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Regularity criteria for almost every function in Sobolev spaces

In this paper we determine the multifractal nature of almost every function (in the prevalence setting) in a given Sobolev or Besov space according to dierent regularity exponents. These regularity criteria are based on local L p regularity or on wavelet coecients and give a precise information on pointwise behavior.

Introduction

The study of regularity, and more precisely of pointwise regularity of signals or functions raised a large amount of interest in scientic communities. This topic allows a better understanding of behavior of functions and it gives also a powerful classication tool in various domains. A recent theory, based on the study of pointwise smoothness is supplied by the multifractal analysis. The multifractal analysis was initially introduced in order to study the velocity of turbulent ows. It was then applied in several elds, such as in signal or image processing [START_REF] Abry | Ondelettes et turbulences. Multirésolutions, algorithmes de décomposition, invariance d'échelle et signaux de pression[END_REF][START_REF] Arneodo | multifractales et turbulences: De l'ADN aux croissances cristallines[END_REF]. But in each case, the criterium of regularity taken into account is the Hölder exponent, and this exponent is only well dened for locally bounded functions. It would be convenient to dene new criteria on more general cases. This is very important for applications in several elds. For instance, the velocity of turbulent uids is now known not to be bounded near vorticity laments, see [START_REF] Arneodo | Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data[END_REF]. Concerning turbulent ows, in [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], Leray shows that weak solutions of Navier-Stokes equations with initial value in L 2 (R 3 ) may develop singularities in nite time. This problem was then widely studied, [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF][START_REF]Navier-Stokes equations: theory and numerical methods[END_REF] and dierent behaviors were produced following the initial value problem involved. Furthermore, in [START_REF] Calderón | Local properties of solutions of elliptic partial dierential equations[END_REF], it was shown that an alternative denition of regularity can give better results in elliptic PDEs. This regularity criteria is also taken in [START_REF] Caarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] where it provides a nice tool to study viscosity solutions. It would thus be natural to take this notion, which involves local L p norms to study irregularities of Navier-Stokes solutions when initial data are supposed in L p . Furthermore, Hölder regularity is not adapted for classication of natural images as it does not take into account the geometry of sets. It would however be convenient to establish these criteria in image processing, where regularity properties are widely used. A natural idea would be to determine properties of the characteristic function of sets. Nonetheless, the Hölder regularity of the characteristic function of any set only takes two values. Furthermore, most natural images, such as clouds images or medical images are discontinuous, see [START_REF] Arneodo | Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data[END_REF] and thus need to be studied with more general notion of regularity.

Let us recall the principle of multifractal analysis. The natural notion of regularity used in the study of pointwise behavior is provided by the Hölder exponent, dened as follows.

Denition 1. Let α ≥ 0; a function f : R d → R is C α (x 0 ) if for each x ∈ R d such that |x -x 0 | ≤ 1 there exists a polynomial P of degree less than [α] and a constant C such that,

|f (x) -P (x -x 0 )| ≤ C|x -x 0 | α . ( 1 
)
The Hölder exponent of f at x 0 is

h f (x 0 ) = sup{α : f ∈ C α (x 0 )}.
In some cases, functions may have an Hölder regularity which changes wildly from point to point. Rather than measure the exact value of the Hölder exponent, one studies the fractal dimension of sets where it takes a given value. The spectrum of singularities, also called multifractal spectrum and denoted d(H), is the function which gives for each H the Hausdor dimension of those sets. A function is then called multifractal if the support of its spectrum of singularities is an interval with no empty interior. However, the Hölder exponent has some drawbacks that prevent from using it in any situation. First, it is only dened for locally bounded functions. If a function f belongs only to L p loc this exponent is no more dened. Furthermore, as pointed by Calderòn and Zygmund in [START_REF] Calderón | Local properties of solutions of elliptic partial dierential equations[END_REF], it is not preserved under pseudodierential operator of order zero, and as stated in [START_REF] Wavelets | vibrations and scalings[END_REF] cannot thus be characterized with conditions on wavelet coecients.

Another drawback can be emphasized with the example of Raleigh-Taylor instability. This phenomena occurs when two uids which are not miscible are placed on top of each other. In this case, thin laments appears giving to the interface between the two uids a fractal structure, see [START_REF] Mimouni | Analyse fractale d'interfaces pour les instabilités de Raleigh-Taylor[END_REF] for a study. To study geometric properties of this interface, one would be interested on multifractal properties of its characteristic function. Nonetheless as such functions are not continuous and take only two values, their Hölder exponent is not dene, and a multifractal approach can't be carry out.

For all this reasons, it would be convenient to dene a new kind of multifractal analysis constructed with more general exponents. Such construction is started in [START_REF] Jaard | Wavelet analysis of fractal boundaries. Part 1 : Local exponents[END_REF][START_REF]Wavelet analysis of fractal boundaries. Part 2 : Multifractal formalism[END_REF], where the authors proposed a multifractal formalism based on Calderòn-Zygmund exponents. These exponents were introduced in [START_REF] Calderón | Local properties of solutions of elliptic partial dierential equations[END_REF] as an extension of Hölder exponent to L p loc functions, invariant under pseudodierential operator of order 0.

Denition 2. Let

p ∈ [1, ∞] and u ≥ -d p be xed. A function f ∈ L p loc (R d ) belongs to T p u (x 0 )
if there exist a real R > 0 and a polynomial P , such that deg(P ) < u + d p , and c > 0 such that:

∀ρ ≤ R : 1 ρ d x-x 0 ≤ρ |f (x) -P (x)| p dx 1/p ≤ cρ u . ( 2 
)
The p-exponent of f at

x 0 is u p f (x 0 ) = sup{u : f ∈ T p u (x 0 )}.
With this denition, the usual Hölder condition f ∈ C s (x 0 ) corresponds to f ∈ T p u (x 0 ) where p = ∞. One can also check that the p exponent is decreasing as a function of p. As it was done for the Hölder exponent one can dene for each p the p-spectrum of singularities as the Hausdor dimension of the set of points where the p-exponent take ! a given value. In [START_REF] Jaard | Wavelet analysis of fractal boundaries. Part 1 : Local exponents[END_REF], the authors dened the weak accessibility exponent, given as a parameter of the geometry of the set. Specically, this weak-scaling exponent deals with the local behavior of the boundary of a set. It is thus well adapted for fractal interfaces that might appear in chemical experimentation. They showed that this geometrical based exponent coincide with Calderòn-Zygmund exponents of the characteristic function of the boundary of the set.

Another regularity criterium, closely related to the previous ones is given by the following denition from [START_REF] Wavelets | vibrations and scalings[END_REF]. With this exponent we can have a better understanding of the link between Calderòn-Zygmund exponents, Hölder exponent and the pointwise behavior of functions. Denition 3. Let f : R d → R be a function or a distribution and x 0 ∈ R d be xed. The weak scaling exponent of f at x 0 is the smallest real number β(f, x 0 ) satisfying:

1.

β(f, x 0 ) ≥ u p f (x 0 ) ∀p ≥ 1. 2. β(f, x 0 ) = s ⇔ β ∂f ∂x j , x 0 = s -1 j = 1, ..., d.
Similarly, we dene the weak-scaling spectrum, denoted by d ws (β)

as the Hausdor dimension of sets of points where β(f, x) takes a given value β. As we will see later, the weak scaling exponent can be characterized by conditions on wavelet coecients. In practical applications, the spectrum of singularities cannot be computed directly, as it takes into account intricate limits. Thus, some some formula, the multifractal formalism were introduced which link the spectrum of singularities to some calculable quantities. There are indeed two formalisms based on conditions on wavelet coecients. Historically the classical multifractal formalism stated in [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF] was based directly on wavelet coecients. The common point of view is that it is the weak scaling exponent which is involved in this formula. The second multifractal formalism, developed in [START_REF] Jaard | Wavelet leaders n multifractal analysis[END_REF] is based on "wavelet leaders", which can be seen as the theoretical counterpart of the "Wavelet Transform Modulus Maxima" used in [START_REF] Arnéodo | The thermodynamics of fractals revisited with wavelets[END_REF]. This "wavelet leader" based formalism actually gives the spectrum of singularities in term of Hölder exponent and is numerically more stable. Furthermore it gives an additional information on the behavior of functions thanks to the following denition.

"

Denition 4. Let f : R d → R be a function and

x 0 ∈ R d . We say that x 0 is a cusp singularity for f if β(f, x 0 ) = h f (x 0 ). If β(f, x 0 ) > h f (x 0 ),
x 0 is said to be an oscillating singularity.

An example of oscillating function at x 0 = 0 is given by f (x) = |x| sin(1/|x|). Here, h f (0) = 1 while β(f, 0) = +∞. And we have a cusp singularity when the behavior of the function at x 0 is like |x| α but also like |x| α + |x| sin(1/|x|). Indeed we talk about a cusp singularity when the function do not have oscillations at a point, or if those oscillations are hidden by the Hölder behaviour.

Many authors have studied generic values of the Hölder exponent in function spaces. In 1931 Banach, [START_REF] Banach | Über die Baire'sche Kategorie gewisser Funktionenmengen[END_REF], proved that the pointwise regularity of quasi all, in a topological sense, continuous functions is zero. Here quasi all means that this property is true in a countable intersection of dense open sets. Since then Hunt in [START_REF] Hunt | The prevalence of continuous nowhere dierentiable function[END_REF] showed that the same result is satised by measure theoretic almost every continuous functions. Recently, results such as those of [START_REF] Jaard | On the pointwise regularity in critical Besov spaces[END_REF] and [START_REF] Fraysse | How smooth is almost every function in a Sobolev space?[END_REF] studied Hölder regularity of generic functions in Sobolev spaces in both senses. Whereas a large study of regularity properties for generic sets, there exists no result on genericity of Calderòn-Zygmund exponents or of weak scaling exponent. Our purpose here is to provide a genericity result of those exponents in given Sobolev and Besov spaces, with the measure-theoretic notion of genericity supplied by prevalence.

Prevalence is a measure theoretic notion of genericity on innite dimensional spaces. In a nite dimensional space, the notion of genericity in a measure theoretic sense is supplied by the Lebesgue measure. The particular role played by this measure is justied by the fact that this is the only one which is σ-nite and invariant under translation. In a metric innite dimensional space no measure enjoys this properties. The proposed alternative is to replace conditions on the measure by conditions on sets, see [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF][START_REF] Christensen | On sets of Haar measure zero in Abelian Polish groups[END_REF][START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF] and to take the following denition. Denition 5. Let V be a complete metric vector space. A Borel set B in V is called Haar-null if there exists a probability measure µ with compact support such that

µ(B + v) = 0 ∀v ∈ V. ( 3 
)
In this case the measure µ is said transverse to

B. A subset of V is called Haar-null if it is contained in a Borel Haar-null # set.
The complement of a Haar-null set is called a prevalent set.

With a slight abuse of language we will say that a property is satised almost everywhere when it holds on a prevalent set.

Let us recall properties of Haar-null sets, see [START_REF] Christensen | On sets of Haar measure zero in Abelian Polish groups[END_REF][START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF] and show how it generalizes notion of Lebesgue measure zero sets. Those measures are not compactly supported probability measures. However one immediately checks that this notion can also be dened the same way but stated with the Lebesgue measure dened on the unit ball of P . Note that in this case, the support of the measure is included in the unit ball of a nite dimensional subspace. The compactness assumption is therefore fullled.

Proposition 1. 1. If S is Haar-null, then ∀x ∈ V , x + S is Haar- null. 2. If dim(V ) < ∞, S is
2. If V is a function space, a probability measure on V can be dened by a random process X t whose sample paths are almost surely in V . The condition µ(f + A) = 0 means that the event X t -f ∈ A has probability zero. Therefore, a way to check that a property P holds only on a Haar-null set is to exhibit a random process X t whose sample paths are in V and is such that ∀f ∈ V, a.s. X t + f does not satisfy P.

$ 1.1 Statement of main results

The purpose of this paper is stated by the two following theorems which give the multifractal properties of almost every functions with regard to exponents dened in the previous section.

Theorem 1. Let s 0 ≥ 0 and

1 ≤ p 0 < ∞ be xed. 1. For all p ≥ 1 such that s 0 -d p 0 > -d p the p-spectrum of singular- ities of almost every function in L s 0 ,p 0 (R d ) is given by ∀u ∈ s 0 - d p 0 , s 0 d p (u) = p 0 (u -s 0 ) + d. ( 4 
)
2. For almost every function in L s 0 ,q 0 (R d ) the spectrum of singularities for the weak-scaling exponent is given by

∀β ∈ [s 0 - d p 0 , s 0 ] d ws (β) = p 0 (β -s 0 ) + d. ( 5 
)
This result in Sobolev spaces has an analogous in the Besov setting. Furthermore, Besov spaces are useful when wavelets are involved as it is the case here, those spaces having a simpler characterization.

Theorem 2. Let s 0 ≥ 0 and 0 < q, p 0 < ∞ be xed.

1. For all p ≥ 1 such that s 0 -d p 0 > -d p the p-spectrum of singularities of almost every function in B s 0 ,q p 0 (R d ) is given by

∀u ∈ s 0 - d p 0 , s 0 d p (u) = p 0 (u -s 0 ) + d. ( 6 
)
2. For almost every function in B s 0 ,q p 0 (R d ) the spectrum of singularities for the weak-scaling exponent is given by

∀β ∈ [s 0 - d p 0 , s 0 ] d ws (β) = p 0 (β -s 0 ) + d. ( 7 
)
These theorems seem a bit surprising. Let us compare them with the following proposition from [START_REF] Fraysse | How smooth is almost every function in a Sobolev space?[END_REF]. 

Thus the main change from [START_REF] Fraysse | How smooth is almost every function in a Sobolev space?[END_REF] is given by the fact that here H can take negative values. Indeed, our present theorems give a generic regularity in Sobolev or in Besov spaces that are not imbedded in global Hölder spaces. There we have nevertheless an idea of the pointwise behavior of almost every distribution in such spaces. On the other case, when s 0 -d p 0 > 0 and the spectrum of singularities exists, it coincides with the above spectra for almost every function in Besov spaces.

In [START_REF] Melot | Oscillating singularities in Besov spaces[END_REF], it was proved that in those spaces quasi all functions have not oscillating singularities. Furthermore, presence of oscillating singularities is linked with the failure of the multifractal formalism in [START_REF] Seuret | Detecting and creating oscillations using multifractal methods[END_REF]. And in [?], it was already proven that almost every function in Besov spaces satisfy the multifractal formalism. In the present paper, we see that in a prevalent setting, we have both the multifractal formalism, and the absence of oscillating singularities.

Another remark can be made thanks to the following proposition from [START_REF]Wavelet analysis of fractal boundaries. Part 2 : Multifractal formalism[END_REF] and from [START_REF] Ziemer | Weakly dierentiable functions. Sobolev spaces and functions of bounded variation[END_REF] that give an upper bound for the p-spectrum. Proposition 3. Let f ∈ B s 0 ,p 0 p 0 (R d ), where s 0 > 0 and let p ≥ 1 be such that s 0 -

d p 0 > -d p . Then ∀u ∈ s 0 - d p 0 , s 0 d p (u) ≤ p 0 u -s 0 p 0 + d. ( 9 
)
This proposition with Theorem 2 show that the generic regularity for p criteria is as bad as possible.

In Part 2 we will prove Theorems 1 and 2. For the sake of completeness, we rst have to dene our main tool which is given by wavelet expansions of functions. Wavelets are naturally present in multifractal analysis, see for instance [START_REF] Arneodo | multifractales et turbulences: De l'ADN aux croissances cristallines[END_REF]. Furthermore, in our case it allows a characterization of both functional spaces and pointwise regularities.

Wavelet expansions

There exist 2 d -1 oscillating functions (ψ (i) ) i∈{1,...,2 d -1} in the Schwartz class such that the functions

2 dj ψ (i) (2 j x -k), j ∈ Z, k ∈ Z d form an orthonormal basis of L 2 (R d ), see [26]. Wavelets are indexed by dyadic cubes λ = [ k 2 j ; k+1 2 j [ d . Thus, any function f ∈ L 2 (R d ) can be written: f (x) = c (i) j,k ψ (i) (2 j x -k) where c (i) j,k = 2 dj f (x)ψ (i) (2 j x -k)dx.
(Note that we use an L ∞ normalization instead of an L 2 one, which simplies the formulas). If p > 1 and s > 0, Sobolev space have thus the following characterization, see [START_REF] Meyer | Ondelettes et opérateurs[END_REF]:

f ∈ L s,p (R d ) ⇔ λ∈Λ |c λ | 2 (1 + 4 js )χ λ (x) 1/2 ∈ L p (R d ), (10) 
where χ λ (x) denotes the characteristic function of the cube λ and Λ is the set of all dyadics cubes. Homogeneous Besov spaces, which will also be considered, are characterized (for p, q > 0 and s ∈ R) by

f ∈ B s,q p (R d ) ⇐⇒ j   λ∈Λ j |c λ | p 2 (sp-d)j   q/p ≤ C ( 11 
)
where Λ j denotes the set of dyadics cubes at scale j, see [START_REF] Meyer | Ondelettes et opérateurs[END_REF].

Hölder pointwise regularity can also be expressed in term of wavelet coecients, see [START_REF] Jaard | Multifractal formalism for functions[END_REF]. Proposition 4. Let x be in R d . If f is in C α (x) then there exists c > 0 such that for each λ:

|c λ | ≤ c2 -αj (1 + |2 j x -k|) α . ( 12 
)
This proposition is not a characterization. If for any ε > 0, a function does not belongs to C ε (R d ) one cannot express its pointwise Hölder regularity in term of condition on wavelet coecients. This ' is an advantage of Calderòn Zygmund exponent since, as showed in [START_REF]Pointwise regularity criteria[END_REF], it can be linked to wavelet expansion without global regularity assumption. Denition 6. Let x 0 be in R d and j ≥ 0. We denote by λ j (x 0 ) the unique dyadic cube of width 2 -j which contains x 0 . And we denote

3λ j (x 0 ) = λ j (x 0 ) + - 1 2 j , 1 2 j d .
Furthermore, we dene the local square function by

S f (j, x 0 )(x) =   λ⊂3λ j (x 0 ) |c λ | 2 1 λ (x)   1/2 . Proposition 5. Let p ≥ 1 and s ≥ 0; if f ∈ T p s-d p (x 0 ), then ∃C > 0 such that wavelet coecients of f satisfy for all j ≥ 0 S f (j, x 0 ) L p ≤ c2 -j(u+d/p) . ( 13 
)
Conversely if ( 13) holds and if s -

d p ∈ N then f ∈ T p s-d p (x 0 ).
As far as we are concerned, we don't need a characterization but a weaker condition which is given by the following proposition from [START_REF] Jaard | Wavelet analysis of fractal boundaries. Part 1 : Local exponents[END_REF]. Proposition 6. Let p ≥ 1 and s ≥ 0; if f ∈ T p s-d p (x 0 ), then ∃A, C > 0 such that wavelet coecients of f satisfy

∃C ∀j 2 j(sp-d) |k-2 j x 0 |≤A2 j |c j,k | p (1 + |k -2 j x 0 |) -sp ≤ Cj. (14)
Furthermore, it is also proved in [START_REF] Jaard | Wavelet analysis of fractal boundaries. Part 1 : Local exponents[END_REF] that the p-exponent can be derived from wavelet coecients. Proposition 7. Let p ≥ 1 and f ∈ L p loc . Dene

Σ p j (s, A) = 2 j(sp-d) |k-2 j x 0 |≤A2 j |c j,k | p (1 + |k -2 j x 0 |) -sp , ( 15 
)
for A > 0 small enough. And denote

i p (x 0 ) = sup    s : lim inf log Σ p j (s, A) 1/p -j log 2 ≥ 0    . ( 16 
)
Then the following inequality always holds

u p f (x 0 ) ≤ i p (x 0 ) - d p . ( 17 
)
If furthermore there exists δ > 0 such that f ∈ B δ,p p then the pexponent of f satises

u p f (x 0 ) = i p (x 0 ) - d p . ( 18 
)
As seen previously, the p-exponent is also related to the weakscaling exponent. This one can also be expressed in term of wavelet coecients, thanks to its relation with two-microlocal spaces, dened in [START_REF] Bony | Second microlocalization and propagation of singularities for semilinear hyperbolic equations[END_REF]. Denition 7. Let s and s be two real numbers. A distribution f : R d → R belongs to the two-microlocal space C s,s (x 0 ) if its wavelet coecients satisfy that there exists c > 0 such that

∀j, k |c j,k | ≤ c2 -sj (1 + 2 j x 0 -k|) -s . ( 19 
)
In [START_REF] Wavelets | vibrations and scalings[END_REF] the following characterization of the weak scaling exponent is given. Proposition 8. A tempered distribution f belongs to Γ s (x 0 ) if and only if there exists s < 0 such that f belongs to C s,s (x 0 ).

The weak-scaling exponent of f is

β(f, x 0 ) = sup{s : f ∈ Γ s (x 0 )}. ( 20 
)
But we will rather take the following alternative characterization from [START_REF] Jaard | Wavelet analysis of fractal boundaries. Part 1 : Local exponents[END_REF] that give a simpler condition in term of wavelet coecients. Proposition 9. Let f be a tempered distribution. The weak scaling exponent of f at x 0 is the supremum of s > 0 such that :

∀ε > 0 ∃c > 0 ∀(j, k) such that |2 j x 0 -k| < 2 εj , |c j,k | ≤ c2 -(s-ε)j (21)
2 Proofs of Theorems 1 and 2

The p-spectrum

In this section, we will only prove the rst point of Theorem 2. The will see how this proof can be adapted to Theorem 1 in a second time.

The result that we will prove in this section is more precise than the one stated. Indeed, we prove that for each α ∈ (1, ∞) and for each p ≥ 1, the p-exponent of almost every function of

B s 0 ,p 0 p 0 (R d ) is smaller than s - d p + d αp
on a set of Hausdor dimension d α .

These fractal sets are closely related to the dyadic approximation of points. Denition 8. Let α ∈ (1, ∞) be xed. We denote

F α = x : ∃ a sequence ((k n , j n )) n∈N x - k n 2 jn ≤ 1 2 αjn . ( 22 
)
This set F α can also be dened as

lim sup i→∞ l∈N d F i,l α
where F i,l α denotes the cube l

2 i + -1 2 αi ; 1 2 αi d . If x ∈ F α it
is said α-approximable by dyadics. The dyadic exponent of x is dened by α(x 0 ) = sup{α : x 0 is α-approximable by dyadics} As stated in [START_REF]On the Frisch-Parisi conjecture[END_REF], the Hausdor dimension of F α is at least d α .

Let p ≥ 1 be given such that s 0 -

d p 0 > -d p . For α ≥ 1 xed we denote s(α) = s 0 -d p 0 + d αp 0 + d p . For ε > 0 xed, let β = s(α) + ε.
We rst check that the set of functions in B s 0 ,p 0 p 0 satisfying [START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF] with exponent β at a point in F α is a Haar-null Borel set. This set can be included in a countable union over A > 0 and c > 0 of sets M (A, c) which are sets of functions in

B s 0 ,p 0 p 0 (R d ) satisfying ∃x ∈ F α ∀j 2 j(βp-d) |k-2 j x|≤A2 j |c λ | p (1 + |k -2 j x|) -βp ≤ c.
And for each i ∈ N these sets can be included in the countable union over l ∈ {0, ..., 2 i -1} d of M i,l (A, c), dened by the set of f such that

∃x ∈ F i,l α ∀j 2 j(βp-d) |k-2 j x|≤A2 j |c λ | p (1 + |k -2 j x|) -βp ≤ c. Each M i,l (A, c) is a closed set. Indeed, suppose that a sequence (f n ) of elements of M i,l (A, c) converges to f in B s 0 ,p 0 p 0 (R d ). Denote c n j,k
the wavelet coecients of f n , for each n ∈ N and c j,k those of f . For each n there exists x n ∈ F i,l α such that f n satises ( 14) at x n . Thus

∀j 2 j(βp-d) |kn-2 j xn|≤A2 j |c n λ | p (1 + |k n -2 j x n |) -βp ≤ c. ( 23 
)
As F i,l α is a compact set, there exists an accumulation point x ∈ F i,l α of x n . The mapping giving the wavelet coecients of a function f in a Besov space is continuous. Furthermore, if

k n is such that |k n -2 j x n | ≤ A2 j for a subsequence x φ(n) such that lim x φ(n) = x, the corresponding k φ(n) converges to k and |k -2 j x| ≤ A2 j .
Thus up to a subsequence, when n tends to innity, (23) becomes

∀j 2 j(βp-d) |k-2 j x|≤A2 j |c λ | p (1 + |k -2 j x|) -βp ≤ c.
Thus f belongs to M i,l (A, c) and M (A, c) is a Borel set.

To prove that it is also a Haar-null set, we construct a probe based on a slight modication of the "saturating function" introduced in [START_REF]On the Frisch-Parisi conjecture[END_REF].

Let i ∈ N and l ∈ {0, ..., (j+n) . For each index i ∈ {1, ..., N }, we choose a subcube i(λ) and the wavelet coecient of g i is given by:

2 i -1} d be xed. Let n ∈ N be xed large enough such that N = 2 dn > d pαε + 1. Each dyadic cube λ is split into M subcubes of size 2 -d
d i λ = 1 j a 2 ( d p 0 -s 0 )j 2 -d p 0 J if i = i(λ) 0 else. ( 24 
)
where a = 2 p 0 and J ≤ j and K ∈ {0, ...2 J -1} d are such that

k 2 j = K 2 J
! is an irreducible form. It is proven in [START_REF]On the Frisch-Parisi conjecture[END_REF] that these functions belong to B s 0 ,p 0 p 0 . Furthermore, if a point x ∈ (0, 1) d is α-approximable by dyadics, there exists a subsequence (j n , k n ) where j n = [J n α], J n and K n being dened in [START_REF] Jaard | On the pointwise regularity in critical Besov spaces[END_REF] and k n is such that kn 2 jn = Kn 2 Jn . The corresponding wavelet coecients of all functions g i satisfy that there exists a constant c > 0 such that if (j, k) satisfy |x 0 -k 2 j | < A :

d i j,k > c(A) 2 ( d p 0 -s 0 )j 2 -d αp 0 j j a . ( 25 
)
Let f = c j,k ψ j,k be an arbitrary function in B s 0 ,p 0 p 0 (R d ). Suppose that there exists two points γ 1 ∈ R N and γ 2 ∈ R N such that for a = 1, 2, f + i γ i a g i belong to M i,l (A, c). By denition there also exist two points x 1 and x 2 in F i,l α such that, for a = 1, 2,

∀j 2 j(βp-d) |k-2 j xa|≤A2 j |c λ + N i=1 γ i a d i λ | p (1 + |k -2 j x|) -βp ≤ c.
As β > 0, this condition implies :

∀j 2 j(βp-d) |k-2 j xa|≤A2 j |c λ + N i=1 γ i a d i λ | p (1 + A2 j ) -βp ≤ c.
But x 1 and x 2 belong to same dyadic cubes of size j > i. Thus the same k satisfy |k -2 j x a | ≤ A2 j for a = 1, 2 and wavelet coecients of f 1 -f 2 are such that for all j > αi

2 j(βp-d) |k-2 j xa|≤A2 j | N m=1 (γ m 1 -γ m 2 )d m λ | p (1 + A2 j ) -βp ≤ 2c.
It is obvious that

2 j(βp-d) | k 2 j -x 1 |≤A | m (γ m 1 -γ m 2 )d m λ | p 2 -βpj (2 -j + | k 2 j -x 1 |) -βp ≥ 2 j(sp-d) sup | k 2 j -x 1 |≤A | m (γ m 1 -γ m 2 )d m λ | p 2 -spj (2 -j + | k 2 j -x 1 |) -sp
" Using denition of function g i , if for each j we dene j = j + n, at scale j there is only one function g i with non zero coecient. And with [START_REF] Melot | Oscillating singularities in Besov spaces[END_REF] one nally obtains that there exists a subsequence j such that

2 n(βp-d) 2 j(βp-d) sup | k 2 j -x 1 |≤A | m (γ m 1 -γ m 2 )d m λ | p 2 -βpj (2 -j +| k 2 j -x 1 |) -sp ≥ |γ i 1 -γ i 2 | p cp 1 j pa 2 pεj ,
where c depends only of n and A.

Those two inequalities imply that

γ 1 -γ 2 p ∞ ≤ 2cc(N )i 1/p 0 2 -εαpi . ( 26 
)
Therefore the set of γ such that f + i γ i g i belongs to M i,l (A, c) is included in a ball of radius less than (2cc(N )) N i N/p 0 2 -εαpN i . Taking the countable union over l, we obtain that for each i 0 xed, the set of γ satisfying

∃x ∈ F i 0 α such that f + m γ m g m satisfy (23) at x is of Lebesgue measure bounded by ∞ i=i 0 (2cc(N )) N i N/p 0 2 di-εαpN i .
As N is large enough, this measure tends to zero when i 0 tends to innity. And M (A, c) is then a Haar-null set.

As this result does not depend on c or on A, we can take the union over countable c n > 0 and A n > 0. Then the set of functions in B s 0 ,p 0 p 0 (R d ) belonging to T p β (x) at a point x ∈ F α is a Haar-null set.

Thus,

∀p ≥ 1, ∀α ≥ 1 ∀β > s(α) a.s. in B s 0 ,p 0 p 0 ∀x ∈ F α u p f (x) ≤ β.
Taking ε → 0 it follows by countable intersection that

∀p ≥ 1, ∀α ≥ 1 a.s. in B s 0 ,p 0 p 0 ∀x ∈ F α u p f (x) ≤ s(α).
Therefore, if α n is a dense sequence in (1, ∞), using the same argument, one obtains that

# ∀p ≥ 1, a.s. in B s 0 ,p 0 p 0 ∀n ∈ N ∀x ∈ F αn u p f (x) ≤ s(α n ). (27) 
Let f be a function satisfying [START_REF] Wavelets | vibrations and scalings[END_REF] and α ≥ 1 be xed. Let α φ(n) a nondecreasing subsequence of α n converging to α. Then the intersection E α of F αn contains F α and for all x ∈ E α , and thus for all x ∈ F α , u p f (x) ≤ s(α). Furthermore, see [START_REF]Old friends revisited: The multifractal nature of some classical functions[END_REF], there exists a measure m α positive on F α but such that every set of dimension less than d α is of measure zero. Let us denote G H the set of points where u p (x) < H. According to Proposition 3, this set can be written as a countable union of sets of m α measure zero. Thus, we obtain

m α ({x : u p (x) = H} = m α (F α \G H ) > 0.
Which gives us the p spectrum of singularities

∀u ∈ s 0 - d p 0 , s 0 d p (u) = p 0 u + d -s 0 p 0 .
This proof does not depends on the choice of q. It can then be extended the same way for any Besov space B s 0 ,q p 0 for 0 ≤ q < ∞.

The proof for the Sobolev case is similar. The functions g i dened in (24) also belong to B s 0 ,1 p 0 . Since B s 0 ,1 p 0 → L s 0 ,p 0 , the g i belong to L s 0 ,p 0 and the remaining of the proof is unchanged.

Generic values of the weak scaling spectrum

We now prove of the second point of Theorem 1 and 2. As in the previous case, we prove Theorem 2, the same argument as in the previous part giving the Sobolev case. Proposition 10. Let s 0 > 0 and 0 ≤ p 0 , q < ∞ be xed. For almost every function in B s 0 ,q p 0 the spectrum of singularities for the weakscaling exponent is given by

∀β ∈ [s 0 - d p 0 , s 0 ] d ws (β) = p 0 (β -s 0 ) + d. (28) 

$

Proof. Let α ≥ 1 be xed and denote by F α the set of Denition 8.

Let ε > 0 be xed and dene β = s 0 -d p 0 + d p 0 α + ε. According to Proposition 9, we rst have to show that for a given c > 0 the set :

M α,c = {f = c λ ψ λ ∈ B s 0 ,q p 0 : ∃x ∈ F α ∀ε > 0 ∀(j, k) |2 j x-k| ≤ 2 ε j |c λ | ≤ c2 -(β-ε )j } (29) is a Borel Haar-null set.
Let us remark that for all i ∈ N, this set is included in the countable union of:

M α,c (i, l) = {f ∈ B s 0 ,q p 0 : ∃x ∈ F i,l α ∀ε > 0 ∀(j, k) |2 j x-k| ≤ 2 ε j |c λ | ≤ c2 -(β-ε )j }. ( 30 
) One easily checks that M α,c (i, l) is closed and therefore that M α,c is a Borel set.

To prove that M α,c is also Haar-null, we will use a dierent transverse measure than in the previous case. As M α,c depends only on the dyadic properties of points, we can restrict the proof to [0, 1] d . Consider the following stochastic process on [0, 1] d :

X x = ∞ j=0 λ∈[0,1] d ε j,k 2 -(s 0 -d p 0
)j 2

-d p 0 J j a ψ(2 j x -k) ( 31 
)
where J and a are dened as in [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] and {ε j,k } j,k is a Rademacher sequence. That is the ε j,k are i.i.d. random variables such that P(ε j,k = 1) = P(ε j,k = -1) = 1 2 .

This process belongs to B s 0 ,q p 0 . Furthermore, the measure dened by this stochastic process is supported by the continuous image of a compact set. Thus, (X x ) x∈[0,1] d denes a compactly supported probability measure on B s 0 ,q p 0 .

Let f be an arbitrary function in B s 0 ,q p 0 (R d ). Thanks to Fubini's theorem, it is sucient to prove that for all x ∈ F α , almost surely, condition [START_REF]Wavelet analysis of fractal boundaries. Part 2 : Multifractal formalism[END_REF] is not satised by f + X. % Let x 0 ∈ F α be xed and suppose that f +X satises condition (21) at x 0 . Then for all ε > 0 and for all (j, k) such that |k -2 j x 0 | ≤ 2 ε j , |c j,k + ε j,k 2

-(s 0 -d p 0

)j 2

-d p 0 J j a | ≤ c2 -(β-ε )j .
Taking (J n , K n ) the sequence of Denition 8, j = [αJ n ] and k = Kn2 j

2 Jn one obtains that there exists a sequence (j, k) such that |2 j x 0 -k| ≤ 1 and the following property holds:

ε j,k = c j,k j a 2 (s 0 -d p 0 + d p 0 α )j + o(2 -(ε-ε )j ).
Taking ε = ε 2 , one obtains that ε j,k ∼ c j,k j a 2 (s 0 -d p 0

+ d p 0 α )jn when j n → ∞. Since the c j,k are deterministic, this result implies that there exists an innite sequence of independent stochastic variables which are deterministic. This event is of probability zero and M α,c is a Haarnull set.

Therefore, taking countable unions over c > 0 and ε → 0, it follows that for all α ≥ 1, the set of functions in B s 0 ,q p 0 with a weak scaling exponent greater than s 0 -d p 0 + d p 0 α at some point of F α is a Haar-null set.

Let (α n ) n∈N be a dense sequence in (1, ∞) and take a countable union over α n . We nally obtain a. s. in B s 0 ,q p 0 (R d ) ∀n ∈ N ∀x ∈ F αn β(f, x) ≤ s 0 -

d p 0 + d p 0 α n .
With a similar argument as in part 2.1, one can prove that : a. s. in B s 0 ,q p 0 (R d ) ∀α ≥ 1 ∀x ∈ F α β(f, x) ≤ s 0 - & Which states that the spectrum of singularities for the weak scaling exponent of almost every function in B s 0 ,q p 0 (R d ) is given by ∀β ∈ [s 0 -d p 0 , s 0 ] d ws (β) = p 0 β + d -s 0 p 0 .

  saw in Part 2.1 that there exists a measure m α which is positive on F α and such that m α ({x; u p (x) = s 0 -And by denition, ∀p ≥ 1, β(f, x) ≥ u p (x), thus m α ({x; β(f, x) = s 0 -

  Haar-null if and only if meas(S) = 0 (where meas denotes the Lebesgue measure). 3. Prevalent sets are dense. 4. If S is Haar-null and S ⊂ S then S is Haar null. 5. The union of a countable collection of Haar-null sets is Haar null. 6. If dim(V ) = ∞, compact subsets of V are Haar-null. Remarks. Several kinds of measures can be used as transverse measures for a Borel set. Let us give two examples of transverse measure.

1. A nite dimensional space P is called a probe for a set T ⊂ V if the Lebesgue measure on P is transverse to the complement of T .

  Proposition 2. • If s -d/p ≤ 0, then almost every function in L p,s is nowhere locally bounded, and therefore its spectrum of singularities is not dened. If s -d/p > 0, then the Hölder exponent of almost every function f of L p,s takes values in [s -d/p, s] and

% • ∀H ∈ [s -d/p, s] , d f (H) = Hp -sp + d;