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On the Uniform Quantization of a Class of

Sparse Sources
Aurélia Fraysse, Béatrice Pesquet-Popescu,Senior Member IEEE,and

Jean-Christophe Pesquet,Senior Member IEEE

Abstract

We consider the uniform scalar quantization of a class of mixed distributed memoryless sources, namely sources

having a Bernoulli-Generalized Gaussian distribution. Both for low and high resolutions, asymptotic expressions of

the distortion for ap-th order moment error measure, and close approximations ofthe entropy are provided for these

sources. Operational rate-distortion functions at high bitrate and their slope factors at low bitrate are derived. The

dependence of these results onp and the distribution parameters as well as the relation to the Shannon optimal

rate-distortion bound are then discussed.

Index Terms

Rate-distortion function, uniform quantization, asymptotic performance, generalized Gaussian, Bernoulli-Gaussian,

mixed distribution, sparsity, transform coding.

I. I NTRODUCTION

One commonly used probabilistic model is the generalized Gaussian (GG) model (sometimes called the ex-

ponential power model). In particular, it has been extensively employed [1]–[3] for modelling the distribution of

sparse coefficients generated by the wavelet decompositionof regular signals. The corresponding probability density

function is given by

∀ξ ∈ R, f(ξ) =
βω1/β

2Γ(1/β)
e−ω|ξ|β (1)

whereβ > 0 is the exponent parameter,ω > 0 is the scaling factor andΓ is the gamma function. In the following,

we will restrict to “heavy tail” log-concave distributionswithin this class by choosingβ ∈ [1, 2]. Within this class,

β = 1 corresponds to the Laplace distribution andβ = 2 to the Gaussian one. In addition, the differential entropy
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of this distribution [4] is:1

hβ(ω) = −

∫ ∞

−∞

f(ξ) ln f(ξ) dξ = ln
(2Γ(1/β)

βω1/β

)
+

1

β
. (2)

When the data to be modelled become sparser – which may arise in particular when considering appropriate

redundant frame decompositions of regular signals – an alternative Bernoulli-GG (BGG) model can be adopted.

The BGG distribution is defined by:

∀ξ ∈ R, g(ξ) = (1 − ǫ)δ(ξ) + ǫf(ξ) (3)

whereǫ ∈ [0, 1] is the mixture parameter andδ denotes the Dirac distribution (i.e. point mass at 0). In particular,

the Bernoulli-Gaussian model has been considered in several studies for modelling wavelet coefficients [5], [6].

The purpose of this paper is to study the discrete entropy of aBGG distributed memoryless sourceX after a

symmetric scalar uniform quantization [7]. More precisely, let q > 0 be the quantizer step-size, the outputX of

the quantizer is given by:

X = r0 = 0, if |X | < q
2 , (4)

and, for alli ∈ Z such thati 6= 0,

X = ri, if (|i| − 1
2 )q ≤ |X | < (|i| + 1

2 )q (5)

where the quantization levels are given by

∀i ≥ 1, ri = −r−i = (i + ζ)q (6)

and ζ ∈ [−1/2, 1/2] is an “offset” parameter, indicating the shift of the reconstruction level with respect to the

middle of the quantization interval. Note that we will not consider any saturation effect. The most commonly

used quantization rule corresponds to the case whenζ = 0 (i.e., mid-point reconstruction). For example, this rule

constitutes the basic ingredient of many encoding strategies (e.g. embedded zero-trees [8], SPIHT [9], EZBC [10],

EBCOT [11]...) which have been developed for wavelet-basedimage compression techniques.

The efficiency of uniform quantization at high bitrate was shown by Gish and Pierce [12] for power function costs.

The performance of optimum scalar quantizers subject to an entropy constraint was investigated through numerical

methods [13], [14] for various memoryless source probability densities (e.g. uniform, Gaussian, Laplacian, GG)

at low resolution. In [15], a parametric form of the operational distortion-rate function of a scalar quantizer was

derived for a uniformly distributed source and a wide class of difference distortion measures. In [16], an approach

for designing entropy scalar constrained quantizers for exponential and Laplace distribution was proposed and

comparisons were made with uniform quantizers. Recently in[17], the asymptotic behaviour of a uniform quantizer

with centroid recontruction levels and an offset parameterwas characterized at low resolution for a memoryless

Gaussian source and a squared error distortion measure. In another useful reference [18], optimal transform coding

of Gaussian vector scale mixtures, which include GG sourcesas particular cases, was studied at high bitrate, for

1For simplicity, the entropies will be expressed in Nats.
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quadratic criteria. Some studies, e.g. [19]–[22] have alsoconsidered the use of Laplace and GG probability models

in modern compression systems. All the previously cited papers deal with sources having an absolutely continuous

probability distribution. For small distortion, an asymptotic formula for the rate-distortion function of memoryless

sources following a mixed probability distribution was given in [23]. These results were extended in [24] to a

general class of vector sources.

The contributions of this paper are the following:

• Close approximations of the entropy of uniformly quantizedGG and BGG sources are obtained. We provide

ordern approximations of the entropy and characterize the approximation error. The asymptotic behaviour of

the entropy is deduced. At high resolution we obtain a refinement of the well-known Bennett formula, and at

low resolution a parallel with a discrete three-state source is drawn.

• Asymptotic expressions of the distortion at low and high resolutions are provided for an orderp (p ≥ 1)

moment error measure. Taking real values, the parameterp provides flexibility in the choice of the distortion

function, for example in order to better fit the Human Visual System (HVS). This can be more appropriate for

designing distortion measures in the transform domain, as necessary in image/video coding systems, in which

rate-distortion criteria often are evaluated based on coefficients, while aiming at minimizing the visual impact

on the reconstructed image.

The introduction of such a real-valued exponent in the distortion measure also raises new issues for char-

acterizing the optimality, depending on the source and quantizer features. More precisely, we show that the

asymptotic expressions (forq → 0 andq → ∞) of the orderp measure depend, of course, on the parameters

β and ǫ of the BGG source, but they may take different forms depending on the values ofp and on the

reconstruction offset. The expressions of the distortion at low and high bitrate for integer valuesp = 1 (Mean

Absolute Error) andp = 2 (Mean Square Error) are found as particular cases.

• Accurate formulas for the corresponding operational rate-distortion functions are derived at high bitrate. The

loss in performance w.r.t. the Shannon lower bound related to the use of a uniform scalar quantizer is evaluated

as a function ofp andǫ.

• The slope factors of the operational rate-distortion functions at low bitrate are also determined. The dependence

w.r.t. p and β is studied, in particular, and the relations with the Shannon optimal rate-distortion bound are

examined. An important result which is shown, in particular, is that, at low resolution, the uniform quantizer

is optimal for β < p, as soon asζ < 0, while for p = β the optimal reconstruction level is obtained for

ζ = −1/2. This result, in turn, allows us to derive the slope of the Shannon rate-distortion function in these

cases.

The remainder of the paper is organized as follows: in Section II, we derive approximation formulas for calculating

the entropy of a uniformly quantized GG source. These results are extended to quantized BGG sources in Section III.

We derive these results through asymptotic expansions of the incomplete Gamma functions around 0 and around

∞. In Section IV, we provide asymptotic results for both high and low bitrates concerning the operational rate-
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distortion functions for the BGG distribution. An illustration of the application of these results to transform coding

is given in Section V and some conclusive remarks are drawn inSection VI.

II. ENTROPY OF QUANTIZEDGG RANDOM VARIABLES

Let us first assume that the random variableX is distributed according to (1). The entropy ofX is expressed as

Hf (q) = −
∞∑

i=−∞

P(X = ri) lnP(X = ri) (7)

whereq = ω1/βq is the normalized quantization step-size. Let, for alla ∈ R
∗
+, Qa be the normalized incomplete

gamma function [25], defined by

∀ξ ∈ R, Qa(ξ) =
1

Γ(a)

∫ ξ

0

θa−1e−θdθ. (8)

It is recalled that

∀ξ ∈ R, Q1(ξ) = 1 − e−ξ (9)

Q1/2(ξ) = erf(
√

ξ) (10)

whereerf(·) is the error function. It follows that

Hf (q) = −p0 ln p0 − 2

∞∑

i=1

pi ln pi (11)

where the probability of the zero level is

p0 = 2

∫ q
2

0

f(ξ)dξ = Q1/β

(
qβ
1

)
(12)

and the probability of theri reconstruction level is

pi =

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ)dξ =
1

2

(
Q1/β

(
qβ

i+1

)
− Q1/β

(
qβ

i

))
, i ≥ 1, (13)

qi = (i − 1/2)q being thei-th normalized decision level. In order to simplify the notations, the dependence ofpi

on q will not be made explicit.

Example 1:For the Laplace distribution, by using (9), the following expression of the functionHf is obtained:

Hf (q) = −
(
1 − e−

q
2

)
ln(1 − e−

q
2

)
− e−

q
2 ln

(1 − e−q

2

)
+ q(1 − e−q)

∞∑

i=1

(
i −

1

2

)
e−(i− 1

2 )q

= −
(
1 − e−

q
2

)
ln(1 − e−

q
2

)
− e−

q
2 ln

(1 − e−q

2

)
+ q e−

q
2

(1

2
+

1

eq − 1

)
. (14)

With the exception of the Laplace case, a simple expression of Hf is not available. In order to get tractable

approximations ofHf , the following result will be useful:

Lemma 1:For all n ∈ N with n ≥ 2, we have

0 ≤ −
∞∑

i=n

pi ln pi +

∫ ∞

(n− 1
2 )q

f(ξ) ln f(ξ)dξ + ln q

∫ ∞

(n− 1
2 )q

f(ξ)dξ ≤
βq

2Γ(1/β)

( 2n

2n − 1

)β−1

e−qβ
n . (15)

Proof: See Appendix A.
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This lemma allows us to derive the following approximation formula for the discrete entropy of the quantized GG

random variable:

Proposition 1: Let n ≥ 2. We have

Hf (q) = H
(n)
f (q) + ∆n (16)

where

H
(n)
f (q) = −p0 ln p0 − 2

n−1∑

i=1

pi ln pi +
(
hβ(1) − ln q

)(
1 − Q1/β

(
qβ

n

))
+

qn

Γ(1/β)
e−qβ

n (17)

and

0 ≤ ∆n ≤ ∆n =
βq

Γ(1/β)

( 2n

2n − 1

)β−1

e−qβ
n . (18)

Proof: For all n ∈ N
∗, we have

2

∫ ∞

(n− 1
2 )q

f(ξ)dξ = 1 − Q1/β

(
qβ

n) (19)

and

2

∫ ∞

(n− 1
2 )q

f(ξ) ln f(ξ) dξ = −2 ln
(2Γ(1/β)

βω1/β

)∫ ∞

(n− 1
2 )q

f(ξ)dξ − 2ω

∫ ∞

(n− 1
2 )q

ξβf(ξ)dξ

= − ln
(2Γ(1/β)

βω1/β

)(
1 − Q1/β

(
qβ

n)
)
−

1

Γ(1/β)

∫ ∞

qβ
n

θ1/βe−θdθ

=
(
ln(ω1/β) − hβ(1)

)(
1 − Q1/β

(
qβ

n)
)
−

qn

Γ(1/β)
e−qβ

n . (20)

Then, the result straightforwardly follows from (11) and (15).

As illustrated by Fig. 1,H(2)
f provides a tight lower approximation ofHf whereasH(3)

f + ∆3 provides a good

upper approximation ofHf . In addition, choosingn = 2 is enough to predict both the high resolution and low

resolution behaviour of the entropy of the quantized variable. This is summarized in the following statement:

Proposition 2: As q → 0, we have2

Hf (q) = hβ(1) − ln q + O(q). (21)

As q → ∞, we have

Hf (q) = −p0 ln p0 − (1 − p0) ln
(1 − p0

2

)
+ O(qe−(3q/2)β

) (22)

=
qe−qβ/2β

2Γ(1/β)q̃β

(
1 +

1 − 1/β

q̃2β

)((q

2

)β

+ ln
( q̃β

q

)
+ ln

(
4eΓ(1/β)

)
+ O

( 1

q2β

))
(23)

whereq̃ = (2−βqβ + 1 − 1/β)1/β .

Proof: See Appendix B.

Remark 1:

(i) The obtained high resolution behaviour (whenq is small) is well known [12]. It is sometimes referred to as

Bennett’s formula.

2Let a : R
∗

+ → R, andb : R
∗

+ → R, we use the notationa(ξ) = O(b(ξ)) as ξ → 0 (resp.ξ → ∞) to say that there existsη > 0 such

that a(ξ)/b(ξ) is bounded for allξ ∈ (0, η) (resp.ξ ∈ (η,∞)). In addition,a(ξ) = o(b(ξ)) asξ → ξ0 ∈ [0,∞] if limξ→ξ0 a(ξ)/b(ξ) = 0.
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(ii) In accordance with intuition, (22) shows that, at low resolution (q large), the entropy is similar to that of a

3-state discrete source with probability(1−p0

2 , p0,
1−p0

2 ). From Fig. 2, it can be observed that this results in a

close approximation of the entropy for large enough values of the quantization step. The plots also show that

the maximum value of the approximations given by (21) and (22) provides a reasonable lower approximation

of the entropy.

(iii) As predicted by our calculations, Fig. 2 shows that, ingeneral, (23) provides a less precise approximation of

the entropy than (22) at low resolution. In addition, it can be observed that for a Laplace distribution (23)

reduces to

Hf (q) = e−
q
2

(
q

2
+ ln 2 + 1 + O

( 1

q2

))
. (24)

More generally, for everyβ ∈ [1, 2], (23) allows us to state that, asq → ∞,

Hf (q) =
qe−qβ/2β

2Γ(1/β)

(
1 + O

( ln q

qβ

))
. (25)

In the Gaussian case, this result is in agreement with [17, Theorem 6] (by setting the offset parameter in this

theorem to1/2).

(iv) It is clear that all the results in this section (as well as the ones in the next section) are independent of the

values taken by the quantization levels. In particular, they are valid for quantization levels which are not

constrained by (6), such as those corresponding to the centroids of the decision intervals for any distortion

cost function.

III. E XTENSION TO BGG RANDOM VARIABLES

We now turn our attention to the more general mixture model given by (3). By using the following lemma, we

will see that the results derived in the previous section aredirectly extendable.

Lemma 2:Let X be a random variable distributed according to (3). The entropy of the associated uniformly

quantized variableX is given by

Hg(ǫ, q) = ǫHf (q) + Φ(p0, ǫ), ǫ ∈ [0, 1] (26)

where3

Φ(p0, ǫ) = −
(
1 − ǫ(1 − p0)

)
ln
(
1 − ǫ(1 − p0)

)
− ǫ(1 − p0) ln ǫ + ǫp0 ln p0. (27)

In addition,Hg(·, q) is an increasing strictly concave function such thatHg(0, q) = 0 and

Hg(ǫ, q) = ǫHf(q) + (ǫ − 1) ln p0 + O
(
(ǫ − 1)2

)
, as ǫ → 1. (28)

Proof: See Appendix C.

Approximation formulas forHg are straightforwardly derived from (26) by using (12) and (16)-(18). The following

asymptotic results are also obtained:

3We adopt the convention0 ln 0 = 0.
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Proposition 3: Let ǫ ∈ (0, 1] be given. Asq → 0, we have

Hg(ǫ, q) = Hǫ + ǫ
(
hβ(1) − ln q + 1(0,1)(ǫ)

βq

2Γ(1/β)
ln q
)

+ O(q) (29)

where

Hǫ = −ǫ ln ǫ − (1 − ǫ) ln(1 − ǫ) (30)

is the entropy of a Bernoulli variable with probability(1 − ǫ, ǫ) and 1(0,1) is the characteristic function of the

interval (0, 1).4 As q → ∞, we have

Hg(ǫ, q) = −
(
1 − ǫ(1 − p0)

)
ln
(
1 − ǫ(1 − p0)

)
− ǫ(1 − p0) ln

(ǫ(1 − p0)

2

)
+ O(qe−(3q/2)β

) (31)

=
ǫqe−qβ/2β

2Γ(1/β)q̃β

(
1 +

1 − 1/β

q̃2β

)((q

2

)β

+ ln
( q̃β

q

)
+ ln

(4eΓ(1/β)

ǫ

)
+ O

( 1

q2β

))
. (32)

Proof: According (12) and (93), asq → 0, we get:

Φ(p0, ǫ) = −(1 − ǫ) ln(1 − ǫ) − ǫ ln ǫ + ǫ1(0,1)(ǫ)
βq

2Γ(1/β)
ln q + O(q). (33)

Eq. (29) is then obtained by using (21) and (26).

As q → ∞, (31) readily follows from (26) and (22) whereas (32) is deduced from (101) and (104) similarly to the

derivation of (23).

Remark 2:

(i) It is easy to show thatHg(ǫ, q) is a decreasing function ofq.

(ii) As a consequence of (29),

Hg(ǫ, q) = Hǫ + ǫ(hβ(1) − ln q) + O(q ln q). (34)

So, the coding cost at high resolution becomes equivalent tothat of coding separately a Bernoulli random

variable with probability(1 − ǫ, ǫ) and a GG component occuring with probabilityǫ. We see that, when

ǫ 6= 1, the entropy remains, up to an error of orderq ln q, an affine function ofln q as for the standard Bennett

formula. However, the slope and the value at the origin of thegraph of this function is modified and it is

dependent on the value of the mixture parameterǫ. If we now consider a more precise approximation incuring

an error of orderq as in (21), a further additive termǫβq ln q/
(
2Γ(1/β)

)
has to be taken into account.

(iii) Eq. (31) shows that at low resolution the entropy is (upto a O(qe−(3q/2)β

) term) equal to that of a 3-state

discrete source with probability
(
ǫ 1−p0

2 , 1 − ǫ(1 − p0), ǫ
1−p0

2

)
.

(iv) An illustration of these results is shown in Fig. 3.

IV. A SYMPTOTIC RATE-DISTORTION RESULTS

We now examine some consequences of the results in the previous section in terms of rate-distortion theory. The

distortion is here evaluated through thep-th order moment of the quantization error and is thus expressed as

dp,ζ(ω, ǫ, q) = E[|X − X|p] (35)

4This function is defined by:1(0,1)(ǫ) = 1 if 0 < ǫ < 1, 0 otherwise.
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wherep ≥ 1 is a real exponent. In particular,p = 2 corresponds to the mean square error criterion andp = 1 to

the mean absolute one. We will see that considering other values ofp may be of interest.

If X is distributed according to (3), we have

dp,ζ(ω, ǫ, q) = 2ǫ

(∫ q
2

0

ξpf(ξ)dξ +

∞∑

i=1

∫ (i+ 1
2 )q

(i− 1
2 )q

|ξ − ri|
pf(ξ)dξ

)
. (36)

Let the normalized distortion be defined as

ǫ dp,ζ(q) = ωp/βdp,ζ(ω, ǫ, q). (37)

In the following, we will be mainly interested in the operational rate-distortion functions defined, for allD ≥ 0,

by

∀ζ ∈ [−1/2, 1/2], Rp,ζ(ǫ, D) = inf
{q>0 | ǫ dp,ζ(q)≤D}

Hg(ǫ, q) (38)

and

Rp(ǫ, D) = inf
ζ∈[−1/2,1/2]

Rp,ζ(ǫ, D). (39)

Notice that the above infimum can be calculated on a restricted interval as stated below:

Lemma 3:We have

Rp(ǫ, D) = inf
ζ∈[−1/2,0]

Rp,ζ(ǫ, D). (40)

Proof: See Appendix D.

A. High resolution behaviour

Let us first look at the expression of the distortion at high resolution:

Lemma 4:Let ν =
(

1
2 + ζ

)p+1

+
(

1
2 − ζ

)p+1

. As q → 0, we have

dp,ζ(q) =
νqp

p + 1

(
1 + O(q)

)
. (41)

The above relation holds uniformly inζ.5

Proof: See Appendix E.

Whenp = 2 andζ = 0, (41) gives the classical formula for the mean square quantization error, at high resolution

(see [26] for more details). This lemma allows us to derive the following rate-distortion result concerning the BGG

model.

Proposition 4: For a random variable distributed according to (3) withǫ ∈ (0, 1], we have, asD → 0,

Rp,ζ(ǫ, D) = Hǫ + ǫ

(
hβ(1) −

1

p
ln
( (p + 1)D

ǫν

)
+ 1(0,1)(ǫ)

((p + 1)D

ǫν

)1/p β lnD

2pΓ(1/β)

)
+ O(D

1/p
) (42)

and

Rp(ǫ, D) = Hǫ + ǫ

(
hβ(1) − ln 2 −

1

p
ln
((p + 1)D

ǫ

)
+ 1(0,1)(ǫ)

( (p + 1)D

ǫ

)1/p β lnD

pΓ(1/β)

)
+ O(D

1/p
). (43)

5This can be formally expressed as in (135).
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Proof: See Appendix F.

Remark 3:

(i) It can be noticed that, for a small distortion, the optimum operational rate-distortion performance is reached

whenν = 2−p, which corresponds toζ = 0, that is the quantization reconstruction levels are the midpoints

of the decision intervals.

(ii) If we omit the O(D
1/p

lnD) term, a loose approximation to (43) is given by

Rp(ǫ, D) = Hǫ + ǫ

(
hβ(1) − ln 2 −

1

p
ln
( (p + 1)D

ǫ

))
+ o(1). (44)

This expression can be compared with the asymptotic form of the Shannon rate-distortion function [27]:

Rp(ǫ, D) = inf
{X̂ | E[|X−X̂|p]≤ω−p/βD}

I(X ; X̂) (45)

whereI(X ; X̂) is the mutual information between the BGG random variableX of interest and some arbitrary

real-valued random variablêX defined on the same probability space. The asymptotic expression ofR2 can

be obtained from the results in [23], [24] (notice the correction brought by [24]). These results can be

straightforwardly extended to any value ofp by using the fact that, subject to ap-th order moment upper

bound, the differential entropy is maximized for a GG randomvariable of exponentp. Thus, we get

Rp(ǫ, D) = Hǫ + ǫ

(
hβ(1) − hp(1) −

1

p
ln
(pD

ǫ

))
+ o(1). (46)

Consequently, the performance loss related to the use of a uniform scalar quantizer is limited to

Rp(ǫ, D) −Rp(ǫ, D) = ǫ

(
hp(1) − ln 2 −

1

p
ln
(1 + p

p

))
+ o(1)

= ǫ

(
ln Γ(1 + 1/p) +

1

p
+

1

p
ln
( p

1 + p

))
+ o(1). (47)

The difference is plotted in Fig. 4. In the case whenǫ = 1 andp = 2, this gives the well-known difference

of about 0.2546 bit [12].

B. Low resolution behaviour

Our main result in a low resolution context is the following:

Proposition 5: As q → ∞, we have

dp,ζ(q) =





µp −
qp+1e−qβ/2β

2p+1Γ(1/β)q̃β

(
1 − (1 + 2ζ)p +

p

βq̃β

(
1 + (1 + 2ζ)p−1

)
+ O

( 1

q2β

))
if ζ 6= −1/2 or p ≥ 2

µ1 −
q2e−qβ/2β

4Γ(1/β)q̃β

(
1 + O

( 1

q2β

))
if ζ = −1/2 andp = 1

µp −
qp+1e−qβ/2β

2p+1Γ(1/β)q̃β

(
1 +

p

βq̃β
+ O

( 1

qpβ

))
if ζ = −1/2 and1 < p < 2

(48)
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where

µp = ωp/β E[|X |p]

ǫ
=

Γ
(
(p + 1)/β

)

Γ(1/β)
. (49)

Proof: For clarity, some of the technical parts of the proof have been deferred to Appendix G.

We start from the expression (164) of the distortion provided in Lemma 6 in Appendix G. We derive from (94)

that

Q(p+1)/β(qβ
1 ) =1 −

qp+1
1 e−qβ

1

Γ
(
(p + 1)/β

)(
qβ
1 − (p + 1)/β + 1

)
(

1 + O
( 1

q2β

))

=1 −
qp+1
1 e−qβ

1

Γ
(
(p + 1)/β

)
q̃β

(
1 +

p

βq̃β
+ O

( 1

q2β

))
. (50)

In addition,

βq−p−1+β
1 eqβ

1

∫ ∞

q1

|ξ − r1|
pe−ξβ

dξ =

∫ ∞

0

∣∣∣∣∣
( θ

qβ
1

+ 1
)1/β

− 2(ζ + 1)

∣∣∣∣∣

p ( θ

qβ
1

+ 1
)1/β−1

e−θ dθ (51)

where the change of variableθ = ξβ − qβ
1 has been made to obtain the last expression. By invoking now Lemma 7

in Appendix G (withα = q−β
1 andλ = 2(1 + ζ)), we get:

• whenζ 6= −1/2,

βq−p−1+β
1 eqβ

1

∫ ∞

q1

|ξ − r1|
pe−ξβ

dξ = (1 + 2ζ)p −
(
p + (β − 1)(1 + 2ζ)

) (1 + 2ζ)p−1

βqβ
1

+ O

(
1

q2β

)
(52)

• whenζ = −1/2 andp = 1,

βq−2+β
1 eqβ

1

∫ ∞

q1

|ξ − r1|e
−ξβ

dξ =
1

βqβ
1

+ O

(
1

q2β

)
(53)

• whenζ = −1/2 andp > 1,

βq−p−1+β
1 eqβ

1

∫ ∞

q1

|ξ − r1|
pe−ξβ

dξ = O

(
1

qpβ

)
. (54)

By using the relationqβ
1 = q̃β − 1 + 1/β, we find in the first case that

β
q̃β

qp+1
1

eqβ
1

∫ ∞

q1

|ξ − r1|
pe−ξβ

dξ = (1 + 2ζ)p −
p(1 + 2ζ)p−1

βq̃β
+ O

(
1

q2β

)
(55)

while, in the second one,

β
q̃β

q2
1

eqβ
1

∫ ∞

q1

|ξ − r1|e
−ξβ

dξ =
1

βq̃β
+ O

(
1

q2β

)
(56)

and in the third one,

β
q̃β

qp+1
1

eqβ
1

∫ ∞

q1

|ξ − r1|
pe−ξβ

dξ = O

(
1

qpβ

)
. (57)

Altogether, (164), (50) and (55)-(57) yield (48), after some rearrangement.

Remark 4:

(i) An illustration of the results in Lemma 4 and Proposition5 is displayed in Fig. 5.
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(ii) It may be interesting to note that for the standard quantization rule corresponding toζ = 0, the zeroth order

term in parentheses of (48) vanishes, so that this expression reduces to

dp,ζ(q) = µp −
pqp+1e−qβ/2β

2pβΓ(1/β)q̃2β

(
1 + O

( 1

qβ

))
(58)

In contrast, whenζ 6= 0, the zeroth order term is prevalent.

(iii) When ζ > 0 (resp.ζ ≤ 0), it can be observed that, for allp ≥ 1, there existsτp,ζ > 0 such that, ifq > τp,ζ

thendp,ζ(q) > µp (resp.dp,ζ(q) < µp). This clearly shows that choosingζ > 0 results in a poor quantization

strategy.

(iv) According to (36) and (165), for allζ ∈ [−1/2, 1/2], a lower bound fordp,ζ(q) is

dp(q) = 2ωp/β

∫ q
2

0

ξpf(ξ) dξ = µpQ(p+1)/β

( qβ

2β

)
. (59)

Basically,dp is a measure of the truncation error for the values lying in the quantizer dead zone. By using

(94), we get

dp(q) = µp −
qp+1−βe−qβ/2β

2p+1−βΓ(1/β)

(
1 + O

( 1

qβ

))
. (60)

It can be observed from Proposition 5 thatdp,ζ is relatively close to this lower bound whenζ 6= 0.

In order to derive rate-distortion results at low resolution, the following consequence of the previous proposition

will be useful:

Corollary 1: For all ǫ ∈ (0, 1], asq → ∞, we have:

• if ζ 6= 0,
Hg(ǫ, q)

µp − dp,ζ(q)
= ǫ

qβ−p

2β−p
(
1 − (1 + 2ζ)p

)
(
1 + O

(
q−β

(
1 + ln qβ−1

)))
(61)

• if ζ = 0,
Hg(ǫ, q)

µp − dp,ζ(q)
= ǫ

βq2β−p

22β−p+1p

(
1 + O

(
q−β

(
1 + ln qβ−1

)))
. (62)

Proof: Eq. (61) is deduced from (32) and (48). In turn, (32) and (58) lead to (62).

An interesting feature that allows us to quantify the low resolution behaviour is the slope of the tangent line to

the operational rate-distortion curves at the extreme point corresponding to a zero rate and distortionǫµp. This one

can be determined in an explicit manner as shown next.

Proposition 6: For all ǫ ∈ (0, 1], if ζ < 0, we have6

lim
D→(ǫµp)−

Rp,ζ(ǫ, D)

ǫµp − D
=





∞ if p < β

(1 − (1 + 2ζ)p)−1 if p = β

0 if p > β

(63)

6The notationD → (ǫµp)− means thatD goes toǫµp from below.
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and, if ζ = 0,

lim
D→(ǫµp)−

Rp,ζ(ǫ, D)

ǫµp − D
=





∞ if p < 2β

1

4
if p = 2β

0 if p > 2β.

(64)

In addition,

lim
D→(ǫµp)−

Rp(ǫ, D)

ǫµp − D
=






∞ if p < β

1 if p = β

0 if p > β.

(65)

Proof: See Appendix H.

The previous result allows us to deduce the left-sided derivative of the operational rate-distortion functions at

ǫµp:

Corollary 2: For all ǫ ∈ (0, 1], if ζ < 0, we have

∂Rp,ζ(ǫ, D)

∂D

∣∣∣∣
(ǫµp)−

=





−(1 − (1 + 2ζ)p)−1 if p = β

0 if p > β

(66)

and, if ζ = 0,

∂Rp,ζ(ǫ, D)

∂D

∣∣∣∣
(ǫµp)−

=





−
1

4
if p = 2β

0 if p > 2β.
(67)

In addition, we have

∂Rp(ǫ, D)

∂D

∣∣∣∣
(ǫµp)−

=






−1 if p = β

0 if p > β.
(68)

Some final comments should be made about these results:

Remark 5:

(i) We see that the slope factor of the operational rate-distortion functions at low bitrate does not depend onǫ.

However, the value of the distortion for which it is evaluated increases linearly w.r.t.ǫ, that is when the data

become less sparse.

(ii) When p ≥ β, the slope factor ofRp is equal to that ofRp (see (228) whenp = β and notice that the slope

of Rp is nonpositive and it cannot be lower than that ofRp.) This shows the optimality at low resolution of

uniform quantization for BGG random variables with exponent β ≤ p.

(iii) When p ≤ 2β, Eq. (64) shows the suboptimality at low resolution of the quantizer corresponding toζ = 0

(midpoint reconstruction levels), in spite of its frequentuse in practical applications.

(iv) When p = β, the optimal rate-distortion performance is obtained asymptotically when ζ = −1/2 (see

Appendix H), that is whenri = (i − 1/2)q, i ≥ 1. The obtained low resolution rate-distortion behaviour is

similar to that derived in [17]. The latter work is focussed on the Gaussian case (ǫ = 1 andβ = 2) and the
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mean square criterion (p = 2) and the authors consider a uniform quantizer with optimal reconstruction levels

in the mean square sense. To better highlight the connections with our results, it can be noticed that, when

p = 2 (ǫ can be arbitrary), the centroids(r∗i )i≥1 of the positive decision intervals are explicitly given by:

r∗i =

∫ (i+1/2)q

(i−1/2)q ξf(ξ) dξ

pi
= ω−1/β Q2/β(qβ

i+1) − Q2/β(qβ
i )

Q1/β(qβ
i+1) − Q1/β(qβ

i )
. (69)

As q → ∞, we deduce from (94) that

r∗i = (i − 1/2)q
(
1 + O(q−β)

)
. (70)

So, at low resolution, the centroids indeed converge to the lower bound of the decision intervals.

V. CONNECTIONS WITHTRANSFORM CODING

In typical transform coding applications, a vector of real-valued transform coefficientsX = (X1, . . . , Xn)⊤ is

considered, the components of which can be modelled by BGG distributions. For simplicity, assume that these

components are identically distributed, and that the vector of quantized valuesX = (X1, . . . , Xn)⊤ is obtained by

applying the same uniform quantizer to each component ofX.

Our results concerning the entropy are directly applicableto this context since the entropy ofX is

Hg(ǫ, q) = nHg(ǫ, q). (71)

whereHg(ǫ, q) is given by (26).

In turn, the expression of the distortion measure usually has to be modified since the reconstruction error depends

on the reconstruction matrixT of size m × n (with m ≤ n) and is given byT (X − X). Two simple cases are

discussed next:

• In the case of a mean square error criterion, ifT is orthogonal or if the components of the quantization error

vectorX−X are assumed uncorrelated (see [26] for a thorough study of the validity of this assumption), the

distortion takes the form:

d2,ζ(ω, ǫ, q) =
1

n
E[‖T (X − X)‖2] =

‖T ‖2
F

n
E[(X1 − X1)

2] = κd2,ζ(ω, ǫ, q) (72)

where‖ · ‖ denotes the Euclidean norm,‖ · ‖F is the Frobenius norm,d2,ζ(ω, ǫ, q) is given by (36) and

κ =
1

n
‖T ‖2

F. (73)

• WhenT corresponds to a one-dimensional wavelet basis decomposition [1] performed up to a resolution level

J ≥ 1 andn is multiple of2J , the vectorX can be rewritten as[(Xj,k)1≤j≤J,0≤k<2−j n(XJ+1,k)0≤k<2−J n]⊤

and a similar notation can be adopted for the vectorX. Here, the components ofX have been reindexed

by introducing the resolution levelj ∈ {1, . . . , J} and the time locationk where the detail coefficients

(Xj,k)1≤j≤J,0≤k<2−jn are defined. For simplicity, the approximation coefficientsat resolution levelJ have
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been denoted by(XJ+1,k)0≤k<2−J n. A useful norm in the context of wavelet representations is the Besov

norm ‖ · ‖Bs,p,p′
with s > 0 and (p, p′) ∈ [1,∞[2 which applied to the reconstruction error yields:

‖T (X − X)‖Bs,p,p′
=




2−Jn−1∑

k=0

|XJ+1,k − XJ+1,k|
p




1/p

+




J∑

j=1

2−jp′(s+1/2−1/p)
( 2−jn−1∑

k=0

|Xj,k − Xj,k|
p
)p′/p




1/p′

. (74)

More details concerning the relations between this norm andregular function spaces can be found in [28].

If we assume that the components ofX − X are the firstn terms of an independent identically distributed

sequence, the strong law of large number allows us to see that, asn → ∞,

1

2−Jn

2−J n−1∑

k=0

|XJ+1,k − XJ+1,k|
p a.s.
→ E[|XJ+1,0 − XJ+1,0|

p] (75)

∀j ∈ {1, . . . , J},
1

2−jn

2−jn−1∑

k=0

|Xj,k − Xj,k|
p a.s.
→ E[|Xj,0 − Xj,0|

p] (76)

where
a.s.
→ denotes the almost sure convergence. Hence,

1

n
‖T (X − X)‖p

Bs,p,p′

a.s.
→ κ E[|X1,0 − X1,0|

p] (77)

where

κ = 2−J/p + 2−(s+1/2)
(1 − 2−Jp′(s+1/2)

1 − 2−p′(s+1/2)

)1/p′

. (78)

This implies that, as a final form of the distortion function,one can take

dp,ζ(ω, ǫ, q) = lim
n→∞

1

n
E[‖T (X − X)‖p

Bs,p,p′
] = κE[|X1,0 − X1,0|

p] = κdp,ζ(ω, ǫ, q). (79)

Similar relations hold in the two-dimensional case [29].

So, compared with the distortion we considered in Section IV, just a scaling factorκ has to be introduced in the

two previous cases. In particular, by redefining the operational rate-distortion functionRp,ζ as: for allD ≥ 0,

∀ζ ∈ [−1/2, 1/2], nRp,ζ(ǫ, D) = inf
{q>0 |ωp/βdp,ζ(ω,ǫ,q)≤κD}

Hg(ǫ, q) (80)

and, subsequently applying Definition (39) forRp, the results in Propositions 4 and 6 and Corollary 2 are unchanged.

VI. CONCLUSION

At high bitrate, the main result in this paper is Proposition4 which provides accurate approximations of the

operational rate-distortion functions for a uniformly quantized BGG source. At low bitrate, asymptotic formulas

have also been obtained for the entropy in (32) and for the distortion in (48), which have allowed us in Proposition 6

to deduce the slope factor of the operational rate-distortion function for a distortion equal toǫµp. At high bitrate,

the uniform quantizer remains suboptimal but the difference w.r.t. the Shannon optimal bound is a linear function

of the mixture parameterǫ (see (47)) and it therefore becomes smaller when the data aresparser. At low bitrate,
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we have generalized the results in [17] by showing that the slope factor of the rate-distortion functionRp is the

optimal one, provided that the orderp of the distortion measure is greater than or equal to the exponentβ and the

positive (resp. negative) quantizer reconstruction levels are chosen equal to the lower (resp. upper) bounds of the

decision intervals. The application of these results to transform coding was also briefly discussed in two simple

cases.

APPENDIX A

PROOF OFLEMMA 1

Sincef is a decreasing function onR+, we have, for alli > 0,

qf
(
(i + 1/2)q

)
≤ pi ≤ qf

(
(i − 1/2)q

)
(81)

Noticing that

−pi ln pi +

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) ln f(ξ) dξ =

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ)(ln f(ξ) − ln pi) dξ (82)

we get the following inequality:

− pi ln pi +

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) ln f(ξ) dξ ≤

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ)
(
ln f(ξ) − ln f

(
(i + 1/2)q

)
− ln q

)
dξ. (83)

On the other hand, from the positivity of the Kullback-Leibler divergence, we obtain
∫ (i+ 1

2 )q

(i− 1
2 )q

f(ξ)

pi
ln
(f(ξ)/pi

1/q

)
dξ ≥ 0 (84)

which is equivalent to

−pi ln pi +

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) ln f(ξ)dξ + ln q

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) dξ ≥ 0. (85)

Therefore, wheni ≥ 2, (83) and (85) yield

0 ≤− pi ln pi +

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) ln f(ξ) dξ + ln q

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) dξ

≤
(

ln f((i − 1/2)q) − ln f
(
(i + 1/2)q)

)∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) dξ

= ωqβ
(
(i + 1/2)β − (i − 1/2)β

) ∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) dξ. (86)

Besides,

(i + 1/2)β − (i − 1/2)β = iβ
((

1 +
1

2i
)β − (1 −

1

2i

)β
)

= 2iβ
∞∑

k=0

β(β − 1) . . . (β − 2k)

(2k + 1)!

( 1

2i

)2k+1

≤ βiβ−1 (87)

where the upper bound follows from the fact that1 ≤ β ≤ 2. Consequently,

0 ≤ −pi ln pi +

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) ln f(ξ) dξ + ln q

∫ (i+ 1
2 )q

(i− 1
2 )q

f(ξ) dξ ≤ βωq

∫ (i+ 1
2 )q

(i− 1
2 )q

(ξ + q/2)β−1f(ξ) dξ. (88)
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It can be deduced that, forn ≥ 2,

0 ≤ −

∞∑

i=n

pi ln pi +

∫ ∞

(n− 1
2 )q

f(ξ) ln f(ξ)dξ + ln q

∫ ∞

(n− 1
2 )q

f(ξ)dξ ≤ I (89)

where

I = βωq

∫ ∞

(n− 1
2 )q

(ξ + q/2)β−1f(ξ) dξ. (90)

By noticing thatξ ≥ (n − 1/2)q ⇔ ξ + q/2 ≤ 2nξ/(2n− 1), it can be concluded that

I ≤ βωq
( 2n

2n− 1

)β−1
∫ ∞

(n− 1
2 )q

ξβ−1f(ξ) dξ =
βq

2Γ(1/β)

( 2n

2n− 1

)β−1

e−(n− 1
2 )βqβ

. (91)

Combining (89) and (91) leads to (15).

APPENDIX B

PROOF OFPROPOSITION2

Settingn = 2 in (16) and (17), we get

Hf (q) = − Q1/β

(
qβ
1

)
lnQ1/β

(
qβ
1

)
−
(
Q1/β

(
qβ
2

)
− Q1/β

(
qβ
1

))
ln
(Q1/β

(
qβ
2

)
− Q1/β

(
qβ
1

)

2

)

+
(
hβ(1) − ln q

)(
1 − Q1/β

(
qβ
2 )
)

+
q2

Γ(1/β)
e−qβ

2 + ∆2. (92)

We further know [30, p.891] that, for alla ≤ 1,

Qa(ξ) =
ξa

aΓ(a)
+ O(ξ2a), asξ → 0 (93)

and [25] for alla > 0,

Qa(ξ) = 1 −
ξae−ξ

Γ(a)(ξ − a + 1)

(
1 +

1 − a

(ξ − a + 1)2
+ O(ξ−3)

)
, asξ → ∞. (94)

Whenq → 0, (18) allows us to show that

∆2 = O(q) (95)

and, by using (92) and (93), we obtain

Hf (q) = −
βq1

Γ(1/β)

(
ln q + ln

( β

2Γ(1/β)

))
+ O(q2 ln q)

−
βq

Γ(1/β)

(
ln q + ln

( β

2Γ(1/β)

))
+ O(q2 ln q) +

(
hβ(1) − ln q

)(
1 −

βq2

Γ(1/β)
+ O(q2)

)
+ O(q) (96)

which leads to (21).

Whenq → ∞, we deduce from (94) that

Q1/β(qβ
2 ) − Q1/β(qβ

1 ) = 1 − Q1/β(qβ
1 ) + O(q1−βe−qβ

2 ). (97)

Invoking again (94), we have

ln
(Q1/β(qβ

2 ) − Q1/β(qβ
1 )

2

)
= ln

(1 − Q1/β(qβ
1 )

2

)
+ O(eqβ

1−qβ
2 ) (98)
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and

−
(
Q1/β(qβ

2 ) − Q1/β(qβ
1 )
)
ln
(Q1/β(qβ

2 ) − Q1/β(qβ
1 )

2

)
= −

(
1 − Q1/β(qβ

1 )
)
ln
(1 − Q1/β(qβ

1 )

2

)

+ O(qe−qβ
2 ) (99)

where the fact thatln
(
Q1/β(qβ

2 ) − Q1/β(qβ
1 )
)

= O(qβ) has been used. Now, from (12), (18) and (92), we get

Hf (q) = −p0 ln p0 − (1 − p0) ln
(1 − p0

2

)
+
(
hβ(1) − ln q

) q1−β
2

Γ(1/β)
e−qβ

2 + O(q e−qβ
2 ) (100)

from which (22) follows. Using now (12) and (94), we find that

p0 = 1 −
q1e

−qβ
1

Γ(1/β)(qβ
1 + 1 − 1/β)

(
1 +

1 − 1/β

(qβ
1 + 1 − 1/β)2

+ O
( 1

q3β

))
(101)

and, consequently,

−p0 ln p0 =
q1e

−qβ
1

Γ(1/β)(qβ
1 + 1 − 1/β)

(
1 +

1 − 1/β

(qβ
1 + 1 − 1/β)2

+ O
( 1

q3β

))
(102)

ln
(1 − p0

2

)
= −qβ

1 − ln(qβ
1 + 1 − 1/β) + ln q1 − ln

(
2Γ(1/β)

)
+ O

( 1

q2β

)
(103)

−(1 − p0) ln
(1 − p0

2

)
=

q1e
−qβ

1

Γ(1/β)(qβ
1 + 1 − 1/β)

(
1 +

1 − 1/β

(qβ
1 + 1 − 1/β)2

)
(
qβ
1 + ln(qβ

1 + 1 − 1/β)

− ln q1 + ln
(
2Γ(1/β)

))
+ O(q1−3βe−qβ

1 ). (104)

Eqs. (102) and (104) readily yield (23).

APPENDIX C

PROOF OFLEMMA 2

The entropy of the quantized BGG random variable is

Hg(ǫ, q) = −p′0 ln p′0 − 2

∞∑

i=1

p′i ln p′i (105)

where

p′0 = 1 − ǫ + ǫp0 (106)

p′i = ǫpi, i ≥ 1. (107)

This leads to

Hg(ǫ, q) = −(1 − ǫ + ǫp0) ln(1 − ǫ + ǫp0) − 2ǫ(

∞∑

i=1

pi ln pi + ln ǫ

∞∑

i=1

pi)

= −(1 − ǫ + ǫp0) ln(1 − ǫ + ǫp0) + ǫ(Hf (q) + p0 ln p0) − (1 − p0)ǫ ln ǫ (108)
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which yields (26).

In addition, we have, for allǫ ∈ (0, 1],7

∂Φ

∂ǫ
(p0, ǫ) = (1 − p0) ln

(1 − (1 − p0)ǫ

ǫ

)
+ p0 ln p0 (109)

∂2Φ

∂ǫ2
(p0, ǫ) = −

(1 − p0)
2

1 − (1 − p0)ǫ
−

1 − p0

ǫ
< 0. (110)

Therefore,ǫ 7→ Φ(p0, ǫ) is a strictly concave function such thatΦ(p0, 0) = 0 and

Φ(p0, ǫ) = (ǫ − 1) ln p0 + O
(
(ǫ − 1)2

)
, as ǫ → 1. (111)

SinceHg(·, q) is a linear perturbation of this function, it is also a strictly concave function with the desired values

when ǫ = 0 or ǫ is close to 1. To show thatHg(·, q) is increasing, it is then sufficient to check that its left-sided

derivative at 1 is positive. According to (109), this derivative is given by

∂Hg

∂ǫ
(1, q) = ln p0 + Hf (q). (112)

On the other hand, sincef is even and decreasing overR+,

∀i ≥ 1, pi < p0. (113)

Thus, according to (11),

Hf (q) > −p0 ln p0 − 2 lnp0

∞∑

i=1

pi = − ln p0 (114)

that is, ∂Hg

∂ǫ (1, q) > 0.

APPENDIX D

PROOF OFLEMMA 3

For everyi ≥ 1, the function

ϕp : R+ → R+ : r 7→

∫ (i+1/2)q

(i−1/2)q

|ξ − r|pf(ξ)dξ (115)

is convex on[0,∞) and its minimizerr∗i ∈ [(i − 1/2)q, (i + 1/2)q] satisfies
∫ r∗

i

(i−1/2)q

(r∗i − ξ)p−1f(ξ) dξ =

∫ (i+1/2)q

r∗

i

(ξ − r∗i )p−1f(ξ) dξ. (116)

(This minimizer is unique since, forp > 1, ϕp is strictly convex and, whenp = 1, r∗i is the median off over

[(i − 1/2)q, (i + 1/2)q], which is uniquely defined asf is decreasing.) This minimizer belongs to[(i − 1/2)q, iq].

Indeed, ifiq < r∗i ≤ (i + 1/2)q ⇔ (i − 1/2)q < 2r∗i − (i + 1/2)q ≤ r∗i , we would have

0 <

∫ 2r∗

i −(i+1/2)q

(i−1/2)q

(r∗i − ξ)p−1f(ξ) dξ = −

∫ r∗

i

2r∗

i −(i+1/2)q

(r∗i − ξ)p−1f(ξ) dξ +

∫ (i+1/2)q

r∗

i

(ξ − r∗i )p−1f(ξ) dξ

=

∫ (i+1/2)q

r∗

i

(ξ − r∗i )p−1
(
f(ξ) − f(2r∗i − ξ)

)
dξ ≤ 0 (117)

7When ǫ = 1, the provided expressions correspond to left-sided derivatives.
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where the last inequality comes from the fact thatf is decreasing onR+.

The convexity ofϕp implies that this function is increasing on[r∗i ,∞) and, sincer∗i ≤ iq, we have, for every

r ∈ [iq, (i + 1/2)q]:
∫ (i+1/2)q

(i−1/2)q

|ξ − iq|pf(ξ)dξ = ϕp(iq) ≤ ϕp(r) =

∫ (i+1/2)q

(i−1/2)q

|ξ − r|pf(ξ)dξ. (118)

Recalling (36) and (37), we deduce that, for everyζ ∈ [0, 1/2] andq > 0,

dp,0(q) ≤ dp,ζ(q). (119)

Consequently, for everyζ ∈ [0, 1/2] andD > 0,

{q > 0 | dp,ζ(q) ≤ D} ⊂ {q > 0 | dp,0(q) ≤ D} (120)

which, according to (38), yields

Rp,ζ(ǫ, D) ≥ Rp,0(ǫ, D). (121)

This shows that the infimum in (39) can be restricted toζ ∈ [−1/2, 0].

APPENDIX E

PROOF OFLEMMA 4

We have

dp,ζ(q) = 2

(∫ q1

0

ξpf1(ξ)dξ +

∞∑

i=1

∫ qi+1

qi

|ξ − ri|
pf1(ξ)dξ

)
(122)

wheref1(ξ) = ω−1/βf(ω−1/βξ) andri = ω1/βri. Sincef1 is a decreasing function overR+, we first notice that

0 ≤

∫ q1

0

ξpf1(ξ)dξ ≤ f1(0)

∫ q1

0

ξpdξ = f1(0)
qp+1
1

p + 1
(123)

and, therefore, ∫ q1

0

ξpf1(ξ)dξ = O(qp+1). (124)

We also have, for alli ≥ 1,

f1(qi+1)

∫ qi+1

qi

|ξ − ri|
pdξ ≤

∫ qi+1

qi

|ξ − ri|
pf1(ξ)dξ ≤ f1(qi)

∫ qi+1

qi

|ξ − ri|
pdξ (125)

with ∫ qi+1

qi

|ξ − ri|
pdξ =

νqp+1

p + 1
. (126)

In addition, we have the following inequalities:

∀ξ ∈ [qi+1, qi+2], f1(ξ) ≤ f1(qi+1) (127)

⇒

∫ qi+2

qi+1

f1(ξ)dξ ≤ qf1(qi+1) (128)
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and, for alli ≥ 2,

∀ξ ∈ [qi−1, qi], f1(qi) ≤ f1(ξ) (129)

⇒ qf1(qi) ≤

∫ qi

qi−1

f1(ξ)dξ. (130)

We deduce from (125), (126), (128) and (130) that

νqp

p + 1

∫ ∞

q2

f1(ξ)dξ ≤

∞∑

i=1

∫ qi+1

qi

|ξ − ri|
pf1(ξ)dξ ≤

νqp+1

p + 1
f1(q1) +

νqp

p + 1

∫ ∞

q1

f1(ξ)dξ (131)

which leads to

νqp

2(p + 1)

(
1 − Q1/β(qβ

2 )
)
≤

∞∑

i=1

∫ qi+1

qi

|ξ − ri|
pf1(ξ)dξ ≤

νqp+1

p + 1
f1(0) +

νqp

2(p + 1)

(
1 − Q1/β(qβ

1 )
)
. (132)

We further know from (93) that, asq → 0, bothQ1/β(qβ
2 ) andQ1/β(qβ

1 ) areO(q). We conclude from (132) that

∞∑

i=1

∫ qi+1

qi

|ξ − ri|
pf1(ξ)dξ =

νqp

2(p + 1)

(
1 + O(q)

)
(133)

where the local bound inO(q) holds uniformly inν (thus, inζ). Due to the fact that the integral in (124) does not

depend onζ andν ≥ 2−p, we have then, uniformly inζ,
∫ q1

0

ξpf1(ξ)dξ +

∞∑

i=1

∫ qi+1

qi

|ξ − ri|
pf1(ξ)dξ =

νqp

2(p + 1)

(
1 + O(q)

)
(134)

which, combined with (122), yields the desired result.

APPENDIX F

PROOF OFPROPOSITION4

According to Lemma 4, there existsη > 0 andA > 0 such that, for allζ ∈ [−1/2, 1/2] andq ∈ (0, η),

dp,ζ(q) =
νqp

p + 1

(
1 + q aζ(q)

)
(135)

and |aζ(q)| ≤ A. By noticing that, for allθ ≥ −1,
∣∣(1 + θ)1/p − 1

∣∣ ≤ |θ|, we deduce that
∣∣∣∣
1

q

((p + 1)dp,ζ(q)

ν

)1/p

− 1

∣∣∣∣ =
∣∣∣
(
1 + q aζ(q)

)1/p
− 1
∣∣∣ ≤ q |aζ(q)| ≤ Aq. (136)

This shows that
(
dp,ζ(q))

1/p = q
( ν

p + 1

)1/p(
1 + q ãζ(q)

)
(137)

where|ãζ(q)| ≤ A. Without loss of generality, one can chooseη < 1/A so that1 + q ãζ(q) > 0.

Let us first assume thatdp,ζ(q) ≤ D/ǫ whereD has been chosen small enough so thatq < η. It follows from

(137) that we have the equivalence:

ǫ dp,ζ(q) ≤ D ⇔ q ≤
( (p + 1)D

νǫ

)1/p(
1 + q ãζ(q)

)−1
. (138)

Sinceν ≥ 2−p, this entails that

q ≤
( (p + 1)D

νǫ

)1/p(
1 − ηA

)−1
≤ 2
((p + 1)D

ǫ

)1/p(
1 − ηA

)−1
. (139)
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Consequently, by defining

γ1(D) = 2A
((p + 1)D

ǫ

)1/p(
1 − ηA

)−1
(140)

we have

q ãζ(q) ≥ −γ1(D). (141)

So, by choosingD small enough,1 − γ1(D) > 0 and (138) leads to

q ≤
ρ1(D)

ν1/p
(142)

where

ρ1(D) =
( (p + 1)D

ǫ

)1/p(
1 − γ1(D)

)−1
. (143)

In other words, we have shown that, provided thatD is small enough,

{q | ǫ dp,ζ(q) ≤ D} ⊂ {q | q ≤ ν−1/pρ1(D)}. (144)

From (38), it can be concluded that

Rp,ζ(ǫ, D) ≥ inf
q≤ν−1/pρ1(D)

Hg(ǫ, q) = Hg

(
ǫ, ν−1/pρ1(D)

)
. (145)

where Remark 2(i) has been used for the last equality. By noticing that

ρ1(D) =
((p + 1)D

ǫ

)1/p(
1 + O(D

1/p
)
)

(146)

and using (29), we derive that

Rp,ζ(ǫ, D) ≥ Hǫ + ǫ

(
hβ(1) −

1

p
ln
((p + 1)D

ǫν

)
+ 1(0,1)(ǫ)

( (p + 1)D

ǫν

)1/p β ln D

2pΓ(1/β)

)
+ O(D

1/p
). (147)

Let us now assume thatq is such that

q ≤
ρ2(D)

ν1/p
(148)

where

ρ2(D) =
((p + 1)D

ǫ

)1/p(
1 + γ2(D)

)−1
(149)

and

γ2(D) = 2A
( (p + 1)D

ǫ

)1/p

. (150)

We have then

γ2(D)
(
1 + γ2(D)

)
≥ 2A

( (p + 1)D

ǫ

)1/p

≥ A
( (p + 1)D

νǫ

)1/p

(151)

⇔ γ2(D) ≥ A
((p + 1)D

νǫ

)1/p(
1 + γ2(D)

)−1
. (152)

It is clear from (148) and (149) that, by choosingD small enough, we haveq < η. We deduce from these two

equations and (152) that

γ2(D) ≥ Aq ≥ ãζ(q)q (153)
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which yields

q ≤
( (p + 1)D

νǫ

)1/p(
1 + q ãζ(q)

)−1
. (154)

By using (138), we conclude that, forD small enough,

{q | q ≤ ν−1/pρ2(D)} ⊂ {q | ǫ dp,ζ(q) ≤ D}. (155)

Consequently, by using (38) and Remark 2(i),

Rp,ζ(ǫ, D) ≤ inf
q≤ν−1/pρ2(D)

Hg(ǫ, q) = Hg

(
ǫ, ν−1/pρ2(D)

)
. (156)

Since

ρ2(D) =
((p + 1)D

ǫ

)1/p(
1 + O(D

1/p
)
)

(157)

we deduce from (29) that

Rp,ζ(ǫ, D) ≤ Hǫ + ǫ

(
hβ(1) −

1

p
ln
((p + 1)D

ǫν

)
+ 1(0,1)(ǫ)

( (p + 1)D

ǫν

)1/p β ln D

2pΓ(1/β)

)
+ O(D

1/p
). (158)

Combining (147) and (158) yields (42).

We proceed similarly to prove (43). Instead of (145), we havejust to use the fact that, forD small enough,

Rp(ǫ, D) ≥ inf
−1/2≤ζ≤0

q≤ν−1/pρ1(D)

Hg(ǫ, q) = Hg

(
ǫ, 2ρ1(D)

)
(159)

since the minimum value ofν is reached whenζ = 0 and it is equal to2−p. In the same way, (156) has to be

replaced by

Rp(ǫ, D) ≤ inf
−1/2≤ζ≤0

q≤ν−1/pρ2(D)

Hg(ǫ, q) = Hg

(
ǫ, 2ρ2(D)

)
. (160)

APPENDIX G

TECHNICAL RESULTS FOR THE PROOF OFPROPOSITION5

In this appendix, we provide some preliminary results for the proof of Proposition 5.

Lemma 5:For all n ≥ 1, we have, asq → ∞,

ωp/β
∞∑

i=n

∫ (i+ 1
2 )q

(i− 1
2 )q

|ξ − ri|
pf(ξ)dξ ≤

(2n − 1)qp+1e−qβ
n

4Γ(1/β)q̃β
n

(
1 + O

( 1

q2β

))
(161)

whereq̃n = (qβ
n + 1 − 1/β)1/β.

Proof: For all i ≥ n, we have the inequality:

ωp/β

∫ (i+ 1
2 )q

(i− 1
2 )q

|ξ − ri|
pf(ξ)dξ ≤ qppi (162)

and, consequently,

ωp/β
∞∑

i=n

∫ (i+ 1
2 )q

(i− 1
2 )q

|ξ − ri|
pf(ξ)dξ ≤ qp

(
1

2
− P

(
0 ≤ X̃ ≤ (n − 1/2)q

))
=

qp

2

(
1 − Q1/β(qβ

n)
)

(163)

whereX̃ is a GG random variable distributed according to (1). The result then follows from (94).
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Lemma 6:As q → ∞, we have

dp,ζ(q) =
1

Γ(1/β)

(
Γ
(p + 1

β

)
Q(p+1)/β(qβ

1 ) + β

∫ ∞

q1

|ξ − r1|
pe−ξβ

dξ

)
+ O

(
qp+1−βe−qβ

2
)
. (164)

Proof: According to (36), the first integral term in the expression of dp,ζ(q)/2 is

ωp/β

∫ q
2

0

ξpf(ξ) dξ =
Γ
(
(p + 1)/β

)

2Γ(1/β)
Q(p+1)/β(qβ

1 ). (165)

The second term in the expression ofdp,ζ(q)/2 is

ωp/β

∫ 3q
2

q
2

|ξ − r1|
pf(ξ) dξ =

β

2Γ(1/β)

(∫ ∞

q1

|ξ − r1|
pe−ξβ

dξ −

∫ ∞

q2

(ξ − r1)
pe−ξβ

dξ
)
. (166)

In addition, by making the change of variableθ = ξβ − qβ
2 , we find that

βq−p−1+β
2 eqβ

2

∫ ∞

q2

(ξ − r1)
pe−ξβ

dξ =

∫ ∞

0

(( θ

qβ
2

+ 1
)1/β

−
2

3
(1 + ζ)

)p ( θ

qβ
2

+ 1
)1/β−1

e−θ dθ. (167)

Assuming thatq ≥ 2/3, we have:

∀θ ≥ 0, 1 ≤
( θ

qβ
2

+ 1
)1/β

≤ (θ + 1)1/β (168)

and, sincep ≥ 1 andβ ≥ 1,

0 ≤

∫ ∞

0

(( θ

qβ
2

+ 1
)1/β

−
2

3
(1 + ζ)

)p ( θ

qβ
2

+1
)1/β−1

e−θ dθ ≤

∫ ∞

0

(
(θ+1)1/β−

2

3
(1+ζ)

)p

e−θ dθ < ∞. (169)

This shows that ∫ ∞

q2

(ξ − r1)
pe−ξβ

dξ = O(qp+1−βe−qβ
2 ). (170)

By invoking now Lemma 5 withn = 2, it can be claimed that

ωp/β
∞∑

i=2

∫ (i+ 1
2 )q

(i− 1
2 )q

|ξ − ri|
pf(ξ)dξ = O

(
qp+1−βe−qβ

2
)
. (171)

By using (36) in conjunction with (165), (166), (170) and (171), the expression in (164) is obtained.

Lemma 7:Let λ ≥ 1 and let

∀α ∈ R+, I(α) =

∫ ∞

0

∣∣(αθ + 1)1/β − λ
∣∣p(αθ + 1)1/β−1e−θdθ. (172)

Then, asα → 0

I(α) =






(λ − 1)p −
α

β
(λ − 1)p−1

(
p + (β − 1)(λ − 1)

)
+ O(α2) if λ 6= 1

α

β
+ O(α2) if λ = 1 andp = 1

O(αp) if λ = 1 andp > 1.

(173)

Proof: We distinguish the two cases :λ > 1 andλ = 1.
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(i) Caseλ > 1: Let us assume that0 < α < 1. We can decompose the integral of interest as follows:

I(α) =

∫ λβ
−1

α

0

(
λ−(αθ+1)1/β

)p
(αθ+1)1/β−1e−θdθ+

∫ ∞

λβ
−1

α

(
(αθ+1)1/β −λ

)p
(αθ+1)1/β−1e−θdθ.

(174)

Let us now focus on the first integral on the right-hand side of(174). This reads

I1(α) =

∫ λβ
−1

α

0

ϕ(αθ)e−θdθ (175)

where

ϕ : R+ → R : u 7→
∣∣λ − (u + 1)1/β

∣∣p(u + 1)1/β−1. (176)

The latter function is continuously differentiable8 on [0, λβ − 1] and it is twice differentiable on[0, λβ − 1).

Its first and second derivatives on the considered intervalsare given by

ϕ′(u) = −
1

β
v(u)1−2β

(
λ − v(u)

)p−1(
(p + 1 − β)v(u) + (β − 1)λ

)
(177)

and

ϕ′′(u) =
1

β2
v(u)1−3β

(
λ−v(u)

)p−2(
(p+1−β)(p+1−2β)(v(u))2+(β−1)(3p+2−4β)λv(u)+(β−1)(2β−1)λ2

)

(178)

wherev(u) = (u+1)1/β . By performing a Taylor-Mc Laurin expansion ofϕ, we get, for allθ ∈ [0, (λβ−1)/α],

ϕ(αθ) = ϕ(0) + ϕ′(0)αθ +
1

2
ϕ′′(µ)(αθ)2

= (λ − 1)p −
1

β
(λ − 1)p−1

(
p + (β − 1)(λ − 1)

)
αθ +

1

2
ϕ′′(µ)α2θ2 (179)

where0 < µ < αθ. In addition, since it has been assumed thatα < 1, we have1 < v(µ) < (αθ + 1)1/β <

(θ + 1)1/β (which implies0 < v(µ)1−3β < 1) and

|ϕ′′(µ)| ≤ ρα(θ) (180)

where the expression of the upper boundρα(θ) depends on the value of the real parameterp:

(a) Whenp ≥ 2, (λ − v(µ))p−2 ≤ (λ − 1)p−2 and one can take

ρα(θ) =
1

β2
(λ−1)p−2

(
(p+1−β)|p+1−2β|(θ+1)2/β+(β−1)(3p+2−4β)λ(θ+1)1/β+(β−1)(2β−1)λ2

)
.

(181)

(b) Whenp = 1, the second derivative takes the following simplified form:

ϕ′′(µ) =
β − 1

β2
v(µ)1−3β

(
2(2 − β)v(µ) + (2β − 1)λ

)
(182)

thus yielding

ρα(θ) =
β − 1

β2

(
2(2 − β)(θ + 1)1/β + (2β − 1)λ

)
. (183)

8We consider one-sided derivatives at the interval boundaries.
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(c) When1 < p < 2, we take

ρα(θ) =
1

β2

(
λ − (αθ + 1)1/β

)p−2(
(p + 1 − β)|p + 1 − 2β|(αθ + 1)2/β

+ (β − 1)|3p + 2 − 4β|λ(αθ + 1)1/β + (β − 1)(2β − 1)λ2
)
. (184)

Now, it can be deduced from (175), (179) and (180) that

∣∣∣I1(α)−(λ−1)p

∫ λβ
−1

α

0

e−θdθ+
α

β
(λ−1)p−1

(
p+(β−1)(λ−1)

) ∫ λβ
−1

α

0

θe−θdθ
∣∣∣ ≤

α2

2

∫ λβ
−1

α

0

θ2ρα(θ)e−θdθ.

(185)

This leads to
∣∣∣∣∣I1(α) − (λ − 1)p +

α

β
(λ − 1)p−1

(
p + (β − 1)(λ − 1)

)
+ O

(e−(λβ−1)/α

α

)∣∣∣∣∣ ≤
α2

2

∫ ∞

0

θ2ρα(θ)e−θdθ.

(186)

In the cases whenp = 1 or p ≥ 2, it can be verified from the expressions (181) and (182) that the integral

in the upper bound is not dependent onα and it is convergent. This implies:

I1(α) = (λ − 1)p −
α

β
(λ − 1)p−1

(
p + (β − 1)(λ − 1)

)
+ O(α2). (187)

In the case when1 < p < 2, we decompose the upper bound integral in (185) as

∫ λβ
−1

α

0

θ2ρα(θ)e−θdθ =

∫ η
α

0

θ2ρα(θ)e−θdθ +

∫ λβ
−1

α

η
α

θ2ρα(θ)e−θdθ (188)

where0 < η < λβ − 1. From (184), we find that, for allθ ∈ [0, η/α],

ρα(θ) ≤ ρ =
1

β2

(
λ − (η + 1)1/β

)p−2(
(p + 1 − β)|p + 1 − 2β|(η + 1)2/β

+ (β − 1)|3p + 2 − 4β|λ(η + 1)1/β + (β − 1)(2β − 1)λ2
)

(189)

and, consequently, ∫ η
α

0

θ2ρα(θ)e−θdθ ≤ ρ

∫ ∞

0

θ2e−θdθ = 2ρ. (190)

Besides, after the change of variableτ = αθ, the second integral in the right-hand side of (188) can be

rewritten as
∫ λβ

−1
α

η
α

θ2ρα(θ)e−θdθ =

∫ λβ−1

η

τ2ρ1(τ)
e−τ/α

α3
dτ ≤

e−η/α

α3

∫ λβ−1

η

τ2ρ1(τ)dτ. (191)

The latter integral is convergent since(λ − (τ + 1)1/β)p−2 = O
(
(λβ − 1 − τ)p−2

)
, as τ → λβ − 1, and

−1 < p − 2 < 0. By using this fact in combination with (190) and (188), we conclude that, asα → 0,

∫ λβ
−1

α

0

θ2ρα(θ)e−θdθ = O(1) (192)

which, together with (185), allows us to claim that (187) still holds when1 < p < 2.
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We finally observe that the last term in (174) can be re-expressed as

I2(α) = e−
λβ

−1
α

∫ ∞

0

ϕ(αθ + λβ − 1)e−θdθ (193)

where, forα < 1,

0 ≤ ϕ(αθ + λβ − 1) ≤
(
(θ + λβ)1/β − λ

)p
(194)

sinceλ ≥ 1 ⇒ (αθ + λβ)1/β−1 ≤ 1. This yields

I2(α) = O(e−
λβ

−1
α ). (195)

As limα→0 α−2e−
λβ

−1
α = 0, we deduce from (174), (187) and (195) that (173) holds.

(ii) Caseλ = 1: We have then, for allα > 0,

I(α) =

∫ ∞

0

(
(αθ + 1)1/β − 1

)p
(αθ + 1)1/β−1e−θdθ. (196)

(a) Whenp = 1, this integral can be expressed as

I(α) =α1/β−1e1/α

∫ ∞

1/α

(α1/βu1/β − 1)pu1/β−1e−udu

=e1/α
(
α2/β−1

∫ ∞

1/α

u2/β−1e−udu − α1/β−1

∫ ∞

1/α

u1/β−1e−udu
)

(197)

where the change of variableu = θ + 1/α has been performed to get the first equality. From (8) and

(94), we deduce that

I(α) =
α−1

α−1 − 2
β + 1

−
α−1

α−1 − 1
β + 1

+ O(α2) =
α

β
+ O(α2). (198)

(b) Let us now consider the subcasep > 1. By integration by parts, (196) becomes

I(α) =
β

(p + 1)α

∫ ∞

0

(
(αθ + 1)1/β − 1

)p+1
e−θdθ. (199)

Sinceβ ≥ 1, for everyθ ≥ 0, (αθ + 1)1/β ≤ αθ + 1, which allows us to upper boundI(α) ≥ 0 by

I(α) =
βαp

(p + 1)

∫ ∞

0

θp+1e−θdθ = βΓ(p + 1)αp. (200)

Consequently,I(α) = O(αp).

In summary, we have proven that (173) also holds whenλ = 1.

APPENDIX H

PROOF OFPROPOSITION6

We proceed similarly to the proof of [17].

Proof of (63) and (64): Let us first calculate

lim sup
D→(ǫµp)−

Rp,ζ(ǫ, D)

ǫµp − D
= α ∈ (−∞,∞]. (201)
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The above equality means that

lim
η→0+

sup
{Rp,ζ(ǫ, D)

ǫµp − D
, ǫ(µp − η) < D < ǫµp

}
= α. (202)

In addition,dp,ζ is a continuous function and, according to (48),

lim
q→∞

dp,ζ(q) = µp (203)

and (see Remark 4(iii))

∃τ > 0 such that ∀q > τ, dp,ζ(q) < µp. (204)

It can then be deduced from (202) that

lim sup
q→∞

Rp,ζ

(
ǫ, ǫdp,ζ(q)

)

µp − dp,ζ(q)
= ǫα. (205)

Using now (38), we have

lim sup
q→∞

Rp,ζ

(
ǫ, ǫdp,ζ(q)

)

µp − dp,ζ(q)
≤ lim sup

q→∞

Hg(ǫ, q)

µp − dp,ζ(q)
= lim

q→∞

Hg(ǫ, q)

µp − dp,ζ(q)
(206)

where the last limit can be derived from (61) and (62). In summary, we have proved that

ǫ lim sup
D→(ǫµp)−

Rp,ζ(ǫ, D)

ǫµp − D
≤ lim

q→∞

Hg(ǫ, q)

µp − dp,ζ(q)
. (207)

Let us now setD < ǫµp. From the definition ofRp,ζ in (38), for all η > 0 there existsqη such thatǫdp,ζ(qη) ≤ D

andHg(ǫ, qη)−η < Rp,ζ(ǫ, D) ≤ Hg(ǫ, qη). This holds in particular whenη = η(D) = (ǫµp−D)2. Consequently,

Rp,ζ(ǫ, D)

ǫµp − D
>

Hg(ǫ, qη(D)) − η(D)

ǫµp − D
(208)

and

lim inf
D→(ǫµp)−

Rp,ζ(ǫ, D)

ǫµp − D
≥ lim inf

D→(ǫµp)−

Hg(ǫ, qη(D)) − η(D)

ǫµp − D
= lim inf

D→(ǫµp)−

Hg(ǫ, qη(D))

ǫµp − D
. (209)

Furthermore, we have

0 <
1

µp − dp,ζ(qη(D))
≤

ǫ

ǫµp − D
(210)

which, combined with (209), yields

ǫ lim inf
D→(ǫµp)−

Rp,ζ(ǫ, D)

ǫµp − D
≥ lim inf

D→(ǫµp)−

Hg(ǫ, qη(D))

µp − dp,ζ(qη(D))
. (211)

It can then be noticed thatlimD→(ǫµp)− Rp,ζ(ǫ, D) = 0 (from (38), (204) and the fact thatlimq→∞ Hg(ǫ, q) = 0)),

which implies thatlimD→(ǫµp)− Hg(ǫ, qη(D)) = 0 (since0 < Hg(ǫ, qη(D)) ≤ Rp,ζ(ǫ, D)+η(D)). Thus, by invoking

the monotonicity ofHg(ǫ, ·), we getlimD→(ǫµp)− qη(D) = ∞. This allows us to deduce from (211) that

ǫ lim inf
D→(ǫµp)−

Rp,ζ(ǫ, D)

ǫµp − D
≥ lim

q→∞

Hg(ǫ, q)

µp − dp,ζ(q)
. (212)

By combining (207) and (212), we conclude that

ǫ lim
D→(ǫµp)−

Rp,ζ(ǫ, D)

ǫµp − D
= lim

q→∞

Hg(ǫ, q)

µp − dp,ζ(q)
. (213)
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Eqs. (63) and (64) then straighforwardly follow from (61) and (62).

Proof of (65): Let us first consider the casep < β. Using Lemma 3 and proceeding similarly to the derivation

of (211), we can claim that, for allD ∈ (0, ǫµp), there existsq′
η(D)

> 0 and ζη(D) ∈ [−1/2, 0] such that

ǫdp,ζη(D))
(q′

η(D)
) ≤ D and

ǫ lim inf
D→(ǫµp)−

Rp(ǫ, D)

ǫµp − D
≥ lim inf

D→(ǫµp)−

Hg(ǫ, q
′
η(D)

)

µp − dp,ζη(D)
(q′

η(D)
)
. (214)

By using now Remark 4(iv), we obtain

ǫ lim inf
D→(ǫµp)−

Rp(ǫ, D)

ǫµp − D
≥ lim inf

D→(ǫµp)−

Hg(ǫ, q
′
η(D)

)

µp − dp(q
′
η(D)

)
. (215)

In turn, the asymptotic forms ofHg(ǫ, ·) anddp in (32) and (60) lead to

lim
q→∞

Hg(ǫ, q)

µp − dp(q)
= ∞. (216)

Sinceq′
η(D)

→ ∞ asD → (ǫµp)
−, we deduce that

lim
D→(ǫµp)−

Rp(ǫ, D)

ǫµp − D
= ∞. (217)

Let us now turn our attention to the casep ≥ β. We have

0 ≤ lim sup
D→(ǫµp)−

Rp(ǫ, D)

ǫµp − D
= lim sup

D→(ǫµp)−

inf−1/2≤ζ≤0 Rp,ζ(ǫ, D)

ǫµp − D
≤ inf

−1/2≤ζ≤0
lim sup

D→(ǫµp)−

Rp,ζ(ǫ, D)

ǫµp − D
. (218)

By using (63) and (64), we find that:

(i) If p > β, then

lim
D→(ǫµp)−

Rp(ǫ, D)

ǫµp − D
= 0. (219)

(ii) If p = β, then the infimum of the last term in (218) is attained whenζ = −1/2 and we get

lim sup
D→(ǫµp)−

Rp(ǫ, D)

ǫµp − D
≤ 1. (220)

Furthermore, forD ∈ (0, ǫµp), we obviously have

Rp(ǫ, D)

ǫµp − D
≥

Rp(ǫ, D)

ǫµp − D
(221)

whereRp is the Shannon rate-distortion function defined by (45). By the chain rule [27], the mutual information

in this expression is equal to

I(X ; X̂) = I(Q; X̂) + ǫI(X(1); X̂(1)) (222)

where

Q =






0 if X = 0

1 otherwise
(223)
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andX(1) (resp.X̂(1)) is a random variable distributed according to the distribution of X (resp.X̂) conditionally to

Q = 1. Since the mutual entropy is nonnegative, we derive the following lower bound forRp (see [24] for more

details):

Rp(ǫ, D) ≥ ǫ inf{
X̂(1) | E[|X(1)−X̂(1)|p]≤ω−p/βD/ǫ

} I(X(1); X̂(1)) = ǫR(1)
p

(D

ǫ

)
(224)

whereR(1)
p is the Shannon rate-distortion function of a GG random variable. The Shannon lower bound [31] for

this latter rate-distortion function is given by:

R(1)
p

(D

ǫ

)
≥ hβ(1) − hp(1) −

1

p
ln
(pD

ǫ

)
. (225)

Whenβ = p, the above two inequalities reduce to

Rp(ǫ, D) ≥
ǫ

p
ln
( ǫ

pD

)
. (226)

Then, by noticing thatµp = Γ(1+1/p)
Γ(1/p) = 1/p, we deduce from (221) and (226) that, asD → (ǫµp)

−,

1 + o(1) ≤
Rp(ǫ, D)

ǫµp − D
≤

Rp(ǫ, D)

ǫµp − D
. (227)

By combining this result with (220), we conclude that, whenp = β,

lim
D→(ǫµp)−

Rp(ǫ, D)

ǫµp − D
= lim

D→(ǫµp)−

Rp(ǫ, D)

ǫµp − D
= 1. (228)
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(
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(
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)
q̃−2β

) (
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(
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)
ln
(
1 − ǫ(1 − p0)

)
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and q 7→

ǫq exp(−2−βqβ)
2Γ(1/β)q̃β

(
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)
q̃−2β
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5 Distortion versus normalized quantization stepq whenβ = 3/2 and,p = 1 (top), p = 3/2 (middle)
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Fig. 1. Entropy of a uniformly quantized GG source versus thenormalized quantization stepq whenβ = 1 (top left), β = 4/3 (top right),

β = 5/3 (bottom left) andβ = 2 (bottom right).Hf is plotted in solid line, its lower approximationH(2)
f plotted in dotted line is almost

perfectly superimposed onHf and the upper approximationH(3)
f + ∆3 is plotted in dashdot line.
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Fig. 2. High and low resolution approximations of the entropy of a uniformly quantized GG source versus normalized quantization stepq

when β = 1 (top), β = 3/2 (middle) andβ = 2 (bottom).Hf is plotted in solid line. Its high resolution approximationq 7→ hβ(1) − ln q

is plotted on the left in dashed line (for improved readibility, q is displayed in log scales on these graphs). Its low resolution approximations

q 7→ −p0 ln p0 − (1 − p0) ln
(
(1 − p0)/2

)
and q 7→

q exp(−2−βqβ)

2Γ(1/β)q̃β

(
1 +

(
1 − 1/β

)
q̃−2β

) (
2−βqβ + ln(q̃β/q) + ln

(
4eΓ(1/β)

))
are

plotted on the right in dashdot line and dotted line, respectively.
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Fig. 3. High resolution (left) and low resolution (right) approximations of the entropy of a uniformly quantized BGG source versus the normalized

quantization stepq whenǫ = 0.3, β = 1 (top),β = 3/2 (middle) andβ = 2 (bottom).Hf is plotted in solid line, its high resolution approxima-

tion q 7→ Hǫ+ǫ
(
hβ(1)− ln q+βq ln q/(2Γ(1/β))

)
is plotted in dashed line, its low resolution approximations q 7→ −

(
1−ǫ(1−p0)

)
ln
(
1−

ǫ(1 − p0)
)
− ǫ(1 − p0) ln

(
ǫ(1 − p0)/2

)
and q 7→ ǫq exp(−2−βqβ)

2Γ(1/β)q̃β

(
1 +

(
1 − 1/β

)
q̃−2β

) (
2−βqβ + ln(q̃β/q) + ln

(
4eΓ(1/β)/ǫ

))
are

plotted in dashdot line and dotted line, respectively.
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Fig. 4. Difference (in Nats) between the operational rate-distortion Rp and the Shannon rate-distortion functionRp versusp at low resolution

for a GG source.
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Fig. 5. Distortion versus normalized quantization stepq whenβ = 3/2 and,p = 1 (top), p = 3/2 (middle) orp = 2 (bottom).dp,0 is plotted

in solid line, its high and low resolution approximations are plotted in dashed and dashdot line, respectively.
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