (-→ p) represents the Boolean function f n if for all w ≡ i 1 . . . i n ∈ {0, 1} n , we have

P (b i 1 , . . . , b i n) → ev. b f (w)
We may easily define families of Boolean proof nets and language accepted by a proof net.

The tensor indexed with s in the type is the result tensor: it collects the result of the computation on its first auxiliary port and the garbage -here named D 1 , . . . , D m -on its other auxiliary ports.

Definition 14 (Direct Connection Language for proof nets [START_REF] Mogbil | Uniform circuits, & Boolean proof nets[END_REF]). Given P = (P n) n∈N a family of Boolean proof nets, its Direct Connection Language -written L DC (P) -is the set of tuples < y, g , p, b > where for |y| = n: g is a link in P n , of sort b if p = ǫ else the p t h premise of g is the link b.

If < y, g , 0, b > and < y, b, 0, p > belong to L DC (P), there is a cut between b and p in C |y| .

The mechanism of computation of Boolean proof nets lies in:

r • a b e
A proof net of type B connected at e will "select" -according to its planarity or non-planarityduring the normalization which one of a or b is connected to the first auxiliary port of the tensor and so is considered as the result -the other being treated as garbage. Here r is of type B ⊗ B but rather that composing Boolean proof nets one by one, we will evacuate garbage as it appears, so our output will be of type B.

From now on every edge represented by is connected on its right to an auxiliary port numbered with an integer other than 1 of the result tensor.

Proof circuits

A proof circuit is a Boolean proof net (fact 1) made out of pieces (definition 15) which represents Boolean functions or constants. Garbage is manipulated in a innovative way.

Definition 15 (Pieces). A piece P with i 0 entries, j 1 exits and k 0 garbage is one of the set of links connected of the table 1, where i edges are labeled with e 1 , . . . , e i , j edges are labeled with s 1 , . . . , s j and k edges go to the result tensor.

We have

P ∈ {b 0 , b 1 , N EG, {DU P L i } i 1 , {D I S J i } i 2 , {CON J i } i 2 }.

Table 1: Pieces

We set 2 j i . Edges labeled b k -for k ∈ {0, 1} -are connected to the edge labeled s of the piece b k .

b 0 ≡ • • s b 1 ≡ • • s DU P L 1 ≡ e • b 0 b 1 • • s g N EG ≡ • • • e s
Table 1: Pieces -continued from previous page

DU P L i ≡ • e b 0 b 0 i times b 1 b 1 i times • • g . . . • • • • s 1 s 2 s i s i -1 D I S J i ≡ If i = 2
, the edge a equals the edge s.

• • g 1 b 1 • e 1 • e 2 a b 1 • e j • g j -1 • b 1 • e i • • g i -1 s i -3 times                  CON J i ≡ e 1 • b 0 • g 1 • e 2 • a b 0 • e j • g j -1 • b 0 • e i • • g i -1 s i -3 times                 
To compose two pieces P 1 and P 2 we connect an exit of P 1 to an entry of P 2 . It is not allowed to loop: we can not connect an entry and an exit of the same piece. An entry (resp. an exit) that is not connected to an exit (resp. an entry) of another piece is said to be unconnected.

Definition 16 (Proof circuits). A proof circuit C n (- → p) with n inputs and one output is obtained by composing pieces such that n entries and one exit are unconnected. If no garbage is created we add a DU P L 1 -piece connected to the unconnected exit to produce some artificially. Then we add a result tensor whose first edge is connected to the exit -which is also the output of the proof circuit -and the others to the garbage. We then label every unconnected entries with p 1 , . . . , p n : those are the inputs of the proof circuit.

Given

- → b of length n, C n (- → b
) is obtained by connecting with cuts p j to b i j for all 1 ≤ j ≤ n.

Fact 1. Every proof circuit is a Boolean proof net.

Proof. We prove this fact with a contractibility criterion [START_REF] Danos | La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du λ-calcul)[END_REF], by induction on the height of the pieces of the proof circuit (counted as the number of pieces from the considered piece to the result tensor). As a proof circuit can always be typed with

⊢ p 1 : B ⊥ [A 1], . . . , p n : B ⊥ [A n], s : ⊗ 1+m (B[A], D 1 , . . . , D m)
it is a Boolean proof net.

This fact establishes that proof circuits normalize and output a value, and that it is possible to represent Boolean function with them.

Acceptation of a language by a proof circuit and families of proof circuits are defined as usual.

Remark 3. To compose two proof circuits C 1 and C 2 , we remove the result tensor of C 1 , identifies the unconnected exit of C 1 with the selected input of C 2 , and recollect all the garbage with the result tensor of C 2 . We then label the entries unconnected anew and obtains a proof circuit.

Definition 17 (PCC i). A language X ⊆ {0, 1} * belongs to the class PCC i if X is accepted by a polynomial-size, log i -depth uniform family of proof circuits. Proof. For every piece P of C n (-→ b) any cut connecting an input is always of depth superior or equal to the maximal depth of the cuts connecting the outputs. The cuts of P that does not connect an input or an output of a piece are always of depth inferior or equal to cuts connecting the inputs.

The depths of the cut formulae slowly increases from the output to the input, and as the inputs that are not connected to other pieces are connected to values, this lemma is proved.

Results

By using our proof circuits we prove anew the inclusions between AC i and logical classes of complexity and extend this inclusion to sublogarithmic classes of complexity. Proof. The translation from C to C is obvious, it relies on coding: for every n, a first constant-depth circuit associate to every node of C n the corresponding piece simulating its Boolean function. If the fan-out of this node is i , a DU P L i -piece is associated to the exit of the piece, and the pieces are connected as the nodes. A second constant-depth circuit recollects the only free exit and the garbage of the pieces and connects it to the result tensor. The composition of this two Boolean circuits produces a constant-depth Boolean circuit that builds proof circuits.

It is easy to check that CON J i , D I S J i and N EG represents ∧ i , ∨ i and ¬ respectively. DU P L i duplicates a value i times, b 0 and b 1 represent 0 and 1 by convention. The composition of this pieces does not raise any trouble: C n effectively simulates C n on every input of size n.

Concerning the bounds: the longest path between an entry or a constant and the result tensor go through at most 2 × p(C n) pieces and we know by lemma 1 that the increase of the depth is linear in the number of pieces crossed. We conclude that d This result brings a novelty in the study of the proof nets as a class of complexity, making them able to simulate very small classes of complexity born from the Boolean circuits. The simulation is slightly different from the translation: the Boolean circuit does not have to identify the pieces of C n , but simply to apply to it until it reaches a normal form and then look at the value obtained. Theorem 4. For all i ∈ N, AC i ⊆ PCC i ⊆ AC i (U stC onn 2).

(C n) 2 × 3 × d (C n) and that C n normalizes in 0(d (C n)) parallel
Proof. By theorem 2 and theorem 3. The key point is to notice -as the reductions are in AC 0 -that AC 0 ⊆ PCC 0 ⊆ AC 0 (U stC onn 2).

Conclusion

By restricting ourselves to the uniform classes of complexity and by lightening the simulation of the Boolean functions by proof nets, we established the validity of results given by [START_REF] Terui | Proof Nets and Boolean Circuits[END_REF] and [START_REF] Mogbil | Non-deterministic Boolean Proof Nets[END_REF] when extended to constant-depth Boolean circuits. Those complexity classes are of great interest as they are below L and mostly used in reductions. This paper proves that proof nets for Multiplicative Linear Logic are pertinent tools to study complexity classes, including very small ones.

The simulation of the parallel elimination of t -cuts by Boolean circuits needs U stC onn 2 gates. But as U stC onn 2 ∈ L, there is for the time being no clue if a sublogarithmic Boolean circuit can simulate Boolean proof nets: AC 0 (U stC onn 2) ⊆ AC 2 ⊇ L.

Our future work will aim to prove that proof nets are a model of computation as relevant as Alternating Turing Machines but easier to manipulate: as we are in an implicit complexity framework, the size of our object suffices to know in which class of complexity it rests, whereas the only way of knowing where is an ATM is to run it on inputs. We already have gateways -by using correspondences with Boolean circuits -between Boolean proof nets and ATM, but our objective is to establish direct proofs.

Figure 1 :

 1 Figure 1: ax-link, ⊗ n -link and n -link

Figure 2 :

 2 Figure 2: From judgments to proof nets

Lemma 1 .

 1 For all proof circuit C n (- → p) and all -→ b , the cuts at maximum depth in C n (-→ b) are between the entry of a piece and a value (a constant b 0 or b 1 , or an input b i j for some 1 ≤ j ≤ n).

Definition 18 .

 18 We set: Problem: Translation from AC i to PCC i . Input:L DC (C) for C a family of Boolean circuits in AC i . Output:L DC (C) for C a family of proof circuits in PCC i , such that for all n ∈ N, for all -→ b ≡ b i 1 , . . . , b i n , C n (-→ b) → ev. b j iff C n (i 1 , . . . , i n) evaluates to j .

Theorem 2 .

 2 For all i ∈ N, translation from AC i to PCC i belongs to AC 0 .

Theorem 3 (

 3 Simulation). For all i ∈ N, for all proof circuit family C = (C n) n∈N in CC P i , there exists a family of Boolean circuits C = (C n) n∈N in AC i (U stC onn 2) and a constant-depth circuit in AC 0 that given L DC (C) outputs L DC (C) such that for all-→ b ≡ b i 1 . . . b i n , C n (-→ b) → ev. b j iff C n (i 1 , . . . , i n) evaluates to j .Proof. We know thanks to[START_REF] Terui | Proof Nets and Boolean Circuits[END_REF] that for r ∈ {a, m, t } an unbounded fan-in constant-depth circuit with O(|C n | 3) nodes -with U stC onn 2 gates to identify chains of axioms if r = t -is able to reduce all the r -cuts of C n in parallel.A first constant-depth circuit establishes the configuration -which describes C n -from L DC (C) and constant-depth circuits update this configuration after steps of normalization. Once the configuration of the normal form of C n is obtained, a last constant-depth circuit identifies the first proof net connected to the result tensor and establishes if it is b 0 or b 1 -that is to say if the result of the evaluation is false or true. As all the circuits are of constant depth, the depth ofC n is linear in d (C n). The size of C n is O(|C n |4): every circuit simulating a parallel reduction needs O(|C n | 3) nodes and in the worst case -if d (C n) is linear in the size of the proof circuit -O(|C n |) steps are needed to normalize the proof net.

 steps. Concerning the size, by counting we know that a gate of fan-in n and fan-out m is simulated by a piece made of O(m + n) links. As the number of edges in C n is bounded by|C n | 2 , the size of C n is at most O(|C n | 2).As the reduction from C to C is in AC 0 , we know that this reduction is correct for Boolean circuit families in AC 0 and that every C obtained by this translation is uniform.

	Fact 2.

* Work partially supported by the French project Complice (ANR-08-BLANC-0211-01).