
HAL Id: hal-00555305
https://hal.science/hal-00555305v1

Preprint submitted on 12 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing and estimating information matrices of weak
ARMA models

Yacouba Boubacar Mainassara, Michel Carbon, Christian Francq

To cite this version:
Yacouba Boubacar Mainassara, Michel Carbon, Christian Francq. Computing and estimating infor-
mation matrices of weak ARMA models. 2011. �hal-00555305�

https://hal.science/hal-00555305v1
https://hal.archives-ouvertes.fr


Computing and estimating information matries ofweak ARMA modelsY. Boubaar Mainassaraa, M. Carbonb, C. FranqaaUniversité Lille III, EQUIPPE-GREMARS, BP 60 149, 59653 Villeneuve d'Asq edex,Frane.bUniversité Rennes 2 et EnsaiAbstratNumerous time series admit weak autoregressive-moving average (ARMA)representations, in whih the errors are unorrelated but not neessarily in-dependent nor martingale di�erenes. The statistial inferene of this generallass of models requires the estimation of generalized Fisher information ma-tries. We give analyti expressions and propose onsistent estimators ofthese matries, at any point of the parameter spae. Our results are illus-trated by means of Monte Carlo experiments and by analyzing the dynamisof daily returns and squared daily returns of �nanial series.Key words: Asymptoti relative e�ieny (ARE), Bahadur's slope,Information matries, Lagrange Multiplier test, Nonlinear proesses, Waldtest, Weak ARMA models.1. IntrodutionThe lass of the standard ARMA models with independent errors is oftenjudged too restritive by pratitioners, beause they are inadequate for timeseries exhibiting a nonlinear behavior. Even when the independene assump-tion is relaxed and the errors are only supposed to be martingale di�erenes,the ARMA models remain often unrealisti beause suh models postulatethat the best preditor is a linear funtion of the past values.Email addresses: mailto:yaouba.boubaarmainassara�univ-lille3.fr (Y.Boubaar Mainassara), mailto:arbon.mihel�yahoo.a (M. Carbon),mailto:hristian.franq�univ-lille3.fr (C. Franq)1



The lass of the so-alled weak ARMA models with unorrelated but notneessarily independent errors is muh more general and aommodates manynonlinear data-generating proesses (see Franq, Roy and Zakoïan, 2005, andthe referenes therein).For standard ARMA models, it is well known that the asymptoti vari-ane of the least squares estimator (LSE) is of the form σ2J−1
θ0
, where σ2is the variane of the errors and Jθ0 is an information matrix depending onthe ARMA parameter θ0 (see e.g. Brokwell and Davis, 1991). For weakARMA models, the asymptoti variane of the LSE takes the sandwih form

J−1
θ0
Iθ0J

−1
θ0

where Iθ0 is a seond information matrix depending on θ0 and onfourth-order moments of the errors. The estimation of the asymptoti in-formation matries Jθ0 and Iθ0 is thus neessary to evaluate the asymptotiauray of the LSE of weak ARMA models.In the framework of (Gaussian) linear proesses, the problem of omput-ing the Fisher information matries and of their inverses has been widelystudied. Various expressions of these matries have been given by Whittle(1953), Siddiqui (1958), Durbin (1959) and Box and Jenkins (1976). MLeod(1984), Klein and Mélard (1990, 2004) and Godolphin and Bane (2006) havegiven algorithms for their omputation. For few partiular ases of weakARMA models, the matries Iθ0 and Jθ0 have been omputed by Franqand Zakoian (2000, 2007) and Franq, Roy and Zakoian (2005). In all theabove-mentioned referenes, the information matries are always omputedat the true parameter value θ0. For some appliations, in partiular to de-termine Bahadur's slopes under alternatives, it is neessary to ompute theinformation matries at θ 6= θ0.The aim of the present paper is to ompute and estimate the informationmatries Jθ and Iθ at a point θ whih is not neessarily equal to θ0.The rest of the paper is organized as follows. In Setion 2, we presentthe weak, strong and semi-strong ARMA representations and reall resultsonerning the estimation of the weak ARMA models. Setion 3 displaysthe main results. We desribe how to obtain numerial evaluations of Iθand Jθ, up to some tolerane, and we propose onsistent estimators for theseinformation matries. Setion 4 studies the �nite sample behavior of theestimators and ompare the Bahadur slopes of two versions of the Lagrangemultiplier test for testing linear restritions on θ0. For the latter appliation,it is neessary to ompute Jθ at θ 6= θ0. Conluding remarks are proposed inSetion 5. The proofs of the main results are olleted in the appendix.2



2. NotationsWe �rst introdue the notions of weak and strong ARMA representa-tions, whih di�er by the assumptions on the error terms. We then reallresults onerning the estimation of the weak ARMA models, and introdueextended information matries.2.1. Strong, semistrong and weak ARMA representationsFor a linear model to be quite general, the error terms must be the linearinnovations, whih are unorrelated by onstrution but are not indepen-dent, nor martingale di�erenes, in general. Indeed, the Wold deomposition(see Brokwell and Davis (1991), Setion 5.7) stipulates that any purely nondeterministi stationary proess an be expressed as
Xt =

∞
∑

ℓ=0

ϕℓǫt−ℓ, (ǫt) ∼ WN(0, σ2), (1)where ϕ0 = 1, ∑∞
ℓ=0 ϕ

2
ℓ < ∞, and the notation (ǫt) ∼ WN(0, σ2) signi�esthat the linear innovation proess (ǫt) is a weak white noise, that is a station-ary sequene of entered and unorrelated random variables with ommonvariane σ2. In pratie the sequene ϕℓ is often parameterized by assumingthat Xt admits an ARMA(p, q) representation, i.e. that there exist integers

p and q and onstants a01, . . . , a0p, b01, . . . , b0q, suh that
∀t ∈ Z, Xt −

p
∑

i=1

a0iXt−i = ǫt +

q
∑

j=1

b0jǫt−j . (2)This representation is said to be a weak ARMA(p, q) representation under theassumption (ǫt) ∼ WN(0, σ2). For the statistial inferene of ARMA mod-els, the weak white noise assumption is not su�ient and is often replaedby the strong white noise assumption (ǫt) ∼ IID(0, σ2), i.e. the assump-tion that (ǫt) is an independent and identially distributed (iid) sequeneof random variables with mean 0 and ommon variane σ2. Sometimes anintermediate assumption is onsidered for the noise. The sequene (ǫt) issaid to be a semistrong white noise or a martingale-di�erene white noise,and is denoted by (ǫt) ∼ MD(0, σ2), if (ǫt) is a stationary sequene satisfying
E (ǫt | ǫu, u < t) = 0 and Var(ǫt) = σ2. An ARMA representation (2) will bealled strong under the assumption (ǫt) ∼ IID(0, σ2) and semistrong underthe assumption (ǫt) ∼ MD(0, σ2). 3



Obviously the strong white noise assumption is more restritive thanthat of semistrong white noise, and the latter is more restritive than theweak white noise assumption, beause independene entails unpreditabil-ity and unpreditability entails unorrelatedness, but the reverses are nottrue. Consequently the weak ARMA representation are more general thatthe semistrong and strong ones, what we shematize by
{Weak ARMA} ⊃ {Semistrong ARMA} ⊃ {Strong ARMA}. (3)Any proess satisfying (1) is the limit, in L2 as n→ ∞, of a sequene of pro-esses satisfying weak ARMA(pn, qn) representations (see e.g. Franq andZakoïan, 2005, page 244). In this sense, the sublass of the proesses admit-ting weak ARMA(pn, qn) representations is dense in the set of the purely nondeterministi stationary proesses. Simple illustrations that the last inlusionof (3) is strit are given by the vast lass of volatility models. Indeed GARCH-type models are generally martingale di�erenes (beause �nanial returnsare generally assumed to be unpreditable) but they are not strong noises(in partiular, beause of the volatility lustering, the squared returns arepreditable). Many nonlinear models, suh as bilinear or Markov-swithingmodels, illustrate the �rst inlusion in (3), sine they admit weak ARMArepresentation (see Franq, Roy and Zakoïan, 2005, setion 2.3) whih arenot semistrong, beause the best preditor is generally not linear when thedata generating proess (DGP) is nonlinear. To �x ideas, we give belowa simple illustrative example, whih was not given by the above-mentionedreferenes.Example 2.1 (Integer-valued AR(1) and MA(1)). MKenzie (2003)reviews the literature on models for integer-valued time series. Let ◦ be thethinning operator de�ned by

a ◦X =

X
∑

i=1

Yj,where (Yj) is an iid ounting series, independent of the integer-valued randomvariable X, with Bernoulli distribution of parameter a ∈ [0, 1). The integer-valued autoregressive (INAR) model of order 1 is given by
∀t ∈ Z, Xt = a ◦Xt−1 + Zt (4)4



where Zt is an integer-valued iid sequene, independent of the ounting series,with mean µ and variane σ2. Clearly the best preditor of Xt is linear sine
E (Xt | Xu, u < t) = aXt−1 + µ. Moreover we have Var (Xt | Xu, u < t) =
(1− a)aXt−1 + σ2. We thus have the semistrong AR(1) representation

Xt = aXt−1 + µ+ ǫt, (ǫt) ∼ IID

(

0,
aµ

1− a
+ σ2

)

.Similarly to (4) the integer-valued moving-average INMA(1) is de�ned by
∀t ∈ Z, Xt = Zt + a ◦ Zt−1.Straightforward omputations show that EXt = µ(1 + a), Var(Xt) = σ2 +

a(1 − a)µ + a2σ2 and Cov(Xt, Xt−1) = aσ2, from whih we dedue the weakMA(1) representation
Xt = µ(1 + a) + ǫt + bǫt−1, (ǫt) ∼ WN

(

0, σ2
ǫ

)

,where b ∈ [0, 1) and σ2
ǫ > 0 are solutions of b/(1 + b2) = ρX(1) and

(1 + b2)σ2
ǫ = Var(Xt). This MA(1) representation is not semistrong beause

E(Xt | Xt−1 = 0) = E(Xt | Zt−1 = 0) = µ does not oinide with the linearpredition given by the MA(1) model when a 6= 0.Finally we have shown that an INMA(1) is a weak MA(1) and that aINAR(1) is a semistrong AR(1).2.2. Estimating weak ARMA representationsWe now present the asymptoti behavior of the LSE in the ase of weakARMA models. The LSE is the standard estimation proedure for ARMAmodels and it oinides with the maximum-likelihood estimator in the Gaus-sian ase. It will be onvenient to write (2) as φ0(B)Xt = ψ0(B)ǫt, where
B is the bakshift operator, φ0(z) = 1 −∑p

i=1 a0iz
i is the AR polynomialand ψ0(z) = 1 +

∑q
j=1 b0jz

j is the MA polynomial. The unknown parame-ter θ0 = (a01, . . . , a0p, b01, . . . , b0q) is supposed to belong to the interior of aompat subspae Θ∗ of the parameter spae
Θ :=

{

θ = (θ1, . . . , θp+q) = (a1, . . . , ap, b1, . . . , bq) ∈ R
p+q :

φ(z) = 1−
p
∑

i=1

aiz
i and ψ(z) = 1 +

q
∑

i=1

biz
ihave all their zeros outside the unit disk} .5



Sine θ ∈ Θ, the polynomials φ0(z) and ψ0(z) have all their zeros outside theunit disk. We also assume that φ0(z) and ψ0(z) have no zero in ommon, that
p+q > 0 and a20p+b20q 6= 0 (by onvention a00 = b00 = 1). These assumptionsare standard and are also made for the usual strong ARMA models.For all θ ∈ Θ, let

ǫt(θ) = ψ−1(B)φ(B)Xt = Xt +

∞
∑

i=1

ci(θ)Xt−i.Given a realization of length n, X1, X2, . . . , Xn, ǫt(θ) an be approximated,for 0 < t ≤ n, by et(θ) de�ned reursively by
et(θ) = Xt −

p
∑

i=1

θiXt−i −
q
∑

i=1

θp+iet−i(θ)where the unknown starting values are set to zero: e0(θ) = e−1(θ) = . . . =
e−q+1(θ) = X0 = X−1 = . . . = X−p+1 = 0. The random variable θ̂n is alledLSE if it satis�es, almost surely,

Qn(θ̂n) = min
θ∈Θ∗

Qn(θ), Qn(θ) =
1

2n

n
∑

t=1

e2t (θ).The asymptoti behavior of the LSE is well known in the strong ARMAase, i.e. under the assumption (ǫt) ∼ IID(0, σ2). This assumption beingvery restritive, Franq and Zakoïan (1998) onsidered weak ARMA repre-sentations of stationary proesses satisfying the following assumption.A1 : E|Xt|4+2ν <∞ and ∑∞
k=0 {αX(k)}

ν
2+ν <∞ for some ν > 0,where αX(k) , k = 0, 1, . . . , denote the strong mixing oe�ients of the pro-ess (Xt) (see e.g. Bradley, 2005, for a review on strong mixing onditions).As noted by Franq and Zakoïan (2005), Assumption A1 an be replaed byA1' : E|ǫt|4+2ν <∞ and ∑∞

k=0 {αǫ(k)}
ν

2+ν <∞ for some ν > 0.A straightforward extension of Franq and Zakoïan (1998) thus gives thefollowing result.
6



Lemma 2.1 (Franq and Zakoïan, 1998). Let (Xt) be a stritly station-ary and ergodi proess satisfying the weak ARMA model (2) with (ǫt) ∼
WN(0, σ2). Under the previous assumptions and Assumption A1 or A1',

√
n
(

θ̂n − θ0

)

d
; N (0,Ω = J−1IJ−1) as n→ ∞, (5)where I = Iθ0, J = Jθ0 = J∗

θ0
, with

Iθ =
+∞
∑

h=−∞

Cov{ǫt(θ)∂ǫt(θ)
∂θ

, ǫt−h(θ)
∂ǫt−h(θ)

∂θ′

}

,

Jθ = E
∂ǫt(θ)

∂θ

∂ǫt(θ)

∂θ′
, J∗

θ = Eǫt(θ)
∂2ǫt(θ)

∂θ∂θ′
+ E

∂ǫt(θ)

∂θ

∂ǫt(θ)

∂θ′
.In the strong ARMA ase, we have I = Is := σ2J and Ω = Ωs := σ2J−1. Inthe semistrong ARMA ase, i.e. under the assumption (ǫt) ∼ MD(0, σ2), wehave

I = Iss := Eǫ2t
∂ǫt(θ0)

∂θ

∂ǫt(θ0)

∂θ′
.Note that we introdue the two versions Jθ and J∗

θ beause the following twoestimators of J an be onsidered
Ĵn =

1

n

n
∑

t=1

∂et(θ̂n)

∂θ

∂et(θ̂n)

∂θ′
, Ĵ∗

n =
1

n

n
∑

t=1

et(θ̂n)
∂2et(θ̂n)

∂θ∂θ′
+ Ĵn. (6)The matries Jθ, J∗

θ and Iθ an be alled information matries. As we will seein Setion 4.2 they determine the asymptoti behavior of test proedures on
θ0. They are also involved in other inferene steps, suh as in portmanteauadequay tests (see Franq, Roy and Zakoian, 2005).3. Main resultsMLeod (1978) gave a nie expression for J , as the variane of a VARmodel involving only the ARMA parameter θ0 (see (8.8.3) in Brokwell andDavis, 1991). Franq, Roy and Zakoïan (2005) obtained an expression of Iinvolving the ARMA parameter θ0 and the fourth-order moments of the weaknoise (ǫt) (with their notations, J = Λ

′
∞Λ∞ and I = Λ

′
∞Γ∞,∞Λ∞ where Λ∞depends on θ0 and Γ∞,∞ depends on moments of (ǫt)). For ertain statistialappliations, it is interesting to obtain similar expressions for Iθ, Jθ and J∗

θwhen θ 6= θ0. This is the subjet of the next subsetion.7



3.1. Theoretial expressions for the information matries3.1.1. Matrix JθDi�erentiating the two sides of the equation φ(B)Xt = ψ(B)ǫt(θ), for
i, k = 1, . . . , p and j, ℓ = 1, . . . , q, we obtain

−Xt−i = ψ(B)
∂

∂ai
ǫt(θ), 0 = ǫt−j(θ) + ψ(B)

∂

∂bj
ǫt(θ)

0 = ψ(B)
∂2

∂ai∂ak
ǫt(θ), 0 =

∂

∂ai
ǫt−j(θ) + ψ(B)

∂2

∂bj∂ai
ǫt(θ)

0 =
∂

∂bℓ
ǫt−j(θ) +

∂

∂bj
ǫt−ℓ(θ) + ψ(B)

∂2

∂bj∂bℓ
ǫt(θ).We thus have

∂

∂ai
ǫt(θ) = −ψ−1(B)Xt−i = −ψ−1φ−1

0 ψ0(B)ǫt−i := −
∞
∑

h=0

cahǫt−i−h

∂

∂bj
ǫt(θ) = −ψ−2φ−1

0 φψ0(B)ǫt−j := −
∞
∑

h=0

cbhǫt−j−h,

∂2

∂bj∂ai
ǫt(θ) = ψ−2φ−1

0 ψ0(B)ǫt−i−j :=
∞
∑

h=0

cabh ǫt−i−j−h,

∂2

∂bj∂bℓ
ǫt(θ) = 2ψ−3φ−1

0 φψ0(B)ǫt−j−ℓ :=

∞
∑

h=0

cbbh ǫt−j−ℓ−h,and ∂2ǫt(θ)/∂ai∂ak = 0. Moreover
ǫt(θ) = ψ−1φ−1

0 φψ0(B)ǫt :=
∞
∑

h=0

chǫt−h.The following result immediately follows.
8



Proposition 3.1. The elements of the matrix Jθ and J∗
θ are given by

Jθ(i, k) = J∗
θ (i, k) = σ2

∞
∑

s=0

cas+k−ic
a
s ,

Jθ(p+ j, p+ ℓ) = σ2

∞
∑

s=0

cbs+ℓ−jc
b
s,

J∗
θ (p+ j, p+ ℓ) = σ2

∞
∑

s=0

cs+j+ℓc
bb
s + Jθ(p+ j, p+ ℓ),

Jθ(i, p+ ℓ) = σ2
∞
∑

s=max{0,i−ℓ}

cas+ℓ−ic
b
s,

J∗
θ (i, p+ ℓ) = σ2

∞
∑

s=0

cs+i+ℓc
ab
s + Jθ(i, p+ ℓ),for 1 ≤ i ≤ k ≤ p and 1 ≤ j ≤ ℓ ≤ q.On the web page of the authors, programs written in R are availablefor omputing the information matries de�ned in this paper, as well astheir estimates. For example, the following funtion infoJ() omputes Jθwhen, in R language, θ0<-(ar0,ma0) and θ<-(ar1,ma1). The trunationparameter M is disussed in Setion 3.2 below. This funtion uses the funtionprod.poly() whih makes the produt of the 2 polynomials, and the funtionARMAtoMA() of the pakage stats.# Produt of 2 polynomialsprod.poly<- funtion(a,b) {p<-length(a); q<-length(b)if(p<=0|q<0)stop("a or b is invalid")<-rep(0,(p+q))for(h in 2:(p+q)){imin<-max(1,h-q); imax<-min(p,h-1)for(i in (imin:imax))[h℄<-[h℄+a[i℄*b[h-i℄}[2:(p+q)℄}# Computation of the information matrix J at \theta=(ar1,ma1)infoJ<- funtion(ar0,ma0,ar1,ma1,M=200){p<-length(ar1); q<-length(ma1); p0<-length(ar0); q0<-length(ma0)matJ.theta<-matrix(0,nrow=(p+q),nol=(p+q))if(p>0){ # _h^a + top-left orner of Jp1<-p0+qif(p1==0) ar2 <- ()if(p1>0) ar2 <- -prod.poly((1,-1*ar0),(1,ma1))[2:(p1+1)℄9



h.a<-(1,ARMAtoMA(ar =ar2, ma=ma0, M))for(i in (1:p)){for(k in (1:p)){matJ.theta[i,k℄<-sum(h.a[(abs(k-i)+1):(M+1)℄*h.a[1:(M-abs(k-i)+1)℄)}}}if(q>0){ # _h^b + bottom-right orner of Jp1<-p0+2*qif(p1==0) ar2 <- ()if(p1>0) ar2 <- -prod.poly(prod.poly((1,ma1),(1,ma1)),(1,-1*ar0))[2:(p1+1)℄q1<-p+q0if(q1==0) ma2 <- ()if(q1>0) ma2 <- prod.poly((1,-1*ar1),(1,ma0))[2:(q1+1)℄h.b<-(1,ARMAtoMA(ar =ar2, ma=ma2, lag.max=M))for(j in (1:q)){for(l in (1:q)){matJ.theta[p+j,p+l℄<-sum(h.b[(abs(l-j)+1):(M+1)℄*h.b[1:(M-abs(l-j)+1)℄)}}}if(p>0&q>0){ # ross bloksfor(i in (1:p)){for(l in (1:q)){indmin1<-max(0,i-l)+l-i+1indmin2<-max(0,i-l)+1indmax1<-M-max(0,i-l)indmax2<-indmax1-l+imatJ.theta[i,p+l℄<-sum(h.a[indmin1:indmax1℄*h.b[indmin2:indmax2℄)matJ.theta[p+l,i℄<- matJ.theta[i,p+l℄}}}matJ.theta}3.1.2. Matrix IθWe now searh similar tratable expressions for Iθ. Let
Γ(m,m′) =

+∞
∑

h=−∞

Cov (ǫtǫt−m, ǫhǫh−m′) . (7)In the strong ase, we have
Γ(0, 0) = µ4 − σ4, Γ(m,m) = Γ(m,−m) = σ4, Γ(m′, m′′) = 0, (8)with µ4 = Eǫ41, m 6= 0 and |m′| 6= |m′′|. Simpli�ations may also hold insemistrong ases. Indeed, onsider the ase (ǫt) ∼ WN(0, σ2

ǫ ) under thefollowing symmetry assumption
Eǫt1ǫt2ǫt3ǫt4 = 0 when t1 6= t2, t1 6= t3 and t1 6= t4. (9)10



A similar assumption is made in Franq and Zakoian (2009b). In this paper,it is shown that, in partiular, GARCH models with fourth-order momentsand symmetri innovations satisfy (9). Many other martingale di�erenessatisfy this assumption. In this semistrong ase, we have
Γ(0, 0) =

∞
∑

h=−∞

Cov(ǫ2t , ǫ2t−h), Γ(m,m) = Eǫ2t ǫ
2
t−m, Γ(m′, m′′) = 0 (10)when m 6= 0 and |m′| 6= |m′′|.Example 3.1. For a GARCH(1,1) model of the form

{

ǫt =
√
htηt, t = 1, 2, . . .

ht = ω + αǫ2t−1 + βht−1, (ηt) ∼ IID (0, 1)with ω > 0, α ≥ 0, β ≥ 0 and α2Eη41 + β2 + 2αβ < 11 we obtain
Γ(0, 0) = Eν2t

(1− β)2

(1− α− β)2
,

Γ(1, 1) = Eν2t

(

α +
α2(α + β)

1− (α+ β)2

)

+
(

Eσ2
t

)2

Γ(m,m) = (α + β)Γ(m− 1, m− 1) + ωEσ2
t , m > 1,with Eν2t = Eη41 (Eσ

4
t + 1− 2Eσ2

t ),
Eσ2

t =
ω

1− α− β
, Eσ4

t =
ω2(1 + α + β)

(1− α2Eη41 − β2 − 2αβ)(1− α− β)
.Proposition 3.2. The elements of the matrix Iθ are given by

Iθ(i, k) =

+∞
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

a
h4
Γ(h2 + i− h1, h4 + k − h3),

Iθ(j, ℓ) =
+∞
∑

h1,h2,h3,h4=0

ch1c
b
h2
ch3c

b
h4
Γ(h2 + j − h1, h4 + ℓ− h3),

Iθ(i, ℓ) =
+∞
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

b
h4
Γ(h2 + i− h1, h4 + ℓ− h3),1The latter onditions and neessary and su�ient for the existene of a nonantiipa-tive stationary solution with fourth-order moments (see e.g. Example 2.3 in Franq andZakoian, 2010). 11



for 1 ≤ i ≤ k ≤ p and 1 ≤ j ≤ ℓ ≤ q.Note that c0 = 1 and that, at θ = θ0, we have ch = 0 for h > 0. Theexpression of I = Iθ0 thus simpli�es to that given in Franq, Roy and Zakoian(2005). There is also a slight simpli�ation in the strong and semistrongARMA ases beause, in view of (8) and (10), Iθ is then obtained by summingover 3 indies instead of 4.3.1.3. Examples of analyti and numerial omputations of Jθ and IθLet us ompute the information matries of an ARMA(1,1) model atthe point θ∗ = (a, 0)′ when θ0 = (0, b0)
′ (i.e. the DGP is a MA(1)). Wehave ǫt(θ) =

∑∞
h=0(−b)h(Xt−h − aXt−h−1). It follows that ǫt(θ∗) = ǫt +

(b0 − a)ǫt−1 − ab0ǫt−2, ∂ǫt(θ∗)/∂a = −ǫt−1 − b0ǫt−2, ∂ǫt(θ
∗)/∂b = −ǫt−1 −

(b0 − a)ǫt−2 + ab0ǫt−3, ∂
2ǫt(θ

∗)/∂a2 = 0, ∂2ǫt(θ∗)/∂a∂b = ǫt−2 + b0ǫt−3 and
∂2ǫt(θ

∗)/∂b2 = 2ǫt−2 + 2(b0 − a)ǫt−3 − 2ab0ǫt−4.Thus
Jθ∗ = σ2

(

1 + b20 1 + b0(b0 − a)
1 + b0(b0 − a) 1 + (b0 − a)2 + a2b20

)

,

J∗
θ∗ = Jθ∗ + σ2

(

0 −ab0
−ab0 −2ab0

)

.Now assume that ǫt is the weak white noise onsidered by Romano andThombs (1996), de�ned by
ǫt = ηtηt−1 · · · ηt−k, (ηt) ∼ IID N (0, 1), k ≥ 0. (11)It seems impossible to obtain Iθ∗ expliitly, but the information matries anbe obtained expliitly at θ0:

Jθ0 = J∗
θ0
=

(

1 1
1 1/(1− b20)

)

,

Iθ0 = 3k

(

1 1

1 1−(b2/3)k+1

1−b2/3
+ b2(k+1)

3k(1−b2)

)

.Note that Iθ0 = Jθ0 in the strong ase (i.e. when k = 0). For more omplexmodels or at some point θ∗ 6= θ0 the evaluation of these information matriesis not feasible analytially but they an be easily obtained numerially. For12



instane, on this example with k = 3, θ0 = (0, 0.5)′ and θ∗ = (−0.4,−0.5)′,we have
Jθ∗ =

(

2.33 4.33
4.33 11.25

)

, J∗
θ∗ =

(

2.33 6.33
6.33 17.65

)

, Iθ∗ =

(

1161.92 2177.66
2177.66 4187.63

)

.3.2. Approximation of the information matries by �nite sumsIn pratie the in�nite sums involved in Jθ, J∗
θ and Iθ are trunated.This setion onentrates on the hoie of the trunation parameter for Iθ,the problem being similar, and somewhat simpler, for the other matries.Matrix Iθ is trunated by the matrix IMθ of M4 terms, de�ned by

IMθ (i, k) =
M
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

a
h4
Γ(h2 + i− h1, h4 + k − h3),when 1 ≤ i ≤ k ≤ p, and whose the other elements are de�ned similarly.The following proposition de�nes a value of M suh that IMθ be equal to Iθup to an arbitrarily small tolerane number ε. Let the matrix norm de�nedby ‖A‖ =

∑

i,j |A(i, j)| with obvious notations.Proposition 3.3. Let ρ be the inverse of the largest modulus of the zeroesof the polynomials φ0 and ψ, let
Γ = max

m,m′≥0
|Γ(m,m′)| , π =

(

1 +

q
∑

j=1

|b0j |
)

max
i=0,...,p

|ai|with |a0| = 1, and let
K =

√
2(p+ q + 1)πΓ

1/4
(−2(p+ 2q − 1)

log ρ

)(p+2q−1)

ρ −0.5−(p+2q−1)/ log ρ.For all ε > 0, if
M ≥Mǫ :=

log
√
ε(1−√

log ρ)2/K2

log ρthen
∥

∥Iθ − IMθ
∥

∥ ≤ (p+ q)2ε.13



3.3. Estimation of the information matriesLet Jθ,n and J∗
θ,n be de�ned as in (6), replaing θ̂n by θ in Ĵn and Ĵ∗

n, sothat Ĵn = Jθ̂n,n and Ĵ∗
n = J∗

θ̂n,n
. The following result shows that an estimatorof Jθ∗ is trivially dedued from one of θ∗.Proposition 3.4. Under the assumptions of Lemma 2.1, as n→ ∞,if θ∗n → θ∗ a.s. then Jθ∗n,n → Jθ∗ and J∗

θ∗n,n
→ J∗

θ∗ a.s.The estimation of the long-run variane Iθ is more ompliated. In theliterature, two types of estimators are generally employed: Heteroskedasti-ity and Autoorrelation Consistent (HAC) estimators (see Newey and West(1987) and Andrews (1991) for general referenes, and Franq and Zakoian(2007) for an appliation to testing strong linearity in weak ARMA models)and spetral density estimators (see e.g. den Haan and Levin (1997) for ageneral referene and Franq, Roy and Zakoian (2005) for estimating I inthe present ontext). We will extend the results of Franq, Roy and Zakoian(2005) for estimating Iθ when θ is not neessarily equal to θ0.3.3.1. An estimator based on a spetral density form for IθNote (2π)−1Iθ∗ is the spetral density at frequeny 0 (see Brokwell andDavis (1991) p. 459) of the proess
∇t = St −ESt, St = ǫt(θ

∗)
∂ǫt(θ

∗)

∂θ
. (12)For any given θ∗ ∈ Θ, St is a measurable funtion of {Xu, u ≤ t}. Let Ŝt beobtained by replaing the unknown initial values {Xu, u ≤ 0} by 0 and θ∗ by

θ∗n in St. Let also
∇̂t = Ŝt −

1

n

n
∑

t=1

Ŝt.The stationary proess (∇t) admits the Wold deomposition ∇t = ut +
∑∞

i=1Biut−i, where (ut) is a (p + q)-variate weak white noise with ovari-ane matrix Σu. Assume that Σu is non-singular, that ∑∞
i=1 ‖Bi‖ < ∞, andthat det (Ip+q +

∑∞
i=1Biz

i) 6= 0 when |z| ≤ 1. Then (∇t) admits an AR(∞)representation of the form
A(B)∇t := ∇t −

∞
∑

i=1

Ai∇t−i = ut, (13)14



suh that ∑∞
i=1 ‖Ai‖ <∞ and det {A(z)} 6= 0 for all |z| ≤ 1, and we obtain

Iθ = A−1(1)ΣuA
′−1(1). (14)In the framework of univariate linear proesses with independent innovations,Berk (1974) showed that the spetral density an be onsistently estimatedby �tting autoregressive models of order r = r(n), whenever r → ∞ and

r3/n → 0 as n → ∞. It an be shown that this result remains valid forthe multivariate linear proess (∇t), though its innovation (ut) is not anindependent proess. Another di�erene with Berk (1974), is that (∇t) isnot diretly observed and is replaed by (∇̂t).Consider the regression of ∇t on ∇t−1, . . . ,∇t−r de�ned by
∇t =

r
∑

i=1

Ar,i∇t−i + ur,t, ur,t ⊥{∇t−1 · · ·∇t−r} . (15)The least squares estimators of Ar = (Ar,1 · · ·Ar,r) and Σur
= Var(ur,t) arede�ned by

Âr = Σ̂∇̂,∇̂r
Σ̂−1

∇̂r

and Σ̂ur
=

1

n

n
∑

t=1

(

∇̂t − Âr∇̂r,t

)(

∇̂t − Âr∇̂r,t

)′where ∇̂r,t = (∇̂′
t−1 · · · ∇̂′

t−r)
′,

Σ̂∇̂,∇̂r
=

1

n

n
∑

t=1

∇̂t∇̂
′

r,t, Σ̂∇̂r
=

1

n

n
∑

t=1

∇̂r,t∇̂
′

r,t,with by onvention ∇̂t = 0 when t ≤ 0, and assuming Σ̂∇̂r
is non singular(whih holds true asymptotially).Under mild regularity onditions (the preise statement of the result andits proof are available from the authors under request), it an be shown thatif θ∗n → θ∗ almost surely,

Iθ∗n,n = Â−1
r (1)Σ̂ur

Â′−1
r (1) → Iθ∗ (16)in probability when r = r(n) → ∞ and r3/n→ 0 as n→ ∞.For the implementation of Iθ∗n,n, AR(r) models are obtained reursivelyfor r = 0, 1, . . . , rmax (with rmax = 15 for the forthoming appliations),using the e�ient Whittle's (1963) generalization of the Durbin-Levinsonalgorithm, desribed for instane in Brokwell and Davis (1991) Theorem5.2.1. The order r is then seleted using the AIC riterion.15



4. AppliationsA �rst set of experiments illustrates the �nite sample behavior of ourestimators of the information matries Iθ∗ , Jθ∗ and J∗
θ∗ , for strong and weakARMA models. We then study the impat of the estimator of J , i.e. thee�et of hoosing Ĵn or Ĵ∗

n de�ned by (6), on the asymptoti behavior oftests of linear restritions on the ARMA parameters. For this study it willbe neessary to evaluate Jθ∗ at θ∗ 6= θ0. Finally, an appliation to �nanialdata is presented.4.1. Finite sample behavior of estimators of the information matriesTo investigate the �nite sample performane of the estimators, we simu-lated N = 1, 000 independent trajetories of size n = 1, 000 and n = 10, 000of an ARMA(1,1) model with parameter θ0 = (0.5, 0.7), in whih the noise isde�ned by (11). Note that when k = 0 in (11), the ARMA model is strong,whereas the model is weak when k > 0.4.1.1. Estimating the information matries at a given point θ∗The information matries Jθ∗ , J∗
θ∗ and Iθ∗ have been omputed and esti-mated at 3 points θ∗ hosen randomly in (−1, 1)2. The estimators are Jθ∗,n,

J∗
θ∗,n and Iθ∗,n de�ned in Proposition 3.4 and (16). Table 1 displays theaverage, over the N repliations, of the relative estimation errors

‖Jθ∗,n − Jθ∗‖
‖Jθ∗‖

,

∥

∥J∗
θ∗,n − J∗

θ∗

∥

∥

‖J∗
θ∗‖

and ‖Iθ∗,n − Iθ∗‖
‖Iθ∗‖

.From Table 1, one an note that: 1) although the information matries varya lot with θ∗, the relative errors are not very sensitive to the value of θ∗;2) as expeted the relative errors derease when n inreases; 3) it is moredi�ult to estimate the information matries when k is large; 4) it is easierto estimate Jθ∗ than J∗
θ∗ , and easier to estimate J∗

θ∗ than Iθ∗ .4.1.2. Estimating the asymptoti variane of the LSESeveral estimators of the asymptoti variane Ω involved in (5) an beonsidered. In view of Proposition 3.4 and (16), two estimators that areonsistent under very general assumptions are
Ω̂ = J−1

θ̂n,n
Iθ̂n,nJ

−1

θ̂n,n
and Ω̂∗ = J∗−1

θ̂n,n
Iθ̂n,nJ

∗−1

θ̂n,n
.16



Table 1: Average relative error for the estimators of the information matries, over
N = 1000 repliations.

n = 1, 000 n = 10, 000
k θ∗ Jθ∗ J∗

θ∗ Iθ∗ Jθ∗ J∗
θ∗ Iθ∗(-0.9,-0.7) 0.10307 0.13466 0.34958 0.03472 0.04466 0.13070

0 (0.5,-0.6) 0.07817 0.10840 0.28935 0.02635 0.03655 0.11602(0.7,0.9) 0.16050 0.23238 0.62677 0.05105 0.07239 0.35446(-0.9,-0.7) 0.15183 0.17483 0.54247 0.04835 0.05592 0.23380
1 (0.5,-0.6) 0.13454 0.15691 0.52612 0.04225 0.04979 0.22927(0.7,0.9) 0.19607 0.25395 0.81663 0.06119 0.08024 0.41813(-0.9,-0.7) 0.24941 0.26726 1.01021 0.07945 0.08502 0.48073
2 (0.5,-0.6) 0.23188 0.25324 1.02312 0.07372 0.08064 0.48426(0.7,0.9) 0.25566 0.29135 0.88026 0.08983 0.10374 0.52578(-0.9,-0.7) 0.36007 0.37685 1.13567 0.13339 0.13941 0.80758
3 (0.5,-0.6) 0.34200 0.36553 1.11668 0.12598 0.13487 0.80077(0.7,0.9) 0.38990 0.41912 1.35145 0.13595 0.14663 0.76092(-0.9,-0.7) 0.49452 0.50613 1.19581 0.20527 0.21180 1.11480
4 (0.5,-0.6) 0.47746 0.49784 1.19473 0.19569 0.20733 1.10979(0.7,0.9) 0.54117 0.55883 1.95453 0.21114 0.21816 1.07556(-0.9,-0.7) 0.67610 0.68923 1.42507 0.31757 0.32562 1.66401
5 (0.5,-0.6) 0.66101 0.68331 1.44809 0.30515 0.32038 1.67812(0.7,0.9) 0.69161 0.70621 1.77970 0.29799 0.30403 1.15614

In view of the onsisteny of the LSE stated in Lemma 2.1 and Proposi-tion 3.1, the matrix J an be estimated by plugging. We then de�ne thealternative estimator
Ω(θ̂n) = J−1

θ̂n
Iθ̂n,nJ

−1

θ̂n
.Other estimators of Ω that should be onsistent in the strong ARMA aseare de�ned by

Ω̂s = σ̂2J−1

θ̂n,n
and Ωs(θ̂n) = σ̂2J−1

θ̂n
, with σ̂2 =

1

n

n
∑

t=1

e2t (θ̂n).17



Finally, in the semi-strong ase, an estimator is given by
Ω̂ss = J−1

θ̂n,n
ÎssJ

−1

θ̂n,n
, Îss =

1

n

n
∑

t=1

e2t (θ̂n)
∂et(θ̂n)

∂θ

∂et(θ̂n)

∂θ′
.Table 2 indiates that, for all the onsistent estimators (i.e. all estimatorswhen k = 0, and Ω̂, Ω̂∗, Ω(θ̂n) and Ω̂ss when k > 0) the relative errorsderease when n inreases. As expeted from Table 1, the estimation of theasymptoti matries beomes more di�ult when k inreases. When k > 0the estimator Ω̂ss is muh more aurate than Ω̂s and Ωs(θ̂n) (whih areatually not onsistent in this semi-strong setting) and also slightly moreaurate than the other ones. In the strong ase (i.e. when k = 0 in (11)),the estimators Ω̂s and Ωs(θ̂n) are muh more aurate than the other ones,but they are not onsistent when k > 0 (the relative errors are almost thesame for n = 1, 000 and n = 10, 000). This not surprising, beause the noisede�ned in (11) is a semistrong one.Table 2: Relative error of the asymptoti variane matries of the LSE. The numberof repliations is N = 1000.

n k Ω̂ Ω̂∗ Ω(θ̂n) Ω̂s Ω̂s(θ̂n) Ωss

0 0.13327 0.18264 0.15751 0.06353 0.07496 0.09014
1 0.35768 0.36452 0.42471 0.47470 0.48099 0.24168
2 0.52599 0.53392 0.65840 0.79349 0.79581 0.43806

1, 000 3 0.69808 0.70883 0.84601 0.92835 0.92945 0.62591
4 0.83908 0.85469 0.97604 0.97497 0.97583 0.76076
5 0.92800 0.92828 0.95288 0.99173 0.99213 0.87238
10 1.00805 0.99961 0.99892 1.00006 0.99983 1.02399
0 0.04344 0.05567 0.05006 0.02002 0.02327 0.02906
1 0.14336 0.14478 0.16351 0.47000 0.47020 0.08734
2 0.31212 0.31412 0.35461 0.79448 0.79442 0.23533

10, 000 3 0.50658 0.51049 0.58767 0.92943 0.92913 0.43183
4 0.65129 0.66057 0.78561 0.97604 0.97626 0.62521
5 0.76824 0.77414 0.88845 0.99198 0.99212 0.72576
10 0.99694 0.99672 0.99761 0.99996 0.99996 0.99331
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4.2. Bahadur's slopes of two versions of the Lagrange-Multiplier testLet R be a given matrix of size s0× (p+ q) and rank s0, and let r0 and r1be given vetors of size s0 suh that r1 6= r0. Consider the testing problem
H0 : Rθ0 = r0 against H1 : Rθ0 = r1. (17)When the model is muh simpler under the null than under the alternative,the Lagrange-Multiplier (LM) test is very attrative beause, ontrary toother tests, in partiular the Wald and Likelihood-Ratio tests, the LM pro-edure only requires the estimation of the ARMA model under H0 (see Engle(1984) for a general presentation of these tests). Let λ ∈ R

s0 be a Lagrangemultiplier and let θ̂cn be the LSE onstrained by H0:
(θ̂cn, λ̂) = arg min

θ∈Θ,λ∈Rs0
Qn(θ)− λ′(Rθ − r0).For simpliity, onsider the strong ARMA ase. The asymptoti variane ofthe LSE an then be estimated either by

Ω̂c = σ̂2c
(

Ĵc
n

)−1 or Ω̂∗c = σ̂2c
(

Ĵ∗c
n

)−1where
Ĵc
n =

1

n

n
∑

t=1

∂ǫt(θ̂
c
n)

∂θ

∂ǫt(θ̂
c
n)

∂θ′
, Ĵ∗c

n =
1

n

n
∑

t=1

ǫt(θ̂
c
n)
∂2ǫt(θ̂

c
n)

∂θ∂θ′
+ Ĵc

nand σ̂2c = n−1
∑n

t=1 e
2
t (θ̂

c
n). This leads to two versions of the LM statisti

LM :=
n

σ̂2c

∂Qn(θ̂
c
n)

∂θ′

(

Ĵc
n

)−1 ∂Qn(θ̂
c
n)

∂θ
,

LM
∗ :=

n

σ̂2c

∂Qn(θ̂
c
n)

∂θ′

(

Ĵ∗c
n

)−1 ∂Qn(θ̂
c
n)

∂θ
.The two versions have the same asymptoti distribution under the null:

LM
d→ χ2

s0
and LM

d→ χ2
s0

under H0but behaves di�erently under the alternative:
LM

n
→ c := D′

θc0

(

σ2cJθc0
)−1

Dθc0
,

LM
∗

n
→ c∗ := D′

θc0

(

σ2cJ∗
θc0

)−1

Dθc019



under H1 as n→ ∞, where
Dθ = Eǫt(θ)

∂ǫt(θ)

∂θ
, σ2c = Eǫ21(θ

c
0)when θ̂cn → θc0 a.s., where θc0 is suh that Jθc0 and J∗

θc0
are positive-de�nite.Note that Jθc0 is always positive-semide�nite, but this is not the ase for

J∗
θc0
. When J∗

θc0
is not positive-de�nite, the LM∗-test (i.e. the test of rejetionregion {LM∗ ≥ χ2

1(1−α)}, where α is the asymptoti level and χ2
k(α) denotesthe α-quantile of the hi-square distribution with k degrees of freedom) maybe inonsistent.Thanks to the omputation of Setion 3, for any given alternative, we areable to determine whih version is onsistent and we are able to omputethe Bahadur slopes. We now give a simple example in whih hand-madeomputation of Bahadur's slopes is possible.4.2.1. Testing an AR(1) against an ARMA(1,1)We now onsider an ARMA(1,1) model and we test for an AR(1). Wethus have R = (0, 1), r0 = 0 and θc0 = (ac0, 0)

′ where
ac0 = argmin

a
E(Xt − aXt−1)

2 = ρ(1),where ρ(h) = γ(h)/γ(0) and γ(h) = Cov(Xt, Xt−h) denote respetively theautoorrelation and autoovariane of (Xt) at lag h. Standard omputationsshow that the onstrained estimator satis�es
θ̂cn =

(

âc

0

)

,
∂Qn(θ̂

c
n)

∂θ′
=

(

0

λ̂

)witĥ
ac =

∑n
t=2XtXt−1
∑n

t=2X
2
t−1

, λ̂ = âc
1

n

n
∑

t=3

XtXt−2 − (âc)2
1

n

n
∑

t=3

Xt−1Xt−2.
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Other tedious omputations show that
σ2c =

{

1 + (ac0)
2} γ(0)− 2ac0γ(1),

Dθc0
= −E (Xt − ac0Xt−1)

(

Xt−1

Xt−1 − ac0Xt−2

)

=

(

0

− (ac0)
2 γ(1) + (ac0) γ(2)

)

,

Jθc0 =

(

γ(0) γ(0)− ac0γ(1)

γ(0)− ac0γ(1) γ(0) + (ac0)
2 γ(0)− 2ac0γ(1)

)

,

J∗
θc0

= Jθc0 + E(Xt − ac0Xt−1)

(

0 Xt−2

Xt−2 2 (Xt−2 − ac0Xt−3)

)

= Jθc0 +

(

0 γ(2)− ac0γ(1)

γ(2)− ac0γ(1) 2
{

1 + (ac0)
2} γ(2)− 2ac0 {γ(1) + γ(3)}

)

.The Bahadur slopes of the two versions of the LM tests are thus
c =

(ac0γ(1)− γ(2))2 γ(0)

{γ2(0)− γ2(1)}σ2cand, under the assumption that the denominator is stritly positive,
c∗ =

(ac0γ(1)− γ(2))2 γ(0)
{

γ2(0) + 2γ(0)γ(2)− 2γ(0)γ(3)
ac0

− γ2(2)
ac20

− 4γ2(1) + 4γ(1)γ(2)
ac0

}

σ2c
.In partiular, it follows that, in the Bahadur sense, the LM∗ version is moree�ient than the LM one for MA(1) alternatives of the form Xt = ǫt +

b0ǫt−1. Moreover, the asymptoti relative e�ieny c∗/c tends to in�nity as
|b0| approhes 1. For strong ARMA(1,1) alternatives of the form

Xt − 0.5Xt−1 = ǫt + b0ǫt−1, ǫt iid N (0, 1), (18)tedious omputations show that the LM
∗ version is inonsistent for b0 ≤

−0.5807... but is more e�ient than the LM version when b0 > −0.5807....Figure 1 shows the perentage of Bahadar asymptoti relative e�ieny(ARE) gain of LM
∗ with respet to LM, as measured by 100(c∗ − c)/c,when b0 varies from -0.45 to 0.55. 21
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Figure 1: Relative improvement (in perentage) of the Bahadur slope of the LM
∗test with respet to that of the LM-test, when the null is AR(1) and the alternativeis the ARMA(1,1) model (18).4.2.2. Finite sample omparison of the two versionsIn order to determine whether the ARE omputed in the previous setionprovide valuable insights on the atual behavior of the two tests, we simulated

N = 1 000 independent trajetories of size n = 100, n = 1 000 and n =
10 000 of the ARMA(1,1) models (18). Table 3 displays the averaged p-values of the LM and LM

∗ tests of the null hypothesis of an AR(1), i.e.
H0 : b0 = 0. The two lines in bold orrespond to the null hypothesis H0. Forthe line b0 = 0, the DGP is an AR(1) and the test statistis LM and LM

∗are asymptotially χ2
1-distributed beause

Jθc0 = J∗
θc0
= γ(0)

(

1 1− a20
1− a20 1− a20

)

, a0 = 1/2,is invertible and the arguments of Setion 4.2.1 apply. For the line b0 = −0.5,the DGP is a white noise, whih an also be written as an ARMA(1,1) with
a0 = b0 = 0, but the arguments of Setion 4.2.1 do not apply beause

Jθc0 = J∗
θc0
= γ(0)

(

1 1
1 1

)is singular. As expeted, the average p-value of the LM and LM
∗ tests arelose to 0.5 when b0 = 0. We also note the average p-value of the LM-test is22



lose to 0.5 when b0 = −0.5, and is lose to zero under the alternative when
n is large. In aordane with the theoretial results of the previous setion,we also note that the LM

∗-test is inonsistent for b0 < −0.5 beause the p-values do not tend to zero as n inreases. When n is small and b0 > 0.5, thep-values of the LM∗-test are slightly smaller than those of the LM-test, butthese p-values tend rapidly to zero as n inreases. For an easier omparisonof the empirial behavior of the two tests, Table 4 reports the averages ofthe estimated Bahadur slopes LM/n and LM
∗/n. As expeted from theasymptoti theory illustrated by Figure 1, the LM

∗ statisti is in averagelarger than the LM statisti for alternatives suh that b0 > −0.5. Note alsothat the LM statisti is always positive, whereas negative values of LM∗ areobserved, beause Ĵc
n is semi-de�nite positive, whereas it is not the ase for

Ĵ∗c
n .To onlude this setion, although the LM

∗ version may be asymptoti-ally more e�ient in Bahadur's sense than the LM version for partiularalternatives, the LM version seems globally preferable beause it is unbiasedand onsistent for a larger set of alternatives.4.3. Testing weak ARMA models for stok returnsWe now onsider an appliation to the daily returns of 10 stok marketindies (CAC, DAX, FTSE, HSI, Nikkei, NSE, SMI, SP500, SPTSX andSSE). The observations over the period from the starting date of eah indexto July 26, 2010. In Finanial Eonometris, the returns are often assumed tobe martingale inrements, and the squares of the returns have often seond-order moments lose to those of an ARMA(1,1) (whih is ompatible with aGARCH(1,1) model for the returns).We will test these hypotheses by �tting weak ARMA models on the re-turns and on their squares. In view of Setion 4.1.2, let Ω̂ = J−1

θ̂n,n
Iθ̂n,nJ

−1

θ̂n,n
,

Ω̂s = σ̂2J−1

θ̂n,n
and Ω̂ss = J−1

θ̂n,n
ÎssJ

−1

θ̂n,n
. We will onsider three versions of theWald test of the null hypothesis de�ned in (17). Under the assumptions ofProposition 3.4 and the assumption that I and Iss are invertible, the Waldstatistis

WS = n(R0θ̂n − r0)
′(R0Ω̂sR

′
0)

−1(R0θ̂n − r0),

WSS = n(R0θ̂n − r0)
′(R0Ω̂ssR

′
0)

−1(R0θ̂n − r0),

WW = n(R0θ̂n − r0)
′(R0Ω̂R

′
0)

−1(R0θ̂n − r0)23



Table 3: Averages of the p-values of LM and LM
∗ for testing the null hypothesisof an AR(1), i.e. H0 : b0 = 0, in the ARMA(1,1) model (18). The number ofrepliations is N = 1000.

n = 100 n = 1, 000 n = 10, 000
b0 LM LM

∗
LM LM

∗
LM LM

∗-0.9 0.14185 0.82045 0.00000 0.98700 0.00000 1.00000-0.8 0.19998 0.78249 0.00028 0.94300 0.00000 1.00000-0.7 0.32798 0.77807 0.00917 0.81042 0.00000 0.98900-0.6 0.46288 0.81641 0.18710 0.67573 0.00004 0.61900-0.5 0.49549 0.85000 0.50789 0.84556 0.51899 0.85018-0.4 0.48500 0.77410 0.29030 0.48105 0.00252 0.01066-0.3 0.46271 0.65144 0.14221 0.13635 0.00000 0.00000-0.2 0.44848 0.50338 0.15298 0.14171 0.00000 0.00000-0.1 0.49491 0.51222 0.29239 0.28933 0.00368 0.003450.0 0.50143 0.49780 0.51095 0.50941 0.51854 0.518300.1 0.44112 0.42938 0.17563 0.17287 0.00003 0.000030.2 0.29159 0.27676 0.00483 0.00388 0.00000 0.000000.3 0.14343 0.12986 0.00005 0.00000 0.00000 0.000000.4 0.05982 0.04610 0.00000 0.00000 0.00000 0.000000.5 0.01696 0.01194 0.00000 0.00000 0.00000 0.000000.6 0.00752 0.00758 0.00000 0.00000 0.00000 0.000000.7 0.00227 0.01223 0.00000 0.00000 0.00000 0.000000.8 0.00156 0.01510 0.00000 0.00000 0.00000 0.000000.9 0.00112 0.01109 0.00000 0.00000 0.00000 0.00000
asymptotially follow a χ2

s0
distribution under H0. At the asymptoti level

α, eah Wald test onsists in rejeting H0 when its statisti is greater than
χ2
s0
(1− α).4.3.1. Testing a white noise against an AR(1)In this setion, we �t AR(1) models on eah series of daily returns, andwe apply the above-mentioned Wald tests for testing the hypothesis thatthe returns onstitute a white noise. This testing problem an be triviallywritten under the form (17). Table 5 displays the p-values of the standard and24



Table 4: Estimated Bahadur slopes of the LM and LM
∗ tests, when the nullhypothesis is an AR(1) and the alternative is the ARMA(1,1) model (18). Thenumber of repliations is N = 1000.

n = 100 n = 1, 000 n = 10, 000
b0 LM LM

∗
LM LM

∗
LM LM

∗-0.9 0.04712 4.17203 0.03717 -0.05981 0.03631 -0.04923-0.8 0.03654 -0.13111 0.02654 5.93785 0.02589 -0.04407-0.7 0.02320 0.98988 0.01376 -0.03605 0.01269 -0.04327-0.6 0.01280 -0.00635 0.00404 0.01628 0.00313 0.00297-0.5 0.01035 -0.00211 0.00102 0.00020 0.00010 0.00001-0.4 0.01050 -0.01204 0.00269 0.00062 0.00186 0.00449-0.3 0.01282 0.00389 0.00482 0.00794 0.00425 0.00591-0.2 0.01240 0.01819 0.00487 0.00600 0.00417 0.00471-0.1 0.01060 0.00009 0.00271 0.00287 0.00180 0.001850.0 0.01036 0.00721 0.00092 0.00095 0.00008 0.000080.1 0.01393 0.01720 0.00422 0.00438 0.00335 0.003430.2 0.02607 0.03886 0.01600 0.01750 0.01510 0.016270.3 0.04626 0.05910 0.03781 0.04417 0.03660 0.042540.4 0.07466 0.22160 0.06637 0.08452 0.06550 0.083270.5 0.10383 0.17138 0.09796 0.13724 0.09764 0.136010.6 0.13199 0.28353 0.12860 0.19518 0.12850 0.194020.7 0.15988 0.28823 0.15401 0.25127 0.15339 0.247800.8 0.17431 0.34168 0.16972 0.29062 0.17080 0.289100.9 0.18064 0.33781 0.17949 0.31841 0.18062 0.31362
modi�ed Wald tests. For the NSE, SMI, SP500 and SPTSX series, the whitenoise hypothesis is rejeted by the WS test at the nominal level α = 5%.This is not surprising beause the WS test required the iid assumption and,in partiular in view of the so-alled volatility lustering, it is well known thatthe strong white noise model is not adequate for these series. By ontrast,the white noise hypothesis is not rejeted by the modi�ed tests based on
WSS and WW . To summary, the outputs of Table 5 are in aordane withthe ommon belief that these series are not strong white noises, but ould beweak white noises (or even martingale inrements).25



We now turn to the dynamis of the squared returns.Table 5: For standard and modi�ed versions of Wald tests, p-values of the nullhypothesis that the returns are white noises. The p-values whih are less than
α = 5% are displayed in bold.Returns Length n WS WSS WWCAC 5154 0.386 0.570 0.486DAX 4966 0.343 0.521 0.349FTSE 6647 0.705 0.857 0.760HSI 5849 0.144 0.631 0.356Nikkei 6530 0.057 0.328 0.159NSE 1990 0.038 0.250 0.082SMI 4963 0.035 0.264 0.060SP500 15237 0.000 0.073 0.019SPTSX 2665 0.042 0.321 0.105SSE 2716 0.707 0.781 0.7584.3.2. Testing the ARMA(1, 1) model for the squared returnsWe �tted ARMA(p, q) models with p = 1 and q > 1, or q = 1 and p > 1,on the squares of the previous daily returns, and we applied Wald tests fortesting the null hypothesis of an ARMA(1, 1) model. The p-values of thestandard and modi�ed Wald tests are displayed in Table 6. The standardWald test frequently rejets the ARMA(1,1) model. The validity of this testis however questionable, beause the assumption of iid linear innovationsis not very plausible, as well for the squared returns than for the returnsthemselves (as was disussed in the previous setion). If the returns areassumed to follow a GARCH(1,1), whih is one of the most widely used modelfor suh series, then the squared returns follow a semi-strong ARMA(1,1),and higher-order powers follow ARMA models whih are only weak (see ).The tests based on the statistis WSS and WW thus appear as more reliable,a priori. These tests also frequently rejet the ARMA(1,1) model in favor ofmore omplex models. This leads us to reonsider the ommon belief that theGARCH(1,1) model is su�ient to apture the dynamis of most �nanialreturns, and that higher-order models would be unneessarily ompliated.Franq and Zakoïan (2009a) drew the same onlusion from parametri tests26



on GARCH models. The advantage of the present study is that it leads toreonsider not only the GARCH(1,1) model, but also any parametri modelleading to a weak ARMA(1,1) for the squares.5. ConlusionThe asymptoti variane of the LSE of ARMA models depend on infor-mation matries I and J omputed at the true value of the parameter θ0.It is sometime neessary to evaluate these matries at some point θ 6= θ0.In the ase of strong ARMA models, Iθ and Jθ depend only on θ0 and onthe moments σ2 = Eǫ2t and µ4 = Eǫ4t of the iid noise ǫt. In the muh moregeneral ase of weak ARMA models, Iθ also depends on the autoovarianesof the weak white noise ǫ2t .We proposed here algorithms for the exat omputation of Iθ and Jθfrom the model, and for the estimation of these matries from the data. It ispossible to de�ne estimators of the information matries whih are onsistentin the general weak ase, or in the more restritive semi-strong ase, or only inthe strong ase. Simulations experiments on�rmed the domain of validityof the di�erent estimators, and also that an e�ieny loss is the prie topay for having more robust estimators. As an illustration of the interestof onsidering Iθ and Jθ at θ 6= θ0, we omputed and ompared Bahadur'sslopes of two versions of the Lagrange-Multiplier test for testing general linearrestrition on θ0 in the strong ARMA ase. The two versions are based ontwo estimators Ĵc
n and Ĵ∗c

n of J under the null. The standard estimator of Jis Ĵc
n, whereas Ĵ∗c

n ontains an extra term whih is asymptotially negligibleunder the null but may have importane under the alternative. We showed,analytially and also by means of simulations, that the version based on
Ĵ∗c
n may be asymptotially muh more e�ient than the standard version,but is onsistent for a narrower set of alternatives. Applying di�erent Waldtests based on di�erent estimators of the information matries, and applyingthem for testing weak ARMA spei�ations on daily stok returns and ontheir squares, we reonsidered models suh as the popular GARCH(1,1) forwhih the squares follow a weak ARMA(1,1).

27



Table 6: As Table 5, but for the null hypothesis that the squared returns follow anARMA(1, 1) model.Alternative Returns WS WSS WWCAC 0.000 0.228 0.167DAX 0.000 0.013 0.000FTSE 0.767 0.949 0.962HSI 0.000 0.351 0.000ARMA(2, 1) Nikkei 0.483 0.922 0.940NSE 0.027 0.485 0.570SMI 0.589 0.886 0.803SP500 0.014 0.641 0.503SPTSX 0.009 0.472 0.443SSE 0.042 0.281 0.139CAC 0.000 0.288 0.064DAX 0.000 0.060 0.013FTSE 0.828 0.957 0.941HSI 0.000 0.005 0.000ARMA(1, 2) Nikkei 0.594 0.936 0.938NSE 0.053 0.305 0.191SMI 0.668 0.897 0.863SP500 0.069 0.737 0.793SPTSX 0.001 0.312 0.571SSE 0.040 0.067 0.025CAC 0.003 0.617 0.228DAX 0.000 0.012 0.000FTSE 0.000 0.396 0.181HSI 0.000 0.000 0.000ARMA(1, 3) Nikkei 0.000 0.419 0.000NSE 0.286 0.742 0.621SMI 0.000 0.328 0.041SP500 0.000 0.000 0.000SPTSX 0.000 0.001 0.000SSE 0.006 0.022 0.001
28



A. ProofsProof of Proposition 3.3. The �rst result follows from (7) and
Iθ(i, k) =

+∞
∑

h=−∞

+∞
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

a
h4
Cov (ǫt−h1ǫt−h2−i, ǫt−h−h3ǫt−h−h4−k) .The other results follow similarly. 2Proof of Proposition 3.3. Let c̃h = ch for 0 ≤ h ≤ M and c̃h = 0 for

h > M . Similarly, we de�ned c̃ah and c̃bh. For 1 ≤ i ≤ k ≤ p, we have
Iθ(i, k)− IMθ (i, k) =

∞
∑

h1,h2,h3,h4=0

{

(ch1 − c̃h1)c
a
h2
ch3c

a
h4

+ c̃h1(c
a
h2

− c̃ah2
)ch3c

a
h4

+c̃h1 c̃
a
h2
(ch3 − c̃h3)c

a
h4

+ c̃h1 c̃
a
h2
c̃h3(c

a
h4

− c̃ah4
)
}

Γ(h2 + i− h1, h4 + k − h3).Note that if
max

i=1,...,k
|ρi| ≤ ρ < 1then for all |z| ≤ 1,

1
∏k

i=1(1− ρiz)
=

∞
∑

h=0

dhz
h, with |dh| ≤ (h+ 1)k−1ρh.Note also that

φ(z)ψ0(z) =

(

1−
p
∑

i=1

aiz
i

)(

1 +

q
∑

j=1

b0jz
j

)

=

p+q
∑

ℓ=0

πℓz
ℓ,where, with the onvention a0 = −1, b00 = 1 and ai = 0 for i < 0,

|πℓ| =
∣

∣

∣

∣

∣

q
∑

j=0

b0jaℓ−j

∣

∣

∣

∣

∣

≤ π.We thus have
max

{

|ch| , |cah| ,
∣

∣cbh
∣

∣

}

≤ (p+ q + 1)π(h+ 1)k0ρh ≤ K0ρ
h/2with

k0 = p+ 2q − 1, K0 = (p+ q + 1)π

(−2k0
log ρ

)k0

ρ −0.5−k0/ log ρ.29



We then obtain
∣

∣Iθ(i, k)− IMθ (i, k)
∣

∣ ≤ 4Γ

(

K

1− ρ1/2

)4

ρ(M+1)/2and the result follows. 2In the following proofs, K and ρ denote generi onstant suh as K > 0and ρ ∈ (0, 1), whose exat values are unimportant.Proof of Proposition 3.4. Note that beause the roots ψ and φ0 areoutside the unit irle,
max

{

|cah| ,
∣

∣cbh
∣

∣ ,
∣

∣cabh
∣

∣ ,
∣

∣cbbh
∣

∣

}

≤ Kρh. (19)Beause Θ∗ is ompat, this inequality holds uniformly in θ ∈ Θ∗. Note thatthis entails the existene of Jθ∗ and J∗
θ∗ . The ergodi theorem then showsthat

Jθ∗,n → Jθ∗ and J∗
θ∗,n → J∗

θ∗ a.s. (20)By the previous arguments, for all i, i = 1, . . . , p+ q, we have
E sup

θ∈Θ∗

∥

∥

∥

∥

∂

∂θ

∂ǫt(θ)

∂θi

∂ǫt(θ)

∂θj

∥

∥

∥

∥

<∞. (21)A Taylor expansion yields
Jθ∗n,n(i, j) = Jθ∗,n(i, j) + (θ∗n − θ∗)′

1

n

n
∑

t=1

∂

∂θ

{

∂ǫt(θ)

∂θi

∂ǫt(θ)

∂θj

}

(θ∗∗)for some θ∗∗ between θ∗n and θ∗. The onsisteny of Jθ∗n,n follows from (20),(21) and the onvergene of θ∗n to θ∗. The onsisteny of J∗
θ∗n,n

is shownsimilarly. 2ReferenesAndrews, D.W.K. Heteroskedastiity and autoorrelation onsistent ovari-ane matrix estimation. Eonometria 59:817�858, 1991.Berk, K.N. Consistent Autoregressive Spetral Estimates. Ann. Stat. 2:489�502, 1974. 30
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Computing and estimating informationmatries of weak ARMA models: aomplementary result whih is not submittedfor publiationA. Asymptoti properties of the spetral density estimator of thelong-run variane Iθ∗Theorem A.1. Let the assumptions of Lemma 2.1 be satis�ed. Assumethat the proess (∇t) de�ned by (12) admits the AR(∞) representation (13),where ‖Ai‖ = o (i−2) as i → ∞, the roots of det(A(z)) = 0 are outside theunit disk, and Σu is non-singular. Assume moreover that E|ǫt|8+4ν <∞ and
∑∞

k=0{αǫ(k)}ν/(2+ν) <∞ for some ν > 0. Then, if θ∗n → θ∗ almost surely,
Iθ∗n,n = Â−1

r (1)Σ̂ur
Â′−1

r (1) → Iθ∗in probability when r = r(n) → ∞ and r3/n→ 0 as n→ ∞.The proof of Theorem A.1 is based on a series of lemmas. We use themultipliative matrix norm de�ned by: ‖A‖ = sup‖x‖≤1 ‖Ax‖ = ̺1/2(A′A),where A is a d1×d2 matrix, ‖x‖ is the Eulidean norm of the vetor x ∈ R
d2 ,and ̺(·) denotes the spetral radius. This norm satis�es

‖A‖2 ≤
∑

i,j

a2i,j (22)with obvious notations. This hoie of the norm is ruial for the followinglemma to hold (with e.g. the Eulidean norm, this result is not valid). Let
Σ∇,∇r

= E∇t∇′
r,t, Σ∇ = E∇t∇′

t, Σ∇r
= E∇r,t∇′

r,t.In the sequel, K and ρ denote generi onstant suh as K > 0 and ρ ∈ (0, 1),whose exat values are unimportant.Lemma 1. Under the assumptions of Theorem A.1,
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Proof. We readily have
‖Σ∇r

x‖ ≤ ‖Σ∇r+1
(x′, 0′p+q)

′‖ and ‖Σ∇,∇r
x‖ ≤ ‖Σ∇r+1

(0′p+q, x
′)′‖for any x ∈ R

(p+q)r. Therefore
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∥
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∥
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∥ .Let f(λ) be the spetral density of ∇t. Beause the autoovariane funtionof ∇t is absolutely summable, ‖f(λ)‖ is bounded by a �nite onstant K, say.Denoting by δ = (δ′1, . . . , δ
′
r)

′ an eigenvetor of Σ∇r
assoiated with its largesteigenvalue, suh that ‖δ‖ = 1 and δi ∈ R

p+q for i = 1, . . . , r, we have
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∫ π
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ei(k−j)λf(λ)d(λ)δk ≤ 2πK.By similar arguments, the smallest eigenvalue of Σ∇r
is greater than a positiveonstant independent of r. Using the fat that ‖Σ−1

∇r
‖ is equal to the inverseof the smallest eigenvalue of Σ∇r

, the proof is ompleted. 2Denote by ∇t(i) the i-th element of ∇t.Lemma 2. Under the assumptions of Theorem A.1, there exits a �nite on-stant K1 suh that for m1, m2 = 1, . . . , p+ q

sup
s∈Z

∞
∑
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|Cov {∇1(m1)∇1+s(m2),∇1+h(m1)∇1+s+h(m2)}| < K1.Proof. Without loss of generality, we an take the supremum over theintegers s > 0, and write the proof in the ase m1 = m2 = m. In view of(19), we have
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where
Yt,h1,h2 = ǫt−h1ǫt−h2−m − Eǫt−h1ǫt−h2−m.A slight extension of Corollary A.3 in Franq and Zakoian (2010) onludes.

2 Let Σ̂∇r
, Σ̂∇ and Σ̂∇,∇r

be the matries obtained by replaing ∇̂t by ∇tin Σ̂∇̂r
, Σ̂∇̂ and Σ̂∇̂,∇̂r

.Lemma 3. Under the assumptions of Theorem A.1, √
r‖Σ̂∇r

− Σ∇r
‖,√

r‖Σ̂∇−Σ∇‖, and √
r‖Σ̂∇,∇r

−Σ∇,∇r
‖ tend to zero in probability as n→ ∞when r = o(n1/3).Proof. For 1 ≤ m1, m2 ≤ p + q and 1 ≤ r1, r2 ≤ r, the element of the

{(r1 − 1)(p+ q) +m1}-th row and {(r2 − 1)(p+ q) +m2}-th olumn of Σ̂∇ris of the form n−1
∑n

t=1 Zt where Zt = ∇t−r1(m1)∇t−r2(m2). By stationarityof (Zt), we haveVar( 1

n

n
∑

t=1

Zt

)

=
1

n2

n−1
∑

h=−n+1

(n− |h|)Cov (Zt, Zt−h) ≤
K1

n
, (23)where, by Lemma 2, K1 is a onstant independent of r1, r2, m1, m2 and r, n.In view of (22) and (23) we have

E
{

r‖Σ̂∇ − Σ∇‖2
}

≤ E
{

r‖Σ̂∇,∇r
− Σ∇,∇r

‖2
}

≤ E
{

r‖Σ̂∇r
− Σ∇r

‖2
}

≤ K1(p+ q)2r3

n
= o(1)as n→ ∞ when r = o(n1/3). The result follows. 2We now show that the previous lemma applies when ∇t is replaed by

∇̂t.Lemma 4. Under the assumptions of Theorem A.1, √
r‖Σ̂∇̂r

− Σ∇r
‖,

√
r‖Σ̂∇̂−Σ∇‖, and √

r‖Σ̂∇̂,∇̂r
−Σ∇,∇r

‖ tend to zero in probability as n→ ∞when r = o(n1/3).Proof. We �rst show that the replaement of the unknown initial values
{Xu, u ≤ 0} by zero is asymptotially unimportant. Let Σ̂∇r,n

be the ma-trix obtained by replaing et(θ∗n) by ǫt(θ∗n) in Σ̂∇̂r
. Beause ǫt(θ) and their36



derivatives have ARMA representations (see Setion 3), it is easy to showthat
sup
θ∈Θ∗

|et(θ)− ǫt(θ)| ≤ Kρt, sup
θ∈Θ∗

∥

∥

∥

∥

∂

∂θ
et(θ)−

∂

∂θ
ǫt(θ)

∥

∥

∥

∥

≤ Kρt.It an be dedued that ‖Σ̂∇̂r
− Σ̂∇r,n

‖ = OP (rn
−1). We thus have

√
r‖Σ̂∇̂r

− Σ̂∇r,n
‖ = oP (1). (24)Taylor expansions around θ∗ yield

|ǫt(θ∗n)− ǫt(θ
∗)| ≤ rt ‖θ∗n − θ∗‖ ,

∣

∣

∣

∣

∂ǫt(θ
∗
n)

∂θm
− ∂ǫt(θ

∗)

∂θm

∣

∣

∣

∣

≤ st ‖θ∗n − θ∗‖with rt = ∥∥ ∂
∂θ′
ǫt(θ)

∥

∥, st = ∥∥∥ ∂2

∂θ′∂θm
ǫt(θ)

∥

∥

∥
where θ and θ are between θ∗n and θ∗.De�ne Zt as in the proof of Lemma 3, and let Zt,n be obtained by replaing

∇t(m) by ∇t,n(m) = ǫt(θ
∗
n)∂ǫt(θ

∗
n)/∂θm in Zt. We have

|∇t(m)−∇t,n(m)| ≤ rt ‖θ∗n − θ∗‖
∣

∣

∣

∣

∂

∂θm
ǫt(θ

∗)

∣

∣

∣

∣

+ st ‖θ∗n − θ∗‖ |ǫt(θ∗n)|

:= ‖θ∗n − θ∗‖ dt,n,m,and thus
|Zt − Zt,n| ≤ ‖θ∗n − θ∗‖Dt,n,m1,m2,r1,r2,where

Dt,n,m1,m2,r1,r2 = |dt−r1,n,m1∇t−r2(m2)|+ |∇t−r1,n(m1)dt−r2,n,m2| .Note that E |Dt,n,m1,m2,r1,r2| ≤ K for some onstant K independent of
n, r1, r2, m1 and m2. Thus

‖Σ̂∇r,n
− Σ̂∇r

‖2 ≤ r2 ‖θ∗n − θ∗‖2OP (1).Sine ‖θ∗n − θ∗‖ = OP

(

n−1/2
), we obtain for r = o(n1/3)

√
r‖Σ̂∇r,n

− Σ̂∇r
‖ = oP (1). (25)By Lemma 3 , (24) and (25) show that √r‖Σ̂∇̂r

− Σ∇r
‖ = oP (1). The otherresults are obtained similarly. 2Write A∗

r = (A1 · · ·Ar) where the Ai's are de�ned by (13).37



Lemma 5. Under the assumptions of Theorem A.1,
√
r ‖A∗

r − Ar‖ → 0,as r → ∞.Proof. Reall that by (13) and (15)
∇t = Ar∇r,t + ur,t = A∗

r∇r,t +

∞
∑

i=r+1

Ai∇t−i + ut := A∗
r∇r,t + u∗r,t.Hene, using the orthogonality onditions in (13) and (15)

A∗
r −Ar = −Σu∗

r ,∇r
Σ−1

∇r
(26)where Σu∗

r ,∇r
= Eu∗r,t∇′

r,t. Using arguments and notations of the proof ofLemma 2, there exists a onstant K2 independent of s and m1, m2 suh that
E |∇1(m1)∇1+s(m2)| ≤ K4

∞
∑

h1,...,h4=0

ρh1+···+h4‖ǫ1‖44 ≤ K2.By the Cauhy-Shwarz inequality and (22), we then have
∥

∥Cov (∇t−r−h,∇r,t

)∥

∥ ≤ K2r
1/2(p+ q).Thus,

‖Σu∗

r ,∇r
‖ = ‖

∞
∑

i=r+1

AiE∇t−i∇′
r,t‖ ≤

∞
∑

h=1

‖Ar+h‖
∥

∥Cov (∇t−r−h,∇r,t

)∥

∥

= O(1)r1/2
∞
∑

h=1

‖Ar+h‖. (27)Note that the assumption ‖Ai‖ = o (i−2) entails r∑∞
h=1 ‖Ar+h‖ = o(1) as

r → ∞. The lemma therefore follows from (26), (27) and Lemma 1. 2The following lemma is similar to Lemma 3 in Berk (1974).Lemma 6. Under the assumptions of Theorem A.1,
√
r‖Σ̂−1

∇̂r

− Σ−1
∇r
‖ = oP (1)as n→ ∞ when r = o(n1/3) and r → ∞.38



Proof. We have
∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
=

∥

∥

∥

{

Σ̂−1

∇̂r

− Σ−1
∇r

+ Σ−1
∇r

}{

Σ∇r
− Σ̂∇̂r

}

Σ−1
∇r

∥

∥

∥

≤
(∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
+
∥

∥

∥
Σ−1

∇r

∥

∥

∥

)∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥
.Iterating this inequality, we obtain

∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
≤

∥

∥

∥
Σ−1

∇r

∥

∥

∥

∞
∑

i=1

∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

i ∥
∥

∥
Σ−1

∇r

∥

∥

∥

i

.Thus, for every ε > 0,
P
(√

r
∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
> ε
)

≤ P







√
r

∥

∥

∥
Σ−1

∇r

∥

∥

∥

2 ∥
∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

1−
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥

> ε and ∥∥
∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥
< 1







+P
(√

r
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥
≥ 1
)

≤ P







√
r
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥
>

ε
∥

∥

∥
Σ−1

∇r

∥

∥

∥

2

+ εr−1/2

∥

∥

∥
Σ−1

∇r

∥

∥

∥







+P

(√
r
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥
≥
∥

∥

∥
Σ−1

∇r

∥

∥

∥

−1
)

= o(1)by Lemmas 3 and 1. This establishes Lemma 6. 2Lemma 7. Under the assumptions of Theorem A.1,
√
r
∥

∥

∥
Âr − Ar

∥

∥

∥
= oP (1)as r → ∞ and r = o(n1/3).Proof. By the triangle inequality and Lemmas 1 and 6, we have

∥

∥

∥
Σ̂−1

∇̂r

∥

∥

∥
≤
∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
+
∥

∥

∥
Σ−1

∇r

∥

∥

∥
= OP (1). (28)39



Note that the orthogonality onditions in (15) entail that Ar = Σ∇,∇r
Σ−1

∇r
.By Lemmas 1, 3, 6, and (28), we then have

√
r
∥

∥

∥
Âr −Ar

∥

∥

∥
=

√
r
∥

∥

∥
Σ̂∇̂,∇̂r

Σ̂−1

∇̂r

− Σ∇,∇r
Σ−1

∇r

∥

∥

∥

=
√
r
∥

∥

∥

(

Σ̂∇̂,∇̂r
− Σ∇,∇r

)

Σ̂−1

∇̂r

+ Σ∇,∇r

(

Σ̂−1

∇̂r

− Σ−1
∇r

)∥

∥

∥
= oP (1).

2Proof of Theorem A.1. In view of (14), it su�es to show that Âr(1) →
A(1) and Σ̂ur

→ Σu in probability. Let the r × 1 vetor 1r = (1, . . . , 1)′ andthe r(p + q) × (p + q) matrix Er = Ip+q ⊗ 1r, where ⊗ denotes the matrixKroneker produt and Id the d×d identity matrix. Using (22), and Lemmas5, 7, we obtain
∥

∥

∥
Âr(1)−A(1)

∥

∥

∥
≤

∥

∥

∥

∥

∥

r
∑

i=1

Âr,i −Ar,i

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

r
∑

i=1

Ar,i − Ai

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

=
∥

∥

∥

(

Âr − Ar

)

Er

∥

∥

∥
+ ‖(A∗

r − Ar)Er‖+
∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

≤ √
p+ q

√
r
{∥

∥

∥
Âr − Ar

∥

∥

∥
+ ‖A∗

r −Ar‖
}

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

= oP (1).Now note that
Σ̂ur

= Σ̂∇̂ − ÂrΣ̂
′
∇̂,∇̂rand, by (13)

Σu = Eutu
′
t = Eut∇′

t = E

{(

∇t −
∞
∑

i=1

Ai∇t−i

)

∇′
t

}

= Σ∇ −
∞
∑

i=1

AiE∇t−i∇′
t = Σ∇ − A∗

rΣ
′
∇,∇r

−
∞
∑

i=r+1

AiE∇t−i∇′
t.
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Thus,
∥

∥

∥
Σ̂ur

− Σu

∥

∥

∥
=

∥

∥

∥
Σ̂∇̂ − Σ∇ −

(

Âr − A∗
r

)

Σ̂′
∇̂,∇̂r

−A∗
r

(

Σ̂′
∇̂,∇̂r

− Σ′
∇,∇r

)

+
∞
∑

i=r+1

AiE∇t−i∇′
t

∥

∥

∥

∥

∥

≤
∥

∥

∥
Σ̂∇̂ − Σ∇

∥

∥

∥
+
∥

∥

∥

(

Âr −A∗
r

)(

Σ̂′
∇̂,∇̂r

− Σ′
∇,∇r

)∥

∥

∥

+
∥

∥

∥

(

Âr −A∗
r

)

Σ′
∇,∇r

∥

∥

∥
+
∥

∥

∥
A∗

r

(

Σ̂′
∇̂,∇̂r

− Σ′
∇,∇r

)∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

AiE∇t−i∇′
t

∥

∥

∥

∥

∥

. (29)In the right-hand side of this inequality, the �rst norm is oP (1) by Lemma 3.By Lemmas 5 and 7, we have ‖Âr−A∗
r‖ = op(r

−1/2) = op(1), and by Lemma 3,
‖Σ̂′

∇̂,∇̂r

−Σ′
∇,∇r

‖ = op(r
−1/2) = op(1). Therefore the seond norm in the right-hand side of (29) tends to zero in probability. The third norm tends to zeroin probability beause ‖Âr−A∗

r‖ = op(1) and, by Lemma 1, ‖Σ′
∇,∇r

‖ = O(1).The fourth norm tends to zero in probability beause, in view of Lemma 3,
‖Σ̂′

∇̂,∇̂r

−Σ′
∇,∇r

‖ = op(1), and, in view of (22), ‖A∗
r‖2 ≤

∑∞
i=1Tr(AiA

′
i) <∞.Clearly, the last norm tends to zero, whih ompletes the proof. 2
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