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Regularity criteria for almost every function

in Sobolev spaces

A. Fraysse∗

April 20, 2012

Abstract

In this paper we determine the multifractal nature of almost every
function (in the prevalence setting) in a given Sobolev or Besov space
according to di�erent regularity exponents. These regularity criteria
are based on local Lp regularity or on wavelet coe�cients and give a
precise information on pointwise behavior.

1 Introduction

The study of regularity, and more precisely of pointwise regularity
of signals or functions raised a large amount of interest in scienti�c
communities. This topic allows a better understanding of behavior of
functions and it gives also a powerful classi�cation tool in various do-
mains. A recent theory, based on the study of pointwise smoothness
is supplied by the multifractal analysis. The multifractal analysis was
initially introduced in order to study the velocity of turbulent �ows. It
was then applied in several �elds, such as in signal or image processing
[1, 2]. But in each case, the criterium of regularity taken into account is
the Hölder exponent, and this exponent is only well de�ned for locally
bounded functions. It would be convenient to de�ne new criteria on
more general cases. This is very important for applications in several
�elds. For instance, the velocity of turbulent �uids is now known not
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to be bounded near vorticity �laments, see [3]. Concerning turbulent
�ows, in [24], Leray shows that weak solutions of Navier-Stokes equa-
tions with initial value in L2(R3) may develop singularities in �nite
time. This problem was then widely studied, [23, 29] and di�erent
behaviors were produced following the initial value problem involved.
Furthermore, in [9], it was shown that an alternative de�nition of reg-
ularity can give better results in elliptic PDEs. This regularity criteria
is also taken in [8] where it provides a nice tool to study viscosity so-
lutions. It would thus be natural to take this notion, which involves
local Lp norms to study irregularities of Navier-Stokes solutions when
initial data are supposed in Lp.

Furthermore, Hölder regularity is not adapted for classi�cation of
natural images as it does not take into account the geometry of sets. It
would however be convenient to establish these criteria in image pro-
cessing, where regularity properties are widely used. A natural idea
would be to determine properties of the characteristic function of sets.
Nonetheless, the Hölder regularity of the characteristic function of any
set only takes two values. Furthermore, most natural images, such as
clouds images or medical images are discontinuous, see [3] and thus
need to be studied with more general notion of regularity.

Let us recall the principle of multifractal analysis. The natural
notion of regularity used in the study of pointwise behavior is provided
by the Hölder exponent, de�ned as follows.

De�nition 1. Let α ≥ 0; a function f : Rd → R is Cα(x0) if for each
x ∈ Rd such that |x − x0| ≤ 1 there exists a polynomial P of degree
less than [α] and a constant C such that,

|f(x)− P (x− x0)| ≤ C|x− x0|α. (1)

The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}.

In some cases, functions may have an Hölder regularity which
changes wildly from point to point. Rather than measure the exact
value of the Hölder exponent, one studies the fractal dimension of sets
where it takes a given value. The spectrum of singularities, also called
multifractal spectrum and denoted d(H), is the function which gives
for each H the Hausdor� dimension of those sets. A function is then
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called multifractal if the support of its spectrum of singularities is an
interval with no empty interior.

However, the Hölder exponent has some drawbacks that prevent
from using it in any situation. First, it is only de�ned for locally
bounded functions. If a function f belongs only to Lp

loc this exponent
is no more de�ned. Furthermore, as pointed by Calderòn and Zyg-
mund in [9], it is not preserved under pseudodi�erential operator of
order zero, and as stated in [27] cannot thus be characterized with
conditions on wavelet coe�cients.

Another drawback can be emphasized with the example of Raleigh-
Taylor instability. This phenomena occurs when two �uids which are
not miscible are placed on top of each other. In this case, thin �la-
ments appears giving to the interface between the two �uids a fractal
structure, see [28] for a study. To study geometric properties of this
interface, one would be interested on multifractal properties of its char-
acteristic function. Nonetheless as such functions are not continuous
and take only two values, their Hölder exponent is not de�ne, and a
multifractal approach can't be carry out.

For all this reasons, it would be convenient to de�ne a new kind of
multifractal analysis constructed with more general exponents. Such
construction is started in [20, 21], where the authors proposed a mul-
tifractal formalism based on Calderòn-Zygmund exponents. These ex-
ponents were introduced in [9] as an extension of Hölder exponent to
Lp
loc functions, invariant under pseudodi�erential operator of order 0.

De�nition 2. Let p ∈ [1,∞] and u ≥ −d
p be �xed. A function f ∈

Lp
loc(R

d) belongs to T p
u (x0) if there exist a real R > 0 and a polynomial

P , such that deg(P ) < u+ d
p , and c > 0 such that:

∀ρ ≤ R :

(
1

ρd

∫
‖x−x0‖≤ρ

|f(x)− P (x)|pdx

)1/p

≤ cρu. (2)

The p-exponent of f at x0 is upf (x0) = sup{u : f ∈ T p
u (x0)}.

With this de�nition, the usual Hölder condition f ∈ Cs(x0) corre-
sponds to f ∈ T p

u (x0) where p = ∞. One can also check that the p
exponent is decreasing as a function of p. As it was done for the Hölder
exponent one can de�ne for each p the p-spectrum of singularities as
the Hausdor� dimension of the set of points where the p-exponent take
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a given value. In [20], the authors de�ned the weak accessibility ex-
ponent, given as a parameter of the geometry of the set. Speci�cally,
this weak-scaling exponent deals with the local behavior of the bound-
ary of a set. It is thus well adapted for fractal interfaces that might
appear in chemical experimentation. They showed that this geometri-
cal based exponent coincide with Calderòn-Zygmund exponents of the
characteristic function of the boundary of the set.

Another regularity criterium, closely related to the previous ones is
given by the following de�nition from [27]. With this exponent we can
have a better understanding of the link between Calderòn-Zygmund
exponents, Hölder exponent and the pointwise behavior of functions.

De�nition 3. Let f : Rd → R be a function or a distribution and
x0 ∈ Rd be �xed. The weak scaling exponent of f at x0 is the smallest
real number β(f, x0) satisfying:

1. β(f, x0) ≥ upf (x0) ∀p ≥ 1.

2. β(f, x0) = s⇔ β
(

∂f
∂xj

, x0

)
= s− 1 j = 1, ..., d.

Similarly, we de�ne the weak-scaling spectrum, denoted by dws(β)
as the Hausdor� dimension of sets of points where β(f, x) takes a
given value β. As we will see later, the weak scaling exponent can be
characterized by conditions on wavelet coe�cients. In practical ap-
plications, the spectrum of singularities cannot be computed directly,
as it takes into account intricate limits. Thus, some some formula,
the multifractal formalism were introduced which link the spectrum
of singularities to some calculable quantities. There are indeed two
formalisms based on conditions on wavelet coe�cients. Historically
the classical multifractal formalism stated in [12] was based directly
on wavelet coe�cients. The common point of view is that it is the
weak scaling exponent which is involved in this formula. The second
multifractal formalism, developed in [19] is based on "wavelet lead-
ers", which can be seen as the theoretical counterpart of the "Wavelet
Transform Modulus Maxima" used in [4]. This "wavelet leader" based
formalism actually gives the spectrum of singularities in term of Hölder
exponent and is numerically more stable. Furthermore it gives an addi-
tional information on the behavior of functions thanks to the following
de�nition.
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De�nition 4. Let f : Rd → R be a function and x0 ∈ Rd.
We say that x0 is a cusp singularity for f if β(f, x0) = hf (x0).
If β(f, x0) > hf (x0), x0 is said to be an oscillating singularity.

An example of oscillating function at x0 = 0 is given by f(x) =
|x| sin(1/|x|). Here, hf (0) = 1 while β(f, 0) = +∞. And we have a
cusp singularity when the behavior of the function at x0 is like |x|α
but also like |x|α + |x| sin(1/|x|). Indeed we talk about a cusp singu-
larity when the function do not have oscillations at a point, or if those
oscillations are hidden by the Hölder behaviour.

Many authors have studied generic values of the Hölder exponent
in function spaces. In 1931 Banach, [5], proved that the pointwise
regularity of quasi all, in a topological sense, continuous functions is
zero. Here quasi all means that this property is true in a countable
intersection of dense open sets. Since then Hunt in [13] showed that
the same result is satis�ed by measure theoretic almost every contin-
uous functions. Recently, results such as those of [22] and [11] studied
Hölder regularity of generic functions in Sobolev spaces in both senses.
Whereas a large study of regularity properties for generic sets, there
exists no result on genericity of Calderòn-Zygmund exponents or of
weak scaling exponent. Our purpose here is to provide a genericity
result of those exponents in given Sobolev and Besov spaces, with the
measure-theoretic notion of genericity supplied by prevalence.

Prevalence is a measure theoretic notion of genericity on in�nite
dimensional spaces. In a �nite dimensional space, the notion of gener-
icity in a measure theoretic sense is supplied by the Lebesgue measure.
The particular role played by this measure is justi�ed by the fact that
this is the only one which is σ-�nite and invariant under translation. In
a metric in�nite dimensional space no measure enjoys this properties.
The proposed alternative is to replace conditions on the measure by
conditions on sets, see [6, 10, 14] and to take the following de�nition.

De�nition 5. Let V be a complete metric vector space. A Borel set
B in V is called Haar-null if there exists a probability measure µ with
compact support such that

µ(B + v) = 0 ∀v ∈ V. (3)

In this case the measure µ is said transverse to B.
A subset of V is called Haar-null if it is contained in a Borel Haar-null
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set.
The complement of a Haar-null set is called a prevalent set.

With a slight abuse of language we will say that a property is
satis�ed almost everywhere when it holds on a prevalent set.

Let us recall properties of Haar-null sets, see [10, 14] and show how
it generalizes notion of Lebesgue measure zero sets.

Proposition 1. 1. If S is Haar-null, then ∀x ∈ V , x+ S is Haar-
null.

2. If dim(V ) <∞, S is Haar-null if and only if meas(S) = 0 (where
meas denotes the Lebesgue measure).

3. Prevalent sets are dense.

4. If S is Haar-null and S′ ⊂ S then S′ is Haar null.

5. The union of a countable collection of Haar-null sets is Haar null.

6. If dim(V ) = ∞, compact subsets of V are Haar-null.

Remarks. Several kinds of measures can be used as transverse mea-
sures for a Borel set. Let us give two examples of transverse measure.

1. A �nite dimensional space P is called a probe for a set T ⊂ V
if the Lebesgue measure on P is transverse to the complement of
T .

Those measures are not compactly supported probability measures.
However one immediately checks that this notion can also be de-
�ned the same way but stated with the Lebesgue measure de�ned
on the unit ball of P . Note that in this case, the support of the
measure is included in the unit ball of a �nite dimensional sub-
space. The compactness assumption is therefore ful�lled.

2. If V is a function space, a probability measure on V can be de�ned
by a random process Xt whose sample paths are almost surely in
V . The condition µ(f +A) = 0 means that the event Xt− f ∈ A
has probability zero. Therefore, a way to check that a property P
holds only on a Haar-null set is to exhibit a random process Xt

whose sample paths are in V and is such that

∀f ∈ V, a.s. Xt + f does not satisfy P.
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1.1 Statement of main results

The purpose of this paper is stated by the two following theorems
which give the multifractal properties of almost every functions with
regard to exponents de�ned in the previous section.

Theorem 1. Let s0 ≥ 0 and 1 ≤ p0 <∞ be �xed.

1. For all p ≥ 1 such that s0 − d
p0
> −d

p the p-spectrum of singular-

ities of almost every function in Ls0,p0(Rd) is given by

∀u ∈
[
s0 −

d

p0
, s0

]
dp(u) = p0(u− s0) + d. (4)

2. For almost every function in Ls0,q0(Rd) the spectrum of singular-
ities for the weak-scaling exponent is given by

∀β ∈ [s0 −
d

p0
, s0] dws(β) = p0(β − s0) + d. (5)

This result in Sobolev spaces has an analogous in the Besov setting.
Furthermore, Besov spaces are useful when wavelets are involved as it
is the case here, those spaces having a simpler characterization.

Theorem 2. Let s0 ≥ 0 and 0 < q, p0 <∞ be �xed.

1. For all p ≥ 1 such that s0 − d
p0
> −d

p the p-spectrum of singular-

ities of almost every function in Bs0,q
p0 (Rd) is given by

∀u ∈
[
s0 −

d

p0
, s0

]
dp(u) = p0(u− s0) + d. (6)

2. For almost every function in Bs0,q
p0 (Rd) the spectrum of singular-

ities for the weak-scaling exponent is given by

∀β ∈ [s0 −
d

p0
, s0] dws(β) = p0(β − s0) + d. (7)

These theorems seem a bit surprising. Let us compare them with
the following proposition from [11].

Proposition 2. • If s − d/p ≤ 0, then almost every function in
Lp,s is nowhere locally bounded, and therefore its spectrum of
singularities is not de�ned.
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• If s−d/p > 0, then the Hölder exponent of almost every function
f of Lp,s takes values in [s− d/p, s] and

∀H ∈ [s− d/p, s] , df (H) = Hp− sp+ d; (8)

Thus the main change from [11] is given by the fact that here H
can take negative values. Indeed, our present theorems give a generic
regularity in Sobolev or in Besov spaces that are not imbedded in
global Hölder spaces. There we have nevertheless an idea of the point-
wise behavior of almost every distribution in such spaces. On the other
case, when s0− d

p0
> 0 and the spectrum of singularities exists, it coin-

cides with the above spectra for almost every function in Besov spaces.

In [25], it was proved that in those spaces quasi all functions have
not oscillating singularities. Furthermore, presence of oscillating sin-
gularities is linked with the failure of the multifractal formalism in [30].
And in [?], it was already proven that almost every function in Besov
spaces satisfy the multifractal formalism. In the present paper, we see
that in a prevalent setting, we have both the multifractal formalism,
and the absence of oscillating singularities.

Another remark can be made thanks to the following proposition
from [21] and from [31] that give an upper bound for the p-spectrum.

Proposition 3. Let f ∈ Bs0,p0
p0 (Rd), where s0 > 0 and let p ≥ 1 be

such that s0 − d
p0
> −d

p . Then

∀u ∈
[
s0 −

d

p0
, s0

]
dp(u) ≤ p0u− s0p0 + d. (9)

This proposition with Theorem 2 show that the generic regularity
for p criteria is as bad as possible.

In Part 2 we will prove Theorems 1 and 2. For the sake of complete-
ness, we �rst have to de�ne our main tool which is given by wavelet
expansions of functions. Wavelets are naturally present in multifrac-
tal analysis, see for instance [2]. Furthermore, in our case it allows a
characterization of both functional spaces and pointwise regularities.
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1.2 Wavelet expansions

There exist 2d−1 oscillating functions (ψ(i))i∈{1,...,2d−1} in the Schwartz
class such that the functions

2djψ(i)(2jx− k), j ∈ Z, k ∈ Zd

form an orthonormal basis of L2(Rd), see [26]. Wavelets are indexed
by dyadic cubes λ = [ k

2j
; k+1

2j
[d. Thus, any function f ∈ L2(Rd) can be

written:
f(x) =

∑
c
(i)
j,kψ

(i)(2jx− k)

where

c
(i)
j,k = 2dj

∫
f(x)ψ(i)(2jx− k)dx.

(Note that we use an L∞ normalization instead of an L2 one, which
simpli�es the formulas). If p > 1 and s > 0, Sobolev space have thus
the following characterization, see [26]:

f ∈ Ls,p(Rd) ⇔

(∑
λ∈Λ

|cλ|2(1 + 4js)χλ(x)

)1/2

∈ Lp(Rd), (10)

where χλ(x) denotes the characteristic function of the cube λ and Λ
is the set of all dyadics cubes. Homogeneous Besov spaces, which will
also be considered, are characterized (for p, q > 0 and s ∈ R) by

f ∈ Bs,q
p (Rd) ⇐⇒

∑
j

∑
λ∈Λj

|cλ|p2(sp−d)j

q/p

≤ C (11)

where Λj denotes the set of dyadics cubes at scale j, see [26].

Hölder pointwise regularity can also be expressed in term of wavelet
coe�cients, see [15].

Proposition 4. Let x be in Rd. If f is in Cα(x) then there exists
c > 0 such that for each λ:

|cλ| ≤ c2−αj(1 + |2jx− k|)α. (12)

This proposition is not a characterization. If for any ε > 0, a
function does not belongs to Cε(Rd) one cannot express its pointwise
Hölder regularity in term of condition on wavelet coe�cients. This
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is an advantage of Calderòn Zygmund exponent since, as showed in
[18], it can be linked to wavelet expansion without global regularity
assumption.

De�nition 6. Let x0 be in Rd and j ≥ 0. We denote by λj(x0) the
unique dyadic cube of width 2−j which contains x0. And we denote

3λj(x0) = λj(x0) +

[
− 1

2j
,
1

2j

]d
.

Furthermore, we de�ne the local square function by

Sf (j, x0)(x) =

 ∑
λ⊂3λj(x0)

|cλ|21λ(x)

1/2

.

Proposition 5. Let p ≥ 1 and s ≥ 0; if f ∈ T p

s− d
p

(x0), then ∃C > 0

such that wavelet coe�cients of f satisfy for all j ≥ 0

‖Sf (j, x0)‖Lp ≤ c2−j(u+d/p). (13)

Conversely if (13) holds and if s− d
p 6∈ N then f ∈ T p

s− d
p

(x0).

As far as we are concerned, we don't need a characterization but a
weaker condition which is given by the following proposition from [20].

Proposition 6. Let p ≥ 1 and s ≥ 0; if f ∈ T p

s− d
p

(x0), then ∃A,C > 0

such that wavelet coe�cients of f satisfy

∃C ∀j 2j(sp−d)
∑

|k−2jx0|≤A2j

|cj,k|p(1 + |k − 2jx0|)−sp ≤ Cj. (14)

Furthermore, it is also proved in [20] that the p-exponent can be
derived from wavelet coe�cients.

Proposition 7. Let p ≥ 1 and f ∈ Lp
loc. De�ne

Σp
j (s,A) = 2j(sp−d)

∑
|k−2jx0|≤A2j

|cj,k|p(1 + |k − 2jx0|)−sp, (15)

for A > 0 small enough. And denote

ip(x0) = sup

s : lim inf
log
(
Σp
j (s,A)

1/p
)

−j log 2
≥ 0

 . (16)
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Then the following inequality always holds

upf (x0) ≤ ip(x0)−
d

p
. (17)

If furthermore there exists δ > 0 such that f ∈ Bδ,p
p then the p-

exponent of f satis�es

upf (x0) = ip(x0)−
d

p
. (18)

As seen previously, the p-exponent is also related to the weak-
scaling exponent. This one can also be expressed in term of wavelet
coe�cients, thanks to its relation with two-microlocal spaces, de�ned
in [7].

De�nition 7. Let s and s′ be two real numbers. A distribution f :
Rd → R belongs to the two-microlocal space Cs,s′(x0) if its wavelet
coe�cients satisfy that there exists c > 0 such that

∀j, k |cj,k| ≤ c2−sj(1 + 2jx0 − k|)−s′ . (19)

In [27] the following characterization of the weak scaling exponent
is given.

Proposition 8. A tempered distribution f belongs to Γs(x0) if and
only if there exists s′ < 0 such that f belongs to Cs,s′(x0).

The weak-scaling exponent of f is

β(f, x0) = sup{s : f ∈ Γs(x0)}. (20)

But we will rather take the following alternative characterization
from [20] that give a simpler condition in term of wavelet coe�cients.

Proposition 9. Let f be a tempered distribution. The weak scaling
exponent of f at x0 is the supremum of s > 0 such that :

∀ε > 0 ∃c > 0 ∀(j, k) such that |2jx0 − k| < 2εj , |cj,k| ≤ c2−(s−ε)j

(21)
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2 Proofs of Theorems 1 and 2

2.1 The p-spectrum

In this section, we will only prove the �rst point of Theorem 2. The
will see how this proof can be adapted to Theorem 1 in a second time.

The result that we will prove in this section is more precise than
the one stated. Indeed, we prove that for each α ∈ (1,∞) and for each
p ≥ 1, the p-exponent of almost every function of Bs0,p0

p0 (Rd) is smaller
than

s− d

p
+

d

αp

on a set of Hausdor� dimension d
α .

These fractal sets are closely related to the dyadic approximation
of points.

De�nition 8. Let α ∈ (1,∞) be �xed. We denote

Fα =

{
x : ∃ a sequence ((kn, jn))n∈N

∣∣∣∣x− kn
2jn

∣∣∣∣ ≤ 1

2αjn

}
. (22)

This set Fα can also be de�ned as

lim sup
i→∞

⋃
l∈Nd

F i,l
α

where F i,l
α denotes the cube l

2i
+
[
− 1

2αi ;
1

2αi

]d
.

If x ∈ Fα it is said α-approximable by dyadics. The dyadic exponent
of x is de�ned by α(x0) = sup{α : x0 is α-approximable by dyadics}

As stated in [17], the Hausdor� dimension of Fα is at least d
α .

Let p ≥ 1 be given such that s0 − d
p0
> −d

p . For α ≥ 1 �xed we

denote s(α) = s0 − d
p0

+ d
αp0

+ d
p . For ε > 0 �xed, let β = s(α) + ε.

We �rst check that the set of functions in Bs0,p0
p0 satisfying (14) with

exponent β at a point in Fα is a Haar-null Borel set. This set can be
included in a countable union over A > 0 and c > 0 of sets M(A, c)
which are sets of functions in Bs0,p0

p0 (Rd) satisfying

∃x ∈ Fα ∀j 2j(βp−d)
∑

|k−2jx|≤A2j

|cλ|p(1 + |k − 2jx|)−βp ≤ c.
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And for each i ∈ N these sets can be included in the countable
union over l ∈ {0, ..., 2i−1}d ofMi,l(A, c), de�ned by the set of f such
that

∃x ∈ F i,l
α ∀j 2j(βp−d)

∑
|k−2jx|≤A2j

|cλ|p(1 + |k − 2jx|)−βp ≤ c.

Each Mi,l(A, c) is a closed set. Indeed, suppose that a sequence
(fn) of elements ofMi,l(A, c) converges to f in Bs0,p0

p0 (Rd). Denote cnj,k
the wavelet coe�cients of fn, for each n ∈ N and cj,k those of f . For

each n there exists xn ∈ F i,l
α such that fn satis�es (14) at xn. Thus

∀j 2j(βp−d)
∑

|kn−2jxn|≤A2j

|cnλ|p(1 + |kn − 2jxn|)−βp ≤ c. (23)

As F i,l
α is a compact set, there exists an accumulation point x ∈ F i,l

α

of xn. The mapping giving the wavelet coe�cients of a function f in a
Besov space is continuous. Furthermore, if kn is such that |kn−2jxn| ≤
A2j for a subsequence xφ(n) such that limxφ(n) = x, the corresponding
kφ(n) converges to k and |k − 2jx| ≤ A2j . Thus up to a subsequence,
when n tends to in�nity, (23) becomes

∀j 2j(βp−d)
∑

|k−2jx|≤A2j

|cλ|p(1 + |k − 2jx|)−βp ≤ c.

Thus f belongs to Mi,l(A, c) and M(A, c) is a Borel set.

To prove that it is also a Haar-null set, we construct a probe based
on a slight modi�cation of the "saturating function" introduced in [17].

Let i ∈ N and l ∈ {0, ..., 2i − 1}d be �xed. Let n ∈ N be �xed large
enough such that N = 2dn > d

pαε +1. Each dyadic cube λ is split into

M subcubes of size 2−d(j+n). For each index i ∈ {1, ..., N}, we choose
a subcube i(λ) and the wavelet coe�cient of gi is given by:

diλ =

{
1
ja 2

( d
p0

−s0)j2
− d

p0
J

if i = i(λ)

0 else.
(24)

where a = 2
p0

and J ≤ j and K ∈ {0, ...2J − 1}d are such that

k

2j
=
K

2J

13



is an irreducible form. It is proven in [17] that these functions belong
to Bs0,p0

p0 .

Furthermore, if a point x ∈ (0, 1)d is α-approximable by dyadics,
there exists a subsequence (jn, kn) where jn = [Jnα], Jn and Kn being
de�ned in (22) and kn is such that kn

2jn
= Kn

2Jn
. The corresponding

wavelet coe�cients of all functions gi satisfy that there exists a con-
stant c > 0 such that if (j, k) satisfy |x0 − k

2j
| < A :

dij,k > c(A)
2
( d
p0

−s0)j2
− d

αp0
j

ja
. (25)

Let f =
∑
cj,kψj,k be an arbitrary function in Bs0,p0

p0 (Rd). Suppose
that there exists two points γ1 ∈ RN and γ2 ∈ RN such that for
a = 1, 2, f +

∑
i γ

i
ag

i belong to Mi,l(A, c). By de�nition there also

exist two points x1 and x2 in F
i,l
α such that, for a = 1, 2,

∀j 2j(βp−d)
∑

|k−2jxa|≤A2j

|cλ +

N∑
i=1

γiad
i
λ|p(1 + |k − 2jx|)−βp ≤ c.

As β > 0, this condition implies :

∀j 2j(βp−d)
∑

|k−2jxa|≤A2j

|cλ +
N∑
i=1

γiad
i
λ|p(1 +A2j)−βp ≤ c.

But x1 and x2 belong to same dyadic cubes of size j > i. Thus the
same k satisfy |k− 2jxa| ≤ A2j for a = 1, 2 and wavelet coe�cients of
f1 − f2 are such that for all j > αi

2j(βp−d)
∑

|k−2jxa|≤A2j

|
N∑

m=1

(γm1 − γm2 )dmλ |p(1 +A2j)−βp ≤ 2c.

It is obvious that

2j(βp−d)
∑

| k

2j
−x1|≤A

|
∑
m

(γm1 − γm2 )dmλ |p2−βpj(2−j + | k
2j

− x1|)−βp

≥ 2j(s̃p−d) sup
| k

2j
−x1|≤A

|
∑
m

(γm1 − γm2 )dmλ |p2−s̃pj(2−j + | k
2j

− x1|)−s̃p

14



Using de�nition of function gi, if for each j we de�ne j′ = j + n,
at scale j′ there is only one function gi with non zero coe�cient. And
with (25) one �nally obtains that there exists a subsequence j such
that

2n(βp−d)2j(βp−d) sup
| k

2j
−x1|≤A

|
∑
m

(γm1 −γm2 )dmλ |p2−βpj(2−j+| k
2j

−x1|)−s̃p ≥ |γi1−γi2|pc̃p
1

jpa
2pεj ,

where c̃ depends only of n and A.
Those two inequalities imply that

‖γ1 − γ2‖p∞ ≤ 2cc(N)i1/p02−εαpi. (26)

Therefore the set of γ such that f+
∑

i γ
igi belongs toMi,l(A, c) is

included in a ball of radius less than (2cc(N))N iN/p02−εαpNi. Taking
the countable union over l, we obtain that for each i0 �xed, the set of
γ satisfying

∃x ∈ F i0
α such that f +

∑
m

γmgm satisfy (23) at x

is of Lebesgue measure bounded by

∞∑
i=i0

(2cc(N))N iN/p02di−εαpNi.

As N is large enough, this measure tends to zero when i0 tends to
in�nity. And M(A, c) is then a Haar-null set.

As this result does not depend on c or on A, we can take the union
over countable cn > 0 and An > 0. Then the set of functions in
Bs0,p0

p0 (Rd) belonging to T p
β (x) at a point x ∈ Fα is a Haar-null set.

Thus,

∀p ≥ 1, ∀α ≥ 1 ∀β > s(α) a.s. in Bs0,p0
p0 ∀x ∈ Fα u

p
f (x) ≤ β.

Taking ε→ 0 it follows by countable intersection that

∀p ≥ 1, ∀α ≥ 1 a.s. in Bs0,p0
p0 ∀x ∈ Fα u

p
f (x) ≤ s(α).

Therefore, if αn is a dense sequence in (1,∞), using the same ar-
gument, one obtains that

15



∀p ≥ 1, a.s. in Bs0,p0
p0 ∀n ∈ N ∀x ∈ Fαn u

p
f (x) ≤ s(αn). (27)

Let f be a function satisfying (27) and α ≥ 1 be �xed. Let αφ(n)

a nondecreasing subsequence of αn converging to α. Then the inter-
section Eα of Fαn contains Fα and for all x ∈ Eα, and thus for all
x ∈ Fα, u

p
f (x) ≤ s(α). Furthermore, see [16], there exists a measure

mα positive on Fα but such that every set of dimension less than d
α is

of measure zero. Let us denote GH the set of points where up(x) < H.
According to Proposition 3, this set can be written as a countable
union of sets of mα measure zero. Thus, we obtain

mα({x : up(x) = H} = mα(Fα\GH) > 0.

Which gives us the p spectrum of singularities

∀u ∈
[
s0 −

d

p0
, s0

]
dp(u) = p0u+ d− s0p0.

This proof does not depends on the choice of q. It can then be
extended the same way for any Besov space Bs0,q

p0 for 0 ≤ q <∞.

The proof for the Sobolev case is similar. The functions gi de�ned
in (24) also belong to Bs0,1

p0 . Since Bs0,1
p0 ↪→ Ls0,p0 , the gi belong to

Ls0,p0 and the remaining of the proof is unchanged.

2.2 Generic values of the weak scaling spec-

trum

We now prove of the second point of Theorem 1 and 2. As in the pre-
vious case, we prove Theorem 2, the same argument as in the previous
part giving the Sobolev case.

Proposition 10. Let s0 > 0 and 0 ≤ p0, q < ∞ be �xed. For al-
most every function in Bs0,q

p0 the spectrum of singularities for the weak-
scaling exponent is given by

∀β ∈ [s0 −
d

p0
, s0] dws(β) = p0(β − s0) + d. (28)
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Proof. Let α ≥ 1 be �xed and denote by Fα the set of De�nition 8.
Let ε > 0 be �xed and de�ne β = s0 − d

p0
+ d

p0α
+ ε.

According to Proposition 9, we �rst have to show that for a given
c > 0 the set :

Mα,c = {f =
∑

cλψλ ∈ Bs0,q
p0 : ∃x ∈ Fα ∀ε′ > 0 ∀(j, k) |2jx−k| ≤ 2ε

′j |cλ| ≤ c2−(β−ε′)j}
(29)

is a Borel Haar-null set.

Let us remark that for all i ∈ N, this set is included in the countable
union of:

Mα,c(i, l) = {f ∈ Bs0,q
p0 : ∃x ∈ F i,l

α ∀ε′ > 0 ∀(j, k) |2jx−k| ≤ 2ε
′j |cλ| ≤ c2−(β−ε′)j}.

(30)
One easily checks that Mα,c(i, l) is closed and therefore that Mα,c is a
Borel set.

To prove that Mα,c is also Haar-null, we will use a di�erent trans-
verse measure than in the previous case. As Mα,c depends only on
the dyadic properties of points, we can restrict the proof to [0, 1]d.
Consider the following stochastic process on [0, 1]d:

Xx =

∞∑
j=0

∑
λ∈[0,1]d

εj,k
2
−(s0− d

p0
)j
2
− d

p0
J

ja
ψ(2jx− k) (31)

where J and a are de�ned as in (24) and {εj,k}j,k is a Rademacher
sequence. That is the εj,k are i.i.d. random variables such that

P(εj,k = 1) = P(εj,k = −1) =
1

2
.

This process belongs to Bs0,q
p0 . Furthermore, the measure de�ned by

this stochastic process is supported by the continuous image of a com-
pact set. Thus, (Xx)x∈[0,1]d de�nes a compactly supported probability
measure on Bs0,q

p0 .

Let f be an arbitrary function in Bs0,q
p0 (Rd). Thanks to Fubini's

theorem, it is su�cient to prove that for all x ∈ Fα, almost surely,
condition (21) is not satis�ed by f +X.
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Let x0 ∈ Fα be �xed and suppose that f+X satis�es condition (21)
at x0. Then for all ε′ > 0 and for all (j, k) such that |k− 2jx0| ≤ 2ε

′j ,

|cj,k + εj,k
2
−(s0− d

p0
)j
2
− d

p0
J

ja
| ≤ c2−(β−ε′)j .

Taking (Jn,Kn) the sequence of De�nition 8, j = [αJn] and k =
Kn2j

2Jn
one obtains that there exists a sequence (j, k) such that |2jx0 −

k| ≤ 1 and the following property holds:

εj,k = cj,kj
a2

(s0− d
p0

+ d
p0α

)j
+ o(2−(ε−ε′)j).

Taking ε′ = ε
2 , one obtains that εj,k ∼ cj,kj

a2
(s0− d

p0
+ d

p0α
)jn when

jn → ∞. Since the cj,k are deterministic, this result implies that there
exists an in�nite sequence of independent stochastic variables which
are deterministic. This event is of probability zero andMα,c is a Haar-
null set.

Therefore, taking countable unions over c > 0 and ε→ 0, it follows
that for all α ≥ 1, the set of functions in Bs0,q

p0 with a weak scaling ex-
ponent greater than s0− d

p0
+ d

p0α
at some point of Fα is a Haar-null set.

Let (αn)n∈N be a dense sequence in (1,∞) and take a countable
union over αn. We �nally obtain

a. s. in Bs0,q
p0 (Rd) ∀n ∈ N ∀x ∈ Fαn β(f, x) ≤ s0 −

d

p0
+

d

p0αn
.

With a similar argument as in part 2.1, one can prove that :

a. s. in Bs0,q
p0 (Rd) ∀α ≥ 1 ∀x ∈ Fα β(f, x) ≤ s0 −

d

p0
+

d

p0α
. (32)

Furthermore, we saw in Part 2.1 that there exists a measure mα

which is positive on Fα and such that

mα({x; up(x) = s0 −
d

p0
+

d

p0α
}) > 0.

And by de�nition, ∀p ≥ 1, β(f, x) ≥ up(x), thus

mα({x; β(f, x) = s0 −
d

p0
+

d

p0α
}) > 0.
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Which states that the spectrum of singularities for the weak scaling
exponent of almost every function in Bs0,q

p0 (Rd) is given by

∀β ∈ [s0 −
d

p0
, s0] dws(β) = p0β + d− s0p0.
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