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1 IntrodutionThe study of regularity, and more preisely of pointwise regularity of signalsor funtions raised a large amount of interest in sienti� ommunities. Thistopi allows a better understanding of behavior of funtions and it gives alsoa powerful lassi�ation tool in various domains. A reent theory, based onthe study of pointwise smoothness is supplied by the multifratal analysis.The multifratal analysis was introdued in order to study the veloity ofturbulent �ows and was initially applied to understand the behavior of someinvariant measures, [14, 32℄. It was then used in several �elds, suh as signalor image proessing [1, 2℄. But in eah ase, the riterium of regularity takeninto aount is the Hölder exponent, and this exponent is only well de�nedfor loally bounded funtions. It would be onvenient to de�ne new riteriaon more general ases. For instane, the veloity of turbulent �uids is nowknown not to be bounded near vortiity �laments, see [3℄. In the study ofturbulent �ows, in [27℄, Leray onjetured that self similar weak solutions ofNavier-Stokes equations with initial value in L2(R3) may develop singularitiesin a �nite time. This problem was then widely studied, [26℄ and di�erent be-haviors were produed following the initial value problem involved. Sine [8℄it is known that the set of singularities of these solutions is of vanishing Haus-dor� dimension. In [9℄, an alternative de�nition of regularity were suppliedwhih an give better results in ellipti PDEs and espeially when visoussolutions ours. It would thus be natural to take this notion, whih involvesloal Lp norms to study irregularities of Navier-Stokes solutions when initialdata are supposed in Lp. 2



Furthermore, it would be onvenient to establish regularity riteria in im-age proessing, where those properties are widely used. A natural idea wouldbe to determine properties of the harateristi funtion of sets. But Hölderregularity is not adapted for lassi�ation of natural images as it does nottake into aount the geometry of sets and takes only two values when it isapplied to harateristi funtions. Furthermore, most natural images, suhas louds images or medial images are disontinuous, see [3℄ and thus needto be studied in a more general framework.Let us reall the priniple of multifratal analysis. The natural notion ofregularity used in the study of pointwise behavior is provided by the Hölderexponent, de�ned as follows.De�nition 1. Let α ≥ 0; a funtion f : R
d → R is Cα(x0) if for eah x ∈ R

dsuh that |x− x0| ≤ 1 there exists a polynomial P of degree less than [α] anda onstant C suh that,
|f(x) − P (x− x0)| ≤ C|x− x0|

α. (1)The Hölder exponent of f at x0 is
hf(x0) = sup{α : f ∈ Cα(x0)}.In some ases, funtions may have an Hölder regularity whih hangeswildly from point to point. Rather than measure the exat value of theHölder exponent, one studies the fratal dimension of sets where it takes agiven value. The spetrum of singularities, also alled multifratal spetrumand denoted d(H), is the funtion whih gives for eah H the Hausdor� di-mension of those sets. A funtion is then alled multifratal if the support of3



its spetrum of singularities is an interval with no empty interior.However, the Hölder exponent has some drawbaks that prevent fromusing it in any situation. First, it is only de�ned for loally bounded fun-tions. If a funtion f belongs only to Lp
loc this exponent is no more de�ned.Furthermore, as pointed by Calderòn and Zygmund in [9℄, it is not preservedunder pseudodi�erential operator of order zero, and as stated in [30℄ annotthus be haraterized with onditions on wavelet oe�ients.Another drawbak an be emphasized with the example of Raleigh-Taylorinstability. This phenomena ours when two �uids whih are not misibleare plaed on top of eah other. In this ase, thin �laments appears giving tothe interfae between the two �uids a fratal struture, see [31℄ for a study.To study geometri properties of this interfae, one would be interested onmultifratal properties of its harateristi funtion. Nonetheless as suhfuntions are not ontinuous and take only two values, their Hölder exponentis not de�ne, and a multifratal approah an't be arry out.For all this reasons, it would be onvenient to de�ne a new kind of multi-fratal analysis onstruted with more general exponents. Suh onstrutionis started in [23, 24℄, where the authors proposed a multifratal formalismbased on Calderòn-Zygmund exponents. These exponents were introduedin [9℄ as an extension of Hölder exponent to Lp

loc funtions, invariant underpseudodi�erential operator of order 0.De�nition 2. Let p ∈ [1,∞] and u ≥ −d
p
be �xed. A funtion f ∈ Lp

loc(R
d)belongs to T p

u (x0) if there exist a real R > 0 and a polynomial P , suh that4



deg(P ) < u+ d
p
, and c > 0 suh that:

∀ρ ≤ R :

(

1

ρd

∫

‖x−x0‖≤ρ

|f(x) − P (x)|pdx

)1/p

≤ cρu. (2)The p-exponent of f at x0 is up
f(x0) = sup{u : f ∈ T p

u (x0)}.With this de�nition, the usual Hölder ondition f ∈ Cs(x0) orrespondsto f ∈ T p
u (x0) where p = ∞. One an also hek that the p exponent is de-reasing as a funtion of p. As it was done for the Hölder exponent one ande�ne for eah p the p-spetrum of singularities as the Hausdor� dimensionof the set of points where the p-exponent take a given value. In [23℄, theauthors de�ned the weak aessibility exponent, given as a parameter of thegeometry of the set. Spei�ally, this weak-saling exponent deals with theloal behavior of the boundary of a set. It is thus well adapted for fratalinterfaes that might appear in experimental settings. They showed that thisgeometrial based exponent oinide with Calderòn-Zygmund exponents ofthe harateristi funtion of the boundary of the set.Another regularity riterium, losely related to the previous ones is givenby the following de�nition from [30℄. With this exponent we an have a bet-ter understanding of the link between Calderòn-Zygmund exponents, Hölderexponent and the pointwise behavior of funtions.De�nition 3. Let f : R

d → R be a funtion or a distribution and x0 ∈ R
dbe �xed. The weak saling exponent of f at x0 is the smallest real number

β(f, x0) satisfying:1. β(f, x0) ≥ up
f(x0) ∀p ≥ 1. 5



2. β(f, x0) = s⇔ β
(

∂f
∂xj
, x0

)

= s− 1 j = 1, ..., d.Similarly, we de�ne the weak-saling spetrum, denoted by dws(β) as theHausdor� dimension of sets of points where β(f, x) takes a given value β.As we will see later, the weak saling exponent an be fully haraterized byonditions on wavelet oe�ients.In pratial appliations, the lassial multifratal spetrum annot beomputed diretly, as it takes into aount intriate limits. Thus, some for-mula, alled multifratal formalisms were introdued in purpose to link thespetrum of singularities to some alulable quantities. There are indeedtwo formalisms based on onditions on wavelet oe�ients. Historially thelassial multifratal formalism stated in [13℄ was based diretly on waveletoe�ients. Atually, this formula gave unexpeted results and was shownto be false in several ases. It is nowadays known that it is the weak salingexponent whih is involved in this formula. A seond multifratal formalism,developed in [22℄ is based on "wavelet leaders", whih an be seen as thetheoretial ounterpart of the "Wavelet Transform Modulus Maxima" usedin [4℄. This "wavelet leader" based formalism atually gives the spetrumof singularities in term of Hölder exponent. The weak saling exponent isthus more appropriated in order to understand the lassial multifratal for-malism. This exponent is also more stable under the ation of di�erentialoperators. Furthermore it gives an additional information on the behavior offuntions thanks to the following de�nition.De�nition 4. Let f : R
d → R be a funtion and x0 ∈ R

d.We say that x0 is a usp singularity for f if β(f, x0) = hf (x0).6



If β(f, x0) > hf(x0), x0 is said to be an osillating singularity.An example of osillating funtion at x0 = 0 is given by f(x) = |x| sin(1/|x|).Here, hf(0) = 1 while β(f, 0) = +∞. And we have a usp singularity whenthe behavior of the funtion at x0 is like |x|α but also like |x|α + |x| sin(1/|x|).Indeed we talk about a usp singularity when the funtion do not have osil-lations at a point, or if those osillations are hidden by the Hölder behaviour.Many authors have studied generi values of the Hölder exponent in fun-tion spaes. In 1931 Banah, [5℄, proved that the pointwise regularity of quasiall, in a topologial sense, ontinuous funtions is zero. Here quasi all meansthat this property is true in a ountable intersetion of dense open sets. Sinethen, Hunt in [15℄ showed that the same result is satis�ed by measure the-oreti almost every ontinuous funtions. Reently, results suh as those of[25℄ and [12℄ studied Hölder regularity of generi funtions in Sobolev spaesin both senses. Whereas a large study of regularity properties for generisets, there exists no result on generiity of Calderòn-Zygmund exponents orof weak saling exponent. Our purpose here is to provide a generiity resultof those exponents in given Sobolev and Besov spaes, with the measure-theoreti notion of generiity supplied by prevalene.Prevalene is a measure theoreti notion of generiity on in�nite dimen-sional spaes. In a �nite dimensional spae, the notion of generiity in ameasure theoreti sense is supplied by the Lebesgue measure. The partiularrole played by this measure is justi�ed by the fat that this is the only onewhih is σ-�nite and invariant under translation. In a metri in�nite dimen-7



sional spae no measure enjoys this properties. The proposed alternative isto replae onditions on the measure by onditions on sets, see [6, 10, 17, 16℄and to take the following de�nition.De�nition 5. Let V be a omplete metri vetor spae. A Borel set B in
V is alled Haar-null if there exists a probability measure µ with ompatsupport suh that

µ(B + v) = 0 ∀v ∈ V. (3)In this ase the measure µ is said transverse to B.A subset of V is alled Haar-null if it is ontained in a Borel Haar-null set.The omplement of a Haar-null set is alled a prevalent set.With a slight abuse of language we will say that a property is satis�edalmost everywhere when it holds on a prevalent set.Let us reall properties of Haar-null sets, see [10, 17℄ and show how itgeneralizes notion of Lebesgue measure zero sets.Proposition 1. 1. If S is Haar-null, then ∀x ∈ V , x+ S is Haar-null.2. If dim(V ) <∞, S is Haar-null if and only if meas(S) = 0 (where measdenotes the Lebesgue measure).3. Prevalent sets are dense.4. If S is Haar-null and S ′ ⊂ S then S ′ is Haar null.5. The union of a ountable olletion of Haar-null sets is Haar null.6. If dim(V ) = ∞, ompat subsets of V are Haar-null.8



Remarks. Several kinds of measures an be used as transverse measures fora Borel set. Let us give two examples of transverse measure.1. A �nite dimensional spae P is alled a probe for a set T ⊂ V if theLebesgue measure on P is transverse to the omplement of T . Thosemeasures are not ompatly supported probability measures. Howeverone immediately heks that this notion an also be de�ned the sameway but stated with the Lebesgue measure de�ned on the unit ball of P .Note that in this ase, the support of the measure is inluded in the unitball of a �nite dimensional subspae. The ompatness assumption istherefore ful�lled.2. If V is a funtion spae, a probability measure on V an be de�ned bya random proess Xt whose sample paths are almost surely in V . Theondition µ(f+A) = 0 means that the event Xt−f ∈ A has probabilityzero. Therefore, a way to hek that a property P holds only on a Haar-null set is to exhibit a random proess Xt whose sample paths are in Vand is suh that
∀f ∈ V, a.s. Xt + f does not satisfy P.These properties, suh as several examples of prevalent results an befound in the survey [16℄.1.1 Statement of main resultsThe purpose of this paper is stated by the two following theorems whih givethe multifratal properties of almost every funtions with regard to exponents9



de�ned in the previous setion.Theorem 1. Let s0 ≥ 0 and 1 ≤ p0 <∞ be �xed.1. For all p ≥ 1 suh that s0 −
d
p0

> −d
p
the p-spetrum of singularities ofalmost every funtion in Ls0,p0(Rd) is given by

∀u ∈

[

s0 −
d

p0
, s0

]

dp(u) = p0(u− s0) + d. (4)2. For almost every funtion in Ls0,q0(Rd) the spetrum of singularities forthe weak-saling exponent is given by
∀β ∈ [s0 −

d

p0

, s0] dws(β) = p0(β − s0) + d. (5)This result in Sobolev spaes has an analogous in the Besov setting. Fur-thermore, Besov spaes are useful when wavelets are involved as it is the asehere, those spaes having a simpler haraterization.Theorem 2. Let s0 ≥ 0 and 0 < q, p0 <∞ be �xed.1. For all p ≥ 1 suh that s0 −
d
p0

> −d
p
the p-spetrum of singularities ofalmost every funtion in Bs0,q

p0
(Rd) is given by

∀u ∈

[

s0 −
d

p0
, s0

]

dp(u) = p0(u− s0) + d. (6)2. For almost every funtion in Bs0,q
p0

(Rd) the spetrum of singularities forthe weak-saling exponent is given by
∀β ∈ [s0 −

d

p0

, s0] dws(β) = p0(β − s0) + d. (7)10



These theorems seem a bit surprising. Let us ompare them with thefollowing proposition from [12℄.Proposition 2. • If s − d/p ≤ 0, then almost every funtion in Lp,s isnowhere loally bounded, and therefore its spetrum of singularities isnot de�ned.
• If s− d/p > 0, then the Hölder exponent of almost every funtion f of
Lp,s takes values in [s− d/p, s] and

∀H ∈ [s− d/p, s] , df(H) = Hp− sp+ d; (8)Thus the main hange from [12℄ is given by the fat that here β an takenegative values. Indeed, our present theorems give a generi regularity inSobolev or in Besov spaes that are not imbedded in global Hölder spaes.Even if in suh spaes, the lassial spetrum of singularities is not de�ne fora prevalent set, we have an idea of the pointwise behavior of almost everydistribution. On the other ase, when s0−
d
p0

> 0 and the spetrum of singu-larities exists, it oinides with the above spetra for almost every funtionin Besov spaes. Therefore, in the seond ase we generalize in this paperthe result of [12℄ to more stable exponents.In [28℄, it was also proved that in those spaes quasi all funtions, inthe Baire's sense, have no osillating singularities. Furthermore, presene ofosillating singularities is linked with the failure of the multifratal formal-ism in [33℄. And in [11℄, it was already proven that almost every funtionin Besov spaes satisfy the multifratal formalism. The main result of thispaper together with De�nition 4 show that even if weak saling and Hölder11



exponents do not oinide they share the same spetrum. Thus, in the preva-lene setting, osillating singularities appear as an exeptional behavior inregular Sobolev or Besov spaes.Another remark an be made thanks to the following proposition from[24℄ and from [34℄ that give an upper bound for the p-spetrum.Proposition 3. Let f ∈ Bs0,p0

p0
(Rd), where s0 > 0 and let p ≥ 1 be suh that

s0 −
d
p0

> −d
p
. Then

∀u ∈

[

s0 −
d

p0
, s0

]

dp(u) ≤ p0u− s0p0 + d. (9)This proposition together with Theorem 2 show that the generi regular-ity for p riteria is as bad as possible.In Part 2 we will prove Theorems 1 and 2. For the sake of ompleteness,we �rst have to de�ne our main tool whih is given by wavelet expansionsof funtions. Wavelets are naturally present in multifratal analysis, see forinstane [2℄. Furthermore, in our ase it allows a haraterization of bothfuntional spaes and pointwise regularities.1.2 Wavelet expansionsThere exist 2d − 1 osillating funtions (ψ(i))i∈{1,...,2d−1} in the Shwartz lasssuh that the funtions
2djψ(i)(2jx− k), j ∈ Z, k ∈ Z

d12



form an orthonormal basis of L2(Rd), see [29℄. Wavelets are indexed bydyadi ubes λ = [ k
2j ;

k+1
2j [d. Thus, any funtion f ∈ L2(Rd) an be written:
f(x) =

∑

c
(i)
j,kψ

(i)(2jx− k)where
c
(i)
j,k = 2dj

∫

f(x)ψ(i)(2jx− k)dx.(Note that we use an L∞ normalization instead of an L2 one, whih simpli�esthe formulas). If p > 1 and s > 0, Sobolev spae have thus the followingharaterization, see [29℄:
f ∈ Ls,p(Rd) ⇔

(

∑

λ∈Λ

|cλ|
2(1 + 4js)χλ(x)

)1/2

∈ Lp(Rd), (10)where χλ(x) denotes the harateristi funtion of the ube λ and Λ is theset of all dyadis ubes. Homogeneous Besov spaes, whih will also beonsidered, are haraterized (for p, q > 0 and s ∈ R) by
f ∈ Bs,q

p (Rd) ⇐⇒
∑

j





∑

λ∈Λj

|cλ|
p2(sp−d)j





q/p

≤ C (11)where Λj denotes the set of dyadis ubes at sale j, see [29℄.Hölder pointwise regularity an also be expressed in term of wavelet o-e�ients, see [18℄.Proposition 4. Let x be in R
d. If f is in Cα(x) then there exists c > 0 suhthat for eah λ:

|cλ| ≤ c2−αj(1 + |2jx− k|)α. (12)13



This proposition is not a haraterization. If for any ε > 0, a funtiondoes not belongs to Cε(Rd) one annot express its pointwise Hölder regu-larity in term of ondition on wavelet oe�ients. This is an advantage ofCalderòn Zygmund exponent sine, as showed in [21℄, it an be linked towavelet expansion without global regularity assumption.De�nition 6. Let x0 be in R
d and j ≥ 0. We denote by λj(x0) the uniquedyadi ube of width 2−j whih ontains x0. And we denote

3λj(x0) = λj(x0) +

[

−
1

2j
,

1

2j

]d

.Furthermore, we de�ne the loal square funtion by
Sf (j, x0)(x) =





∑

λ⊂3λj(x0)

|cλ|
2
1λ(x)





1/2

.Proposition 5. Let p ≥ 1 and s ≥ 0; if f ∈ T p

s− d
p

(x0), then ∃C > 0 suhthat wavelet oe�ients of f satisfy for all j ≥ 0

‖Sf(j, x0)‖Lp ≤ c2−j(u+d/p). (13)Conversely if (13) holds and if s− d
p
6∈ N then f ∈ T p

s− d
p

(x0).As far as we are onerned, we don't need a haraterization but a weakerondition whih is given by the following proposition from [23℄.Proposition 6. Let p ≥ 1 and s ≥ 0; if f ∈ T p

s− d
p

(x0), then ∃A,C > 0 suhthat wavelet oe�ients of f satisfy
∃C ∀j 2j(sp−d)

∑

|k−2jx0|≤A2j

|cj,k|
p(1 + |k − 2jx0|)

−sp ≤ Cj. (14)14



Furthermore, it is also proved in [23℄ that the p-exponent an be derivedfrom wavelet oe�ients.Proposition 7. Let p ≥ 1 and f ∈ Lp
loc. De�ne

Σp
j (s, A) = 2j(sp−d)

∑

|k−2jx0|≤A2j

|cj,k|
p(1 + |k − 2jx0|)

−sp, (15)for A > 0 small enough. And denote
ip(x0) = sup

{

s : lim inf
log
(

Σp
j (s, A)1/p

)

−j log 2
≥ 0

}

. (16)Then the following inequality always holds
up

f(x0) ≤ ip(x0) −
d

p
. (17)If furthermore there exists δ > 0 suh that f ∈ Bδ,p

p then the p-exponentof f satis�es
up

f(x0) = ip(x0) −
d

p
. (18)As seen previously, the p-exponent is also related to the weak-salingexponent. This one an also be expressed in term of wavelet oe�ients,thanks to its relation with two-miroloal spaes, de�ned in [7℄.De�nition 7. Let s and s′ be two real numbers. A distribution f : R

d → Rbelongs to the two-miroloal spae Cs,s′(x0) if its wavelet oe�ients satisfythat there exists c > 0 suh that
∀j, k |cj,k| ≤ c2−sj(1 + 2jx0 − k|)−s′. (19)In [30℄ the following haraterization of the weak saling exponent is given.15



Proposition 8. A tempered distribution f belongs to Γs(x0) if and only ifthere exists s′ < 0 suh that f belongs to Cs,s′(x0).The weak-saling exponent of f is
β(f, x0) = sup{s : f ∈ Γs(x0)}. (20)But we will rather take the following alternative haraterization from[23℄ that give a simpler ondition in term of wavelet oe�ients.Proposition 9. Let f be a tempered distribution. The weak saling exponentof f at x0 is the supremum of s > 0 suh that :

∀ε > 0 ∃c > 0 ∀(j, k) suh that |2jx0 − k| < 2εj, |cj,k| ≤ c2−(s−ε)j (21)2 Proofs of Theorems 1 and 22.1 The p-spetrumIn this setion, we only prove the �rst point of Theorem 2. We will see howthis proof an be adapted to Theorem 1 in a seond time.In a �rst part, the result that we prove is more preise than the onestated. Indeed, we prove that for eah α ∈ (1,∞) and for eah p ≥ 1, the
p-exponent of almost every funtion of Bs0,p0

p0
(Rd) is smaller than

s−
d

p
+

d

αp
(22)on a set of Hausdor� dimension greater than d

α
.16



These fratal sets are losely related to the dyadi approximation ofpoints.De�nition 8. Let α ∈ (1,∞) be �xed. We denote
Fα =

{

x : ∃ a sequence ((kn, jn))n∈N

∣

∣

∣

∣

x−
kn

2jn

∣

∣

∣

∣

≤
1

2αjn

}

. (23)This set Fα an also be de�ned as
lim sup

i→∞

⋃

l∈Nd

F i,l
αwhere F i,l

α denotes the ube l
2i +

[

− 1
2αi ;

1
2αi

]d.If x ∈ Fα it is said α-approximable by dyadis. The dyadi exponent of xis de�ned by α(x0) = sup{α : x0 is α-approximable by dyadis}As stated in [20℄, the Hausdor� dimension of Fα is at least d
α
.In order to prove our result we show that the set of funtions where for

α and p ≥ 1 given, the p exponent is larger than (22) at a point of Fα isinluded in a ountable union of Haar-null Borel sets.Let p ≥ 1 be given suh that s0 −
d
p0

> −d
p
. For α ≥ 1 �xed we denote

s(α) = s0 −
d
p0

+ d
αp0

+ d
p
. For ε > 0 �xed, let β = s(α) + ε. We �rst hekthat the set of funtions in Bs0,p0

p0
satisfying (14) with exponent β at a pointin Fα is a Haar-null Borel set. This set an be inluded in a ountable unionover A > 0 and c > 0 of setsM(A, c) whih are sets of funtions in Bs0,p0

p0
(Rd)satisfying

∃x ∈ Fα ∀j 2j(βp−d)
∑

|k−2jx|≤A2j

|cλ|
p(1 + |k − 2jx|)−βp ≤ c.17



And for eah i ∈ N these sets an be inluded in the ountable union over
l ∈ {0, ..., 2i − 1}d of Mi,l(A, c), de�ned by the set of f suh that

∃x ∈ F i,l
α ∀j 2j(βp−d)

∑

|k−2jx|≤A2j

|cλ|
p(1 + |k − 2jx|)−βp ≤ c.Eah Mi,l(A, c) is a losed set. Indeed, suppose that a sequene (fn) ofelements of Mi,l(A, c) onverges to f in Bs0,p0

p0
(Rd). Denote cnj,k the waveletoe�ients of fn, for eah n ∈ N, and cj,k those of f . The mapping giving thewavelet oe�ients of a funtion f in a Besov spae is ontinuous, thus foreah j, k cnj,k onverge to cj,k. Furthermore for eah n there exists xn ∈ F i,l

αsuh that fn satis�es (14) at xn. Thus
∀j 2j(βp−d)

∑

|kn−2jxn|≤A2j

|cnλ|
p(1 + |kn − 2jxn|)

−βp ≤ c. (24)As F i,l
α is a ompat set, there exists an aumulation point x ∈ F i,l

α of
xn. Furthermore, if kn is suh that |kn − 2jxn| ≤ A2j for a subsequene
xφ(n) suh that lim xφ(n) = x, the orresponding kφ(n) onverges to k with
|k − 2jx| ≤ A2j. Thus up to a subsequene, when n tends to in�nity, (24)beomes

∀j 2j(βp−d)
∑

|k−2jx|≤A2j

|cλ|
p(1 + |k − 2jx|)−βp ≤ c.Consequently f belongs to Mi,l(A, c) and M(A, c) is a Borel set.To prove that it is also a Haar-null set, we onstrut a probe as trans-verse measure, in this way the ompatness assumption is learly satis�ed.This probe is based on a slight modi�ation of the "saturating funtion"introdued in [20℄. 18



Let i ∈ N and l ∈ {0, ..., 2i−1}d be �xed. Let n ∈ N be �xed large enoughsuh that N = 2dn > d
pαε

+1. Eah dyadi ube λ is split intoM sububes ofsize 2−d(j+n). For eah index m ∈ {1, ..., N}, we hoose a subube i(λ) andthe wavelet oe�ient of gi is given by:
dm

λ =











1
ja 2

( d
p0

−s0)j2
− d

p0
J if m = i(λ)

0 else. (25)where a = 2
p0

and J ≤ j and K ∈ {0, ...2J − 1}d are suh that
k

2j
=
K

2Jis an irreduible form. It is proven in [12℄ that these funtions belong to
Bs0,p0

p0
.Furthermore, if a point x ∈ (0, 1)d is α-approximable by dyadis, thereexists a subsequene (jn, kn) where jn = [Jnα], Jn and Kn being de�ned in(23) and kn is suh that kn

2jn
= Kn

2Jn
. The orresponding wavelet oe�ients ofall funtions gm satisfy that there exists a onstant c > 0 suh that if (j, k)satisfy |x0 −

k
2j | < A :

dm
j,k > c(A)

2
( d

p0
−s0)j2

− d
αp0

j

ja
. (26)Let f =

∑

cj,kψj,k be an arbitrary funtion in Bs0,p0

p0
(Rd). Suppose thatthere exists two points γ1 ∈ R

N and γ2 ∈ R
N suh that for a = 1, 2, f +

∑

m γ
m
a g

m belong to Mi,l(A, c). By de�nition there also exist two points x1and x2 in F i,l
α suh that, for a = 1, 2,

∀j 2j(βp−d)
∑

|k−2jxa|≤A2j

|cλ +

N
∑

m=1

γm
a d

m
λ |

p(1 + |k − 2jx|)−βp ≤ c.19



As β > 0, this ondition implies :
∀j 2j(βp−d)

∑

|k−2jxa|≤A2j

|cλ +

N
∑

m=1

γm
a d

m
λ |

p(1 + A2j)−βp ≤ c.But x1 and x2 belong to same dyadi ubes of size j > i. Thus the same
k satisfy |k − 2jxa| ≤ A2j for a = 1, 2 and wavelet oe�ients of f1 − f2 aresuh that for all j > αi

2j(βp−d)
∑

|k−2jxa|≤A2j

|
N
∑

m=1

(γm
1 − γm

2 )dm
λ |

p(1 + A2j)−βp ≤ 2c.It is obvious that
2j(βp−d)

∑

| k

2j −x1|≤A

|
∑

m

(γm
1 − γm

2 )dm
λ |

p2−βpj(2−j + |
k

2j
− x1|)

−βp

≥ 2j(s̃p−d) sup
| k

2j −x1|≤A

|
∑

m

(γm
1 − γm

2 )dm
λ |

p2−s̃pj(2−j + |
k

2j
− x1|)

−s̃pUsing de�nition of funtion gm, if for eah j we de�ne j′ = j+n, at sale
j′ there is only one funtion gm with non zero oe�ient. And with (26) one�nally obtains that there exists a subsequene j suh that
2n(βp−d)2j(βp−d) sup

| k

2j −x1|≤A

|
∑

m

(γm
1 −γm

2 )dm
λ |

p2−βpj(2−j+|
k

2j
−x1|)

−s̃p ≥ |γi
1−γ

i
2|

pc̃p
1

jpa
2pεj,where c̃ depends only of n and A.Those two inequalities imply that

‖γ1 − γ2‖
p
∞ ≤ 2cc(N)i1/p02−εαpi. (27)Therefore the set of γ suh that f +

∑

i γ
mgm belongs to Mi,l(A, c) isinluded in a ball of radius less than (2cc(N))N iN/p02−εαpNi. Taking the20



ountable union over l, we obtain that for eah i0 �xed, the set of γ satisfying
∃x ∈ F i0

α suh that f +
∑

m

γmgm satisfy (24) at xis of Lebesgue measure bounded by
∞
∑

i=i0

(2cc(N))N iN/p02di−εαpNi.As N is large enough, this measure tends to zero when i0 tends to in�nity.And M(A, c) is then a Haar-null set.As this result does not depend on c or on A, we an take the union overountable cn > 0 and An > 0. Then the set of funtions in Bs0,p0

p0
(Rd) be-longing to T p

β (x) at a point x ∈ Fα is a Haar-null set.Thus,
∀p ≥ 1, ∀α ≥ 1 ∀β > s(α) a.s. in Bs0,p0

p0
∀x ∈ Fα u

p
f(x) ≤ β.Taking ε→ 0 it follows by ountable intersetion that

∀p ≥ 1, ∀α ≥ 1 a.s. in Bs0,p0

p0
∀x ∈ Fα u

p
f(x) ≤ s(α).Therefore, if αn is a dense sequene in (1,∞), using the same argument,one obtains that

∀p ≥ 1, a.s. in Bs0,p0

p0
∀n ∈ N ∀x ∈ Fαn

up
f(x) ≤ s(αn). (28)Let f be a funtion satisfying (28) and α ≥ 1 be �xed. Let αφ(n) anondereasing subsequene of αn onverging to α. Then the intersetion Eα21



of Fαn
ontains Fα and for all x ∈ Eα, and thus for all x ∈ Fα, up

f(x) ≤ s(α).Furthermore, see [19℄, there exists a measure mα positive on Fα but suhthat every set of dimension less than d
α
is of measure zero. Let us denote GHthe set of points where up(x) < H . Aording to Proposition 3, this set anbe written as a ountable union of sets of mα measure zero. Thus, we obtain

mα({x : up(x) = H} = mα(Fα\GH) > 0.Whih gives us the p spetrum of singularities
∀u ∈

[

s0 −
d

p0

, s0

]

dp(u) = p0u+ d− s0p0.This proof does not depends on the hoie of q. It an then be extendedthe same way for any Besov spae Bs0,q
p0

for 0 ≤ q <∞.The proof for the Sobolev ase is similar. The funtions gm de�ned in(25) also belong to Bs0,1
p0

. Sine Bs0,1
p0

→֒ Ls0,p0, the gm belong to Ls0,p0 andthe remaining of the proof is unhanged.2.2 Generi values of the weak saling spetrumWe now prove of the seond point of Theorem 1 and 2. As in the previousase, we prove Theorem 2, the same argument as in the previous part givingthe Sobolev ase.Proposition 10. Let s0 > 0 and 0 ≤ p0, q < ∞ be �xed. For almost everyfuntion in Bs0,q
p0

the spetrum of singularities for the weak-saling exponentis given by
∀β ∈ [s0 −

d

p0

, s0] dws(β) = p0(β − s0) + d. (29)22



Proof. Let α ≥ 1 be �xed and denote by Fα the set of De�nition 8. Let ε > 0be �xed and de�ne β = s0 −
d
p0

+ d
p0α

+ ε.Aording to Proposition 9, we �rst have to show that for a given c > 0the set :
Mα,c = {f =

∑

cλψλ ∈ Bs0,q
p0

: ∃x ∈ Fα ∀ε′ > 0 ∀(j, k) |2jx−k| ≤ 2ε′j |cλ| ≤ c2−(β−ε′)j}(30)is a Borel Haar-null set.Let us remark that for all i ∈ N, this set is inluded in the ountableunion of:
Mα,c(i, l) = {f ∈ Bs0,q

p0
: ∃x ∈ F i,l

α ∀ε′ > 0 ∀(j, k) |2jx−k| ≤ 2ε′j |cλ| ≤ c2−(β−ε′)j}.(31)One easily heks that Mα,c(i, l) is losed and therefore that Mα,c is a Borelset.To prove thatMα,c is also Haar-null, we use a di�erent transverse measurethan in the previous setion, by taking the measure indued by a stohastiproess. As Mα,c depends only on the dyadi properties of points, we analso restrit the proof to [0, 1]d. Consider the following stohasti proess on
[0, 1]d:

Xx =
∞
∑

j=0

∑

λ∈[0,1]d

εj,k
2
−(s0−

d
p0

)j
2
− d

p0
J

ja
ψ(2jx− k) (32)where J and a are de�ned as in (25) and {εj,k}j,k is a Rademaher sequene.That is the εj,k are i.i.d. random variables suh that

P(εj,k = 1) = P(εj,k = −1) =
1

2
.23



This proess belongs to Bs0,q
p0

. Furthermore, the measure de�ned by thisstohasti proess is supported by the ontinuous image of a ompat set.Thus, (Xx)x∈[0,1]d de�nes a ompatly supported probability measure on
Bs0,q

p0
.Let f be an arbitrary funtion in Bs0,q

p0
(Rd). Thanks to Fubini's theorem,it is su�ient to prove that for all x ∈ Fα, almost surely, ondition (21) isnot satis�ed by f +X.Let x0 ∈ Fα be �xed and suppose that f + X satis�es ondition (21) at

x0. Then for all ε′ > 0 and for all (j, k) suh that |k − 2jx0| ≤ 2ε′j,
|cj,k + εj,k

2
−(s0−

d
p0

)j
2
− d

p0
J

ja
| ≤ c2−(β−ε′)j .Taking (Jn, Kn) the sequene of De�nition 8, j = [αJn] and k = Kn2j

2Jn
oneobtains that there exists a sequene (j, k) suh that |2jx0 − k| ≤ 1 and thefollowing property holds:

εj,k = cj,kj
a2

(s0−
d

p0
+ d

p0α
)j

+ o(2−(ε−ε′)j).Taking ε′ = ε
2
, one obtains that εj,k ∼ cj,kj

a2
(s0−

d
p0

+ d
p0α

)jn when jn → ∞.Sine the cj,k are deterministi, this result implies that there exists an in�nitesequene of independent stohasti variables whih are deterministi. Thisevent is of probability zero and Mα,c is a Haar-null set.Therefore, taking ountable unions over c > 0 and ε → 0, it follows thatfor all α ≥ 1, the set of funtions in Bs0,q
p0

with a weak saling exponent24



greater than s0 −
d
p0

+ d
p0α

at some point of F α is a Haar-null set.Let (αn)n∈N be a dense sequene in (1,∞) and take a ountable unionover αn. We �nally obtaina. s. in Bs0,q
p0

(Rd) ∀n ∈ N ∀x ∈ Fαn
β(f, x) ≤ s0 −

d

p0
+

d

p0αn
.With a similar argument as in part 2.1, one an prove that :a. s. in Bs0,q

p0
(Rd) ∀α ≥ 1 ∀x ∈ Fα β(f, x) ≤ s0 −

d

p0
+

d

p0α
. (33)Furthermore, we saw in Part 2.1 that there exists a measure mα whih ispositive on Fα and suh that

mα({x; up(x) = s0 −
d

p0
+

d

p0α
}) > 0.And by de�nition, ∀p ≥ 1, β(f, x) ≥ up(x), thus

mα({x; β(f, x) = s0 −
d

p0

+
d

p0α
}) > 0.Whih states that the spetrum of singularities for the weak saling ex-ponent of almost every funtion in Bs0,q

p0
(Rd) is given by

∀β ∈ [s0 −
d

p0
, s0] dws(β) = p0β + d− s0p0.
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