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1 Introdu
tionThe study of regularity, and more pre
isely of pointwise regularity of signalsor fun
tions raised a large amount of interest in s
ienti�
 
ommunities. Thistopi
 allows a better understanding of behavior of fun
tions and it gives alsoa powerful 
lassi�
ation tool in various domains. A re
ent theory, based onthe study of pointwise smoothness is supplied by the multifra
tal analysis.The multifra
tal analysis was introdu
ed in order to study the velo
ity ofturbulent �ows and was initially applied to understand the behavior of someinvariant measures, [14, 32℄. It was then used in several �elds, su
h as signalor image pro
essing [1, 2℄. But in ea
h 
ase, the 
riterium of regularity takeninto a

ount is the Hölder exponent, and this exponent is only well de�nedfor lo
ally bounded fun
tions. It would be 
onvenient to de�ne new 
riteriaon more general 
ases. For instan
e, the velo
ity of turbulent �uids is nowknown not to be bounded near vorti
ity �laments, see [3℄. In the study ofturbulent �ows, in [27℄, Leray 
onje
tured that self similar weak solutions ofNavier-Stokes equations with initial value in L2(R3) may develop singularitiesin a �nite time. This problem was then widely studied, [26℄ and di�erent be-haviors were produ
ed following the initial value problem involved. Sin
e [8℄it is known that the set of singularities of these solutions is of vanishing Haus-dor� dimension. In [9℄, an alternative de�nition of regularity were suppliedwhi
h 
an give better results in ellipti
 PDEs and espe
ially when vis
oussolutions o

urs. It would thus be natural to take this notion, whi
h involveslo
al Lp norms to study irregularities of Navier-Stokes solutions when initialdata are supposed in Lp. 2



Furthermore, it would be 
onvenient to establish regularity 
riteria in im-age pro
essing, where those properties are widely used. A natural idea wouldbe to determine properties of the 
hara
teristi
 fun
tion of sets. But Hölderregularity is not adapted for 
lassi�
ation of natural images as it does nottake into a

ount the geometry of sets and takes only two values when it isapplied to 
hara
teristi
 fun
tions. Furthermore, most natural images, su
has 
louds images or medi
al images are dis
ontinuous, see [3℄ and thus needto be studied in a more general framework.Let us re
all the prin
iple of multifra
tal analysis. The natural notion ofregularity used in the study of pointwise behavior is provided by the Hölderexponent, de�ned as follows.De�nition 1. Let α ≥ 0; a fun
tion f : R
d → R is Cα(x0) if for ea
h x ∈ R

dsu
h that |x− x0| ≤ 1 there exists a polynomial P of degree less than [α] anda 
onstant C su
h that,
|f(x) − P (x− x0)| ≤ C|x− x0|

α. (1)The Hölder exponent of f at x0 is
hf(x0) = sup{α : f ∈ Cα(x0)}.In some 
ases, fun
tions may have an Hölder regularity whi
h 
hangeswildly from point to point. Rather than measure the exa
t value of theHölder exponent, one studies the fra
tal dimension of sets where it takes agiven value. The spe
trum of singularities, also 
alled multifra
tal spe
trumand denoted d(H), is the fun
tion whi
h gives for ea
h H the Hausdor� di-mension of those sets. A fun
tion is then 
alled multifra
tal if the support of3



its spe
trum of singularities is an interval with no empty interior.However, the Hölder exponent has some drawba
ks that prevent fromusing it in any situation. First, it is only de�ned for lo
ally bounded fun
-tions. If a fun
tion f belongs only to Lp
loc this exponent is no more de�ned.Furthermore, as pointed by Calderòn and Zygmund in [9℄, it is not preservedunder pseudodi�erential operator of order zero, and as stated in [30℄ 
annotthus be 
hara
terized with 
onditions on wavelet 
oe�
ients.Another drawba
k 
an be emphasized with the example of Raleigh-Taylorinstability. This phenomena o

urs when two �uids whi
h are not mis
ibleare pla
ed on top of ea
h other. In this 
ase, thin �laments appears giving tothe interfa
e between the two �uids a fra
tal stru
ture, see [31℄ for a study.To study geometri
 properties of this interfa
e, one would be interested onmultifra
tal properties of its 
hara
teristi
 fun
tion. Nonetheless as su
hfun
tions are not 
ontinuous and take only two values, their Hölder exponentis not de�ne, and a multifra
tal approa
h 
an't be 
arry out.For all this reasons, it would be 
onvenient to de�ne a new kind of multi-fra
tal analysis 
onstru
ted with more general exponents. Su
h 
onstru
tionis started in [23, 24℄, where the authors proposed a multifra
tal formalismbased on Calderòn-Zygmund exponents. These exponents were introdu
edin [9℄ as an extension of Hölder exponent to Lp

loc fun
tions, invariant underpseudodi�erential operator of order 0.De�nition 2. Let p ∈ [1,∞] and u ≥ −d
p
be �xed. A fun
tion f ∈ Lp

loc(R
d)belongs to T p

u (x0) if there exist a real R > 0 and a polynomial P , su
h that4



deg(P ) < u+ d
p
, and c > 0 su
h that:

∀ρ ≤ R :

(

1

ρd

∫

‖x−x0‖≤ρ

|f(x) − P (x)|pdx

)1/p

≤ cρu. (2)The p-exponent of f at x0 is up
f(x0) = sup{u : f ∈ T p

u (x0)}.With this de�nition, the usual Hölder 
ondition f ∈ Cs(x0) 
orrespondsto f ∈ T p
u (x0) where p = ∞. One 
an also 
he
k that the p exponent is de-
reasing as a fun
tion of p. As it was done for the Hölder exponent one 
ande�ne for ea
h p the p-spe
trum of singularities as the Hausdor� dimensionof the set of points where the p-exponent take a given value. In [23℄, theauthors de�ned the weak a

essibility exponent, given as a parameter of thegeometry of the set. Spe
i�
ally, this weak-s
aling exponent deals with thelo
al behavior of the boundary of a set. It is thus well adapted for fra
talinterfa
es that might appear in experimental settings. They showed that thisgeometri
al based exponent 
oin
ide with Calderòn-Zygmund exponents ofthe 
hara
teristi
 fun
tion of the boundary of the set.Another regularity 
riterium, 
losely related to the previous ones is givenby the following de�nition from [30℄. With this exponent we 
an have a bet-ter understanding of the link between Calderòn-Zygmund exponents, Hölderexponent and the pointwise behavior of fun
tions.De�nition 3. Let f : R

d → R be a fun
tion or a distribution and x0 ∈ R
dbe �xed. The weak s
aling exponent of f at x0 is the smallest real number

β(f, x0) satisfying:1. β(f, x0) ≥ up
f(x0) ∀p ≥ 1. 5



2. β(f, x0) = s⇔ β
(

∂f
∂xj
, x0

)

= s− 1 j = 1, ..., d.Similarly, we de�ne the weak-s
aling spe
trum, denoted by dws(β) as theHausdor� dimension of sets of points where β(f, x) takes a given value β.As we will see later, the weak s
aling exponent 
an be fully 
hara
terized by
onditions on wavelet 
oe�
ients.In pra
ti
al appli
ations, the 
lassi
al multifra
tal spe
trum 
annot be
omputed dire
tly, as it takes into a

ount intri
ate limits. Thus, some for-mula, 
alled multifra
tal formalisms were introdu
ed in purpose to link thespe
trum of singularities to some 
al
ulable quantities. There are indeedtwo formalisms based on 
onditions on wavelet 
oe�
ients. Histori
ally the
lassi
al multifra
tal formalism stated in [13℄ was based dire
tly on wavelet
oe�
ients. A
tually, this formula gave unexpe
ted results and was shownto be false in several 
ases. It is nowadays known that it is the weak s
alingexponent whi
h is involved in this formula. A se
ond multifra
tal formalism,developed in [22℄ is based on "wavelet leaders", whi
h 
an be seen as thetheoreti
al 
ounterpart of the "Wavelet Transform Modulus Maxima" usedin [4℄. This "wavelet leader" based formalism a
tually gives the spe
trumof singularities in term of Hölder exponent. The weak s
aling exponent isthus more appropriated in order to understand the 
lassi
al multifra
tal for-malism. This exponent is also more stable under the a
tion of di�erentialoperators. Furthermore it gives an additional information on the behavior offun
tions thanks to the following de�nition.De�nition 4. Let f : R
d → R be a fun
tion and x0 ∈ R

d.We say that x0 is a 
usp singularity for f if β(f, x0) = hf (x0).6



If β(f, x0) > hf(x0), x0 is said to be an os
illating singularity.An example of os
illating fun
tion at x0 = 0 is given by f(x) = |x| sin(1/|x|).Here, hf(0) = 1 while β(f, 0) = +∞. And we have a 
usp singularity whenthe behavior of the fun
tion at x0 is like |x|α but also like |x|α + |x| sin(1/|x|).Indeed we talk about a 
usp singularity when the fun
tion do not have os
il-lations at a point, or if those os
illations are hidden by the Hölder behaviour.Many authors have studied generi
 values of the Hölder exponent in fun
-tion spa
es. In 1931 Bana
h, [5℄, proved that the pointwise regularity of quasiall, in a topologi
al sense, 
ontinuous fun
tions is zero. Here quasi all meansthat this property is true in a 
ountable interse
tion of dense open sets. Sin
ethen, Hunt in [15℄ showed that the same result is satis�ed by measure the-oreti
 almost every 
ontinuous fun
tions. Re
ently, results su
h as those of[25℄ and [12℄ studied Hölder regularity of generi
 fun
tions in Sobolev spa
esin both senses. Whereas a large study of regularity properties for generi
sets, there exists no result on generi
ity of Calderòn-Zygmund exponents orof weak s
aling exponent. Our purpose here is to provide a generi
ity resultof those exponents in given Sobolev and Besov spa
es, with the measure-theoreti
 notion of generi
ity supplied by prevalen
e.Prevalen
e is a measure theoreti
 notion of generi
ity on in�nite dimen-sional spa
es. In a �nite dimensional spa
e, the notion of generi
ity in ameasure theoreti
 sense is supplied by the Lebesgue measure. The parti
ularrole played by this measure is justi�ed by the fa
t that this is the only onewhi
h is σ-�nite and invariant under translation. In a metri
 in�nite dimen-7



sional spa
e no measure enjoys this properties. The proposed alternative isto repla
e 
onditions on the measure by 
onditions on sets, see [6, 10, 17, 16℄and to take the following de�nition.De�nition 5. Let V be a 
omplete metri
 ve
tor spa
e. A Borel set B in
V is 
alled Haar-null if there exists a probability measure µ with 
ompa
tsupport su
h that

µ(B + v) = 0 ∀v ∈ V. (3)In this 
ase the measure µ is said transverse to B.A subset of V is 
alled Haar-null if it is 
ontained in a Borel Haar-null set.The 
omplement of a Haar-null set is 
alled a prevalent set.With a slight abuse of language we will say that a property is satis�edalmost everywhere when it holds on a prevalent set.Let us re
all properties of Haar-null sets, see [10, 17℄ and show how itgeneralizes notion of Lebesgue measure zero sets.Proposition 1. 1. If S is Haar-null, then ∀x ∈ V , x+ S is Haar-null.2. If dim(V ) <∞, S is Haar-null if and only if meas(S) = 0 (where measdenotes the Lebesgue measure).3. Prevalent sets are dense.4. If S is Haar-null and S ′ ⊂ S then S ′ is Haar null.5. The union of a 
ountable 
olle
tion of Haar-null sets is Haar null.6. If dim(V ) = ∞, 
ompa
t subsets of V are Haar-null.8



Remarks. Several kinds of measures 
an be used as transverse measures fora Borel set. Let us give two examples of transverse measure.1. A �nite dimensional spa
e P is 
alled a probe for a set T ⊂ V if theLebesgue measure on P is transverse to the 
omplement of T . Thosemeasures are not 
ompa
tly supported probability measures. Howeverone immediately 
he
ks that this notion 
an also be de�ned the sameway but stated with the Lebesgue measure de�ned on the unit ball of P .Note that in this 
ase, the support of the measure is in
luded in the unitball of a �nite dimensional subspa
e. The 
ompa
tness assumption istherefore ful�lled.2. If V is a fun
tion spa
e, a probability measure on V 
an be de�ned bya random pro
ess Xt whose sample paths are almost surely in V . The
ondition µ(f+A) = 0 means that the event Xt−f ∈ A has probabilityzero. Therefore, a way to 
he
k that a property P holds only on a Haar-null set is to exhibit a random pro
ess Xt whose sample paths are in Vand is su
h that
∀f ∈ V, a.s. Xt + f does not satisfy P.These properties, su
h as several examples of prevalent results 
an befound in the survey [16℄.1.1 Statement of main resultsThe purpose of this paper is stated by the two following theorems whi
h givethe multifra
tal properties of almost every fun
tions with regard to exponents9



de�ned in the previous se
tion.Theorem 1. Let s0 ≥ 0 and 1 ≤ p0 <∞ be �xed.1. For all p ≥ 1 su
h that s0 −
d
p0

> −d
p
the p-spe
trum of singularities ofalmost every fun
tion in Ls0,p0(Rd) is given by

∀u ∈

[

s0 −
d

p0
, s0

]

dp(u) = p0(u− s0) + d. (4)2. For almost every fun
tion in Ls0,q0(Rd) the spe
trum of singularities forthe weak-s
aling exponent is given by
∀β ∈ [s0 −

d

p0

, s0] dws(β) = p0(β − s0) + d. (5)This result in Sobolev spa
es has an analogous in the Besov setting. Fur-thermore, Besov spa
es are useful when wavelets are involved as it is the 
asehere, those spa
es having a simpler 
hara
terization.Theorem 2. Let s0 ≥ 0 and 0 < q, p0 <∞ be �xed.1. For all p ≥ 1 su
h that s0 −
d
p0

> −d
p
the p-spe
trum of singularities ofalmost every fun
tion in Bs0,q

p0
(Rd) is given by

∀u ∈

[

s0 −
d

p0
, s0

]

dp(u) = p0(u− s0) + d. (6)2. For almost every fun
tion in Bs0,q
p0

(Rd) the spe
trum of singularities forthe weak-s
aling exponent is given by
∀β ∈ [s0 −

d

p0

, s0] dws(β) = p0(β − s0) + d. (7)10



These theorems seem a bit surprising. Let us 
ompare them with thefollowing proposition from [12℄.Proposition 2. • If s − d/p ≤ 0, then almost every fun
tion in Lp,s isnowhere lo
ally bounded, and therefore its spe
trum of singularities isnot de�ned.
• If s− d/p > 0, then the Hölder exponent of almost every fun
tion f of
Lp,s takes values in [s− d/p, s] and

∀H ∈ [s− d/p, s] , df(H) = Hp− sp+ d; (8)Thus the main 
hange from [12℄ is given by the fa
t that here β 
an takenegative values. Indeed, our present theorems give a generi
 regularity inSobolev or in Besov spa
es that are not imbedded in global Hölder spa
es.Even if in su
h spa
es, the 
lassi
al spe
trum of singularities is not de�ne fora prevalent set, we have an idea of the pointwise behavior of almost everydistribution. On the other 
ase, when s0−
d
p0

> 0 and the spe
trum of singu-larities exists, it 
oin
ides with the above spe
tra for almost every fun
tionin Besov spa
es. Therefore, in the se
ond 
ase we generalize in this paperthe result of [12℄ to more stable exponents.In [28℄, it was also proved that in those spa
es quasi all fun
tions, inthe Baire's sense, have no os
illating singularities. Furthermore, presen
e ofos
illating singularities is linked with the failure of the multifra
tal formal-ism in [33℄. And in [11℄, it was already proven that almost every fun
tionin Besov spa
es satisfy the multifra
tal formalism. The main result of thispaper together with De�nition 4 show that even if weak s
aling and Hölder11



exponents do not 
oin
ide they share the same spe
trum. Thus, in the preva-len
e setting, os
illating singularities appear as an ex
eptional behavior inregular Sobolev or Besov spa
es.Another remark 
an be made thanks to the following proposition from[24℄ and from [34℄ that give an upper bound for the p-spe
trum.Proposition 3. Let f ∈ Bs0,p0

p0
(Rd), where s0 > 0 and let p ≥ 1 be su
h that

s0 −
d
p0

> −d
p
. Then

∀u ∈

[

s0 −
d

p0
, s0

]

dp(u) ≤ p0u− s0p0 + d. (9)This proposition together with Theorem 2 show that the generi
 regular-ity for p 
riteria is as bad as possible.In Part 2 we will prove Theorems 1 and 2. For the sake of 
ompleteness,we �rst have to de�ne our main tool whi
h is given by wavelet expansionsof fun
tions. Wavelets are naturally present in multifra
tal analysis, see forinstan
e [2℄. Furthermore, in our 
ase it allows a 
hara
terization of bothfun
tional spa
es and pointwise regularities.1.2 Wavelet expansionsThere exist 2d − 1 os
illating fun
tions (ψ(i))i∈{1,...,2d−1} in the S
hwartz 
lasssu
h that the fun
tions
2djψ(i)(2jx− k), j ∈ Z, k ∈ Z

d12



form an orthonormal basis of L2(Rd), see [29℄. Wavelets are indexed bydyadi
 
ubes λ = [ k
2j ;

k+1
2j [d. Thus, any fun
tion f ∈ L2(Rd) 
an be written:
f(x) =

∑

c
(i)
j,kψ

(i)(2jx− k)where
c
(i)
j,k = 2dj

∫

f(x)ψ(i)(2jx− k)dx.(Note that we use an L∞ normalization instead of an L2 one, whi
h simpli�esthe formulas). If p > 1 and s > 0, Sobolev spa
e have thus the following
hara
terization, see [29℄:
f ∈ Ls,p(Rd) ⇔

(

∑

λ∈Λ

|cλ|
2(1 + 4js)χλ(x)

)1/2

∈ Lp(Rd), (10)where χλ(x) denotes the 
hara
teristi
 fun
tion of the 
ube λ and Λ is theset of all dyadi
s 
ubes. Homogeneous Besov spa
es, whi
h will also be
onsidered, are 
hara
terized (for p, q > 0 and s ∈ R) by
f ∈ Bs,q

p (Rd) ⇐⇒
∑

j





∑

λ∈Λj

|cλ|
p2(sp−d)j





q/p

≤ C (11)where Λj denotes the set of dyadi
s 
ubes at s
ale j, see [29℄.Hölder pointwise regularity 
an also be expressed in term of wavelet 
o-e�
ients, see [18℄.Proposition 4. Let x be in R
d. If f is in Cα(x) then there exists c > 0 su
hthat for ea
h λ:

|cλ| ≤ c2−αj(1 + |2jx− k|)α. (12)13



This proposition is not a 
hara
terization. If for any ε > 0, a fun
tiondoes not belongs to Cε(Rd) one 
annot express its pointwise Hölder regu-larity in term of 
ondition on wavelet 
oe�
ients. This is an advantage ofCalderòn Zygmund exponent sin
e, as showed in [21℄, it 
an be linked towavelet expansion without global regularity assumption.De�nition 6. Let x0 be in R
d and j ≥ 0. We denote by λj(x0) the uniquedyadi
 
ube of width 2−j whi
h 
ontains x0. And we denote

3λj(x0) = λj(x0) +

[

−
1

2j
,

1

2j

]d

.Furthermore, we de�ne the lo
al square fun
tion by
Sf (j, x0)(x) =





∑

λ⊂3λj(x0)

|cλ|
2
1λ(x)





1/2

.Proposition 5. Let p ≥ 1 and s ≥ 0; if f ∈ T p

s− d
p

(x0), then ∃C > 0 su
hthat wavelet 
oe�
ients of f satisfy for all j ≥ 0

‖Sf(j, x0)‖Lp ≤ c2−j(u+d/p). (13)Conversely if (13) holds and if s− d
p
6∈ N then f ∈ T p

s− d
p

(x0).As far as we are 
on
erned, we don't need a 
hara
terization but a weaker
ondition whi
h is given by the following proposition from [23℄.Proposition 6. Let p ≥ 1 and s ≥ 0; if f ∈ T p

s− d
p

(x0), then ∃A,C > 0 su
hthat wavelet 
oe�
ients of f satisfy
∃C ∀j 2j(sp−d)

∑

|k−2jx0|≤A2j

|cj,k|
p(1 + |k − 2jx0|)

−sp ≤ Cj. (14)14



Furthermore, it is also proved in [23℄ that the p-exponent 
an be derivedfrom wavelet 
oe�
ients.Proposition 7. Let p ≥ 1 and f ∈ Lp
loc. De�ne

Σp
j (s, A) = 2j(sp−d)

∑

|k−2jx0|≤A2j

|cj,k|
p(1 + |k − 2jx0|)

−sp, (15)for A > 0 small enough. And denote
ip(x0) = sup

{

s : lim inf
log
(

Σp
j (s, A)1/p

)

−j log 2
≥ 0

}

. (16)Then the following inequality always holds
up

f(x0) ≤ ip(x0) −
d

p
. (17)If furthermore there exists δ > 0 su
h that f ∈ Bδ,p

p then the p-exponentof f satis�es
up

f(x0) = ip(x0) −
d

p
. (18)As seen previously, the p-exponent is also related to the weak-s
alingexponent. This one 
an also be expressed in term of wavelet 
oe�
ients,thanks to its relation with two-mi
rolo
al spa
es, de�ned in [7℄.De�nition 7. Let s and s′ be two real numbers. A distribution f : R

d → Rbelongs to the two-mi
rolo
al spa
e Cs,s′(x0) if its wavelet 
oe�
ients satisfythat there exists c > 0 su
h that
∀j, k |cj,k| ≤ c2−sj(1 + 2jx0 − k|)−s′. (19)In [30℄ the following 
hara
terization of the weak s
aling exponent is given.15



Proposition 8. A tempered distribution f belongs to Γs(x0) if and only ifthere exists s′ < 0 su
h that f belongs to Cs,s′(x0).The weak-s
aling exponent of f is
β(f, x0) = sup{s : f ∈ Γs(x0)}. (20)But we will rather take the following alternative 
hara
terization from[23℄ that give a simpler 
ondition in term of wavelet 
oe�
ients.Proposition 9. Let f be a tempered distribution. The weak s
aling exponentof f at x0 is the supremum of s > 0 su
h that :

∀ε > 0 ∃c > 0 ∀(j, k) su
h that |2jx0 − k| < 2εj, |cj,k| ≤ c2−(s−ε)j (21)2 Proofs of Theorems 1 and 22.1 The p-spe
trumIn this se
tion, we only prove the �rst point of Theorem 2. We will see howthis proof 
an be adapted to Theorem 1 in a se
ond time.In a �rst part, the result that we prove is more pre
ise than the onestated. Indeed, we prove that for ea
h α ∈ (1,∞) and for ea
h p ≥ 1, the
p-exponent of almost every fun
tion of Bs0,p0

p0
(Rd) is smaller than

s−
d

p
+

d

αp
(22)on a set of Hausdor� dimension greater than d

α
.16



These fra
tal sets are 
losely related to the dyadi
 approximation ofpoints.De�nition 8. Let α ∈ (1,∞) be �xed. We denote
Fα =

{

x : ∃ a sequence ((kn, jn))n∈N

∣

∣

∣

∣

x−
kn

2jn

∣

∣

∣

∣

≤
1

2αjn

}

. (23)This set Fα 
an also be de�ned as
lim sup

i→∞

⋃

l∈Nd

F i,l
αwhere F i,l

α denotes the 
ube l
2i +

[

− 1
2αi ;

1
2αi

]d.If x ∈ Fα it is said α-approximable by dyadi
s. The dyadi
 exponent of xis de�ned by α(x0) = sup{α : x0 is α-approximable by dyadi
s}As stated in [20℄, the Hausdor� dimension of Fα is at least d
α
.In order to prove our result we show that the set of fun
tions where for

α and p ≥ 1 given, the p exponent is larger than (22) at a point of Fα isin
luded in a 
ountable union of Haar-null Borel sets.Let p ≥ 1 be given su
h that s0 −
d
p0

> −d
p
. For α ≥ 1 �xed we denote

s(α) = s0 −
d
p0

+ d
αp0

+ d
p
. For ε > 0 �xed, let β = s(α) + ε. We �rst 
he
kthat the set of fun
tions in Bs0,p0

p0
satisfying (14) with exponent β at a pointin Fα is a Haar-null Borel set. This set 
an be in
luded in a 
ountable unionover A > 0 and c > 0 of setsM(A, c) whi
h are sets of fun
tions in Bs0,p0

p0
(Rd)satisfying

∃x ∈ Fα ∀j 2j(βp−d)
∑

|k−2jx|≤A2j

|cλ|
p(1 + |k − 2jx|)−βp ≤ c.17



And for ea
h i ∈ N these sets 
an be in
luded in the 
ountable union over
l ∈ {0, ..., 2i − 1}d of Mi,l(A, c), de�ned by the set of f su
h that

∃x ∈ F i,l
α ∀j 2j(βp−d)

∑

|k−2jx|≤A2j

|cλ|
p(1 + |k − 2jx|)−βp ≤ c.Ea
h Mi,l(A, c) is a 
losed set. Indeed, suppose that a sequen
e (fn) ofelements of Mi,l(A, c) 
onverges to f in Bs0,p0

p0
(Rd). Denote cnj,k the wavelet
oe�
ients of fn, for ea
h n ∈ N, and cj,k those of f . The mapping giving thewavelet 
oe�
ients of a fun
tion f in a Besov spa
e is 
ontinuous, thus forea
h j, k cnj,k 
onverge to cj,k. Furthermore for ea
h n there exists xn ∈ F i,l

αsu
h that fn satis�es (14) at xn. Thus
∀j 2j(βp−d)

∑

|kn−2jxn|≤A2j

|cnλ|
p(1 + |kn − 2jxn|)

−βp ≤ c. (24)As F i,l
α is a 
ompa
t set, there exists an a

umulation point x ∈ F i,l

α of
xn. Furthermore, if kn is su
h that |kn − 2jxn| ≤ A2j for a subsequen
e
xφ(n) su
h that lim xφ(n) = x, the 
orresponding kφ(n) 
onverges to k with
|k − 2jx| ≤ A2j. Thus up to a subsequen
e, when n tends to in�nity, (24)be
omes

∀j 2j(βp−d)
∑

|k−2jx|≤A2j

|cλ|
p(1 + |k − 2jx|)−βp ≤ c.Consequently f belongs to Mi,l(A, c) and M(A, c) is a Borel set.To prove that it is also a Haar-null set, we 
onstru
t a probe as trans-verse measure, in this way the 
ompa
tness assumption is 
learly satis�ed.This probe is based on a slight modi�
ation of the "saturating fun
tion"introdu
ed in [20℄. 18



Let i ∈ N and l ∈ {0, ..., 2i−1}d be �xed. Let n ∈ N be �xed large enoughsu
h that N = 2dn > d
pαε

+1. Ea
h dyadi
 
ube λ is split intoM sub
ubes ofsize 2−d(j+n). For ea
h index m ∈ {1, ..., N}, we 
hoose a sub
ube i(λ) andthe wavelet 
oe�
ient of gi is given by:
dm

λ =











1
ja 2

( d
p0

−s0)j2
− d

p0
J if m = i(λ)

0 else. (25)where a = 2
p0

and J ≤ j and K ∈ {0, ...2J − 1}d are su
h that
k

2j
=
K

2Jis an irredu
ible form. It is proven in [12℄ that these fun
tions belong to
Bs0,p0

p0
.Furthermore, if a point x ∈ (0, 1)d is α-approximable by dyadi
s, thereexists a subsequen
e (jn, kn) where jn = [Jnα], Jn and Kn being de�ned in(23) and kn is su
h that kn

2jn
= Kn

2Jn
. The 
orresponding wavelet 
oe�
ients ofall fun
tions gm satisfy that there exists a 
onstant c > 0 su
h that if (j, k)satisfy |x0 −

k
2j | < A :

dm
j,k > c(A)

2
( d

p0
−s0)j2

− d
αp0

j

ja
. (26)Let f =

∑

cj,kψj,k be an arbitrary fun
tion in Bs0,p0

p0
(Rd). Suppose thatthere exists two points γ1 ∈ R

N and γ2 ∈ R
N su
h that for a = 1, 2, f +

∑

m γ
m
a g

m belong to Mi,l(A, c). By de�nition there also exist two points x1and x2 in F i,l
α su
h that, for a = 1, 2,

∀j 2j(βp−d)
∑

|k−2jxa|≤A2j

|cλ +

N
∑

m=1

γm
a d

m
λ |

p(1 + |k − 2jx|)−βp ≤ c.19



As β > 0, this 
ondition implies :
∀j 2j(βp−d)

∑

|k−2jxa|≤A2j

|cλ +

N
∑

m=1

γm
a d

m
λ |

p(1 + A2j)−βp ≤ c.But x1 and x2 belong to same dyadi
 
ubes of size j > i. Thus the same
k satisfy |k − 2jxa| ≤ A2j for a = 1, 2 and wavelet 
oe�
ients of f1 − f2 aresu
h that for all j > αi

2j(βp−d)
∑

|k−2jxa|≤A2j

|
N
∑

m=1

(γm
1 − γm

2 )dm
λ |

p(1 + A2j)−βp ≤ 2c.It is obvious that
2j(βp−d)

∑

| k

2j −x1|≤A

|
∑

m

(γm
1 − γm

2 )dm
λ |

p2−βpj(2−j + |
k

2j
− x1|)

−βp

≥ 2j(s̃p−d) sup
| k

2j −x1|≤A

|
∑

m

(γm
1 − γm

2 )dm
λ |

p2−s̃pj(2−j + |
k

2j
− x1|)

−s̃pUsing de�nition of fun
tion gm, if for ea
h j we de�ne j′ = j+n, at s
ale
j′ there is only one fun
tion gm with non zero 
oe�
ient. And with (26) one�nally obtains that there exists a subsequen
e j su
h that
2n(βp−d)2j(βp−d) sup

| k

2j −x1|≤A

|
∑

m

(γm
1 −γm

2 )dm
λ |

p2−βpj(2−j+|
k

2j
−x1|)

−s̃p ≥ |γi
1−γ

i
2|

pc̃p
1

jpa
2pεj,where c̃ depends only of n and A.Those two inequalities imply that

‖γ1 − γ2‖
p
∞ ≤ 2cc(N)i1/p02−εαpi. (27)Therefore the set of γ su
h that f +

∑

i γ
mgm belongs to Mi,l(A, c) isin
luded in a ball of radius less than (2cc(N))N iN/p02−εαpNi. Taking the20




ountable union over l, we obtain that for ea
h i0 �xed, the set of γ satisfying
∃x ∈ F i0

α su
h that f +
∑

m

γmgm satisfy (24) at xis of Lebesgue measure bounded by
∞
∑

i=i0

(2cc(N))N iN/p02di−εαpNi.As N is large enough, this measure tends to zero when i0 tends to in�nity.And M(A, c) is then a Haar-null set.As this result does not depend on c or on A, we 
an take the union over
ountable cn > 0 and An > 0. Then the set of fun
tions in Bs0,p0

p0
(Rd) be-longing to T p

β (x) at a point x ∈ Fα is a Haar-null set.Thus,
∀p ≥ 1, ∀α ≥ 1 ∀β > s(α) a.s. in Bs0,p0

p0
∀x ∈ Fα u

p
f(x) ≤ β.Taking ε→ 0 it follows by 
ountable interse
tion that

∀p ≥ 1, ∀α ≥ 1 a.s. in Bs0,p0

p0
∀x ∈ Fα u

p
f(x) ≤ s(α).Therefore, if αn is a dense sequen
e in (1,∞), using the same argument,one obtains that

∀p ≥ 1, a.s. in Bs0,p0

p0
∀n ∈ N ∀x ∈ Fαn

up
f(x) ≤ s(αn). (28)Let f be a fun
tion satisfying (28) and α ≥ 1 be �xed. Let αφ(n) anonde
reasing subsequen
e of αn 
onverging to α. Then the interse
tion Eα21



of Fαn

ontains Fα and for all x ∈ Eα, and thus for all x ∈ Fα, up

f(x) ≤ s(α).Furthermore, see [19℄, there exists a measure mα positive on Fα but su
hthat every set of dimension less than d
α
is of measure zero. Let us denote GHthe set of points where up(x) < H . A

ording to Proposition 3, this set 
anbe written as a 
ountable union of sets of mα measure zero. Thus, we obtain

mα({x : up(x) = H} = mα(Fα\GH) > 0.Whi
h gives us the p spe
trum of singularities
∀u ∈

[

s0 −
d

p0

, s0

]

dp(u) = p0u+ d− s0p0.This proof does not depends on the 
hoi
e of q. It 
an then be extendedthe same way for any Besov spa
e Bs0,q
p0

for 0 ≤ q <∞.The proof for the Sobolev 
ase is similar. The fun
tions gm de�ned in(25) also belong to Bs0,1
p0

. Sin
e Bs0,1
p0

→֒ Ls0,p0, the gm belong to Ls0,p0 andthe remaining of the proof is un
hanged.2.2 Generi
 values of the weak s
aling spe
trumWe now prove of the se
ond point of Theorem 1 and 2. As in the previous
ase, we prove Theorem 2, the same argument as in the previous part givingthe Sobolev 
ase.Proposition 10. Let s0 > 0 and 0 ≤ p0, q < ∞ be �xed. For almost everyfun
tion in Bs0,q
p0

the spe
trum of singularities for the weak-s
aling exponentis given by
∀β ∈ [s0 −

d

p0

, s0] dws(β) = p0(β − s0) + d. (29)22



Proof. Let α ≥ 1 be �xed and denote by Fα the set of De�nition 8. Let ε > 0be �xed and de�ne β = s0 −
d
p0

+ d
p0α

+ ε.A

ording to Proposition 9, we �rst have to show that for a given c > 0the set :
Mα,c = {f =

∑

cλψλ ∈ Bs0,q
p0

: ∃x ∈ Fα ∀ε′ > 0 ∀(j, k) |2jx−k| ≤ 2ε′j |cλ| ≤ c2−(β−ε′)j}(30)is a Borel Haar-null set.Let us remark that for all i ∈ N, this set is in
luded in the 
ountableunion of:
Mα,c(i, l) = {f ∈ Bs0,q

p0
: ∃x ∈ F i,l

α ∀ε′ > 0 ∀(j, k) |2jx−k| ≤ 2ε′j |cλ| ≤ c2−(β−ε′)j}.(31)One easily 
he
ks that Mα,c(i, l) is 
losed and therefore that Mα,c is a Borelset.To prove thatMα,c is also Haar-null, we use a di�erent transverse measurethan in the previous se
tion, by taking the measure indu
ed by a sto
hasti
pro
ess. As Mα,c depends only on the dyadi
 properties of points, we 
analso restri
t the proof to [0, 1]d. Consider the following sto
hasti
 pro
ess on
[0, 1]d:

Xx =
∞
∑

j=0

∑

λ∈[0,1]d

εj,k
2
−(s0−

d
p0

)j
2
− d

p0
J

ja
ψ(2jx− k) (32)where J and a are de�ned as in (25) and {εj,k}j,k is a Radema
her sequen
e.That is the εj,k are i.i.d. random variables su
h that

P(εj,k = 1) = P(εj,k = −1) =
1

2
.23



This pro
ess belongs to Bs0,q
p0

. Furthermore, the measure de�ned by thissto
hasti
 pro
ess is supported by the 
ontinuous image of a 
ompa
t set.Thus, (Xx)x∈[0,1]d de�nes a 
ompa
tly supported probability measure on
Bs0,q

p0
.Let f be an arbitrary fun
tion in Bs0,q

p0
(Rd). Thanks to Fubini's theorem,it is su�
ient to prove that for all x ∈ Fα, almost surely, 
ondition (21) isnot satis�ed by f +X.Let x0 ∈ Fα be �xed and suppose that f + X satis�es 
ondition (21) at

x0. Then for all ε′ > 0 and for all (j, k) su
h that |k − 2jx0| ≤ 2ε′j,
|cj,k + εj,k

2
−(s0−

d
p0

)j
2
− d

p0
J

ja
| ≤ c2−(β−ε′)j .Taking (Jn, Kn) the sequen
e of De�nition 8, j = [αJn] and k = Kn2j

2Jn
oneobtains that there exists a sequen
e (j, k) su
h that |2jx0 − k| ≤ 1 and thefollowing property holds:

εj,k = cj,kj
a2

(s0−
d

p0
+ d

p0α
)j

+ o(2−(ε−ε′)j).Taking ε′ = ε
2
, one obtains that εj,k ∼ cj,kj

a2
(s0−

d
p0

+ d
p0α

)jn when jn → ∞.Sin
e the cj,k are deterministi
, this result implies that there exists an in�nitesequen
e of independent sto
hasti
 variables whi
h are deterministi
. Thisevent is of probability zero and Mα,c is a Haar-null set.Therefore, taking 
ountable unions over c > 0 and ε → 0, it follows thatfor all α ≥ 1, the set of fun
tions in Bs0,q
p0

with a weak s
aling exponent24



greater than s0 −
d
p0

+ d
p0α

at some point of F α is a Haar-null set.Let (αn)n∈N be a dense sequen
e in (1,∞) and take a 
ountable unionover αn. We �nally obtaina. s. in Bs0,q
p0

(Rd) ∀n ∈ N ∀x ∈ Fαn
β(f, x) ≤ s0 −

d

p0
+

d

p0αn
.With a similar argument as in part 2.1, one 
an prove that :a. s. in Bs0,q

p0
(Rd) ∀α ≥ 1 ∀x ∈ Fα β(f, x) ≤ s0 −

d

p0
+

d

p0α
. (33)Furthermore, we saw in Part 2.1 that there exists a measure mα whi
h ispositive on Fα and su
h that

mα({x; up(x) = s0 −
d

p0
+

d

p0α
}) > 0.And by de�nition, ∀p ≥ 1, β(f, x) ≥ up(x), thus

mα({x; β(f, x) = s0 −
d

p0

+
d

p0α
}) > 0.Whi
h states that the spe
trum of singularities for the weak s
aling ex-ponent of almost every fun
tion in Bs0,q

p0
(Rd) is given by

∀β ∈ [s0 −
d

p0
, s0] dws(β) = p0β + d− s0p0.

Referen
es[1℄ P. Abry, Ondelettes et turbulen
es. Multirésolutions, algorithmes de dé-
omposition, invarian
e d'é
helle et signaux de pression, Nouveaux Es-sais. Paris: Diderot , 1997. 25



[2℄ A. Arneodo, Ondelettes, multifra
tales et turbulen
es: De l'ADN aux
roissan
es 
ristallines, in
onnu, 1980.[3℄ A. Arneodo, B. Audit, N. De
oster, J-F. Muzy, and C. Vaillant,Wavelet-based multifra
tal formalism: appli
ations to DNA sequen
es, satelliteimages of the 
loud stru
ture and sto
k market data, The s
ien
e ofDisasters (2002), 27�102.[4℄ A. Arneodo, E. Ba
ry, and J.F. Muzy, The thermodynami
s of fra
talsrevisited with wavelets, Physi
a A. 213 (1995), 232�275.[5℄ S. Bana
h, Über die Baire's
he Kategorie gewisser Funktionenmengen,Studia Math. 3 (1931), 174�179.[6℄ Y. Benyamini and J. Lindenstrauss, Geometri
 nonlinear fun
tionalanalysis. Volume 1, Colloquium Publi
ations. Ameri
an Mathemati
alSo
iety (AMS), 2000.[7℄ J-M. Bony, Se
ond mi
rolo
alization and propagation of singularitiesfor semilinear hyperboli
 equations., Pro
. Tanigu
hi Int. Symp., 1986,pp. 11�49.[8℄ L. Ca�arelli, R. Kohn, and L. Nirenberg, Partial regularity of suitableweak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math.35 (1982), no. 6, 771�831.[9℄ A. Calderón and A. Zygmund, Lo
al properties of solutions of ellipti
partial di�erential equations, Studia Math. 20 (1961), 171�227.
26



[10℄ J.P.R. Christensen, On sets of Haar measure zero in Abelian Polishgroups, Israel J. Math. 13 (1972), 255�260.[11℄ A. Fraysse, Generi
 validity of the multifra
tal formalism, SIAM J.Math. Anal. 37 (2007), no. 2, 593�607.[12℄ A. Fraysse and S. Ja�ard, How smooth is almost every fun
tion in aSobolev spa
e?, Rev. Mat. Iber. Amer. 22 (2006), no. 2, 663�682.[13℄ U. Fris
h and G. Parisi, On the singularity stru
ture of fully developedturbulen
e, Turbulen
e and Predi
tability in Geophysi
al Fluid Dynam-i
s and Climate Dynami
s, 1985, pp. 84�88.[14℄ P. Grassberger and I. Pro
a

ia, Measuring the strangeness of strangeattra
tors, Physi
a "D" 7 (1983), 189�208.[15℄ B. Hunt, The prevalen
e of 
ontinuous nowhere di�erentiable fun
tion,Pro
eed. A.M.S 122 (1994), no. 3, 711�717.[16℄ B. Hunt and V. Kaloshin, Handbook of dynami
al systems 3 (to appear).[17℄ B. Hunt, T. Sauer, and J. Yorke, Prevalen
e: A translation invariant"almost every" on in�nite dimensional spa
es, Bull. A.M.S 27 (1992),no. 2, 217�238.[18℄ S. Ja�ard, Multifra
tal formalism for fun
tions, SIAM J. Math. Anal 28(1997), 944�970.[19℄ S. Ja�ard, Old friends revisited: The multifra
tal nature of some 
lassi-
al fun
tions, J. Four. Anal. App 3 (1997), no. 1, 1�22.27



[20℄ S. Ja�ard, On the Fris
h-Parisi 
onje
ture, J. Math. Pures Appl 79(2000), 525�552.[21℄ S. Ja�ard, Pointwise regularity 
riteria, C. R. A
ad. S
i. Paris, Ser. I336 (2003).[22℄ S. Ja�ard, B. Lashermes, and P. Abry, Wavelet leaders n multifra
talanalysis, Wavelet Analysis and Appli
ations (2006), 201�246.[23℄ S. Ja�ard and C. Melot, Wavelet analysis of fra
tal boundaries. Part 1: Lo
al exponents, Comm. Math. Phys. 258 (2005), no. 3, 513�539.[24℄ S. Ja�ard and C. Melot, Wavelet analysis of fra
tal boundaries. Part 2 :Multifra
tal formalism, Comm. Math. Phys. 258 (2005), no. 3, 541�565.[25℄ S. Ja�ard and Y. Meyer, On the pointwise regularity in 
riti
al Besovspa
es, J. Fun
t. Anal 175 (2000), 415�434.[26℄ P. G. Lemarié-Rieusset, Re
ent developments in the Navier-Stokes prob-lem, Chapman & Hall/CRC Resear
h Notes in Mathemati
s, vol. 431,2002.[27℄ J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espa
e,A
ta Math. 63 (1934), no. 1, 193�248.[28℄ C. Melot, Os
illating singularities in Besov spa
es, J. Math. Pures Appl83 (2004), 367�416.[29℄ Y. Meyer, Ondelettes et opérateurs, Hermann, 1990.[30℄ Y. Meyer, Wavelets, vibrations and s
alings, CRM series AMS 9 (1998).28



[31℄ S. Mimouni, Analyse fra
tale d'interfa
es pour les instabilités de Raleigh-Taylor, Ph.D. thesis, E
ole Polyte
hinique, 1995.[32℄ Y. Pesin and H. Weiss, The multifra
tal analysis of "g"ibbs measures:motivation, mathemati
al foundation, and examples, Chaos 7 (1997),no. 1, 89�106.[33℄ S. Seuret, Dete
ting and 
reating os
illations, Math. Na
h. (2006).[34℄ W. Ziemer,Weakly di�erentiable fun
tions. Sobolev spa
es and fun
tionsof bounded variation, Graduate Texts in Mathemati
s, 120. Berlin et
.:Springer-Verlag. , 1989.

29


