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1 Introduction

The study of regularity, and more precisely of pointwise regularity of signals
or functions raised a large amount of interest in scientific communities. This
topic allows a better understanding of behavior of functions and it gives also
a powerful classification tool in various domains. A recent theory, based on
the study of pointwise smoothness is supplied by the multifractal analysis.
The multifractal analysis was introduced in order to study the velocity of
turbulent flows and was initially applied to understand the behavior of some
invariant measures, [14, 32]. It was then used in several fields, such as signal
or image processing [1, 2|. But in each case, the criterium of regularity taken
into account is the Holder exponent, and this exponent is only well defined
for locally bounded functions. It would be convenient to define new criteria
on more general cases. For instance, the velocity of turbulent fluids is now
known not to be bounded near vorticity filaments, see [3|. In the study of
turbulent flows, in [27], Leray conjectured that self similar weak solutions of
Navier-Stokes equations with initial value in L?*(R?) may develop singularities
in a finite time. This problem was then widely studied, [26] and different be-
haviors were produced following the initial value problem involved. Since [§|
it is known that the set of singularities of these solutions is of vanishing Haus-
dorff dimension. In [9], an alternative definition of regularity were supplied
which can give better results in elliptic PDEs and especially when viscous
solutions occurs. It would thus be natural to take this notion, which involves
local LP norms to study irregularities of Navier-Stokes solutions when initial

data are supposed in LP.



Furthermore, it would be convenient to establish regularity criteria in im-
age processing, where those properties are widely used. A natural idea would
be to determine properties of the characteristic function of sets. But Holder
regularity is not adapted for classification of natural images as it does not
take into account the geometry of sets and takes only two values when it is
applied to characteristic functions. Furthermore, most natural images, such
as clouds images or medical images are discontinuous, see [3] and thus need

to be studied in a more general framework.

Let us recall the principle of multifractal analysis. The natural notion of
regularity used in the study of pointwise behavior is provided by the Holder

exponent, defined as follows.
Definition 1. Let o > 0; a function f : R — R is C*(x0) if for each x € R?

such that |z — xo| < 1 there exists a polynomial P of degree less than [a] and

a constant C such that,
|f(z) = Pz — 20)| < Cla — 2" (1)
The Hélder exponent of f at xq is

hy(zo) =sup{a: f € C%xo)}.

In some cases, functions may have an Holder regularity which changes
wildly from point to point. Rather than measure the exact value of the
Holder exponent, one studies the fractal dimension of sets where it takes a
given value. The spectrum of singularities, also called multifractal spectrum
and denoted d(H), is the function which gives for each H the Hausdorff di-

mension of those sets. A function is then called multifractal if the support of



its spectrum of singularities is an interval with no empty interior.

However, the Holder exponent has some drawbacks that prevent from
using it in any situation. First, it is only defined for locally bounded func-

tions. If a function f belongs only to L this exponent is no more defined.

loc
Furthermore, as pointed by Calderon and Zygmund in [9], it is not preserved
under pseudodifferential operator of order zero, and as stated in [30] cannot

thus be characterized with conditions on wavelet coefficients.

Another drawback can be emphasized with the example of Raleigh-Taylor
instability. This phenomena occurs when two fluids which are not miscible
are placed on top of each other. In this case, thin filaments appears giving to
the interface between the two fluids a fractal structure, see [31] for a study.
To study geometric properties of this interface, one would be interested on
multifractal properties of its characteristic function. Nonetheless as such
functions are not continuous and take only two values, their Holder exponent
is not define, and a multifractal approach can’t be carry out.

For all this reasons, it would be convenient to define a new kind of multi-
fractal analysis constructed with more general exponents. Such construction
is started in [23, 24|, where the authors proposed a multifractal formalism
based on Calderon-Zygmund exponents. These exponents were introduced
in [9] as an extension of Hélder exponent to L}  functions, invariant under

pseudodifferential operator of order 0.

Definition 2. Let p € [1,00] and u > —% be fized. A function f € L} (R?)

loc

belongs to TP(xo) if there ezist a real R > 0 and a polynomial P, such that



deg(P) < u+ g, and ¢ > 0 such that:

V<R (id / () - P<x>|pdx) Vo 2)
P~ Jllz—aoll<p

The p-exponent of f at xy is uy(zo) = sup{u: f € TP (xo)}.

With this definition, the usual Holder condition f € C*¥(z) corresponds
to f € TP(xy) where p = co. One can also check that the p exponent is de-
creasing as a function of p. As it was done for the Holder exponent one can
define for each p the p-spectrum of singularities as the Hausdorff dimension
of the set of points where the p-exponent take a given value. In [23], the
authors defined the weak accessibility exponent, given as a parameter of the
geometry of the set. Specifically, this weak-scaling exponent deals with the
local behavior of the boundary of a set. It is thus well adapted for fractal
interfaces that might appear in experimental settings. They showed that this

geometrical based exponent coincide with Calderon-Zygmund exponents of

the characteristic function of the boundary of the set.

Another regularity criterium, closely related to the previous ones is given
by the following definition from [30]. With this exponent we can have a bet-
ter understanding of the link between Calderon-Zygmund exponents, Holder

exponent and the pointwise behavior of functions.

Definition 3. Let f : R? — R be a function or a distribution and zo € R?

be fized. The weak scaling exponent of f at xy is the smallest real number
B(f.xo) satisfying:

1. B(f,w0) > ulp(x0) Vp>1.



2. B(f, o) zs@ﬁ(%ﬂ,xo =s—1 j=1,...4d.

Similarly, we define the weak-scaling spectrum, denoted by d, () as the
Hausdorff dimension of sets of points where G(f,z) takes a given value .
As we will see later, the weak scaling exponent can be fully characterized by

conditions on wavelet coefficients.

In practical applications, the classical multifractal spectrum cannot be
computed directly, as it takes into account intricate limits. Thus, some for-
mula, called multifractal formalisms were introduced in purpose to link the
spectrum of singularities to some calculable quantities. There are indeed
two formalisms based on conditions on wavelet, coefficients. Historically the
classical multifractal formalism stated in [13] was based directly on wavelet
coefficients. Actually, this formula gave unexpected results and was shown
to be false in several cases. It is nowadays known that it is the weak scaling
exponent which is involved in this formula. A second multifractal formalism,
developed in [22] is based on "wavelet leaders", which can be seen as the
theoretical counterpart of the "Wavelet Transform Modulus Maxima" used
in [4]. This "wavelet leader" based formalism actually gives the spectrum
of singularities in term of Hélder exponent. The weak scaling exponent is
thus more appropriated in order to understand the classical multifractal for-
malism. This exponent is also more stable under the action of differential
operators. Furthermore it gives an additional information on the behavior of

functions thanks to the following definition.

Definition 4. Let f : R? — R be a function and xy € R

We say that xq is a cusp singularity for f if B(f,zo) = hy(zo).
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If B(f,x0) > hy(zo), zo is said to be an oscillating singularity.

An example of oscillating function at xy = 01is given by f(x) = |z|sin(1/|z]).
Here, h;(0) = 1 while 8(f,0) = +00. And we have a cusp singularity when
the behavior of the function at xg is like |z|* but also like |x|*+ |x| sin(1/|z|).
Indeed we talk about a cusp singularity when the function do not have oscil-

lations at a point, or if those oscillations are hidden by the Hélder behaviour.

Many authors have studied generic values of the Holder exponent in func-
tion spaces. In 1931 Banach, [5], proved that the pointwise regularity of quasi
all, in a topological sense, continuous functions is zero. Here quasi all means
that this property is true in a countable intersection of dense open sets. Since
then, Hunt in [15] showed that the same result is satisfied by measure the-
oretic almost every continuous functions. Recently, results such as those of
[25] and [12]| studied Hélder regularity of generic functions in Sobolev spaces
in both senses. Whereas a large study of regularity properties for generic
sets, there exists no result on genericity of Calderon-Zygmund exponents or
of weak scaling exponent. Our purpose here is to provide a genericity result
of those exponents in given Sobolev and Besov spaces, with the measure-

theoretic notion of genericity supplied by prevalence.

Prevalence is a measure theoretic notion of genericity on infinite dimen-
sional spaces. In a finite dimensional space, the notion of genericity in a
measure theoretic sense is supplied by the Lebesgue measure. The particular
role played by this measure is justified by the fact that this is the only one

which is o-finite and invariant under translation. In a metric infinite dimen-



sional space no measure enjoys this properties. The proposed alternative is
to replace conditions on the measure by conditions on sets, see [6, 10, 17, 16|

and to take the following definition.

Definition 5. Let V' be a complete metric vector space. A Borel set B in
V' s called Haar-null if there exists a probability measure p with compact
support such that

wB+v)=0 YveV. (3)

In this case the measure p is said transverse to B.
A subset of V' is called Haar-null if it is contained in a Borel Haar-null set.

The complement of a Haar-null set is called a prevalent set.

With a slight abuse of language we will say that a property is satisfied
almost everywhere when it holds on a prevalent set.
Let us recall properties of Haar-null sets, see [10, 17] and show how it

generalizes notion of Lebesgue measure zero sets.
Proposition 1. 1. If S is Haar-null, then Vx € V, x + S is Haar-null.

2. If dim(V') < oo, S is Haar-null if and only if meas(S) = 0 (where meas

denotes the Lebesgue measure).
3. Prevalent sets are dense.
4. If S is Haar-null and S" C S then S’ is Haar null.
5. The union of a countable collection of Haar-null sets is Haar null.

6. If dim(V') = oo, compact subsets of V' are Haar-null.



Remarks. Several kinds of measures can be used as transverse measures for

a Borel set. Let us give two examples of transverse measure.

1. A finite dimensional space P is called a probe for a set T C V if the
Lebesgue measure on P is transverse to the complement of T'. Those
measures are not compactly supported probability measures. However
one immediately checks that this notion can also be defined the same
way but stated with the Lebesque measure defined on the unit ball of P.
Note that in this case, the support of the measure is included in the unit

ball of a finite dimensional subspace. The compactness assumption is

therefore fulfilled.

2. If V is a function space, a probability measure on V' can be defined by
a random process Xy whose sample paths are almost surely in V. The
condition p(f +A) = 0 means that the event X, — f € A has probability
zero. Therefore, a way to check that a property P holds only on a Haar-
null set is to exhibit a random process X; whose sample paths are in V'

and 1s such that

VeV as. Xi+f does not satisfy P.

These properties, such as several examples of prevalent results can be

found in the survey [16].

1.1 Statement of main results

The purpose of this paper is stated by the two following theorems which give

the multifractal properties of almost every functions with regard to exponents



defined in the previous section.
Theorem 1. Let sg > 0 and 1 < pg < oo be fized.

1. For all p > 1 such that sqg — pio > —% the p-spectrum of singularities of

almost every function in L*°(RY) is given by

Yu € {so - pio, 30} dy () = po(u — s0) + d. (4)

2. For almost every function in L*>%(R?) the spectrum of singularities for

the weak-scaling exponent is given by

VB € [so — pio’ So]  duws(B) = po(B — so) + d. (5)

This result in Sobolev spaces has an analogous in the Besov setting. Fur-
thermore, Besov spaces are useful when wavelets are involved as it is the case

here, those spaces having a simpler characterization.
Theorem 2. Let so >0 and 0 < q,pg < 00 be fized.

1. For all p > 1 such that sq — pio > —% the p-spectrum of singularities of

almost every function in B;g’q(Rd) is given by

€ [so _ pio, so] d(w) = polu — s0) + d. (6)

2. For almost every function in B;g’q(Rd) the spectrum of singularities for

the weak-scaling exponent is given by

VB € [so— pio’ s0]  dws(B) = po(B — s0) + d. (7)

10



These theorems seem a bit surprising. Let us compare them with the

following proposition from [12].

Proposition 2. o If s—d/p <0, then almost every function in LP* is

nowhere locally bounded, and therefore its spectrum of singularities is

not defined.

o If s—d/p >0, then the Héolder exponent of almost every function f of

LP* takes values in [s — d/p, s] and
VH € [s—d/p,s],  d;(H)=Hp—sp+d; (8)

Thus the main change from [12] is given by the fact that here § can take
negative values. Indeed, our present theorems give a generic regularity in
Sobolev or in Besov spaces that are not imbedded in global Hélder spaces.
Even if in such spaces, the classical spectrum of singularities is not define for
a prevalent set, we have an idea of the pointwise behavior of almost every
distribution. On the other case, when sy — pio > 0 and the spectrum of singu-
larities exists, it coincides with the above spectra for almost every function
in Besov spaces. Therefore, in the second case we generalize in this paper

the result of [12] to more stable exponents.

In [28], it was also proved that in those spaces quasi all functions, in
the Baire’s sense, have no oscillating singularities. Furthermore, presence of
oscillating singularities is linked with the failure of the multifractal formal-
ism in [33]. And in [11], it was already proven that almost every function
in Besov spaces satisfy the multifractal formalism. The main result of this

paper together with Definition 4 show that even if weak scaling and Holder

11



exponents do not coincide they share the same spectrum. Thus, in the preva-
lence setting, oscillating singularities appear as an exceptional behavior in

regular Sobolev or Besov spaces.

Another remark can be made thanks to the following proposition from

[24] and from [34] that give an upper bound for the p-spectrum.

Proposition 3. Let f € Byor° (RY), where so > 0 and let p > 1 be such that

So — pio > —%. Then

d
Yu € [so — p—, 50} dy(u) < pou — sopo + d. 9)
0

This proposition together with Theorem 2 show that the generic regular-

ity for p criteria is as bad as possible.

In Part 2 we will prove Theorems 1 and 2. For the sake of completeness,
we first have to define our main tool which is given by wavelet expansions
of functions. Wavelets are naturally present in multifractal analysis, see for
instance [2]. Furthermore, in our case it allows a characterization of both

functional spaces and pointwise regularities.

1.2 Wavelet expansions

There exist 2% — 1 oscillating functions (w(i))ie{l’m’zd_l} in the Schwartz class

such that the functions

20y (Vg — k), jeZ, kel

12



form an orthonormal basis of L?(R?), see [29]. Wavelets are indexed by

dyadic cubes A = [2; £ [ Thus, any function f € L*(R?) can be written:

fla)=> " @2z — k)

where
=29 [ fap s - byde
(Note that we use an L> normalization instead of an L? one, which simplifies

the formulas). If p > 1 and s > 0, Sobolev space have thus the following

characterization, see [29]:

1/2
feL*RY) & (Z el (1 + 4js)>o(x)> € LP(R), (10)

AEA
where y,(z) denotes the characteristic function of the cube A and A is the
set of all dyadics cubes. Homogeneous Besov spaces, which will also be
considered, are characterized (for p,q > 0 and s € R) hy

q/p

FEBYRY) <= > | > jefr2r | <C (11)

7 )\GA]'

where A; denotes the set of dyadics cubes at scale j, see [29].

Hoélder pointwise regularity can also be expressed in term of wavelet co-

efficients, see [18].

Proposition 4. Let x be in RY. If f is in C%(z) then there exists ¢ > 0 such
that for each \:
lex| < 27 (1 + |27 — k|)™ (12)

13



This proposition is not a characterization. If for any ¢ > 0, a function
does not belongs to C¢(RY) one cannot express its pointwise Hélder regu-
larity in term of condition on wavelet coefficients. This is an advantage of
Calderon Zygmund exponent since, as showed in [21], it can be linked to

wavelet expansion without global regularity assumption.

Definition 6. Let 2 be in R and j > 0. We denote by \;(xo) the unique

dyadic cube of width 277 which contains xo. And we denote

1 1]
3Aj(20) = Aj(zo) + | =55, 55 | -
Furthermore, we define the local square function by
1/2

Siljzo)@) = | D lel1i(@)

)\C3>\j (zo0)

Proposition 5. Let p > 1 and s > 0; if f € TV ,(x0), then 3C > 0 such
that wavelet coefficients of f satisfy for all j >0

1S¢ (4, o) ||r < 2~ i(utd/p) (13)

Conversely if (13) holds and if s — % ¢ N then f €T (o).

As far as we are concerned, we don’t need a characterization but a weaker

condition which is given by the following proposition from [23].

Proposition 6. Let p > 1 and s > 0; if f € T7 (o), then 3A,C > 0 such

P

that wavelet coefficients of f satisfy

AC v 2 N elP(L 4 [k = 27m]) P < C (14)

|[k—29 20| <A27

14



Furthermore, it is also proved in [23] that the p-exponent can be derived

from wavelet coefficients.

Proposition 7. Let p > 1 and f € L . Define

loc*

S2(s, A) = 26770 N e P(1+ [k — 2a|) (15)

|[k—29 20| <A29

for A > 0 small enough. And denote

log (XP(s, A)\/P
ip(g) = sup {3 : lim inf —2 (—;(log 2) ) > 0} : (16)
Then the following inequality always holds
p : d
i (20) < ipl) = 5. (7)

If furthermore there exists 6 > 0 such that f € Bg’p then the p-exponent

of f satisfies
wy(z0) = i0) (18)

As seen previously, the p-exponent is also related to the weak-scaling
exponent. This one can also be expressed in term of wavelet coefficients,

thanks to its relation with two-microlocal spaces, defined in [7].

Definition 7. Let s and s’ be two real numbers. A distribution f : RY — R
belongs to the two-microlocal space C*% (x¢) if its wavelet coefficients satisfy

that there exists ¢ > 0 such that
Vi k el <2791+ 2w — k)7 (19)

In [30] the following characterization of the weak scaling exponent is given.

15



Proposition 8. A tempered distribution f belongs to I'*(xo) if and only if
there exists s' < 0 such that f belongs to C** (xq).

The weak-scaling exponent of f is

B(f,xo) =sup{s: f€T*(x)}. (20)

But we will rather take the following alternative characterization from

[23] that give a simpler condition in term of wavelet coefficients.

Proposition 9. Let f be a tempered distribution. The weak scaling exponent

of f at xq is the supremum of s > 0 such that :

Ve > 03c > 0V(j, k) such that |Pmg — k| < 29 |ejp] < 276799 (21)

2 Proofs of Theorems 1 and 2

2.1 The p-spectrum

In this section, we only prove the first point of Theorem 2. We will see how

this proof can be adapted to Theorem 1 in a second time.

In a first part, the result that we prove is more precise than the one
stated. Indeed, we prove that for each o € (1,00) and for each p > 1, the
p-exponent of almost every function of B0 (R9) is smaller than

d d
5§——+— (22)
p ap

on a set of Hausdorff dimension greater than g.

16



These fractal sets are closely related to the dyadic approximation of

points.

Definition 8. Let o € (1,00) be fized. We denote
Ky,

r— —
2]n

F, = {:c : 3 a sequence ((kn, jn))nen

This set F,, can also be defined as

lim sup U Fi

oo leNd

where Fé’l denotes the cube % + [—%; %]d,
If x € F, it is said a-approrimable by dyadics. The dyadic exponent of x

is defined by o(xg) = sup{a : xo is a-approzimable by dyadics}

As stated in [20], the Hausdorff dimension of F, is at least <.

In order to prove our result we show that the set of functions where for
«a and p > 1 given, the p exponent is larger than (22) at a point of F, is
included in a countable union of Haar-null Borel sets.
d

Let p > 1 be given such that sy — pio > =0 For a« > 1 fixed we denote

s(a) = sg — pio + aipo + %' For ¢ > 0 fixed, let § = s(a) + . We first check
that the set of functions in B;07 satisfying (14) with exponent 3 at a point
in F, is a Haar-null Borel set. This set can be included in a countable union
over A > 0 and ¢ > 0 of sets M (A, ) which are sets of functions in Bso*°(R?)
satisfying

Jr € F, Vj 20070 N ey P(L+ [k — 20z]) T < c.

|k—2i x| < A2

17



And for each 7 € N these sets can be included in the countable union over

1 €{0,...,2" — 1} of M;;(A,c), defined by the set of f such that

Jz € Fit vy 210r=d) Z lealP(1+ |k — 272]) 7P < c.

|k—2iz|<A27

Each M;,;(A,c) is a closed set. Indeed, suppose that a sequence (f,,) of
elements of M; (A, ¢) converges to f in Bio?(R?). Denote ¢}, the wavelet
coefficients of f,,, for each n € N, and ¢; ;, those of f. The mapping giving the
wavelet coefficients of a function f in a Besov space is continuous, thus for
each j, k ¢}, converge to ;. Furthermore for each n there exists z,, € Fi

such that f, satisfies (14) at z,,. Thus

Vi 2O N P (L [k — 2 ) T < e (24)

iy —20 | < A2
As Fi! is a compact set, there exists an accumulation point x € Fi of
7,. Furthermore, if k, is such that |k, — 27z,| < A27 for a subsequence
Tg(n) such that limzy,,) = z, the corresponding kg, converges to k& with
|k — 2ix] < A27. Thus up to a subsequence, when n tends to infinity, (24)

becomes

Vi 27 (Bp—d) Z lealP(1+ |k — 2jx|)_5p < ec.

|k—2i x| < A27

Consequently f belongs to M; (A, c) and M(A,c) is a Borel set.

To prove that it is also a Haar-null set, we construct a probe as trans-
verse measure, in this way the compactness assumption is clearly satisfied.
This probe is based on a slight modification of the "saturating function"

introduced in [20].

18



Leti € Nand [ € {0,...,2:—1}¢ be fixed. Let n € N be fixed large enough
such that N = 29" > 1%6 + 1. Each dyadic cube A is split into M subcubes of
size 279U+ For each index m € {1,..., N}, we choose a subcube i()\) and

the wavelet coefficient of g; is given by:
LG i it m = ()
0 else.

where a = p% and J < j and K € {0,...27 — 1}¢ are such that

kK
2 27

is an irreducible form. It is proven in [12] that these functions belong to

50,P0
Bpo7 :

Furthermore, if a point z € (0,1)? is a-approximable by dyadics, there
exists a subsequence (j,, k,) where j, = [J,al, J, and K, being defined in
(23) and k, is such that 22 = K The corresponding wavelet coefficients of
all functions g, satisfy that there exists a constant ¢ > 0 such that if (7, k)
satisfy |zg — £ < A :

gy A
mos c(A)Q(PO )Jz o (26)
J
Let f = > ¢k be an arbitrary function in Bso#°(R?). Suppose that

there exists two points 7; € RY and v, € RY such that for a = 1,2, f +
Yo Vg™ belong to M; (A, c). By definition there also exist two points x4

and z, in F¥! such that, for a = 1,2,

N
Vi 2O N ey > AR P+ [k = 20x) T < e
m=1

|k—2iaq|< A2

19



As (> 0, this condition implies :

N
Vi 20PN ey > ArdR (L4 A20) P <
|[k—20zq|<A27 m=1

But z; and x5 belong to same dyadic cubes of size j > i¢. Thus the same

k satisfy |k — 27z, < A27 for a = 1,2 and wavelet coefficients of f; — f, are
such that for all j >

97 (Bp—d) Z | Z — A P(1 + AQJ) Bp < 2.

|k—27z,|<A27 m=1
It is obvious that

9 (Bp—d) Z |Z — A2 ﬁm(2 J+|__x |)—6p

k m
|2J' z1|<A

> 200 up | — P+ [ )

2771‘1‘<A m

Using definition of function g,,, if for each j we define j' = j +n, at scale
j' there is only one function g, with non zero coefficient. And with (26) one

finally obtains that there exists a subsequence j such that

o Bp=d)oiBp=d) g, |Z m_ AT P2 P (2 ]+|__x1|) P> |y 72|pcp

‘__$1|<A m

where ¢ depends only of n and A.
Those two inequalities imply that

It — ll2, < 2ee(N)it/mo-eor (27)

Therefore the set of v such that f 4 > .4™¢™ belongs to M;,;(A,c) is
included in a ball of radius less than (2cc(IN))NiV/Po2=2ePNi  Taking the

20
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countable union over [, we obtain that for each iy fixed, the set of v satisfying
Jx € F® such that f + Z”ymgm satisfy (24) at x

is of Lebesgue measure bounded by

Z(QCC(N))NiN/pQQdifeapNi.

=10
As N is large enough, this measure tends to zero when iy tends to infinity.

And M(A,c) is then a Haar-null set.

As this result does not depend on ¢ or on A, we can take the union over
countable ¢, > 0 and A, > 0. Then the set of functions in B2 (R?) be-
longing to T§(x) at a point x € F, is a Haar-null set.

Thus,

Vp > 1, Va > 1V( > s(a) as. in B0? Vo € F, uf(z) < S.
Taking ¢ — 0 it follows by countable intersection that
Vp > 1, Va>1 as. in B)0™ Vo € F, ufi(z) < s(a).

Therefore, if o, is a dense sequence in (1, 00), using the same argument,

one obtains that

Vp>1, as. in B"Vn € NVx € F,, u(r) < s(ay). (28)

Let f be a function satisfying (28) and a > 1 be fixed. Let ayw) a

nondecreasing subsequence of «,, converging to . Then the intersection F,,
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of I, contains F,, and for all x € F,, and thus for all z € F,,, u}(x) < s(a).
Furthermore, see [19], there exists a measure m, positive on F, but such
that every set of dimension less than g is of measure zero. Let us denote Gy
the set of points where u,(x) < H. According to Proposition 3, this set can

be written as a countable union of sets of m,, measure zero. Thus, we obtain
mo({x: uy(z) = H} = ma(Fu,\Gx) > 0.

Which gives us the p spectrum of singularities

d
Yu € [so — p—, so} dy(u) = pou + d — sopo.
0

This proof does not depends on the choice of ¢q. It can then be extended

the same way for any Besov space B;2 for 0 < ¢ < oo.

The proof for the Sobolev case is similar. The functions g,, defined in
(25) also belong to Bso'. Since B! < L*#0, the g, belong to L®* and

the remaining of the proof is unchanged.

2.2 Generic values of the weak scaling spectrum

We now prove of the second point of Theorem 1 and 2. As in the previous
case, we prove Theorem 2, the same argument as in the previous part giving

the Sobolev case.

Proposition 10. Let sy > 0 and 0 < pg,q < oo be fized. For almost every
Junction in B> the spectrum of singularities for the weak-scaling exponent
18 given by

VB € [so — pio’ So]  dws(B) = po(B — so) + d. (29)
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Proof. Let a > 1 be fixed and denote by F,, the set of Definition 8. Let € > 0
be fixed and define § = sy — —+ﬁ+€

According to Proposition 9, we first have to show that for a given ¢ > 0

the set :

Moe={f =) exth € BR": 3w € Fy V&' > 09(j, k) [2a—k| <27 |ey| < 27V}
(30)

is a Borel Haar-null set.

Let us remark that for all 7 € N, this set is included in the countable

union of:

Meo(i,l) ={f € B>": Jw € FI' V&' > 0V(j,k) |2x—k| < 27 |ep| < 27BN}
(31)
One easily checks that M, .(i,[) is closed and therefore that M, . is a Borel

set.

To prove that M, . is also Haar-null, we use a different transverse measure
than in the previous section, by taking the measure induced by a stochastic
process. As M, . depends only on the dyadic properties of points, we can
also restrict the proof to [0, 1]¢. Consider the following stochastic process on

[0, 1]%:

0**)]2 p%J )
X, Z > gjk : W2z —k) (32)

a
J=0 Xelo0,1])4 J

where J and a are defined as in (25) and {e;}; is a Rademacher sequence.

That is the €, are i.i.d. random variables such that
1

]P)<5j,k = 1) = ]P)<5j,k = —1) = 5
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This process belongs to B;o9. Furthermore, the measure defined by this
stochastic process is supported by the continuous image of a compact set.
Thus, (X;)zep1)¢ defines a compactly supported probability measure on

50,9
BJDO7 .

Let f be an arbitrary function in B52?(R?). Thanks to Fubini’s theorem,
it is sufficient to prove that for all € F,, almost surely, condition (21) is

not satisfied by f+ X.

Let zy € F, be fixed and suppose that f + X satisfies condition (21) at
zo. Then for all &’ > 0 and for all (j, k) such that |k — 27z| < 257,

—(so—L)jo—LJ
|C]’k + E]7k2 p(.) 2 Po | S 02_(6_81)].
j(l

Taking (J,,, K,,) the sequence of Definition 8, j = [a.J,] and k = £22 one

2Jn

obtains that there exists a sequence (j, k) such that [2/z5 — k| < 1 and the

following property holds:

(8 d d

Ej,k — Cj"kjaQ 0_17() +p0_a)-7 + O<2,(€7€/)j).

_d_d_
(so 2ot

S )in

Taking ¢’ = §, one obtains that €;, ~ ¢; ]2 when j, — oo.
Since the ¢;;, are deterministic, this result implies that there exists an infinite
sequence of independent stochastic variables which are deterministic. This

event is of probability zero and M, . is a Haar-null set.

Therefore, taking countable unions over ¢ > 0 and € — 0, it follows that

for all @ > 1, the set of functions in B;%? with a weak scaling exponent
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greater than sy — p% + ;#Ja at some point of F'* is a Haar-null set.

Let (a)nen be a dense sequence in (1,00) and take a countable union

over «,. We finally obtain

d d
a. s. in B;g’q(Rd) VneN Ve e F, B(fx)<si——+ .
Po PoCn

With a similar argument as in part 2.1, one can prove that :
C sodTed d d
a. s. in BY(R") Va>1 Vr e F, B(f,z) <sp——+ —. (33)
Po  Pox

Furthermore, we saw in Part 2.1 that there exists a measure m, which is

positive on F, and such that

d d
ma({2; up(r) = 59 — — + —1}) > 0.
({55 ) = 50— 2+ )
And by definition, Vp > 1, 5(f,x) > u,(z), thus
d d
mae({z; ,T) =85 ——+—})>0.
(o 607.0) = 50— S+ L)

Which states that the spectrum of singularities for the weak scaling ex-

ponent of almost every function in B;qu(Rd) is given by

d
V5 € [so— - so]  dws(B) = pof + d — sopo.
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