N

N
N

HAL

open science

On the uniform quantization of a class of sparse sources

Aurélia Fraysse, Beatrice Pesquet-Popescu, Jean-Christophe Pesquet

» To cite this version:

Aurélia Fraysse, Beatrice Pesquet-Popescu, Jean-Christophe Pesquet. On the uniform quantization
of a class of sparse sources. IEEE Transactions on Information Theory, 2009, 55 (7), pp.3243-3263.

hal-00555301

HAL Id: hal-00555301
https://hal.science/hal-00555301

Submitted on 20 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00555301
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON INFORMATION THEORY, 2008 1

On the Uniform Quantization of a Class of

Sparse Sources

Aurélia Fraysse, Béatrice Pesquet-PopeSanior Member IEEEand
Jean-Christophe Pesqu&gnior Member IEEE

Abstract

We consider the uniform scalar quantization of a class ofeghidistributed memoryless sources, namely sources
having a Bernoulli-Generalized Gaussian distributionthBior low and high resolutions, asymptotic expressions of
the distortion for gp-th order moment error measure, and close approximatiotiseoéntropy are provided for these
sources. Operational rate-distortion functions at highate and their slope factors at low bitrate are derived. The
dependence of these results prand the distribution parameters as well as the relation @0Shannon optimal
rate-distortion bound are then discussed.

Index Terms

Rate-distortion function, uniform quantization, asymjat@erformance, generalized Gaussian, Bernoulli-Ganssi
mixed distribution, sparsity, transform coding.

I. INTRODUCTION

One commonly used probabilistic model is the generalizedsGan (GG) model (sometimes called the ex-
ponential power model). In particular, it has been extexigiemployed [1]-[3] for modelling the distribution of
sparse coefficients generated by the wavelet decompositi@gular signals. The corresponding probability density
function is given by

Bl e

V¢ R, f(§)=m€

whereg > 0 is the exponent parameter,> 0 is the scaling factor anfl is the gamma function. In the following,

1)

we will restrict to “heavy tail” log-concave distributiongithin this class by choosing € [1, 2]. Within this class,

(=1 corresponds to the Laplace distribution afié= 2 to the Gaussian one. In addition, the differential entropy
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of this distribution [4] ist

mot) = - [ roms©de—w (Z5E0) + 5.

When the data to be modelled become sparser — which may ariparticular when considering appropriate

2

redundant frame decompositions of regular signals — amnalti¢ge Bernoulli-GG (BGG) model can be adopted.
The BGG distribution is defined by:

VEER,  g(§) =(1—€)d&)+ef(E) 3)

wheree € [0,1] is the mixture parameter anddenotes the Dirac distribution (i.e. point mass at 0). Irtipalar,
the Bernoulli-Gaussian model has been considered in desteidies for modelling wavelet coefficients [5], [6].
The purpose of this paper is to study the discrete entropy BG& distributed memoryless sourcé after a
symmetric scalar uniform quantization [7]. More precisédt ¢ > 0 be the quantizer step-size, the outpatof

the quantizer is given by:
X =79 =0, if | X|<4, (4)

and, for alli € Z such that # 0,
X =, if (Ji| —3)g < [X] < (li| + 3)q (5)
where the quantization levels are given by
Vi>1, ri=-r_;=(i+()q (6)

and¢ € [-1/2,1/2] is an “offset” parameter, indicating the shift of the redonstion level with respect to the
middle of the quantization interval. Note that we will notnsider any saturation effect. The most commonly
used quantization rule corresponds to the case wher0 (i.e., mid-point reconstruction). For example, this rule
constitutes the basic ingredient of many encoding strase(g.g. embedded zero-trees [8], SPIHT [9], EZBC [10],
EBCOT [11]...) which have been developed for wavelet-baseje compression techniques.

The efficiency of uniform quantization at high bitrate waswh by Gish and Pierce [12] for power function costs.
The performance of optimum scalar quantizers subject ton&moy constraint was investigated through numerical
methods [13], [14] for various memoryless source probgbdensities (e.g. uniform, Gaussian, Laplacian, GG)
at low resolution. In [15], a parametric form of the operatibdistortion-rate function of a scalar quantizer was
derived for a uniformly distributed source and a wide clakdifference distortion measures. In [16], an approach
for designing entropy scalar constrained quantizers fgoagntial and Laplace distribution was proposed and
comparisons were made with uniform quantizers. Recentf§7h the asymptotic behaviour of a uniform quantizer
with centroid recontruction levels and an offset parametas characterized at low resolution for a memoryless
Gaussian source and a squared error distortion measureothea useful reference [18], optimal transform coding

of Gaussian vector scale mixtures, which include GG souaseparticular cases, was studied at high bitrate, for
IFor simplicity, the entropies will be expressed in Nats.
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quadratic criteria. Some studies, e.g. [19]-[22] have atswsidered the use of Laplace and GG probability models
in modern compression systems. All the previously citedepgdeal with sources having an absolutely continuous
probability distribution. For small distortion, an asymift formula for the rate-distortion function of memorydes
sources following a mixed probability distribution was givin [23]. These results were extended in [24] to a
general class of vector sources.

The contributions of this paper are the following:

« Close approximations of the entropy of uniformly quantizé@ and BGG sources are obtained. We provide
ordern approximations of the entropy and characterize the appratidon error. The asymptotic behaviour of
the entropy is deduced. At high resolution we obtain a refer@nof the well-known Bennett formula, and at
low resolution a parallel with a discrete three-state seuscdrawn.

« Asymptotic expressions of the distortion at low and highohetsons are provided for an order (p > 1)
moment error measure. Taking real values, the paramepeovides flexibility in the choice of the distortion
function, for example in order to better fit the Human Visugst®em (HVS). This can be more appropriate for
designing distortion measures in the transform domain eagssary in image/video coding systems, in which
rate-distortion criteria often are evaluated based onficosits, while aiming at minimizing the visual impact
on the reconstructed image.

The introduction of such a real-valued exponent in the disto measure also raises new issues for char-
acterizing the optimality, depending on the source and tgmmfeatures. More precisely, we show that the
asymptotic expressions (fgr— 0 andg — oo) of the orderp measure depend, of course, on the parameters
8 and e of the BGG source, but they may take different forms dependin the values of and on the
reconstruction offset. The expressions of the distortiolow and high bitrate for integer valugs= 1 (Mean
Absolute Error) ang = 2 (Mean Square Error) are found as particular cases.

o Accurate formulas for the corresponding operational tigéartion functions are derived at high bitrate. The
loss in performance w.r.t. the Shannon lower bound relatete use of a uniform scalar quantizer is evaluated
as a function ofp ande.

« The slope factors of the operational rate-distortion fioms at low bitrate are also determined. The dependence
w.r.t. p and g is studied, in particular, and the relations with the Shanaoptimal rate-distortion bound are
examined. An important result which is shown, in particularthat, at low resolution, the uniform quantizer
is optimal for 5 < p, as soon ag < 0, while for p = g3 the optimal reconstruction level is obtained for
¢ = —1/2. This result, in turn, allows us to derive the slope of ther8lun rate-distortion function in these
cases.

The remainder of the paper is organized as follows: in Sedtjave derive approximation formulas for calculating

the entropy of a uniformly quantized GG source. These resué extended to quantized BGG sources in Section Ill.
We derive these results through asymptotic expansionseofntomplete Gamma functions around 0 and around

o0. In Section 1V, we provide asymptotic results for both higiddow bitrates concerning the operational rate-
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distortion functions for the BGG distribution. An illustian of the application of these results to transform coding

is given in Section V and some conclusive remarks are drawBeution VI.

Il. ENTROPY OF QUANTIZEDGG RANDOM VARIABLES

Let us first assume that the random varialilés distributed according to (1). The entropy &f is expressed as

[e )

Hy@) =— > P(X =r)mP(X =) (7)

whereg = w'/Pq is the normalized quantization step-size. Let, foralt R*, Q, be the normalized incomplete

gamma function [25], defined by

VEER,  Qu(é) = r(la) /05 02 te=%40. (8)

It is recalled that
VEER, Qi) =1-e* )
Qu/2(€) = erf(v/€) (10)

whereerf(-) is the error function. It follows that

o0
Hp(q) = —polnpo — 2 p;ilnp; (11)

i=1

where the probability of the zero level is

po=2 [ [(§)d=Qis()) (12)
0
and the probability of the; reconstruction level is
(i+3)q 1
= [ 0= 5 (Quolali) ~Qus(@)), i1 (13)
1—35)q

g; = (i — 1/2)q being thei-th normalized decision level. In order to simplify the rtaias, the dependence of
on g will not be made explicit.

Example 1:For the Laplace distribution, by using (9), the followingpesssion of the functiot; is obtained:

oo

) a1l - )Y (z - %)e—“—%ﬁ

i=1

1—e @

Hy(q) = *(1 — e_g) In(1 76—2) e ln(

1—e4 1 1

(§+6571)' (14)

With the exception of the Laplace case, a simple expressiof{ pis not available. In order to get tractable

okl

:—(1—e*g)ln(1—e*g)—e*gln( )—l—ﬁe

approximations off{ ¢, the following result will be useful:

Lemma 1:For alln € N with n > 2, we have

3 h * B [ 2 NPT
0< *;Pi Inp; + /(né)qf(é) lnf(f)dﬁJrlnq/(né)q f(&)de < 2T (1/7) <2n - 1) e~@n.  (15)

Proof: See Appendix A. ]

July 22, 2008 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, 2008 5

This lemma allows us to derive the following approximationnfiula for the discrete entropy of the quantized GG
random variable:

Proposition 1: Let n > 2. We have

Hy(@) = H{" @) + An (16)
where . ~
H{"(q) = —polupo — 2 > pilnp; + (hs(1) —Ing) (1 - Q1/5()) + r(??g) o (17)
=1
and
~ 06q 2n B-1 —g°
OgA"SA”’Fu/ﬁ)(an) e (18)
Proof: For all n € N*, we have
2 [ rede=1-Qusla) (19)
(n—3)q
and
o0 o 21°(1/6) o0 B o0 P
2 /( EEGLYCES 2 (5 7) /( L fede 2 /( L fre
L (20/8) _ P
= (In(w"/?) —~ h(1) (1 - Qu/p(a2)) — rﬁ’} Fe (20)
Then, the result straightforwardly follows from (11) andb)1 |

As illustrated by Fig. 1,H§c2) provides a tight lower approximation df s whereasH}fj) + A3 provides a good
upper approximation off;. In addition, choosing: = 2 is enough to predict both the high resolution and low
resolution behaviour of the entropy of the quantized védeiabhis is summarized in the following statement:

Proposition 2: As ¢ — 0, we havé

Hy(q) = hp(1) —Ing + O(g). (21)
As ¢ — oo, we have
H(@) = —polnpo — (1 — po) In (1 —P2) + ofge ) (22)
_ e 1—1/8\ ((2\° , . (& 1
= AP <1+ = > <(§) +In <E) +1n (4eD(1/8)) +O<62_5)> (23)
whereg = (27°g° +1 - 1/8)"/5.
Proof: See Appendix B. |

Remark 1:
(i) The obtained high resolution behaviour (whems small) is well known [12]. It is sometimes referred to as

Bennett's formula.

’leta : R% — R, andb : R} — R, we use the notation(¢§) = O(b(€)) as& — 0 (resp.£ — oo) to say that there existg > 0 such
that a(€)/b(€) is bounded for alk € (0,7) (resp.£ € (1, c0)). In addition,a(§) = o(b(€)) as§ — &o € [0, oo] if lime_,¢, a(&)/b(€) = 0.

July 22, 2008 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, 2008 6

(ii) In accordance with intuition, (22) shows that, at lowsoéution { large), the entropy is similar to that of a

3-state discrete source with probabil(t%g—"’o, Po, 1‘2”0). From Fig. 2, it can be observed that this results in a
close approximation of the entropy for large enough valddéb® quantization step. The plots also show that
the maximum value of the approximations given by (21) and (2avides a reasonable lower approximation
of the entropy.

(iif) As predicted by our calculations, Fig. 2 shows thatgeneral, (23) provides a less precise approximation of

the entropy than (22) at low resolution. In addition, it caa dbserved that for a Laplace distribution (23)

reduces to

P L

Hy@) =e <2+ln2+1+0(62)>. (24)
More generally, for every € [1,2], (23) allows us to state that, gs— oo,
=B B
. ge1/? Ing
H =—1 — . 2
i@ =iz (1+0(5)) 29)

In the Gaussian case, this result is in agreement with [1@pfidm 6] (by setting the offset parameter in this
theorem tol/2).

(iv) It is clear that all the results in this section (as wedlthe ones in the next section) are independent of the
values taken by the quantization levels. In particularythee valid for quantization levels which are not
constrained by (6), such as those corresponding to theaigstof the decision intervals for any distortion

cost function.

IIl. EXTENSION TOBGG RANDOM VARIABLES

We now turn our attention to the more general mixture modetmiby (3). By using the following lemma, we
will see that the results derived in the previous sectiondarectly extendable.
Lemma 2:Let X be a random variable distributed according to (3). The @ytraf the associated uniformly

quantized variableX is given by
Hg(€,q) = eHy(q) + ®(po, €), €€ [0,1] (26)

wheré
®(po,€e) = —(1—€(1 —po)) In (1 —€(1 —po)) — €(1 — po) In€ + epo In po. (27)

In addition, H,(-,g) is an increasing strictly concave function such th&t0,g) = 0 and
Hy(e,9) = eHy(q) + (e — 1) Inpy + O((e — 1)?), ase — 1. (28)

Proof: See Appendix C. ]
Approximation formulas fotd, are straightforwardly derived from (26) by using (12) an@)((18). The following

asymptotic results are also obtained:

3We adopt the conventiofiln 0 = 0.
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Proposition 3: Let € € (0,1] be given. Asg — 0, we have

Hy(e,q) = He +¢(hs(1) ~Ing + 1(0,1)(@% Ing) + O(a) (29)
where
H.=—€elne— (1—¢)In(1 —¢) (30)

is the entropy of a Bernoulli variable with probability — €,¢) and 1 ;) is the characteristic function of the

interval (0,1).* As ¢ — oo, we have

Hy(e,q) = —(1—€(1 —po)) In (1 —€(1 —po)) — €(1 —pg) In (M) + O(Ee_(?’g/Q)ﬁ) (31)

2
qe 7 /% 1—1/8\ [ [7\? T 4eT'(1/3) 1
eqe q q
= SR <1+ =5 ) ((5) +1n(3) + (22 )+0(§Tﬁ)>. (32)
Proof: According (12) and (93), ag — 0, we get:
D(pg,e) = —(1—€)In(l —€) —elne+ 61(071)(6)% Ing + O(7Q). (33)

Eq. (29) is then obtained by using (21) and (26).
As G — oo, (31) readily follows from (26) and (22) whereas (32) is deshlifrom (101) and (104) similarly to the
derivation of (23). ]
Remark 2:
(i) It is easy to show that{,(e,q) is a decreasing function @f.
(i) As a consequence of (29),
Hg(€,q) = He + €(hs(1) —Inq) + O(qIn7g). (34)

So, the coding cost at high resolution becomes equivalettiabof coding separately a Bernoulli random
variable with probability(1 — ¢,¢) and a GG component occuring with probability We see that, when
€ # 1, the entropy remains, up to an error of orgén g, an affine function ofn g as for the standard Bennett
formula. However, the slope and the value at the origin ofghegph of this function is modified and it is
dependent on the value of the mixture parametéfrwe now consider a more precise approximation incuring
an error of orde as in (21), a further additive terepgIng/(2I(1/3)) has to be taken into account.

(i) Eq. (31) shows that at low resolution the entropy is fapa O(ge~37/2") term) equal to that of a 3-state

discrete source with probabilitfe==2¢, 1 — (1 — py), e2522).

(iv) An illustration of these results is shown in Fig. 3.

IV. ASYMPTOTIC RATE-DISTORTION RESULTS

We now examine some consequences of the results in the pses@éation in terms of rate-distortion theory. The

distortion is here evaluated through theh order moment of the quantization error and is thus exaegss

dpyC(Wa € q) = EHX - 7|p] (35)
4This function is defined byl o 1)(e) = 1if 0 < e < 1, 0 otherwise.
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wherep > 1 is a real exponent. In particulgs,= 2 corresponds to the mean square error criterion and1 to
the mean absolute one. We will see that considering othelesabfp may be of interest.

If X is distributed according to (3), we have

3 > rliti)e
dpc(w,€,q) = 2¢ </ EPf(€)dg + Z/( : € — ml”f(&)dgf) - (36)
0 i1 i—3)q
Let the normalized distortion be defined as
681%((6) = wp/BdIhC(wv €, q)' (37)

In the following, we will be mainly interested in the operatal rate-distortion functions defined, for @l > 0,
by

V¢ € [-1/2,1/2], Ryc(e,D) = inf  Hy(e,q) (38)
{g>01ed,,c(@)<D}

and

Ry(e,D) = f  Ryc(e,D). (39)

in
¢e[-1/2,1/2]
Notice that the above infimum can be calculated on a redfricterval as stated below:
Lemma 3:We have

Ry(e D)= _inf Ry(c.D). (40)

Proof: See Appendix D. |

A. High resolution behaviour

Let us first look at the expression of the distortion at higbotetion:

) 1 p+1 1 p+1 _
Lemma4.Letu:<§+§) +<§—C) . As g — 0, we have

dp.c(q7) = pyzpl (1+0(q)). (41)

The above relation holds uniformly i

Proof: See Appendix E. ]
Whenp = 2 and({ = 0, (41) gives the classical formula for the mean square qeatiin error, at high resolution
(see [26] for more details). This lemma allows us to deriveftillowing rate-distortion result concerning the BGG
model.

Proposition 4: For a random variable distributed according to (3) witl (0, 1], we have, a) — 0,

Ryc(e,D)=Hc +¢ (hg(l) - %m (M) " 1(0,1)(6><(p+ 1)D)1/p BInD ) Lo@" 42

€v €v 2p(1/9)
and
— 1 (p+1)D (p+1)D\Vr BInD —1/p
Ry(e,D) = H, +¢ (hg(l) ~In2—n (f) + 1(071)(6)( . ) pF(l/ﬂ)) +Oo(D""). (43)

5This can be formally expressed as in (135).
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Proof: See Appendix F. [ |

Remark 3:

(i) It can be noticed that, for a small distortion, the optimoperational rate-distortion performance is reached
whenv = 277, which corresponds tQ = 0, that is the quantization reconstruction levels are thepwiiuts
of the decision intervals.

(i) If we omit the O(ﬁl/p In D) term, a loose approximation to (43) is given by

Ry(e, D) :Hg—i-e(hg(l)—ln2—%ln (w)) +o(1). (44)

This expression can be compared with the asymptotic fornm@fShannon rate-distortion function [27]:
Rp(e,D) = _ inf _I(X; X) (45)
{X|E[[X=X|r]<w~r/#D}
whereZ(X; X’) is the mutual information between the BGG random variablef interest and some arbitrary
real-valued random variabl& defined on the same probability space. The asymptotic esipresf R, can
be obtained from the results in [23], [24] (notice the cotimt brought by [24]). These results can be
straightforwardly extended to any value pfby using the fact that, subject toath order moment upper
bound, the differential entropy is maximized for a GG randeariable of exponeng. Thus, we get
— 1 D

Rp(e,D) =H,+¢ (hﬁ(l)—hp(l)—gln (pT)) +o(1). (46)

Consequently, the performance loss related to the use offarmnscalar quantizer is limited to

_ — 1 1+p
Ry(e,D) — Ry(e, D) = ¢ <hp(1) ~l2-n ( : )> +o(1)
1 1 p
=e|Inl'(1+4+1 -+ —-In(— 1). 47
e(n (—l—/p)—l—p—i—pn(ler))—i—o() 47)
The difference is plotted in Fig. 4. In the case whea 1 andp = 2, this gives the well-known difference
of about 0.2546 bit [12].

B. Low resolution behaviour

Our main result in a low resolution context is the following:

Proposition 5: As § — oo, we have

dp,((q):
=p+1,-7°/2° B 1 _
MPMW<1(1+2OP+B%(1+(1+QOP 1)+O(62_3)) if ¢£—1/20rp>2

qu_aﬁ/Qﬁ 1 f d
=g (1 07) o e
§P+1e—5ﬁ/2ﬁ P 1 ; —
MP_W 1+W+O(§T’3) if (=-1/2andl <p<2
(48)

July 22, 2008 DRAFT
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where

p = LT F«?J/lg))/ 9, (49)

Proof: For clarity, some of the technical parts of the proof havenb@eferred to Appendix G.

We start from the expression (164) of the distortion proglitte Lemma 6 in Appendix G. We derive from (94)

that
Qepr1)/8(@)) =1 - Mo+ 1)/;?;6_?; T 1)/8+1) <1 + O(#))
— _r((afr—f)/q;)qﬁ(Hﬂ%jLO(%ﬁ))' (50)
In addition,
o e [T mpesae= [T (5 en) " e ,, () e

where the change of variabfie= ¢ —qf has been made to obtain the last expression. By invoking nemvrha 7
in Appendix G (witha = ;7 and A = 2(1 + ¢)), we get:
o When( # —1/2,
148 B [ R 1+4+2¢)P 1t 1
g [Tl —mpe € g = (14207 - (p+ (9 D1+ 2<>)% +0(=5)
q1 1
« when¢ =-1/2 andp =1,

_ 8 [ _ | _¢P 1 1
g, e /a € —Tile™® de = e 0 <§Tﬁ> (53)
o« When( =-1/2andp > 1,
e 5 [ o 1
B PP e [ € =T Pe " d¢ =0 (ﬁ) : (54)
q1
By using the relationjy = ¢° — 1+ 1/8, we find in the first case that
~3 s 0o s ) 142 p—1 1
ﬂ_g+1€q1/ =o€ dg = (1420 - PEL2N Lo <%> (55)
ql q, ﬂq q
while, in the second one,
~3 00
q° -8 _ . _eB 1 1
ﬁa—%e‘h /q € —T1le™t d¢ = 5@ T 0 (62—[3) (56)
and in the third one,
B o0 1
q s oy _eB
B—rre™ / € —TifPe S de =0 (%> : (57)
ql q q

Altogether, (164), (50) and (55)-(57) yield (48), after sonearrangement.

Remark 4:

(i) An illustration of the results in Lemma 4 and Propositiris displayed in Fig. 5.

July 22, 2008 DRAFT
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(ii) It may be interesting to note that for the standard gization rule corresponding t¢ = 0, the zeroth order
term in parentheses of (48) vanishes, so that this expressiuces to

_ —p+1,—7g° /27 1
dp (@) = p1p — MW <1+O<§—B)> (58)

In contrast, wherg # 0, the zeroth order term is prevalent.
(iif) When ¢ > 0 (resp.¢ < 0), it can be observed that, for gll> 1, there existsr, . > 0 such that, ifg > 7, ¢

thend, ¢ (q) > p, (resp.d, ¢(q) < ). This clearly shows that choosig> 0 results in a poor quantization
strategy.

(iv) According to (36) and (165), for alf € [-1/2,1/2], a lower bound ford,, ;(7) is

3 el
_ 2 q
4,@) =277 [ " 1(6)d€ = 1 Quorryo(T5): (59)
Basically,d, is a measure of the truncation error for the values lying & dantizer dead zone. By using

(94), we get
B grHi—Be-1"/2" 1
C_ip(Q):Np*m (1+O(§_ﬁ)) . (60)
It can be observed from Proposition 5 thét, is relatively close to this lower bound when 0.

In order to derive rate-distortion results at low resolatithe following consequence of the previous proposition
will be useful:

Corollary 1: For alle € (0, 1], asg — oo, we have:

. if C£0, 6
Hy(e,q) g - o
fy— dpe(@ 27 P(1— (1+20)) (1+0(a?(1+m7™))) (61)
CifC=0, )
H, €,q <P —P . o
up—g(ﬁp?m *ezfg-wp (1ro(@ @ +ma’)). (62)

Proof: Eq. (61) is deduced from (32) and (48). In turn, (32) and (®8)lto (62). [ |

An interesting feature that allows us to quantify the lowotaon behaviour is the slope of the tangent line to

the operational rate-distortion curves at the extremetgmiresponding to a zero rate and distortips,. This one
can be determined in an explicit manner as shown next.

Proposition 6: For all e € (0, 1], if ¢ < 0, we havé

oo if p<p
. Ry,.c(e, D)
N 1-(1+207)"" ifp= (63)
D—(epp) Elbp — D ( ( C) ) p ﬁ
0 if p>p3

6The notationD — (eju,)~ means thaiD goes toepu, from below.
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and, if( =0,
oo If p< 20
D
_lim BocleD) _ J1 if p=283 (64)
D—(epp)= €EUp — D 4
0 if p>20.
In addition,
oo ifp<p
. R,(e, D)
lim 222 ={1 ifp= (65)
D(epp)— €ftp — D p=Fp
0 ifp>p.
Proof: See Appendix H. ]

The previous result allows us to deduce the left-sided dévie of the operational rate-distortion functions at

Eflp:
Corollary 2: For alle € (0, 1], if ¢ <0, we have

OR, (e, D) —(
D - o
and, if( =0,
OR, (e, D)
ID  iepy)-
In addition, we have
Ry (e, D)
ID ey~

Some final comments should be made about these

Remark 5:

(i) We see that the slope factor of the operational

1—(1+20)7) ! ifp=2 (66)
if p>p
1
- ifp=2
_)g = (67)
0 if p>24.
1 ifp=
_ if p=2 (68)
0 if p> .
results:

ratesdish functions at low bitrate does not dependeon

However, the value of the distortion for which it is evaluhtacreases linearly w.r.t, that is when the data

become less sparse.

(i) When p > 3, the slope factor of?,, is equal to that ofR, (see (228) whemp = § and notice that the slope

of R, is nonpositive and it cannot be lower tha

n thatR)f.) This shows the optimality at low resolution of

uniform quantization for BGG random variables with expangr< p.

(i) When p < 24, Eq. (64) shows the suboptimality at low resolution of themfizer corresponding t¢ = 0

(midpoint reconstruction levels), in spite of its f

requese in practical applications.

(iv) When p = (3, the optimal rate-distortion performance is obtained gstptically when{ = —1/2 (see

Appendix H), that is whem;

(i—1/2)q, i > 1.

The obtained low resolution rate-distortion behaviour is

similar to that derived in [17]. The latter work is focussead the Gaussian case € 1 and 3 = 2) and the
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mean square criteriop (= 2) and the authors consider a uniform quantizer with optireebnstruction levels
in the mean square sense. To better highlight the connectiith our results, it can be noticed that, when

p = 2 (e can be arbitrary), the centroids);>; of the positive decision intervals are explicitly given by:

. S o er() e 15 Qea(@) ~ Q@)

= — —. (69)
Pi Ql/ﬁ(q?-&-l) - Ql/ﬁ(q;@)
As g — oo, we deduce from (94) that
ri=(i—1/2)q(1+0(g™")). (70)
So, at low resolution, the centroids indeed converge to diaeit bound of the decision intervals.
V. CONNECTIONS WITHTRANSFORM CODING
In typical transform coding applications, a vector of realued transform coefficienX = (X;,..., X,,)" is

considered, the components of which can be modelled by BG@ilditions. For simplicity, assume that these
components are identically distributed, and that the westguantized valueX = (X;,...,X,)" is obtained by
applying the same uniform quantizer to each componerX of

Our results concerning the entropy are directly applicabléhis context since the entropy & is
Hg(ea q) - an (67 q) (71)

where H, (€, 7) is given by (26).

In turn, the expression of the distortion measure usualtytbde modified since the reconstruction error depends

on the reconstruction matri’ of sizem x n (with m < n) and is given byI'(X — X). Two simple cases are
discussed next:

« In the case of a mean square error criterioril'ifs orthogonal or if the components of the quantization error
vectorX — X are assumed uncorrelated (see [26] for a thorough studyeofalidity of this assumption), the
distortion takes the form:

IT|13

o o(w,€:0) = ~E[ITX X)) = L[, — X0)?] = ey c(w,e,0) (72)

where|| - | denotes the Euclidean norifi; ||r is the Frobenius normis ¢ (w, €, ¢) is given by (36) and
1
=—|T||}. 7
r=—|Tl (73)

« WhenT corresponds to a one-dimensional wavelet basis decorgpoflf performed up to a resolution level
J > 1 andn is multiple of 27, the vectorX can be rewritten af( X )1 << so<k<2-in(Xs+1,k)o<k<2-7n] -
and a similar notation can be adopted for the veXorHere, the components & have been reindexed
by introducing the resolution level € {1,...,J} and the time locatiork where the detail coefficients

(Xj.k)1<j<s0<k<2-in are defined. For simplicity, the approximation coefficieatsesolution level/ have
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been denoted byX ;.1 k)o<k<2-7,- A useful norm in the context of wavelet representationshis Besov

norm| - |z, , with s >0 and(p,p’) € [1, c0[* which applied to the reconstruction error yields:
27 n—1 /p
ITX=X)s,,, = D Xtk —Xoosl
k=0
J L 2t — p'/p o
+ Z 9—Jp (s+1/2—1/p)( Z | X, — Xj7k|p) ] (74)
j=1 k=0

More details concerning the relations between this norm ragdlar function spaces can be found in [28].
If we assume that the componentsXf— X are the firstn terms of an independent identically distributed

sequence, the strong law of large number allows us to segabat— oo,

27 n—1
1 _ . _
=7 > X = Xl B E[X 41,0 = Xsr0l”) (75)
k=0
1 27In—1
viedl.. Ik o > Xk — Xkl B EX 0 — Xj0l”] (76)
k=0

where®3 denotes the almost sure convergence. Hence,

LI =X, % REIX10 — Kol (77)
where
k=2"7/P 4 2—<s+1/2>(11—_ 22__‘?7((:11//2 2)) ) v (78)
This implies that, as a final form of the distortion functi@me can take
dyow,e0) = Tm ETX X)) = rE[X10 - Kaol| = wdpc(wa). (79)

Similar relations hold in the two-dimensional case [29].

So, compared with the distortion we considered in Sectionjugt a scaling factor has to be introduced in the

two previous cases. In particular, by redefining the openati rate-distortion functiow, - as: for allD > 0,

V¢ e[-1/2,1/2], nR, (e, D) = inf _ H,(e,9) (80)
{@>0|wr/Pdy ((w,€,q)<kD}

and, subsequently applying Definition (39) 8}, the results in Propositions 4 and 6 and Corollary 2 are umgpée.

VI. CONCLUSION

At high bitrate, the main result in this paper is Propositibavhich provides accurate approximations of the
operational rate-distortion functions for a uniformly qtizZed BGG source. At low bitrate, asymptotic formulas
have also been obtained for the entropy in (32) and for therdisn in (48), which have allowed us in Proposition 6
to deduce the slope factor of the operational rate-distorfiinction for a distortion equal teu,. At high bitrate,
the uniform quantizer remains suboptimal but the diffeeencr.t. the Shannon optimal bound is a linear function

of the mixture parameter (see (47)) and it therefore becomes smaller when the dataparser. At low bitrate,
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we have generalized the results in [17] by showing that tbpesfactor of the rate-distortion functiaR,, is the
optimal one, provided that the ordgrof the distortion measure is greater than or equal to the rexpigs and the
positive (resp. negative) quantizer reconstruction kwk chosen equal to the lower (resp. upper) bounds of the
decision intervals. The application of these results todfarm coding was also briefly discussed in two simple

cases.

APPENDIXA

PROOF OFLEMMA 1

Since f is a decreasing function dR.., we have, for all > 0,
af (i +1/2)q) < pi < af((i —1/2)q) (81)
Noticing that
(i+3)gq (i+3)q
—pilnp, + /( F(©)In f(€) de = F()(In £ (€) ~ Inpy) de (82)

i—3%)q (i—%)q

we get the following inequality:

(i+3)q (i+3)q
~ pilnpi + /( fOMfE)de < /( £(6) (I £(€) —In F((i +1/2)q) — Ing) de. (83)

i—3)q i—3)4

On the other hand, from the positivity of the Kullback-Le&bUivergence, we obtain

29 £(6) 0 f(&)/pi
\ d 84
/(z')q Pi n( 1/q ) =20 (64)
which is equivalent to
(i+3)q (i+3)q
pilnp; + / F(6)In F()de +Ing / F(€)de > 0. (85)
(i—3)q (i—-3)q

Therefore, when > 2, (83) and (85) yield
(i+3)a

(i+3)q
og—pilnpﬁ/ f(f)lnf(f)dg+1nq/ 1) de
(i—-3)q (i—3)q
(i+3)q
< (wf(-y20 - s+ 1y20) [ o
(i—3)q

(i+3)q

=wg” ((i+1/2)7 — (i — 1/2)) /( ., f(6)de. (86)
1—35)4q
Besides,
1\”3
; B _(; — B _ ;B _
(i+1/2)% — (i —1/2)% =i ((1 + 2Z) -~ 2z_) )
s BB=1) . (B—2k) (1\2RHL o
= kzo 2k+1 (2@) < pi (87)
where the upper bound follows from the fact that 5 < 2. Consequently,

(i+3)q (i+%)q

F(6) de < Bug / (€ +q/2P 1 f()de. (88)

(i—3)a

(i+1)q
ogpilnpﬁ/( f(f)lnf(ﬁ)dfﬂnq/

i—3)q (i—%)q

July 22, 2008 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, 2008 16

It can be deduced that, for > 2,

0< S pnpt [ fOWEdE ting [ f@de<T (89)
> pilnp /M)q (€)n £(€) “q/m%)q (©)
where
I = Bug / (€ +q/2° 1 £(€) de. (90)
(n—3)q
By noticing that{ > (n — 1/2)q < £+ ¢/2 < 2n&/(2n — 1), it can be concluded that
2n \B-1 [ 5 g 2n \P-1 ~(n-1)5g®
I's ﬂw(zn— 1) /(n%)qg (©de= oT(1/3) (2n— 1) ¢ e (1)

Combining (89) and (91) leads to (15).

APPENDIXB

PROOF OFPROPOSITION2

Settingn = 2 in (16) and (17), we get

=B\ _ -3
Hy @) = - Quala) 0 Qua (@) — (Quia (1) - Quyaa?)) n () Qunl@)

2
+ (ha1) =) (1= Quys (@) + g e ™ + Ae (92)
We further know [30, p.891] that, for afl < 1,
& a
QJQ—GW®+O@2L as¢ — 0 (93)
and [25] for alla > 0,
B £re—¢ 1—a _
Qd@ilif@ﬂﬁ—a+U<L#@—G+U2+O@3»’ as¢ — oo. (94)
Wheng — 0, (18) allows us to show that
Ay = 0(q) (95)
and, by using (92) and (93), we obtain
Hi(q) = — ng/l ) (lnqﬂn (r(f/ﬂ))) +O(7*1In7g)
5q _ p o _ b _ _
Faﬂﬂ<mQ+m<ﬁTU@))+O@%n®+(%0JqulFﬂiﬂ+0@%)+0@)@®

which leads to (21).
Wheng — oo, we deduce from (94) that
_ _ _ 1 _B
Qu/6(@) — Q@) =1 - Qup(@) + O e ). (97)
Invoking again (94), we have

In (Qw&@g) - Q1/5(§?)) . (1 —Q15(@)
2 n 2

) + 0T ) 98)
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and

—3 o _B3 B 5
~ (Qustad) = @yt n (PRI < (1 st m (520

+O®@Ge %) (99)

where the fact thaln (Q1,5(@5) — Q1,5(7})) = O(7”) has been used. Now, from (12), (18) and (92), we get

_ =8 _ _
Hy(@) = —polnpo — (1 — po)ln (1 2"“) + (hs(1) — Ing) F‘ﬁ/ﬁ)e*fzi L O(7e®) (100)
from which (22) follows. Using now (12) and (94), we find that
_1- G 1 1-1/8 o= 101
o= ey oy o) (oD
and, consequently,
qe ™ 1-1/3 1
—pol = 1 O\ == 102
R T T @+ 1-1/8) < @112 <6“ﬁ)> (102)
In (1 S2) = 7 — (@ +1-1/8) + n7, —In (20(1/9)) + o(qziﬁ) (103)
o 1—poy _ T ™ 1-1/8 e
(=i 2)Wmmﬁ+1um0+ﬁ+1uw>@+M%“ v
—Ing, +1n (20(1/8))) + O *Pe~0). (104)
Egs. (102) and (104) readily yield (23).
APPENDIXC

PROOF OFLEMMA 2

The entropy of the quantized BGG random variable is

Hy(€,q) = —pyInpy — 2i pi lnp; (105)
1=1
where
po=1—€+epo (106)
p;=epi, i>1 (107)
This leads to

Hy(e,q) = —(1 — e+ epo) In(1 — € + epy) — 26(2 pilnp; + 11162 Pi)

=1 =1

= 7(1 — €+ Ep()) hl(]. — €+ Ep()) —+ G(Hf(q) —+ Po hl p()) — (]. — p())E 1116 (108)
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which yields (26).

In addition, we have, for alt € (0,1],’

ok B 1—(1—po)e
5o (Po.€) = (1= po) In (———5) + polnpy (109)
e (1-po)*  1-po

ez (Poy€) = —7— 0= poe — <0 (110)

Therefore,e — ®(po, €) is a strictly concave function such thé@{p,,0) = 0 and
®(po,€) = (e — 1) Inpy + O((e — 1)?), ase — 1. (111)

SinceH,(-,q) is a linear perturbation of this function, it is also a styiatoncave function with the desired values
whene = 0 or ¢ is close to 1. To show thalf,(-,q) is increasing, it is then sufficient to check that its leftesi
derivative at 1 is positive. According to (109), this detiva is given by

0H,
Oe

On the other hand, sincgis even and decreasing ov&r,,

(1,9) = Inpo + Hf(q). (112)

Vi>1, pi < Po- (113)
Thus, according to (11),
oo
H¢(g) > —polnpo — 2Inpg Y _p; = —Inpo (114)
i=1
that is, 22 (1,7) > 0.
APPENDIXD

PROOF OFLEMMA 3

For everyi > 1, the function

(i+1/2)q
op Ry =Ry e € — 17 F(€)de (115)
(i—1/2)q

is convex on[0, co) and its minimizer € [(i — 1/2)q, (i + 1/2)q] satisfies

r: (i+1/2)q
[, wmortneds= [ eyt (116)

i—1/2)q

(This minimizer is unique since, fay > 1, ¢, is strictly convex and, whep = 1, r; is the median off over
[(i —1/2)q, (i +1/2)q|, which is uniquely defined ag is decreasing.) This minimizer belongs[{e — 1/2)q, iq].
Indeed, ifig < rf < (i+1/2)qg < (i —1/2)g < 2rf — (i +1/2)q < r}, we would have

2r; —(i+1/2)q r; (i+1/2)q
o< [ Cr-ort@de == [T aregri@des [ €-nr e
(i—1/2)q 2r¥—(i+1/2)q ry
(i+1/2)q
= [ e e - 2 - 9) de <0 a17)

i

"Whene = 1, the provided expressions correspond to left-sided ders
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where the last inequality comes from the fact tlfas decreasing ofR ;.
The convexity ofy, implies that this function is increasing dn}, co) and, sincer; < ig, we have, for every

r € lig, (1 +1/2)q]:
(i+1/2)q

(i+1/2)q
/( € — iqP F(©)de = gy (iq) < p(r) = / €~ rPF()de. (118)

i—1/2)q (i—1/2)q
Recalling (36) and (37), we deduce that, for everg [0,1/2] andg > 0,
dp0(@) < dp,c(q)- (119)

Consequently, for every € [0,1/2] and D > 0,

{7>0 | dpc(@ <D} C{7>0 | dpo(q) <D} (120)
which, according to (38), yields
Rpc(e,D) > Ryo(e, D). (121)
This shows that the infimum in (39) can be restricted to [—1/2,0].
APPENDIXE
PROOF OFLEMMA 4
We have ~
— a1 e Tiy1 )
dyc(@) =2 < | en@ary [e-nin (ods) (122)
0 i=17%
where f1 (&) = w8 f(w=1/8¢) andT; = w'/Pr;. Sincef; is a decreasing function ovét, , we first notice that
71 q qurl
o< [Men@ds < no) [ ede=no) D (123)
0 0 p+1
and, therefore, B
q1
& f1(§)de = O(g"). (124)
0
We also have, for all > 1,
Tit1 Tit1 Tit1
na [ le-mlacs [T ie-mn©de<n@) [ e-rivde (125)
q; i q;
with
Tit1 Va;v-f-l
— 7 [Pde = : 126
| e = 7T (126)
In addition, we have the following inequalities:
V€ € [Giv15Tival, f1(6) < [1(@iyg1) (127)
Tiyo
= | A (£)d¢ <Gf1(Tiy1) (128)
Tit1
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and, for alli > 2,

Vf S [qiflaqi]v fl(qz) S fl(g) (129)
= ah@) < | nEde. (130)

i1

We deduce from (125) (126), (128) and (130) that

€)de < Z/ €~ il Fu(€)de

v+t

(131)

fl ‘h

p+1

which leads to

vaP O iy vgbt! vaP _
oy~ Q@) =30 [T e mpa@a < TTa0 + T (- Q). (32)

We further know from (93) that, ag — 0, both Ql/ﬁ(ag) and Ql/g(af) are O(g). We conclude from (132) that

Z / € TP £ (€)de = ﬁ(l L o@) (133)

where the local bound i®(g) holds uniformly inv (thus, in¢). Due to the fact that the integral in (124) does not

depend or¢ andv > 277, we have then, uniformly ir,

/0 (e ds+z / €Tl fule >dsfm(1+0@) (134)

which, combined with (122), yields the desired result.

APPENDIXF

PROOF OFPROPOSITION4

According to Lemma 4, there exists> 0 and A > 0 such that, for all € [-1/2,1/2] andg € (0,7),
— _ yap
d, ==
p,C(q) P+l
and|a¢ ()| < A. By noticing that, for alld > —1, |(1 + 6)'/? — 1| < |0], we deduce that

(1+7ac(@) (135)

‘%(7@ + 1)8”’4@)1”) - 1‘ = ‘(1 +qac@)"" - 1‘ <7lac(@)] < Aq. (136)

v

This shows that
— _ _ 14

)1/p(1 +qac(q)) (137)

wherela:(7)| < A. Without loss of generality, one can choage: 1/A so thatl +gGac(q) > 0.
Let us first assume that, .(g) < D/e whereD has been chosen small enough so that 7. It follows from

(137) that we have the equivalence:

A<D & 1< (LY (1 g5@) (138)

ve

Sincer > 27P, this entails that

7= (ZEURY (1)t < o(EURY (g g, (139)

ve €
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Consequently, by defining o
(p+1)D

: )1/p(1 —nA)" (140)

(D) = 2A<
we have
7ac(@) > —n(D). (141)

So, by choosingd small enough] —~;(D) > 0 and (138) leads to

__ (D)
1< 3, (142)
where o
_ +1)D\1/p —
@) = (LY ) (143)
In other words, we have shown that, provided thats small enough,
{@| edpc@<Dyc{g | a<vV?p(D)}. (144)
From (38), it can be concluded that
R, c(e,D) > inf  Hy(e,q) = Hy(e,v ?p1(D)). (145)
q<v—1/Ppi(D)
where Remark 2(i) has been used for the last equality. Bycimgtithat
— p+1)D\1/p —1
(D) = (Q) (1+0@D"")) (146)

and using (29), we derive that

Rye(eD) 2 He e () - S (P2 41,0 (BED2Y AR o). aan

Let us now assume thatis such that

7< 20 (149)
where o
1/p —
po(D) = (EE2Y 7 (14, D)) (149)
and _
~1o(D) = 2A((p +€1>D )Up (150)
We have then
D)1+ (D)) 2 24 BFUEYT 5 (DY (151)
& (D) > A(%)W@ +(D)) (152)

It is clear from (148) and (149) that, by choosihysmall enough, we havg < . We deduce from these two
equations and (152) that
~2(D) > Ag > ac(q)g (153)
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which yields

7< (M)W(l +qa<(q))’1. (154)

ve

By using (138), we conclude that, f@ small enough,
{@ala<v"m(D)} c {7 | edpc(q) <D} (155)

Consequently, by using (38) and Remark 2(i),

R, (e, D) < inf  Hy(e,q) = Hy(e,v /P ps(D)). (156)
q<v=1/?ps(D)
Since _
- p+1)D\1/p —1
mun=G—7L) (1+0@D"") (157)
we deduce from (29) that
(p+1)D

(p+ 1)5)1/1) BInD

_ 1
Rye(e D) < He e () - 2 20 (1/5)

) + Loa(@)( )+om'"). ase

€V €V

Combining (147) and (158) yields (42).
We proceed similarly to prove (43). Instead of (145), we hias to use the fact that, fab small enough,

R,(e,D) > inf H,(e,q) = H,(e,2p1(D 159
p(ev )— *1/12n§C§0 9(67Q) g(ea pl( )) ( )

g<v='/?p1(D)
since the minimum value of is reached wherg = 0 and it is equal t®2 7. In the same way, (156) has to be
replaced by

< i q) = D)).
Rl)(eaD) = 71/12n§fC§0 Hs](€7q) Hg(€72p2(D)) (160)
g<v P py(D)

APPENDIX G

TECHNICAL RESULTS FOR THE PROOF OPROPOSITIONS

In this appendix, we provide some preliminary results fa& fioof of Proposition 5.
Lemma 5:For alln > 1, we have, ag — oo,
= [t (2n — 1)g+le 1
w?/P € —milP f(§)dE < 1 (1 +0( = ) (161)
; (i=4)a AT(1/8)dn (qw)
whereg, = (¢° +1—1/p)'/5.

Proof: For all i > n, we have the inequality:

(i+3)q
o [ e nirriepe < (162)
(i-3)q
and, consequently,
< r(it+3)a , 1 B &
wh!? Z/(, N & =P f(E)dE <7 <5 ~P(0<X<(n-— 1/2)q)) =S (1- Q1/5(@3)) (163)
i=n Y \*73)4
where X is a GG random variable distributed according to (1). Theltahen follows from (94). [ |
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Lemma 6:As ¢ — oo, we have

W@ = (F(pgl)@pﬂ)/ﬁ(af)w / |§—71|Pe—f‘*d£> + 0@ e ™). (164)
a1
Proof: According to (36), the first integral term in the expressidnip(7)/2 is
z I'((p+1)/8 _
o [ ergieyie=TEL g, i) (165)
The second term in the expressiondyf; (q)/2 is
o [ e __h e Cac— [ (e —7pet’
0 [ e nps@as = g ([ e mpe € [Teonpefar). e

In addition, by making the change of variatfle= £° — qg, we find that

p
piis o [ 5 Sy /8 2 0 -1,
B, P8 e / (€ —T)Pe € de = i) a0 (L c0do.  (167)
’ o 0 (65 ) 3 <§§ )
Assuming thag > 2/3, we have:
1/8
¥9>0, 1< (i +1) <@+ (168)

@

and, sincep > 1 andj > 1,

0< /000 <(q% + 1)w -2+ c))p (g%—l—l)wjleede < /000 (+12~2(140)) e a0 < 0. (169)
2 2

This shows that

/ (€ —T)Pe S de = O@g" 1 Pe ). (170)
g2
By invoking now Lemma 5 withn = 2, it can be claimed that
> plits)e ) s
3 [ e s = 0@t he ), )
i=2 7 (i=3)4
By using (36) in conjunction with (165), (166), (170) and {},7the expression in (164) is obtained. |
Lemma 7:Let A > 1 and let
VaeRy, I(a)= / [(af +1)Y7 = A["(af + 1)/~ Le~ap. (172)
0
Then, asoe — 0
(=1 = ZA=1 o+ (B =)A= 1) +0(0?) it A#1
I(a) = % +0(a?) if A\=1andp=1 (173)

O(a?) if A\=1andp > 1.

Proof: We distinguish the two cases\:> 1 and A = 1.
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(i) Case) > 1: Let us assume thdt < a < 1. We can decompose the integral of interest as follows:

pUES] oo
I(a) = / ()\f(a9+1)1/B)p(a9+1)1/6_16_9d9+/6 ((a+1)5 =X\ (af+1)5~e=04dp.
0 by (;1

(174)

Let us now focus on the first integral on the right-hand sid¢1d#). This reads

PGS}
L(a) = / ’ o(af)e db (175)
0
where

¢t Ry =R urs A= (u+ DYV (u+ 1)V (176)

The latter function is continuously differentiablen [0, \” — 1] and it is twice differentiable ofo, \® — 1).
Its first and second derivatives on the considered inteesyiven by

¢'(u) = —%v(uf*” (A= v(w)" " ((p+1—=Bo(w) + (B—1)A) (177

¢ (u) = @v(U)l‘w (A=v(u)" (p+1-B8) (p+1-28) (v(w)) *+(B-1) (3p+2—4B) A (w)+(5—1) (26-1)\?)
(178)
wherev(u) = (u+1)'/#. By performing a Taylor-Mc Laurin expansion of we get, for alb € [0, (\*—1)/al,

p(08) = 9(0) + ¢ (0)af + 5" (1)(ah)’

=(A=1)P - %(A —1)PHp+(B-1)(A—1))ab + %cp”(u)aQHQ (179)

where0 < p < af. In addition, since it has been assumed that 1, we havel < v(u) < (af + 1)Y/7 <
(6 + 1)'/# (which implies0 < v(u)'~3% < 1) and

l" ()] < pa(0) (180)

where the expression of the upper boynd#) depends on the value of the real parameter

(@ Whenp > 2, (A —v(u))P~2 < (A —1)?~2 and one can take

palf) = %(A—l)’”((p+1—ﬁ)Ip+1—2ﬁ|(9+1)2/B+(ﬁ—1)(3p+2—4ﬁ)>\(9+1)1/ﬁ+(6—1)(26—1)A2)-
(181)
(b) Whenp = 1, the second derivative takes the following simplified form:
() = 2o (202 - B)uli) + (26— 1)) (182)
thus yielding
pol8) = 5 (202 )0 + 1Y + 25 - 1Y), (183)

8We consider one-sided derivatives at the interval bourdari
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(c) Whenl < p < 2, we take

pal8) = 25 (A= (@0 + DY) (p+ 1= B)lp-+ 1 - 28](ab -+ 1)7/7

+(B-1)3p+2— 48\ + D)V (3 -1)(26 —1)A?). (184)

Now, it can be deduced from (175), (179) and (180) that

AP 1 AP 1 AP 1

‘Il(a)—(A—l)pA ’ e*9d9+%(>\—1)p*1(p+(ﬂ—1)()\—1))/ : 969d9‘§%2A " 620 (0)e 0 do.
(185)

0

This leads to
e~ (W =1)/a

H(0) == 1P+ GA-1" (pt (=)A= 1) +0(——) | < T / 0% pa(0)e " do.
(186)

In the cases whep = 1 or p > 2, it can be verified from the expressions (181) and (182) thatintegral

in the upper bound is not dependent@rand it is convergent. This implies:

o

Li(a)=(\—1)P — B(A -1 Hp+ (B-1)(A=1)) +O(c?). (187)
In the case when < p < 2, we decompose the upper bound integral in (185) as
AP —1 n A1
/ Y 920 (0)e0do = / 02 po (0)e=0do +/ Y 020 (0)e0do (188)
0 0 1

where0 < < A\ — 1. From (184), we find that, for a# € [0,7/a],
pal8) <7 = %(A DY R (1 — B)lp 1 — 28|(n + )8
+(B=1)3p+2—48A(n+ 1)+ (B-1)(28 — 1)A?) (189)

and, consequently, )
2 00
/ 62pa (e %do < p / 0%e=%d6 = 2p. (190)
0 0

Besides, after the change of variable= «f), the second integral in the right-hand side of (188) can be

rewritten as

AP 1

a 9 _9 )\ﬁ_l 2 6_7—/0‘ 6_7]/0‘ Aﬁ_l 2
[ 0% pa(0)e 7 db :/ 75p1(T) =3 dr < =3 / T2p1(T)dT. (191)
2 ] n

The latter integral is convergent sin¢g — (7 + 1)1/9)P=2 = O((M — 1 — 7)P=2), as7 — A* — 1, and
—1 < p—2 < 0. By using this fact in combination with (190) and (188), wenclude that, asx — 0,

AP 1

Y 02pa(0)e0do = O(1) (192)
0

which, together with (185), allows us to claim that (187) $tolds whenl < p < 2.
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We finally observe that the last term in (174) can be re-exgg@as

A1 o0
La)=e "= / olad + N —1)e%dp (193)
0
where, fora < 1,
0<plad+ A —1) < (0 + MNP —\)” (194)

sincel > 1 = (af + A\%)V/P=1 < 1. This yields

IL(a) =0(e" = ). (195)

As lim, oo 2e” o 0, we deduce from (174), (187) and (195) that (173) holds.
(i) Case\ = 1: We have then, for alkx > 0,

I(a) = fo ((af +1)P —1)"(af + 1)/P1e=049. (196)

(&) Whenp = 1, this integral can be expressed as

(o)
I(@) :al/ﬁ_lel/“/ (a/Byt/B — 1)Pyl/B=te=ugy

1/a
=el/® (aQ/ﬁfl /00 u? P et dy — oM/ /OO ul/ﬁflefudu) (297)
1/ 1/«

where the change of variable= 6 + 1/a has been performed to get the first equality. From (8) and

(94), we deduce that
! ! 2 o 2
I(a) = — -0 + O0(a®) = = + O(a?). (198)
al=3+1 al-—5+1 B

(b) Let us now consider the subcgse- 1. By integration by parts, (196) becomes

5 /OO 1 p+1 _p
I(a) = ——— af +1)8 —1)"" e, 199
@)= g [, (@040 1) (199)
Sinces > 1, for everyd > 0, (af +1)'/8 < af + 1, which allows us to upper bounf«) > 0 by
— ﬂa;v /‘X’ B
I(a) = 0P+ le=0dh = BT (p + 1)al. 200
@=c575 /. BL(p+1) (200)

Consequently/ (o) = O(a?).

In summary, we have proven that (173) also holds when 1.

[ |
APPENDIXH
PROOF OFPROPOSITIONG
We proceed similarly to the proof of [17].
Proof of (63) and (64). Let us first calculate
D
lim sup Mﬁﬁ) =« € (—00, 0. (201)

D—(epp)~ Efp —
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The above equality means that

prC(evé)

lim su {
P ey — D

n—0+

e(up —m) <D< Gﬂp} = a. (202)
In addition,Ep,c is a continuous function and, according to (48),
lim dy () = pp (203)
q—00

and (see Remark 4(iii))
37 >0 suchthat Vg > 7, d,c(q) < pp- (204)

It can then be deduced from (202) that
Rp.c(eedy (T
lim sup M = ea. (205)
q—o0 Hp — dp,((‘])

Using now (38), we have
R, (€ ed, (T H,(e,q H,(e,7
lim sup M < lim sup ﬂ = lim M (206)

ooy — dpc(@) Gooo Hp = dpc(@) T 1y — dpc(0)
where the last limit can be derived from (61) and (62). In sianynwe have proved that

BocleD) oy Hal6 (207)

€ limsup —=—— < | —.
D(epp)= Hp =D 7700y — dy ((q)

Let us now setD < es,. From the definition ofR), ¢ in (38), for all ) > 0 there existsj, such thated,, (7,) < D
andHy(e,q,) —n < Ry (e, D) < Hy(e,q,). This holds in particular when = n(D) = (eu, — D)?. Consequently,

D H,(e,q. 1) —n(D
RP,C(eaB) > ol qn(D))_ n(D) (208)
€pp — D epp — D
and © (
E H 676 D G;a D
~liminf p’C(E’_) > liminf (&) — (D) = liminf n(_D)) (209)
D—(epp)~ €fp — D Do(epy)- Efbp D—(epp)~  €lp — D
Furthermore, we have
1
0< S S (210)
Hp — dp,((qn(ﬁ)) €up — D
which, combined with (209), yields
E H E,q,, D
¢ lmint Fec©D) o ol Tym) (211)

D(ep)~ €lp— D~ Dstemy)~ pip — dpc(Tm))
It can then be noticed thaihnﬁ_,(%), R, ¢(e, D) = 0 (from (38), (204) and the fact théitnm, .. H,(€,q) = 0)),
which implies thatimg (., - Hy(e, @, ) = 0 (since0d < Hy(e,q,55,) < Rpc(e, D)+n(D)). Thus, by invoking

the monotonicity ofH(e, -), we getlimg_, ., - 7,3, = oo This allows us to deduce from (211) that

D H,(e,q
¢ Timinf fe<t&D) o He(6@ (212)
D—(epp)~ €hp — D 700 [t — dp¢(7)
By combining (207) and (212), we conclude that
D H,(e,q
¢ lm feceD) g H(6@) (213)
D—(epy)= €ftp — D 700 py, — dy ¢ (Q)
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Egs. (63) and (64) then straighforwardly follow from (61)daf62).
Proof of (65) Let us first consider the cage< (. Using Lemma 3 and proceeding similarly to the derivation
of (211), we can claim that, for alD € (0,¢u,), there existsq;](ﬁ) > 0 and ¢, € [~1/2,0] such that

edp.c, (ﬁ))@;’@)) <D and

; D H (676[ D )
e liminf M > liminf ? n(D_)/ . (214)
D—(enp)~ €ftp =D 7 Dotemy) = pp = dp¢, ) (T, 1))
By using now Remark 4(iv), we obtain
; E H (676[ D )
€ liminf M > liminf g—z(,D). (215)
D—(epup)~ €y = D Do)~ tp = &,(T) 15))
In turn, the asymptotic forms aff, (e, -) andd,, in (32) and (60) lead to
lim M = 0. (216)
g—oo i — d,(q)
Sinceail(ﬁ) — 00 asD — (eu,)~, we deduce that
_lim M = oC. (217)
D—(epp)~ €pp — D
Let us now turn our attention to the cage> 5. We have
D inf_ Ryc(e,D D
0 < limsup M = limsup M -1/25¢<0 ﬁ’C(E ) < inf lim sup Me’_). (218)
Bﬁ(eup)* E€lp — D Bﬁ(eup)* Elp — D _I/QSCSOBH(E;LP)* Elp — D
By using (63) and (64), we find that:
@) If p> 3, then .
_lim M =0. (219)
D—(epp)~ €fp — D
(i) If p =g, then the infimum of the last term in (218) is attained wijea —1,/2 and we get
D
lim sup M <1 (220)
D—(epp)~ Elp — D
Furthermore, forD € (0, ep1,,), we obviously have
Byl D) RyleD) (221)
ey — D ey — D

whereR,, is the Shannon rate-distortion function defined by (45). By thain rule [27], the mutual information

in this expression is equal to

I(X; X) = ZT(Q; X) 4 eZ(XD; X 1) (222)
where
0 ifX=0
Q= (223)
1 otherwise
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and X (resp.X ™) is a random variable distributed according to the distitbuof X (resp.X) conditionally to
@ = 1. Since the mutual entropy is nonnegative, we derive theoiig lower bound fork, (see [24] for more
details):

N D
Rp(e,D) > ¢ inf Z(XxW, xWy = GRS) (—) (224)
{ZO |EIxO-X O |p)<w-r/8D/c} €

WhereRﬁ,l) is the Shannon rate-distortion function of a GG random téeiaThe Shannon lower bound [31] for

this latter rate-distortion function is given by:

D 1 pD
M) > _ _ = Ll
R (6) > hg(1) — hy(1) pln( : ) (225)
When 3 = p, the above two inequalities reduce to
— € €
R,(e,D)> “In(—=). 226
(e D)= in (=) (226)
Then, by noticing that:, = % = 1/p, we deduce from (221) and (226) that, Bs— (e/,) ",
1+0(1) < Rp(e, D) _ Byle, D) (227)
€y — D €y — D
By combining this result with (220), we conclude that, whes 3,
lim M = lim M =1. (228)

D—(eup)~ €fp — D D(en,)~ €pip — D
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Fig. 1. Entropy of a uniformly quantized GG source versusrtbhamalized quantization stepwhen s = 1 (top left), 5 = 4/3 (top right),

B = 5/3 (bottom left) and3 = 2 (bottom right). H ¢ is plotted in solid line, its lower approximatioh{f) plotted in dotted line is almost
perfectly superimposed o ¢ and the upper approximatioH}S) + Ajs is plotted in dashdot line.
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Fig. 2. High and low resolution approximations of the enyrad a uniformly quantized GG source versus normalized qeatidn stepg

when 3 = 1 (top), 8 = 3/2 (middle) and3 = 2 (bottom). H is plotted in solid line. Its high resolution approximatign— hg(1) — Ing

is plotted on the left in dashed line (for improved readibilig is displayed in log scales on these graphs). Its low reswiugipproximations
g — —polnpo — (1 — po)In((1 — po)/2) andg — %ﬁ;;?i) (1+(1—1/8)G2P) (27P3° + In(G° /) + In (4eI'(1/8))) are
plotted on the right in dashdot line and dotted line, respelgt
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Fig. 3. High resolution (left) and low resolution (right)@pximations of the entropy of a uniformly quantized BGGeewersus the normalized
quantization steg whene = 0.3, 8 = 1 (top), 8 = 3/2 (middle) and3 = 2 (bottom). H is plotted in solid line, its high resolution approxima-
tiong — He+e(hg(1) —Ing+BgIng/(2I(1/8))) is plotted in dashed line, its low resolution approximasign— —(1—e(1—pg)) In (1—

e(1 —po)) — e(1 —po)In (e(1 — po)/2) andg — % (1+(1-1/8)G2%) (27°3° + In(¢° /q) + In (4eT'(1/B)/¢)) are

plotted in dashdot line and dotted line, respectively.
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Fig. 4. Difference (in Nats) between the operational ras¢éedion R, and the Shannon rate-distortion functi®), versusp at low resolution
for a GG source.
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